

FCC C2PC Test Report

FCC ID	:	PY313200228
Equipment	:	802.11abgn ac Dual Band Wireless-N Adapter
Model No.	:	A6100
Brand Name	:	NETGEAR
Applicant	:	NETGEAR, Inc.
Address	:	350 East Plumeria Drive, San Jose, California 95134, USA
Standard	:	47 CFR FCC Part 15.407
Received Date	:	Jul. 14, 2015
Tested Date	:	Jul. 14 ~ Jul. 20, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	The Equipment List	8
1.5	Testing Applied Standards	9
1.6	Measurement Uncertainty	9
2	TEST CONFIGURATION	10
2.1	Testing Condition	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	Conducted Emissions	11
3.2	Emission Bandwidth	14
3.3	RF Output Power	16
3.4	Peak Power Spectral Density	18
3.5	Transmitter Radiated and Band Edge Emissions	20
3.6	Frequency Stability	43
4	TEST LABORATORY INFORMATION	45

Release Record

Report No.	Version	Description	Issued Date
FR350802-02AI	Rev. 01	Initial issue	Aug. 05, 2015

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.163MHz 52.53 (Margin -12.79dB) - QP	Pass
15.407(b)(4) 15.209	Radiated Emissions	[dBuV/m at 3m]: 5860.00MHz 52.44 (Margin -1.56dB) - AV	Pass
15.407(a)(5)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(a)(3)	RF Output Power	Max Power [dBm]: 18.45	Pass
15.407(a)(3)	Peak Power Spectral Density	Meet the requirement of limit	Pass
15.407(e)	6dB Bandwidth	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Summary of Test Results

1 General Description

1.1 Information

This report is prepared for FCC class II change.

This report is issued as a supplementary report to original ICC report no. FR350802AI. This report is issued for complying with New U-NII rule requirement, and all test items has been re-tested and its data was recorded in the following sections.

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (Ν _{τx})	Data Rate / MCS		
5725-5850	а	5745-5825	149-165 [5]	1	6-54 Mbps		
5725-5850	n (HT20)	5745-5825	149-165 [5]	1	MCS 0-7		
5725-5850	n (HT40)	5755-5795	151-159 [2]	1	MCS 0-7		
5725-5850	ac (VHT20)	5745-5825	149-165 [5]	1	MCS 0-8		
5725-5850	ac (VHT40)	5755-5795	151-159 [2]	1	MCS 0-9		
5725-5850 ac (VHT80) 5775 155 [1] 1 MCS 0-9							
	Note 1: RF output power specifies that Maximum Conducted Output Power. Note 2: 802.11a/n/ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.						

1.1.2 Antenna Details

Ant. No.	Туре	Connector	Gain (dBi)
1	PIFA	-	2 dBi @ 2.4GHz / 4dBi @ 5GHz

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	5Vdc from host
-------------------	----------------

1.1.4 Accessories

N/A

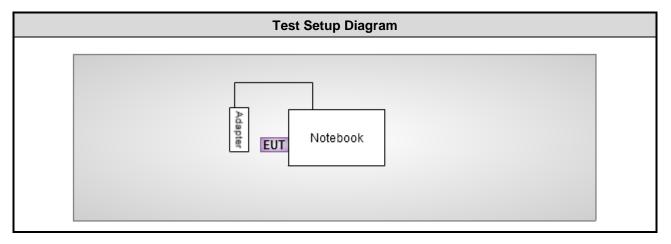
1.1.5 Channel List

802.11 a / H	T20 / VHT20	HT40 / VHT40		
Channel	Channel Frequency(MHz)		Frequency(MHz)	
149	5745	151	5755	
153	5765	159	5795	
157	5785	VHT80		
161	5805	155	5775	
165	5825			

1.1.6 Test Tool and Duty Cycle

Test Tool	Realtek, version 0.0041.20130606					
	Mode	Duty cycle (%)	Duty factor (dB)			
	11a	91.97%	0.36			
	HT20 93.83%		0.28			
Duty Cycle and Duty Factor	HT40	79.89%	0.97			
	VHT20	92.95%	0.32			
	VHT40	83.42%	0.79			
	VHT80	68.02%	1.67			

1.1.7 Power Setting


Modulation Mode	Test Frequency (MHz)	Power Set
11a	5745	34.00
11a	5785	34.00
11a	5825	34.00
HT20	5745	34.00
HT20	5785	34.00
HT20	5825	34.00
HT40	5755	35.00
HT40	5795	35.00
VHT20	5745	34.00
VHT20	5785	34.00
VHT20	5825	34.00
VHT40	5755	35.00
VHT40	5795	35.00
VHT80	5775	34.00

1.2 Local Support Equipment List

	Support Equipment List						
No.	No. Equipment Brand Model FCC ID Signal cable / Length (m)						
1	Notebook	DELL	Latitude E5420	DoC			

1.3 Test Setup Chart

The Equipment List 1.4

Test Item	Conducted Emission						
Test Site	Conduction room 1 / (CO01-WS)						
Instrument	Manufacturer Model No. Serial No. Calibration Date Calibration Until						
EMC Receiver	R&S	ESCS 30	100169	Oct. 17, 2014	Oct. 16, 2015		
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 17, 2014	Nov. 16, 2015		
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 31, 2014	Dec. 30, 2015		
Measurement SoftwareAUDIXe36.120210kNANA							
Note: Calibration Inte	Note: Calibration Interval of instruments listed above is one year.						

