SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	NETGEAR, Inc.
Applicant Address	350 East Plumeria Drive, San Jose, California 95134, USA
FCC ID	PY313200227
Manufacturer's company	Ambit Microsystems (Shanghai) Ltd.
Manufacturer Address	No. 1925, Nanle Road, Songjiang Export Processing Zone, Shanghai,
	China

Product Name	R6300 Smart WiFi Router, AC1450 Smart WiFi Router
Brand Name	NETGEAR
Model Name	R6300v2, AC1450
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5150 ~ 5250MHz
Received Date	Jan. 06, 2013
Final Test Date	Mar. 09, 2013
Submission Type	Original Equipment
Operating Mode	Master

Statement

SPORTON LAB.

Test result included is for the IEEE 802.11n and IEEE 802.11a/ac (5150 ~ 5250MHz) of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.10-2009**,

47 CFR FCC Part 15 Subpart E, KDB 789033 D01 v01r02 and KDB 662911 D01 v01r02.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CER	TIFICATE OF COMPLIANCE	
2. SUM	IMARY OF THE TEST RESULT	2
3. GEN	IERAL INFORMATION	
3.1.	Product Details	
3.2.	Accessories	
3.3.	Table for Filed Antenna	7
3.4.	Table for Carrier Frequencies	
3.5.	Table for Test Modes	
3.6.	Table for Testing Locations	
3.7.	Table for Multiple Listing	
3.8.	Table for Supporting Units	
3.9.	Table for Parameters of Test Software Setting	
3.10.	5	
3.11.	5 5	
3.12.	Test Configurations	
4. TEST	RESULT	
4.1.	AC Power Line Conducted Emissions Measurement	
4.2.	26dB Bandwidth Measurement	
4.3.	Maximum Conducted Output Power Measurement	
4.4.	Power Spectral Density Measurement	
4.5.	Peak Excursion Measurement	
4.6.	Radiated Emissions Measurement	
4.7.	Band Edge Emissions Measurement	
4.8.	Frequency Stability Measurement	
4.9.	Antenna Requirements	
5. LIST	OF MEASURING EQUIPMENTS	
6. TEST	LOCATION	
APPEN	IDIX A. TEST PHOTOS	A1 ~ A5
APPEN	IDIX B. MAXIMUM PERMISSIBLE EXPOSURE	B1 ~ B3
APPEN	IDIX C. CO-LOCATION REPORT	C1 ~ C3

History of This Test Report

VERSION	DESCRIPTION	ISSUED DATE
Rev. 01	Initial issue of report	Mar. 25, 2013
	Rev. 01	Rev. 01 Initial issue of report Initial issue of report Initial issue of report

Certificate No.: CB10203141

1. CERTIFICATE OF COMPLIANCE

Product Name	:	R6300 Smart WiFi Router, AC1450 Smart WiFi Router
Brand Name	:	NETGEAR
Model Name	:	R6300v2, AC1450
Applicant	:	NETGEAR, Inc.
Test Rule Part(s)	:	47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jan. 06, 2013 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E					
Part	Rule Section	Description of Test	Result	Under Limit		
4.1	15.207	AC Power Line Conducted Emissions	Complies	7.60 dB		
4.2	15.407(a)	26dB Spectrum Bandwidth	Complies	-		
4.3	15.407(a)	Maximum Conducted Output Power	Complies	0.27 dB		
4.4	15.407(a)	Power Spectral Density Comp		0.97 dB		
4.5	15.407(a)	Peak Excursion	Peak Excursion Complies			
4.6	15.407(b)	Radiated Emissions	Complies	0.15 dB		
4.7	15.407(b)	Band Edge Emissions	Complies	0.06 dB		
4.8	15.407(g)	Frequency Stability	Complies	-		
4.9	15.203	Antenna Requirements	Complies	-		

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	± 2.3dB	Confidence levels of 95%
Maximum Conducted Output Power	± 0.5dB	Confidence levels of 95%
Power Spectral Density	± 0.5dB	Confidence levels of 95%
Peak Excursion	± 0.5dB	Confidence levels of 95%
26dB Spectrum Bandwidth / Frequency Stability	± 8.5×10 ⁻⁸	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	± 1.9dB	Confidence levels of 95%
Radiated / Band Edge Emissions (1GHz~18GHz)	± 1.9dB	Confidence levels of 95%
Radiated Emissions (18GHz~40GHz)	± 1.9dB	Confidence levels of 95%
Temperature	± 0.7° C	Confidence levels of 95%
Humidity	± 3.2%	Confidence levels of 95%
DC / AC Power Source	± 1.4%	Confidence levels of 95%

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n/ac

Items	Description			
Product Type	WLAN (3TX, 3RX)			
Radio Type	Intentional Transceiver			
Power Type	From Power Adapter			
Modulation	see the below table for IEEE 802.11n			
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM) for 802.11n			
	OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM) for 802.11ac			
Data Rate (Mbps)	see the below table for IEEE 802.11n			
	see the below table for IEEE 802.11ac			
Frequency Range	5150 ~ 5250MHz			
Channel Number	4 for 20MHz bandwidth ; 2 for 40MHz bandwidth			
	1 for 80MHz bandwidth			
Channel Band Width (99%)	IEEE 802.11ac:			
	MCS0 (VHT-20): 18.24 MHz ; MCS0 (VHT-40): 36.48 MHz ;			
	MCS0 (VHT-80): 76.16 MHz			
Maximum Conducted	IEEE 802.11ac:			
Output Power	MCS0 (VHT-20): 15.08 dBm ; MCS0 (VHT-40): 16.73 dBm ;			
	MCS0 (VHT-80): 16.23 dBm			
Carrier Frequencies	Please refer to section 3.4			
Antenna	Please refer to section 3.3			
The EUT supports beamformin	g function for 802.11ac 20/40/80MHz.			

IEEE 802.11a

Items	Description			
Product Type	WLAN (3TX, 3RX)			
Radio Type	Intentional Transceiver			
Power Type	From Power Adapter			
Modulation	OFDM for IEEE 802.11a			
Data Modulation	ofdm (BPSK / QPSK / 16QAM / 64QAM)			
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)			
Frequency Range	5150 ~ 5250MHz			
Channel Number	4			
Channel Band Width (99%)	17.28 MHz			
Maximum Conducted	16.15 dBm			
Output Power				
Carrier Frequencies	Please refer to section 3.4			
Antenna	Please refer to section 3.3			

Antenna & Band width

Antenna	Three (TX)			
Band width Mode	20 MHz 40 MHz 80 MHz			
IEEE 802.11a	V	Х	Х	
IEEE 802.11n	V	V	Х	
IEEE 802.11ac	V	V	V	

IEEE 802.11n spec

MCS	Spatial	Modulation	Coding	ng Data rate (Mbit/s)			
luc el e se	ndex Streams Type		Dete	20 MHz channel 40 MHz channe			channel
Index	Streams	Туре	Rate	800 ns GI	400 ns GI	800 ns GI	400 ns GI
0	1	BPSK	1/2	6.5	7.2	13.5	15
1	1	QPSK	1/2	13	14.4	27	30
2	1	QPSK	3/4	19.5	21.7	40.5	45
3	1	16-QAM	1/2	26	28.9	54	60
4	1	16-QAM	3/4	39	43.3	81	90
5	1	64-QAM	2/3	52	57.8	108	120
6	1	64-QAM	3/4	58.5	65	121.5	135
7	1	64-QAM	5/6	65	72.2	135	150
8	2	BPSK	1/2	13	14.4	27	30
9	2	QPSK	1/2	26	28.9	54	60
10	2	QPSK	3/4	39	43.3	81	90
11	2	16-QAM	1/2	52	57.8	108	120
12	2	16-QAM	3/4	78	86.7	162	180
13	2	64-QAM	2/3	104	115.6	216	240
14	2	64-QAM	3/4	117	130	243	270
15	2	64-QAM	5/6	130	144.4	270	300
16	3	BPSK	1/2	19.5	21.7	40.5	45
17	3	QPSK	1/2	39	43.3	81	90
18	3	QPSK	3/4	58.5	65	121.5	135
19	3	16-QAM	1/2	78	86.7	162	180
20	3	16-QAM	3/4	117	130	243	270
21	3	64-QAM	2/3	156	173.3	324	360
22	3	64-QAM	3/4	175.5	195	364.5	405
23	3	64-QAM	5/6	195	216.7	405	450

Symbol	Explanation
NSS	Number of spatial streams
R	Code rate
NBPSC	Number of coded bits per single carrier
NCBPS	Number of coded bits per symbol
NDBPS	Number of data bits per symbol
GI	guard interval

IEEE 802. 11a, 11n and 11ac Spec.

Worst Modulation Used for Conformance Testing				
Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS	Worst Data Rate / MCS	Worst Modulation Mode
802.11a	3	6-54 Mbps	6Mbps	11A5.2G-20M
802.11ac 20MHz	3	MCS 0-9, Nss1-3	MCS 0-Nss1	11AC5.2G-20M
802.11ac 40MHz	3	MCS 0-9, Nss1-3	MCS 0-Nss1	11AC5.2G-40M
802.11ac 80MHz	3	MCS 0-9, Nss1-3	MCS 0-Nss1	11AC5.2G-80M
Note 1: IEEE 802.11	modulation consists	of IEEE 802.11a.		
Note 2: IEEE 802.11n modulation consists of HT20 and HT40 (HT: High Throughput).				
Note 3: IEEE 802.11ac modulation consists of VHT20, VHT40 and VHT80. The lowest data rate (MCS0) of VHT20 and VHT40 are same as HT20 and HT40.				
Note 4: Modulation modes consist of 11A5.2G-20M, 11N5.2G-20M, 11N5.2G-40M, 11AC5.2G-20M, 11AC5.2G-40M, 11AC5.2G-80M.				
Note 5: 11A: IEEE 802.11a, 11N: IEEE 802.11n, 11AC: IEEE 802.11ac. 5.2G: 5.15-5.25 GHz band				
Note 6: 20M/40M/80M: Channel Bandwidth 20MHz/40MHz/80MHz				