Test Item	Radiated Emission					
Test Site	966 chamber 3 / (030	CH03-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until	
Spectrum Analyzer	Agilent	N9010A	MY53400091	Sep. 16, 2014	Sep. 15, 2015	
Receiver	Agilent	N9038A	MY53290044	Oct. 21, 2014	Oct. 20, 2015	
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-562	Jan. 19, 2015	Jan. 18, 2016	
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Feb. 03, 2015	Feb. 02, 2016	
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 10, 2014	Nov. 09, 2015	
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 10, 2014	Nov. 09, 2015	
Preamplifier	EMC	EMC02325	980187	Sep. 26, 2014	Sep. 25, 2015	
Preamplifier	Agilent	83017A	MY53270014	Sep. 17, 2014	Sep. 16, 2015	
Preamplifier	EMC	EMC184045B	980192	Aug. 26, 2014	Aug. 25, 2015	
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Feb. 09, 2015	Feb. 08, 2016	
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY22601/4	Feb. 09, 2015	Feb. 08, 2016	
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Feb. 09, 2015	Feb. 08, 2016	
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800-001	Feb. 09, 2015	Feb. 08, 2016	
LF cable-3M	EMC	EMC8D-NM-NM-3000	131103	Feb. 09, 2015	Feb. 08, 2016	
LF cable-13M	EMC	EMC8D-NM-NM-13000	131104	Feb. 09, 2015	Feb. 08, 2016	
Measurement Software	AUDIX	e3	6.120210g	NA	NA	
Software	_	e3 sted above is one year.	6.120210g	NA	NA	

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Dec. 03, 2014	Dec. 02, 2015
Power Meter	Anritsu	ML2495A	1241002	Sep. 29, 2014	Sep. 28, 2015
Power Sensor	Anritsu	MA2411B	1207366	Sep. 29, 2014	Sep. 28, 2015
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA

1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407 ANSI C63.10-2013 FCC KDB 789033 D02 General UNII Test Procedures New Rules v01 FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01 FCC KDB 412172 D01 Determining ERP and EIRP v01

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.134 Hz
Conducted power	±0.808 dB
Frequency error	±34.134 Hz
Power density	±0.463 dB
Conducted emission	±2.670 dB
AC conducted emission	±2.92 dB
Radiated emission ≤ 1GHz	±3.99 dB
Radiated emission > 1GHz	±5.52 dB
Time	±0.1%
Temperature	±0.6 °C

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	23°C / 67%	Kevin Ma
Radiated Emissions	03CH03-WS	21-23°C / 64%	Warren Lee Felix Sung
RF Conducted	TH01-WS	22°C / 64%	Brad Wu

➢ FCC site registration No.: 390588

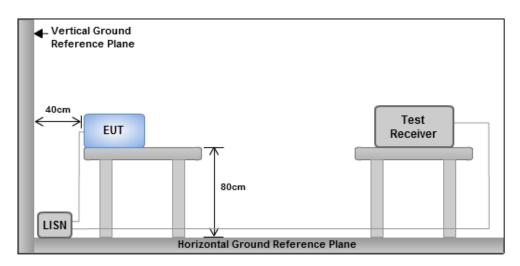
➢ IC site registration No.: 10807C-1

2.2 The Worst Test Modes and Channel Details

	For Frequer	ncy band 5725-5850 MHz		
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration
Conducted Emissions	11a	5825	6 Mbps	
Radiated Emissions ≤1GHz	11a	5825	6 Mbps	
	11a	5745 / 5785 / 5825	6 Mbps	
	HT20	5745 / 5785 / 5825	MCS 0	
RF Output Power	HT40	5755 / 5795	MCS 0	
	VHT20	5745 / 5785 / 5825	MCS 0	
	VHT40	5755 / 5795	MCS 0	
	VHT80	5775	MCS 0	
Radiated Emissions >1GHz	11a	5745 / 5785 / 5825	6 Mbps	
Emission Bandwidth	VHT20	5745 / 5785 / 5825	MCS 0	
6dB bandwidth	VHT40	5755 / 5795	MCS 0	
Peak Power Spectral Density	VHT80	5775	MCS 0	
Frequency Stability	Un-modulation	5785		

3 Transmitter Test Results

3.1 Conducted Emissions

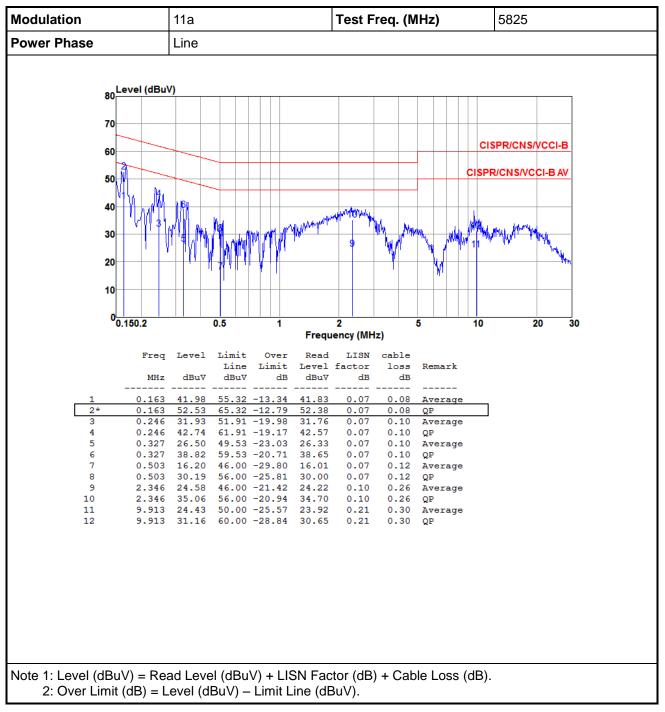

3.1.1 Limit of Conducted Emissions

	Conducted Emissions Limit	
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarith	im of the frequency.	•

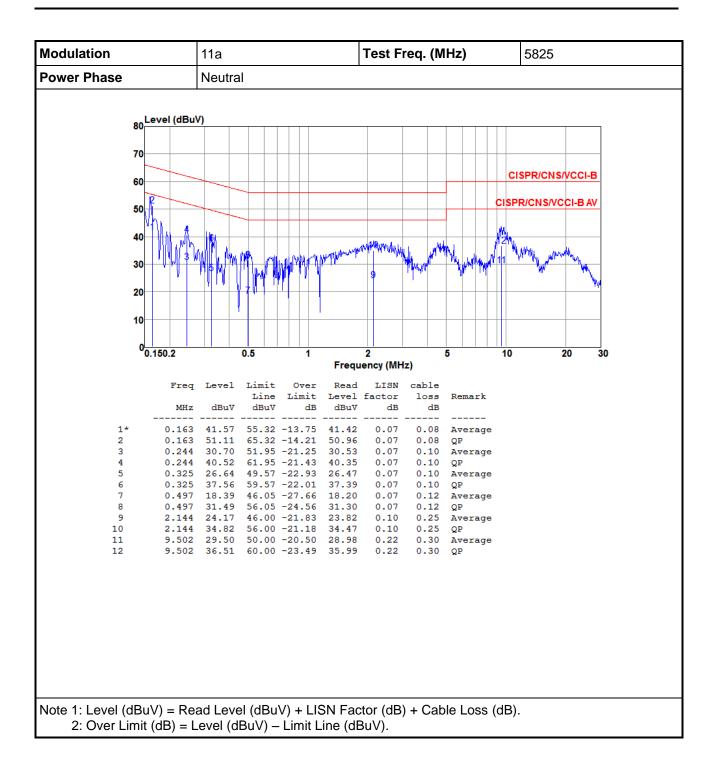
3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

3.1.3 Test Setup



Note: 1. Support units were connected to second LISN.