3.2. Accessories

Power	Brand	Model	P/N	Rating
Adaptor 1		P030WF120B	222 10200 02	Input: 100-120VAC, 47/63Hz, 0.9A
Adapter 1 NETGEAR		11200-6LF	332-10200-02	Output: 12VDC, 2.5A
Adapter 2 NETGEAR		SAS030F1 NA	222 10451 01	Input: 100-240VAC, 50/60Hz, 1.0A
		30.0W	332-10451-01	Output: 12VDC, 2.5A
Others				
RJ-45 Cable	*1, Shielded, 1	.5m		

3.3. Table for Filed Antenna

Ant. Brand	D/N	Antenna Type	Connector	Gain (dBi)		
AIII.	Dianu	P7N	P/N Antenna Type		2.4GHz	5GHz
1	NETGEAR	401-10006-01	PCB Antenna	I-PEX	1.3	-
2	NETGEAR	401-10006-01	PCB Antenna	I-PEX	1.5	-
3	NETGEAR	401-10006-01	PCB Antenna	I-PEX	2.3	-
4	NETGEAR	401-10007-01	PCB Antenna	I-PEX	-	3.0
5	NETGEAR	401-10007-01	PCB Antenna	I-PEX	-	2.1
6	NETGEAR	401-10007-01	PCB Antenna	I-PEX	-	2.5

Note: The EUT has six antennas

<For 2.4GHz Band:>

For IEEE 802.11b/g/n mode (3TX/3RX)

Chain 1, Chain 2 and Chain 3 could transmit/receive simultaneously.

<For 5GHz Band:>

For IEEE 802.11a/n/ac mode (3TX/3RX):

Chain 4, Chain 5 and Chain 6 could transmit/receive simultaneously.

14			
	0Y 🚵	Chain 1 (Ant. 1): TX/RX	
	TV	Chain 2 (Ant. 2): TX/RX	Chain 6 (Ant. 6): TX/RX
	21-	Chain 3 (Ant. 3): TX/RX	Chain 5 (Ant. 5): TX/RX
			Chain 4 (Ant. 4): TX/RX

3.4. Table for Carrier Frequencies

For IEEE 802.11a, use Channel 36, 40, 44, 48. There are two bandwidth systems for IEEE 802.11n. For 20MHz bandwidth systems, use Channel 36, 40, 44, 48. For 40MHz bandwidth systems, use Channel 38, 46. For 80MHz bandwidth systems, use Channel 42.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5150~5250 MHz	38	5190 MHz	46	5230 MHz
Band 1	40	5200 MHz	48	5240 MHz
	42	5210 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mod	е	Data Rate	Channel	Chain
AC Power Conducted Emission	Normal Link		Auto	-	-
Max. Conducted Output Power	11ac 20MHz	Band 1	MCS0/NSS1	36/40/48	4+5+6
	11ac 40MHz	Band 1	MCS0/NSS1	38/46	4+5+6
	11ac 80MHz	Band 1	MCS0/NSS1	42	4+5+6
	11a/BPSK	Band 1	6Mbps	36/40/48	4+5+6
Power Spectral Density	11ac 20MHz	Band 1	MCS0/NSS1	36/40/48	4+5+6
	11ac 40MHz	Band 1	MCS0/NSS1	38/46	4+5+6
	11ac 80MHz	Band 1	MCS0/NSS1	42	4+5+6
	11a/BPSK	Band 1	6Mbps	36/40/48	4+5+6
26dB Spectrum Bandwidth	11ac 20MHz	Band 1	MCS0/NSS1	36/40/48	4+5+6
99% Occupied Bandwidth	11ac 40MHz	Band 1	MCS0/NSS1	38/46	4+5+6
Measurement	11ac 80MHz	Band 1	MCS0/NSS1	42	4+5+6
Peak Excursion	11a/BPSK	Band 1	6Mbps	36/40/48	4+5+6
Radiated Emission Below 1GHz	Normal Link		Auto	-	-
Radiated Emission Above 1GHz	11ac 20MHz	Band 1	MCS0/NSS1	36/40/48	4+5+6
	11ac 40MHz	Band 1	MCS0/NSS1	38/46	4+5+6
	11ac 80MHz	Band 1	MCS0/NSS1	42	4+5+6
	11a/BPSK	Band 1	6Mbps	36/40/48	4+5+6
Band Edge Emission	11ac 20MHz	Band 1	MCS0/NSS1	36/40/48	4+5+6
	11ac 40MHz	Band 1	MCS0/NSS1	38/46	4+5+6
	11ac 80MHz	Band 1	MCS0/NSS1	42	4+5+6
	11a/BPSK	Band 1	6Mbps	36/40/48	4+5+6
Frequency Stability	Un-modulatio	n	-	40	N/A

Note 1: The test result of beam-forming mode is worse case than non beam-forming mode, so it is recorded in the test report.