2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

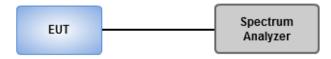
3.1.4 Test Result of Conducted Emissions

3.2 Emission Bandwidth

3.2.1 Limit of Emission Bandwidth

The minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

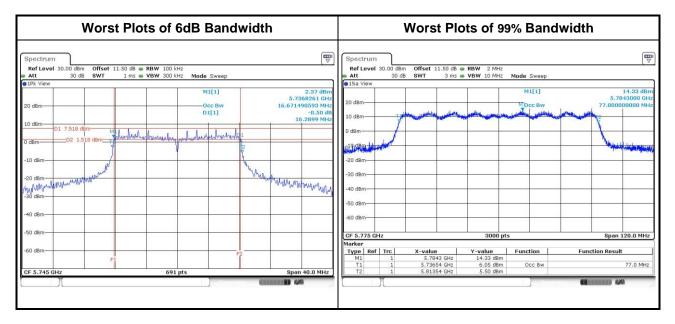
3.2.2 Test Procedures


26dB Bandwidth

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission.

6dB Bandwidth

- 1. Set RBW = 100 kHz, video bandwidth = 300 kHz
- 2. Detector = Peak, Trace mode = max hold, Sweep = auto couple, Allow the trace to stabilize
- 3. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

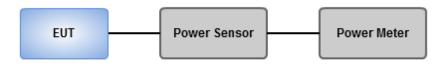

3.2.3 Test Setup

3.2.4 Test Result of Emission Bandwidth

					Emission	Bandwid	th						
			0	OBW Bandwidth (MHz)				6dB Bandwidth (MHz)					
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3	6dB BW Limit (MHz)		
11a	1	5745	17.16				16.29				0.5		
11a	1	5785	17.35				16.35				0.5		
11a	1	5825	17.30				16.35				0.5		
VHT20	1	5745	18.20				16.93				0.5		
VHT20	1	5785	18.23				16.81				0.5		
VHT20	1	5825	18.23				17.04				0.5		
VHT40	1	5755	37.46				36.41				0.5		
VHT40	1	5795	37.78				36.41				0.5		
VHT80	1	5775	77.00				75.13				0.5		

3.3 **RF Output Power**

3.3.1 Limit of RF Output Power


The maximum conducted output power over the frequency band of operation shall not exceed 1 W

3.3.2 Test Procedures

Method PM-G (Measurement using a gated RF average power meter)

Measurements may is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

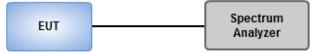
3.3.3 Test Setup

			C	onducted	Power (dBn	n)	Total	Total	Limit
Mode	Ντχ	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)
11a	1	5745	18.40				69.183	18.40	30.00
11a	1	5785	18.43				69.663	18.43	30.00
11a	1	5825	18.45				69.984	18.45	30.00
HT20	1	5745	18.15				65.313	18.15	30.00
HT20	1	5785	18.18				65.766	18.18	30.00
HT20	1	5825	18.21				66.222	18.21	30.00
HT40	1	5755	18.19				65.917	18.19	30.00
HT40	1	5795	18.24				66.681	18.24	30.00
VHT20	1	5745	18.35				68.391	18.35	30.00
VHT20	1	5785	18.29				67.453	18.29	30.00
VHT20	1	5825	18.39				69.024	18.39	30.00
VHT40	1	5755	18.26				66.988	18.26	30.00
VHT40	1	5795	18.33				68.077	18.33	30.00
VHT80	1	5775	18.05				63.826	18.05	30.00

3.3.4 Test Result of Maximum Conducted Output Power

3.4 Peak Power Spectral Density

3.4.1 Limit of Peak Power Spectral Density

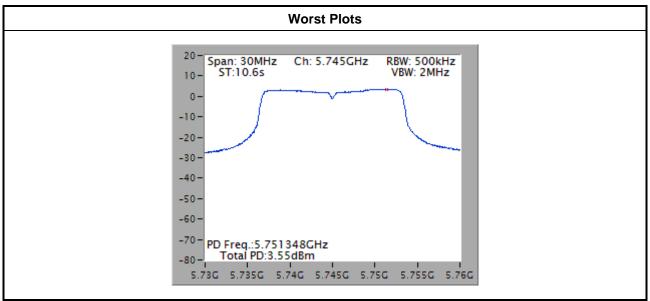

The maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.

3.4.2 Test Procedures

Method SA-1

- 1. Set RBW = 500 kHz, VBW = 2 MHz, Sweep time = auto, Detector = RMS.
- 2. Trace average 100 traces.
- 3. Use the peak marker function to determine the maximum amplitude level.
- Method SA-2
 - 1. Set RBW = 500 kHz, VBW = 2 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average at 100 traces
 - 3. Use the peak marker function to determine the maximum amplitude level.
 - 4. Add 10 $\log(1/x)$, where x is the duty cycle
- Method SA-2 Alternative
 - 1. Set RBW = 500 kHz, VBW = 2 MHz, Detector = RMS.
 - 2. Set sweep time \geq 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add 10 $\log(1/x)$, where x is the duty cycle.