Note 2: The polarity of Ant. 6 is different from Ant. 4 and Ant. 5.

(Ant. 6 is horizontal polarity, Ant. 4 and Ant. 5 are vertical polarity.)

Therefore, it only uses Ant. 4 and Ant. 5 to evaluate directional gain.

The following test modes were performed for all tests:

Mode 1. EUT with Adapter 1

Mode 2. EUT with Adapter 2

For Conducted Emission test and Radiated Emission:

Mode 1 generated the worst test result, so it was recorded in this report.

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH01-CB	SAC	Hsin Chu	262045	IC 4086D	-
CO01-CB	Conduction	Hsin Chu	262045	IC 4086D	-
TH01-CB	OVEN Room	Hsin Chu	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

Please refer section 6 for Test Site Address.

3.7. Table for Multiple Listing

The product name and model names in the following table are all refer to the identical product.

Product Name	Model Name	Description
R6300 Smart WiFi Router	R6300v2	All the models are identical, the different model
AC1450 Smart WiFi Router	AC1450	names served as marketing strategy.

3.8. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Flash Disk	Silicon	D33B01	DoC
Flash Disk	Silicon	D33B02	DoC
PC	hp compaq	GC758AV	DoC
Notebook	DELL	E6220	E2KWM3945ABG
Notebook	DELL	E6430	E2K4965AGNM
Notebook	DELL	E6430	E2K4965AGNM
Notebook	DELL	M1330	E2KWM3945ABG
Wifi Dongle	Netgear	A6200	PY312200200

3.9. Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

For beamforming mode:

Power Parameters of IEEE 802.11ac MCS0 NSS1 20MHz / Chain 4 + Chain 5 + Chain 6

Test Software Version	Mtool v2.0.0.7			
Frequency	5180 MHz	5200 MHz	5240 MHz	
20MHz	34	31	30	

Power Parameters of IEEE 802.11ac MCS0 NSS1 40MHz / Chain 4 + Chain 5 + Chain 6

Test Software Version	Mtool v2.0.0.7		
Frequency	5190 MHz	5230 MHz	
40MHz	40	40	

Power Parameters of IEEE 802.11ac MCS0 NSS1 80MHz / Chain 4 + Chain 5 + Chain 6

Test Software Version	Mtool v2.0.0.7
Frequency	5210 MHz
80MHz	40

For non beamforming mode:

Power Parameters of IEEE 802.11a / Chain 4 + Chain 5 + Chain 6

Test Software Version	Mtool v2.0.0.7						
Frequency	5180 MHz	5200 MHz	5240 MHz				
IEEE 802.11a	29	34	37				

3.10. EUT Operation during Test

For non beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

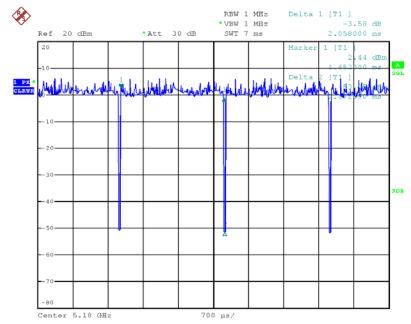
For beamforming mode:

For Conducted Mode:

The EUT was programmed to be in continuously transmitting mode.

For Radiated Mode:

During the test, the following programs under WIN XP were executed.

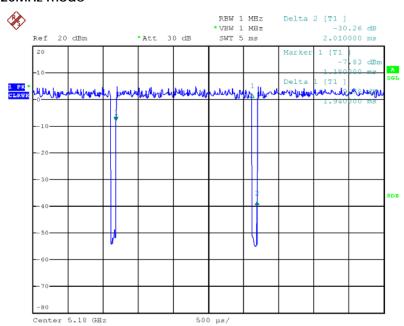

The program was executed as follows:

- 1. During the test, the EUT operation to normal function.
- 2. Executed command fixed test channel under DOS.
- 3. Executed "Lan test.exe " to link with the remote workstation to receive and transmit packet by Wireless AP and transmit duty cycle no less 98%.