3.4.3 Test Setup



Co	ondition	Ì	Pe	eak Power Spectral	Density (dBm/500kH	łz)
Modulation Mode	Ντχ	Freq. (MHz)	PPSD w/o D.F (dBm/500kHz)	Duty factor(dB)	PPSD with D.F (dBm/500kHz)	PPSD Limit (dBm/500kHz)
11a	1	5745	3.55	0.36	3.91	30.00
11a	1	5785	3.54	0.36	3.90	30.00
11a	1	5825	3.53	0.36	3.89	30.00
VHT20	1	5745	2.96	0.32	3.28	30.00
VHT20	1	5785	3.25	0.32	3.57	30.00
VHT20	1	5825	3.23	0.32	3.55	30.00
VHT40	1	5755	-0.08	0.79	0.71	30.00
VHT40	1	5795	0.00	0.79	0.79	30.00
VHT80	1	5775	-2.99	1.67	-1.32	30.00

3.4.4 Test Result of Peak Power Spectral Density

Note: D.F is duty factor.

Note: Power density plot without duty factor

3.5 Transmitter Radiated and Band Edge Emissions

3.5.1 Limit of Transmitter Radiated and Band Edge Emissions

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

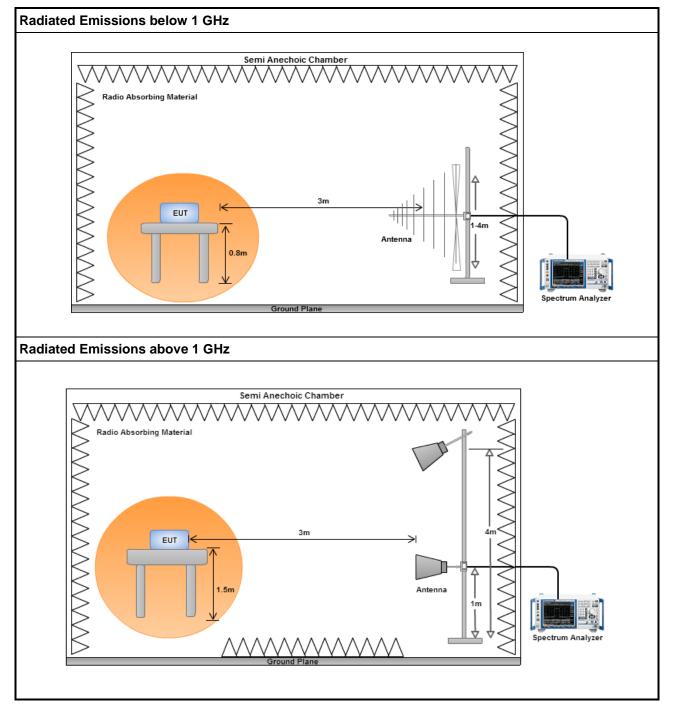
Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

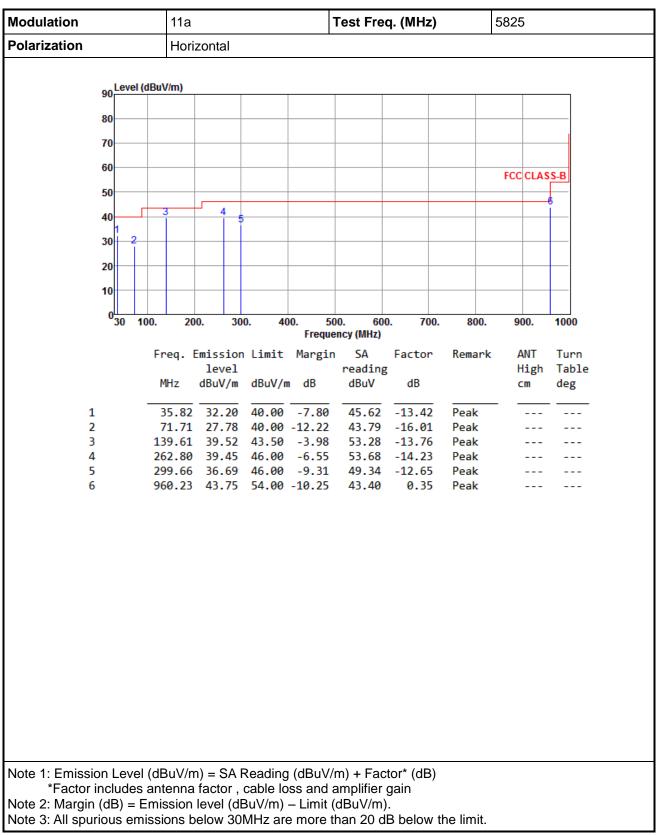
U	Un-restricted band emissions above 1GHz Limit							
Operating Band	Limit							
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]							
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]							
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]							
5.725 - 5.850 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.850 5.860 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]							