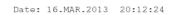
3.11. Duty Cycle

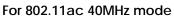
For non beamforming mode

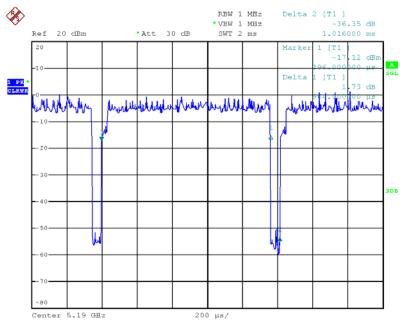
For 802.11a 20MHz mode



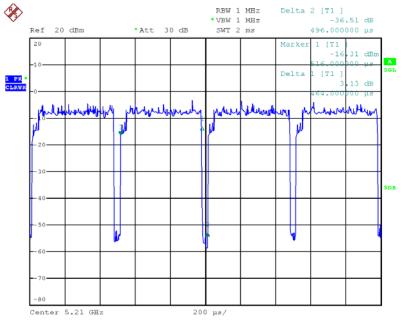
Date: 8.MAR.2013 17:31:11



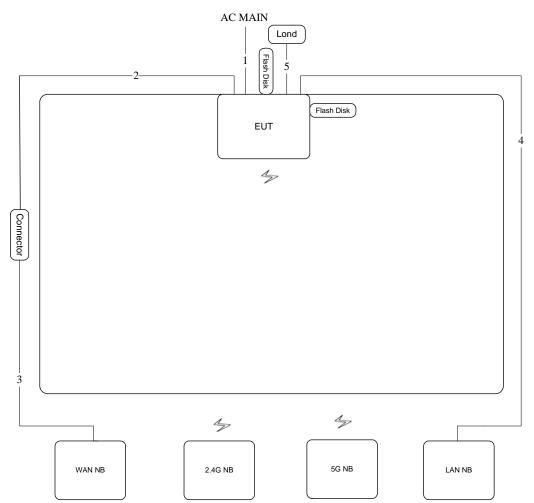



For beamforming mode

For 802.11ac 20MHz mode



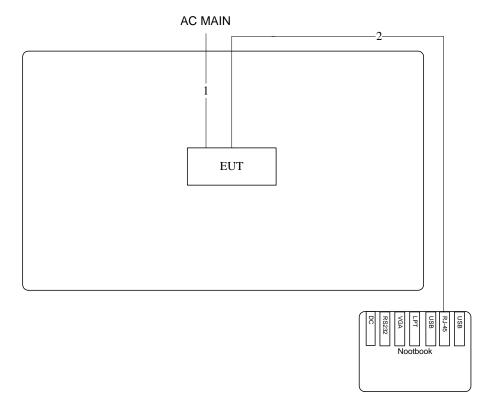
Date: 16.MAR.2013 20:13:23


Date: 16.MAR.2013 20:14:54

3.12. Test Configurations

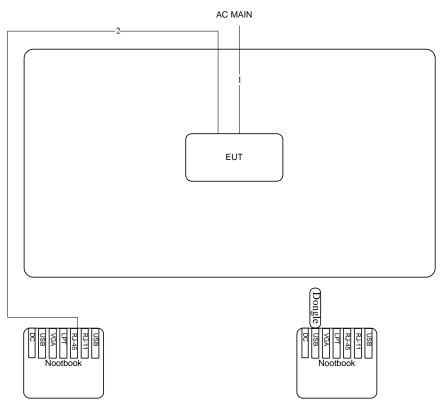
3.12.1. Radiation Emissions Test Configuration

Test Configuration: 30MHz~1GHz / Test Mode: Mode 1


Item	Connection	Shield	Length	Remark
1	Power cable	No	1.8m	-
2	RJ-45 cable	Yes	1.5m	-
3	RJ-45 cable	Yes	10m	-
4	RJ-45 cable	No	10m	-
5	RJ-45 cable*3	No	1.5m	-

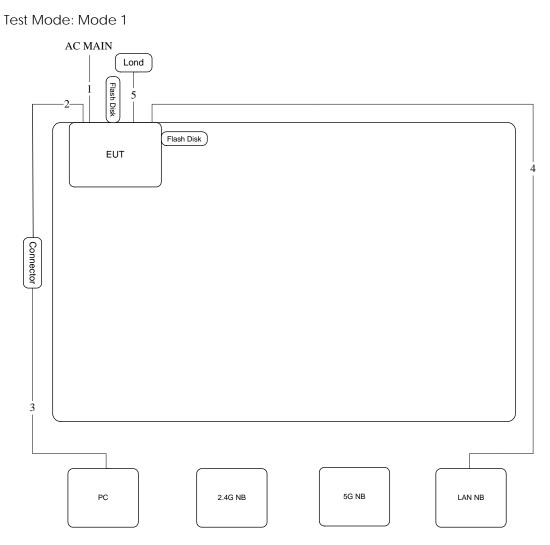
For non beamforming mode:

Test Configuration: above 1GHz / Test Mode: Mode 1



Item	Connection	Shield	Length	Remark
1	RJ-45	No	10m	-
2	Power cable	No	1.8m	-

For beamforming mode:


Test Configuration: above 1GHz / Test Mode: Mode 1

Item	Connection	Shield	Length	Remark
1	AC Power cable	No	1.8m	-
2	RJ-45	No	10m	-

3.12.2. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Shield	Length	Remark
1	Power cable	No	1.8m	-
2	RJ-45 cable	Yes	1.5m	-
3	RJ-45 cable	Yes	10m	-
4	RJ-45 cable	No	10m	-
5	RJ-45 cable*3	No	1.5m	-

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

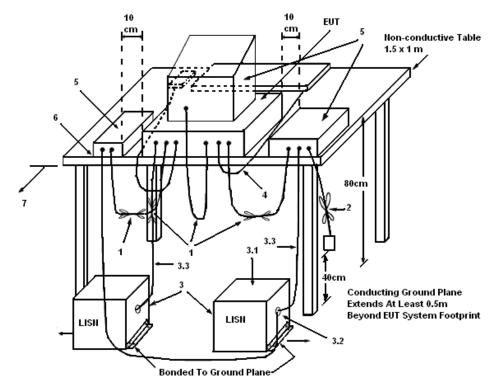
4.1.1. Limit

For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.

- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.

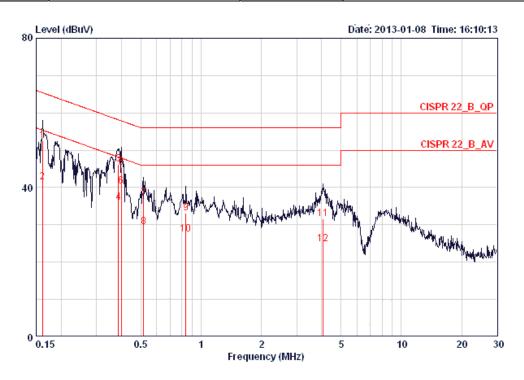
(4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.

- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.

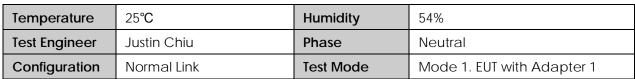
(7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

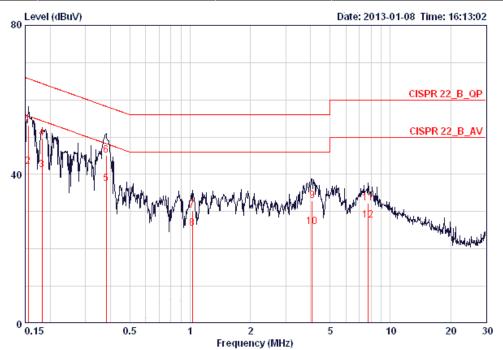
4.1.5. Test Deviation

There is no deviation with the original standard.


4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.


4.1.7. Results of AC Power Line Conducted Emissions Measurement


Temperature	25° C	Humidity	54%
Test Engineer	Justin Chiu	Phase	Line
Configuration	Normal Link	Test Mode	Mode 1. EUT with Adapter 1

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
10	0.16155	52.62	-12.76	65.38	52.28	0.16	0.18	QP
2 @	0.16155	41.47	-13.91	55.38	41.13	0.16	0.18	AVERAGE
30	0.38724	46.25	-11.87	58.12	45.90	0.15	0.20	QP
4 0	0.38724	35.91	-12.21	48.12	35.56	0.15	0.20	AVERAGE
5 0	0.39974	45.24	-12.62	57.86	44.89	0.15	0.20	QP
6 0	0.39974	40.26	-7.60	47.86	39.91	0.15	0.20	AVERAGE
7	0.51550	37.06	-18.94	56.00	36.71	0.15	0.20	QP
8	0.51550	29.43	-16.57	46.00	29.08	0.15	0.20	AVERAGE
9	0.83932	33.10	-22.91	56.00	32.73	0.17	0.20	QP
10	0.83932	27.54	-18.47	46.00	27.17	0.17	0.20	AVERAGE
11	4.049	31.69	-24.31	56.00	31.17	0.22	0.30	QP
12	4.049	24.93	-21.07	46.00	24.41	0.22	0.30	AVERAGE

		Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
		MHz	dBu∛	dB	dBuV	dBuV	dB	dB	
1	0	0.15567	53.19	-12.50	65.69	52.93	0.08	0.18	QP
2	0	0.15567	42.15	-13.54	55.69	41.89	0.08	0.18	AVERAGE
3	0	0.18249	41.15	-13.22	54.37	40.88	0.08	0.19	AVERAGE
4	0	0.18249	49.67	-14.70	64.37	49.40	0.08	0.19	QP
5	0	0.38113	37.47	-10.78	48.25	37.19	0.08	0.20	AVERAGE
6	0	0.38113	45.03	-13.22	58.25	44.75	0.08	0.20	QP
- 7		1.027	30.39	-25.61	56.00	30.10	0.09	0.20	QP
8		1.027	25.49	-20.51	46.00	25.20	0.09	0.20	AVERAGE
9		4.070	32.81	-23.19	56.00	32.38	0.13	0.30	QP
10		4.070	26.02	-19.98	46.00	25.59	0.13	0.30	AVERAGE
11		7.769	32.16	-27.84	60.00	31.66	0.20	0.30	QP
12		7.769	27.68	-22.32	50.00	27.18	0.20	0.30	AVERAGE

Note:

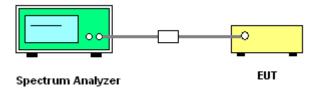
Level = Read Level + LISN Factor + Cable Loss

4.2. 26dB Bandwidth Measurement

4.2.1. Limit

No restriction limits.