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

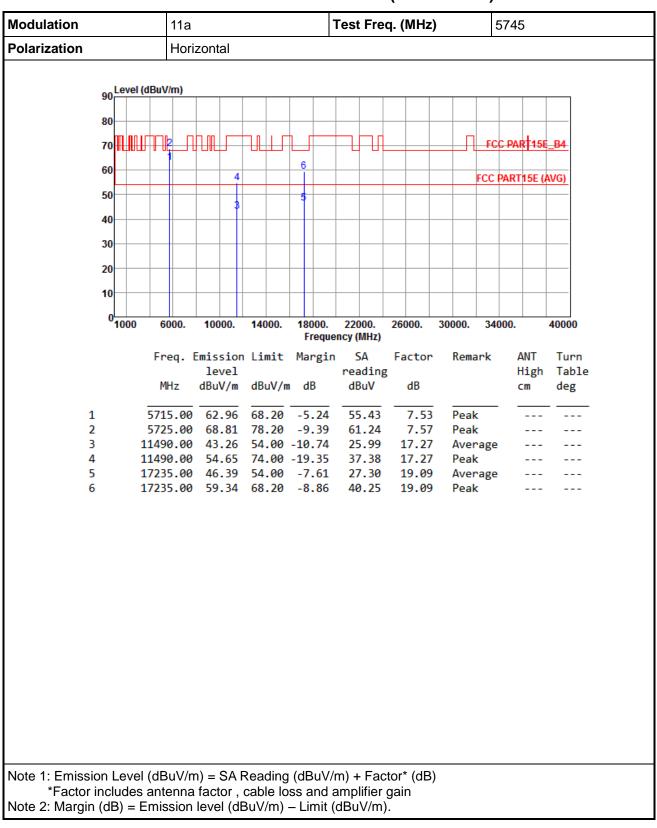
3.5.2 Test Procedures


- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

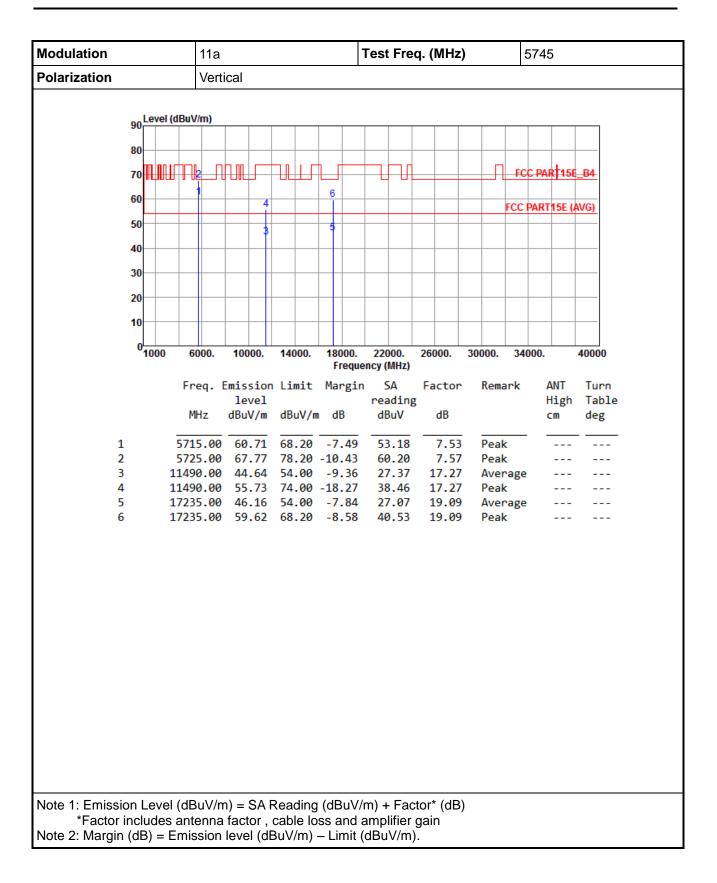
Note:


- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

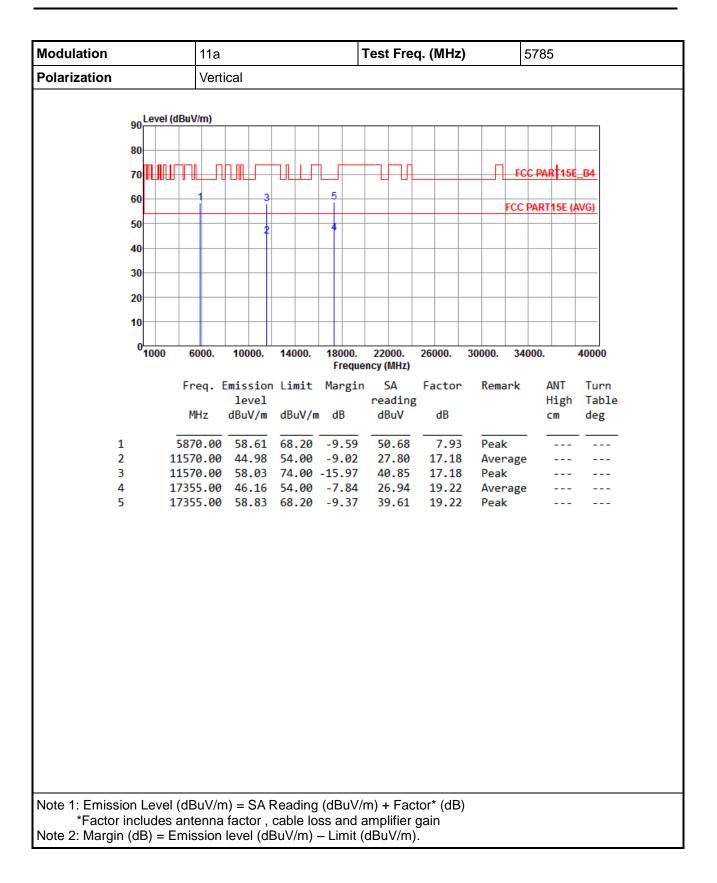
3.5.3 Test Setup

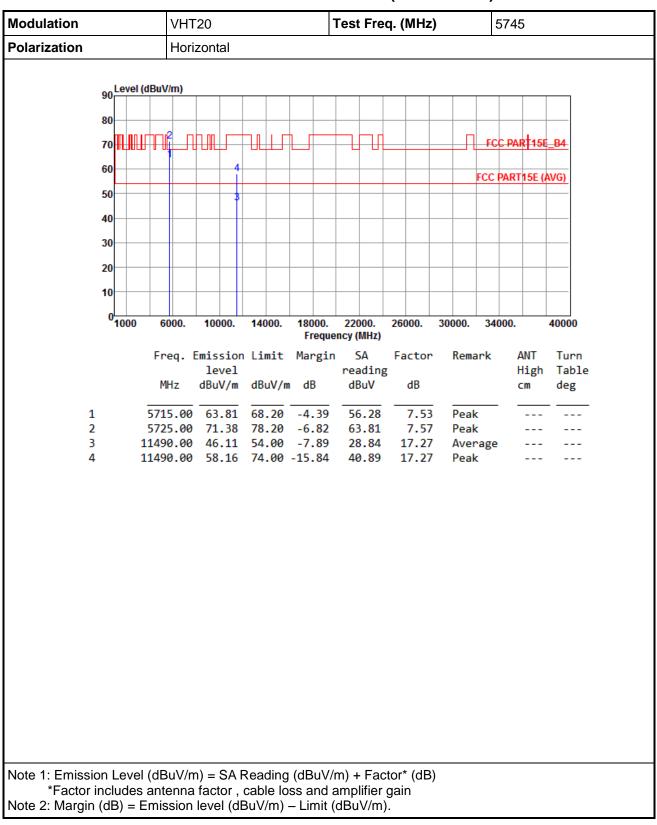


3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)


Modulation	11a	11a Test Freq. (MHz) 5825							
Polarization	Vert	ical							
90 <mark></mark>	/el (dBuV/m)								
80									
70									
70									
60								FCC CL	ASS-B
50									
	- 2								6
40	23 					4	5		
30									
20									
10									
0 <mark>0</mark> _30	100. 20	0. 30	0. 40	00. 50	0. 60	0. 700	. 800	. 900.	1000
					ncy (MHz)				
	Freq.		limit	Margin		Factor	Remar		
	MLI-	level	dD. M.	- dD	reading			Hig	
	MHz	dBuV/m	abuv/r	n ab	dBuV	dB		CM	deg
1	31.94	36.22	40.00	-3.78	49.70	-13.48	Peak		
2		36.39			52.00		Peak		
3		37.42 34.24			51.18 38.99		Peak Peak		
5		34.45			37.26				
6		40.64			40.29		Peak		
Noto 1: Emission La		n) 6^ r	Dooding		$n \to \Gamma_{\alpha}$	tor* (JD)			
Note 1: Emission Le *Factor includ									
Note 2: Margin (dB)									
Note 3: All spurious									

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a





Modulation	11a		Test Freq. (MHz	z) 582	25
Polarization	Horizontal				
Lavel (dD	and from b				
90 Level (dB	uv/m)				
80					
70				FCC P	AR 15E_B4
60	4			ECC DAR	T15E (AVG)
50	- 3				
40					
30					
20					
10					
0 <mark>1000</mark>	6000. 10000.	14000. 18000. Frequ	22000. 26000. ency (MHz)	30000. 34000	40000
ŧ	Freq. Emission	-		r Remark	ANT Turn
	level MHz dBuV/m	dBuV/m dB	reading dBuV dB		High Table cm deg
_					ueg
	850.00 65.71 860.00 60.30				
3 116	650.00 45.71	54.00 -8.29	28.64 17.0	7 Average	
4 116	650.00 57.89	74.00 -16.11	40.82 17.0	7 Peak	
Note 1: Emission Level (d			(m) · Footor* (dF	2)	

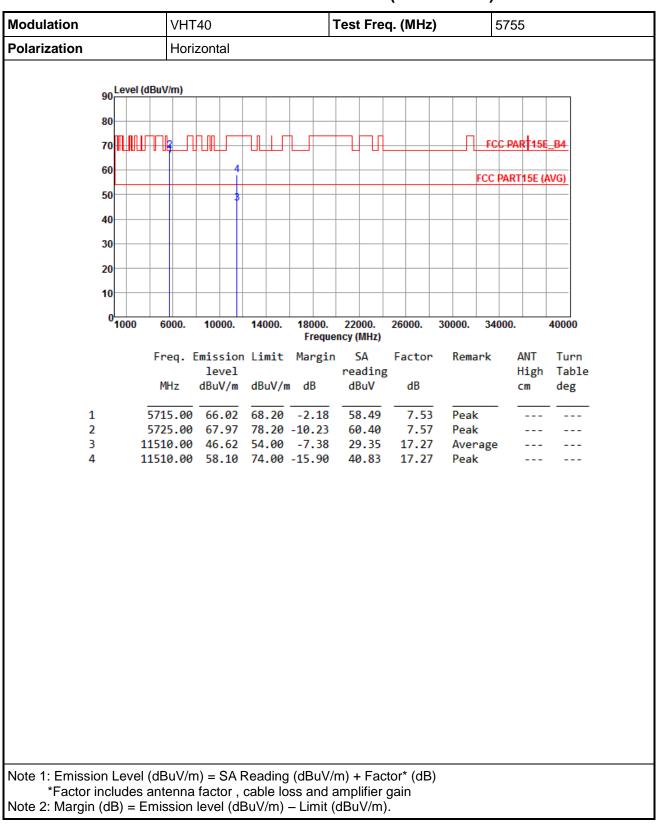
Modulation	11a														
Polarization	Vertical														
Lovel (dPu	1/102)														
90 Level (dBu															
80															
70	╨ <u></u> ┷╹╹╜╙┷╴╴	╨╨┸		FC(CPART15E_B4										
60	4			FCC F	PART15E (AVG)										
50	3														
40															
30															
20															
10															
01000	6000. 1 0000.	14000. 18000.	22000. 260	00. 30000. 340	00. 40000										
		Freque	ency (MHz)												
F	req. Emission level	Limit Margir	SA Fac	tor Remark	ANT Turn High Table										
		dBuV/m dB		ΙB	cm deg										
1 58	50.00 63.23	78.20 -14.97	55.34	7.89 Peak											
	60.00 61.85 50.00 45.79			7.91 Peak 7.07 Average											
	50.00 57.92			7.07 Peak											

3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT20

Modulation	VHT20													
Polarization	Vertical													
Level (dB)	uV/m)													
90 Level (dB														
80														
70	ĨŧŢŢŢŢĨĬŢŢ			FCC P	ART15E_B4									
60	4			FCC PAF	RT15E (AVG)									
50	3													
40														
30														
20														
10														
0 <mark></mark> 1000	6000. 10000.	14000. 18000.	22000. 26000.	30000. 34000	. 40000									
		Freque	ency (MHz)											
F	req. Emission level	Limit Margir	n SA Facto reading	or Remark	ANT Turn High Table									
		dBuV/m dB	dBuV dB		cm deg									
1 57	/15.00 62.26	68.20 -5.94	54.73 7.5	3 Peak										
		78.20 -10.25 54.00 -8.07	60.38 7.5 28.66 17.2											
		74.00 -15.86		-										
Note 1: Emission Level (d *Factor includes ar				В)										

Polarization 90 80 70 70 50 50							
80 70 11 11 1 60							
80 70 11 11 1 60							
70 1. 1. 1 . 60							
60	╫╫╤╧┼╁┟╢╟╤						_
					FCC F	ART15E_E	34
50	2	4			FCC PA	RT15E (AV	<u>G)</u>
		3					—
40							_
30							_
20							_
10							_
0 <mark></mark> 1000	6000. 1000			26000. 300	00. 34000). 40	0000
	Frea Emiss	Frequ ion Limit Margi	ency (MHz) n SA	Factor F	lemark	ANT	Turn
	lev	rel	reading			High [·]	Table
_	MHz dBuV	//m dBuV/m dB	dBuV	dB		cm (deg
		94 78.20 -22.26 20 68.20 -11.00			eak eak		
3 11	570.00 46.	01 54.00 -7.99	28.83	17.18	verage		
4 11	570.00 58.	03 74.00 -15.97	40.85	17.18 F	eak		