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 26dB Bandwidth
RB	Approximately 1% of the emission bandwidth
VB	VBW > RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.2.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer.
- **3.** Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of 26dB Bandwidth

Temperature	26° C	Humidity	60%
Test Engineer	Magic Lai	Configurations	IEEE 802.11ac
Test Mode	Beamforming mode		

Configuration IEEE 802.11ac MCS0 NSS1 20MHz / Chain 4 + Chain 5 + Chain 6

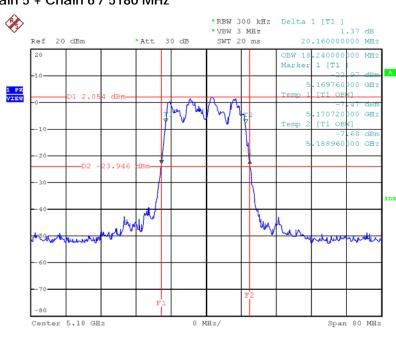
Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	
36	5180 MHz	20.16	18.24	
40	5200 MHz	20.32	18.08	
48	5240 MHz	20.48	18.08	

Configuration IEEE 802.11ac MCS0 NSS1 40MHz / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	
38	5190 MHz	39.04	36.48	
46	5230 MHz	38.72	36.16	

Configuration IEEE 802.11ac MCS0 NSS1 80MHz / Chain 4 + Chain 5 + Chain 6

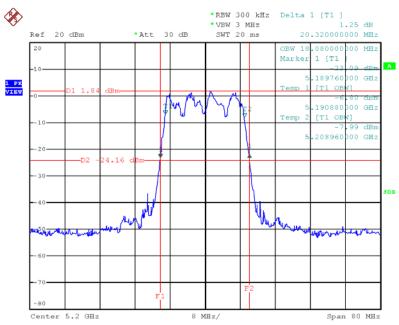
Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
42	5210 MHz	79.36	76.16



Temperature	26° C	Humidity	60%
Test Engineer	Magic Lai	Configurations	IEEE 802.11a
Test Mode	Non beamforming mode		

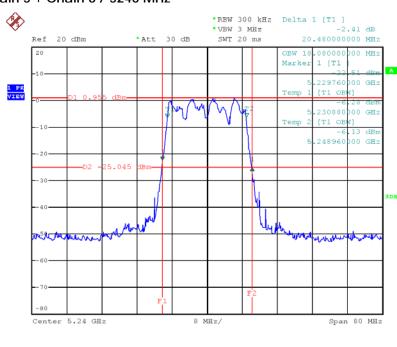
Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	
36	5180 MHz	20.00	17.12	
40	5200 MHz	20.16	17.28	
48	5240 MHz	20.16	17.12	



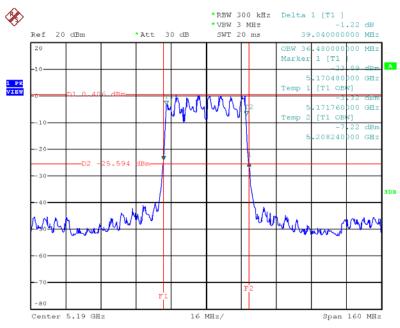
26 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0 NSS1 20MHz /

Chain 4 + Chain 5 + Chain 6 / 5180 MHz


26 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0 NSS1 20MHz / Chain 4 + Chain 5 + Chain 6 / 5200 MHz

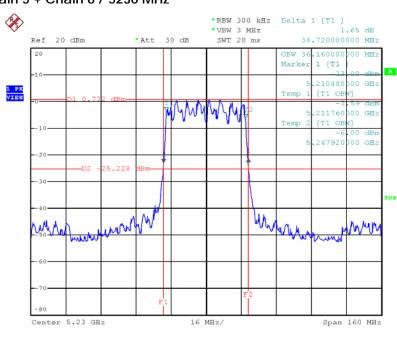
Date: 8.MAR.2013 18:01:52

Date: 8.MAR.2013 18:00:59



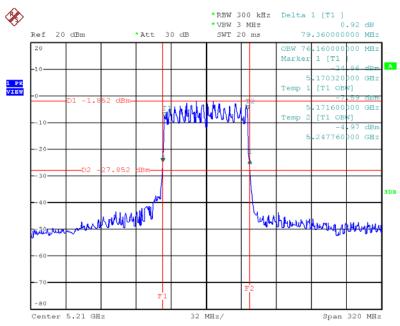
26 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0 NSS1 20MHz /

Chain 4 + Chain 5 + Chain 6 / 5240 MHz


26 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0 NSS1 40MHz / Chain 4 + Chain 5 + Chain 6 / 5190 MHz