Modulation		VHT20 Test Freq. (MHz) 5785															
Polarization		Vert	ical														
14	avol (dBu)	//m)															
90	evel (dBu)																
80														_			
70			┍╻┉											FC	C PAI	R † 15E	<u>_B4</u>
60		2		-4										FCC	PART	15E (/	AVG)
50				3													
40—																	
30—																	
20																	
10																	
0	000 6	000.	100	00.	140	00.	180	000.	220	00.	260	00.	30000.	34	000.		40000
							Fr	reque	ncy (I	MHz)							
	Fr	eq.	Emiss lev		Lir	nit	Mar	rgin		A ding		ctor	Rem	ark		ANT ligh	Turn Table
	N	Hz	dBu\		dBu	uV/m	n di	В		uV		dB				m	deg
1			57.							.92		7.89	Pea		• -		
2 3			56. 45.							.64 .64		7.91 7.18	Pea Ave	k rage			
4			57.							.68		7.18	Pea	_			
Note 1: Emission Le *Factor inclu																	

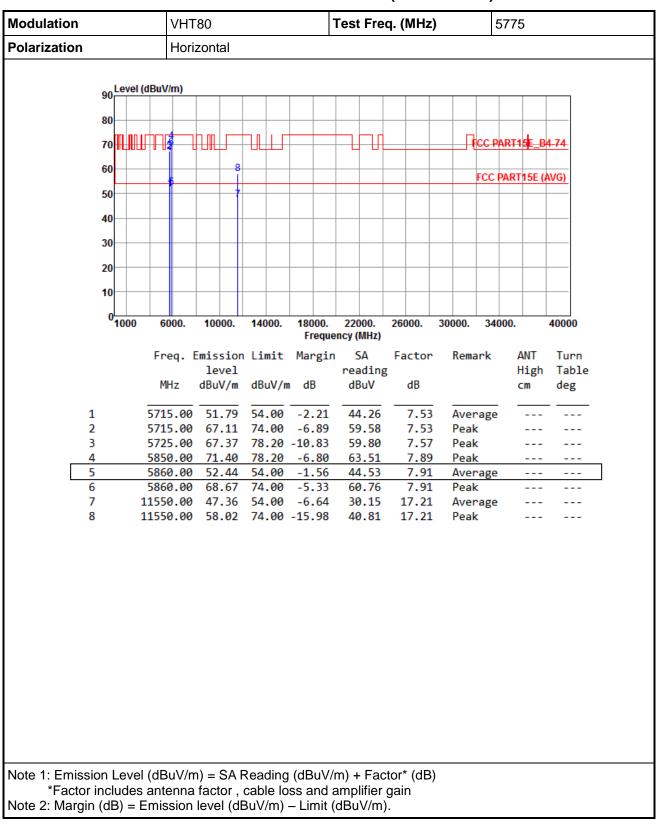


Modulation	VHT	VHT20 Test Freq. (MHz) 5825													
Polarization	Hor	izontal													
90	(dBuV/m)														
80															
70	┹╔╝						П	FCC P/	AR†15E	_ B4					
60		4						FCC PAR	T45E ()	N/C)					
50		- 3						CC PAR		400)					
40															
30															
20															
10															
0 <mark></mark>	6000.	10000.	14000.	18000. Freque	22000. ncy (MHz)	26000.	30000.	34000	•	40000					
	Freq.	Emission	Limit			Factor	Rema	rk	ANT	Turn					
	MHz	level dBuV/m	dBul//m	dD	reading dBuV	dB			High						
									cm	deg					
1 2		70.88 65.82			62.99 57.91	7.89 7.91	Peak Peak								
3	11650.00				28.82	17.07	Aver								
4	11650.00	57.89	74.00	-16.11	40.82	17.07	Peak								
Note 1: Emission Leve	el (dBu\//r	n) = SA F	Reading	(dBuV/r	n) + Fact	tor* (dR)									
*Factor includes	s antenna	factor,	cable lo	ss and a	mplifier g	gain									
Note 2: Margin (dB) =	Emission	level (dE	3uV/m) -	– Limit (dBuV/m)										

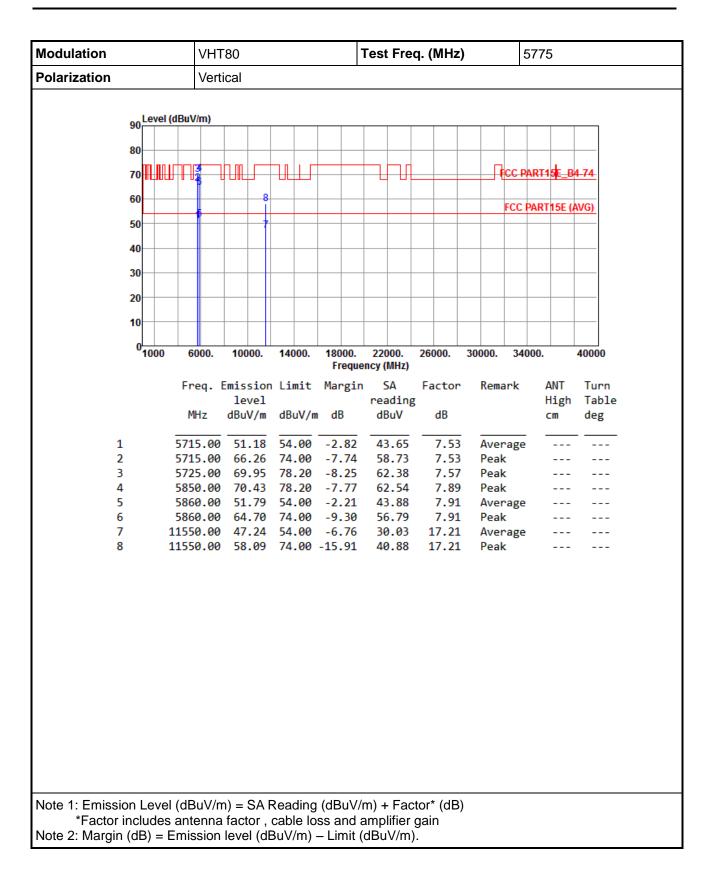
		Test Free	1. (MHZ)	582	25	
Vertical						
tuV/m)						
]
				_		-
┟║┨╧╧┟╿╘┚║╧╧╧				FCC P	AR † 15E_B4	-
- 4				FCC PAF	RT15E (AVG)	
						-
						-
						-
						-
						_
6000 10000	14000 18000	22000	26000 30000	34000	400	
	Freq	uency (MHz)	20000. 30000.	54000	. 400	
	n Limit Margi			lark		urn able
	dBuV/m dB	dBuV	dB		-	eg
850.00 68.44	78.20 -9.76	60.55	7.89 Pea	ık		
				_		
	uV/m) 1 2 4 3 6000. 10000. Freq. Emission level MHz dBuV/m 350.00 68.44 360.00 62.74 550.00 45.95	uV/m)	uV/m) 2 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	uV/m) uV/m dBuV/m dB uV/m dV/m dB uV/m dV/m dV/m uV/m) uV/m dV/m uV/m) uV/m dV/m uV/m) uV/m) uV/m) uV/m dV/m uV/m)	uV/m) uV/m)	uV/m)

3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT40

Modulation	VHT	40		٦	est Frec	η. (MHz)		575	5	
Polarization	Vert	ical								
1										
90 Level (d	aBuV/m)									
80										
70								FCC PA	R 15E	_ <u>B4</u>
60		4					EC		T15E (4	WG
50		3								
40										
30										
20										
10										
0 <mark>1000</mark>	6000.	10000.	14000.	18000. Freque	22000. ncy (MHz)	26000. 3	30000. 3	34000.		40000
	Freq.	Emission level	Limit			Factor	Remark		ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB			cm	deg
		65.38			57.85	7.53	Peak	_		
		69.12 46.45			61.55 29.18	7.57 17.27	Peak Averag	70		
		58.05				17.27	Peak			
Nata da Essia da L		-) 045) -							
Note 1: Emission Level *Factor includes										
1 40101 11014400	~									

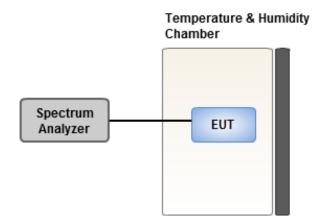


Modulation	V	VHT40 Test Freq. (MHz) 5795													
Polarization	F	Horizo	ontal												
1															
90 Leve	l (dBuV/n	n)													
80															
70	╨┮┮ц				л∟			규			FCC F	PART 15E	_ B4		
60	2		4								ECC DA	RT15E (/	N/C)		
50			3								FUL PA				
40															
30															
20															
10															
0 <mark></mark> 1000	600)0. 1	10000.	1400		000. reque	220 ncv (1		26000.	30000.	34000	D.	40000		
	Free	q.Em:	issio	n Limi				Α	Factor	Rema	ark	ANT	Turn		
	MHz		level	dBu\	Um d	R		ding uV	dB			High cm	Table deg		
1 2				78.2 68.2				.06 .09	7.89 7.91	Peal Peal					
3	11590.	.00	46.38	54.0	0 -7	.62	29	.23	17.15	Ave	rage				
4	11590.	.00	58.02	74.0	0 -15	.98	40	.87	17.15	Peal	¢				
Note 1: Emission Leve *Factor include															


Modulation			VHT	40					٦	ſest	Fre	q. (I	MHz)			579	5	
Polarization			Vert	ical														
	90 Leve	l (dRuV	/m)															
	80														•			
	70					UL						-		+	FC	C PA	R † 15E	<u>_84</u>
	60		1		4										FCC	PART	15E (/	AVG)
	50				-3													
	40																	
	30																	
	20																	
	10																	
	0 <mark></mark>	60	000.	100	00	140	000.	100	000.	220	00	260		30000.	34	000.		40000
	1000	,		100	00.	140			reque			200		50000.	54	000.		40000
		Fre	eq.	Emiss	sion /el	Li	mit	Ма	rgin		A ding		ctor	Rem	ark		NT ligh	Turn Tabl
		M	Hz	dBu\		dB	uV/m	ı di	в		uV		dB				:m	deg
1		585	0.00	61.	.28	78	.20	-16	.92	53	.39		7.89	Pea	k			
2		586	0.00	58.	.74	68	.20	-9	.46	50	.83		7.91	Pea	k			
3 4		1159 1159									.22 .83		7.15 7.15	Pea	rage k			
lote 1: Emissic	on Lev	el (dB	uV/n	n) = \$	SA F	Rea	ding	ı (dB	BuV/r	n) +	Fac	tor*	(dB)					

3.5.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT80

3.6 Frequency Stability


3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- 2. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.

3.6.3 Test Setup

Frequency: 5785 MHz		Frequency Drift (ppm)											
Temperature (°C)	0 minute	2 minutes	5 minutes	s 10 minutes									
T20°CVmax	4.82	4.79	4.54	5.38									
T20°CVmin	3.68	4.00	4.35	3.31									
T50°CVnom	3.35	3.56	3.93	3.09									
T40°CVnom	3.69	3.54	3.91	4.13									
T30°CVnom	2.30	1.97	2.05	2.50									
T20°CVnom	2.55	3.05	2.99	2.67									
T10°CVnom	2.01	2.36	2.50	1.65									
T0°CVnom	2.77	2.48	3.28	3.36									
T-10°CVnom	2.32	1.91	2.53	2.39									
T-20°CVnom	1.70	1.94	2.14	2.19									
T-30°CVnom	0.81	0.64	1.21	0.63									
Vnom [Vac]: 120	Vr	max [Vac]: 138	Vmin	[Vac]: 102									
Tnom [°C]: 20	Tr	nax [°C]: 50	Tmin	[°C]: -30									

3.6.4 Test Result of Frequency Stability

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou

Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—