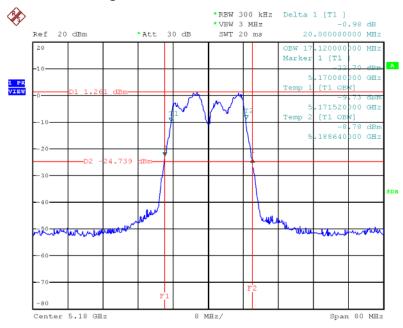
Date: 8.MAR.2013 18:05:53

Date: 8.MAR.2013 18:02:50



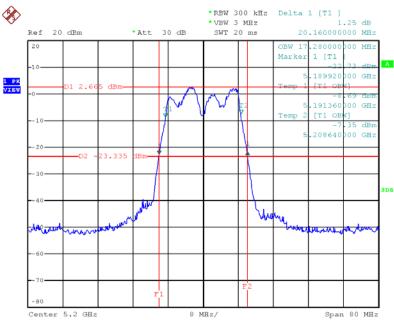
26 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0 NSS1 40MHz /

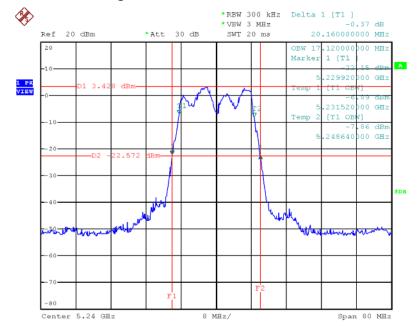
Chain 4 + Chain 5 + Chain 6 / 5230 MHz


26 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0 NSS1 80MHz / Chain 4 + Chain 5 + Chain 6 / 5210 MHz

Date: 8.MAR.2013 18:08:18

Date: 8.MAR.2013 18:06:49




26 dB Bandwidth Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5180 MHz

Date: 8.MAR.2013 17:45:34

26 dB Bandwidth Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5200 MHz

26 dB Bandwidth Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5240 MHz

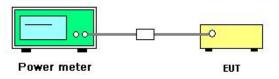
Date: 8.MAR.2013 17:49:31

4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

For the band 5.15~5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW (17dBm) or 4 dBm + 10log B, where B is the 26 dB emissions bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3.2. Measuring Instruments and Setting


The following table is the setting of the peak power meter.

Power Meter Parameter	Setting
Detector	AVERAGE

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- 2. Test was performed in accordance with KDB 789033 Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, section (C) Maximum conducted output power =>(4) Method PM (Measurement using an RF average power meter) Multiple antenna systems was performed in accordance with KDB 662911 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 3. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of Maximum Conducted Output Power

Temperature	26° C	Humidity	60%
Test Engineer	Magic Lai	Configurations	IEEE 802.11ac
Test Date	Mar. 09, 2013	Test Mode	Beamforming mode

Configuration IEEE 802.11ac MCS0 NSS1 20MHz / Chain 4 + Chain 5 + Chain 6

Channel	Fraguanay	Conducted Power (dBm)		Total	Max. Limit	Docult	
Channel	Frequency	Chain 4	Chain 5	Chain 6	Conducted Power (dBm)	(dBm)	Result
36	5180 MHz	12.03	9.00	9.18	15.08	17.00	Complies
40	5200 MHz	11.52	8.02	8.13	14.32	17.00	Complies
48	5240 MHz	11.57	7.92	7.72	14.23	17.00	Complies

Note: Directional gain=GANT+10log(NANT/Nss) =5.56dBi <6dBi, so the limit doesn't reduce.

Configuration IEEE 802.11ac MCS0 NSS1 40MHz / Chain 4 + Chain 5 + Chain 6

Channel	Fraguenau	Conducted Power (dBm)			Total	Max. Limit	Docult	
	Channel	Frequency	Chain 4	Chain 5	Chain 6	Conducted Power (dBm)	(dBm)	Result
	38	5190 MHz	13.13	10.76	11.22	16.60	17.00	Complies
	46	5230 MHz	13.22	11.06	11.26	16.73	17.00	Complies

Note: Directional gain=GANT+10log(NANT/Nss) =5.56dBi <6dBi, so the limit doesn't reduce.

Configuration IEEE 802.11ac MCS0 NSS1 80MHz / Chain 4 + Chain 5 + Chain 6

	Channel	Frequency	Conducted Power (dBm)			Total	Max. Limit	Result
			Chain 4	Chain 5	Chain 6	Conducted Power (dBm)	(dBm)	Result
	42	5210 MHz	12.56	10.53	11.03	16.23	17.00	Complies

Note: Directional gain=GANT+10log(NANT/Nss) =5.56dBi <6dBi, so the limit doesn't reduce.

Temperature	26° C	Humidity	60%
Test Engineer	Magic Lai	Configurations	IEEE 802.11a
Test Date	Mar. 09, 2013	Test Mode	Non beamforming mode

Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6

Channel	Fraguanay	Conducted Power (dBm)		Total	Max. Limit	Docult	
Channel	Frequency	Chain 4	Chain 5	Chain 6	Conducted Power (dBm)	(dBm)	Result
36	5180 MHz	10.90	7.46	7.43	13.69	17.00	Complies
40	5200 MHz	12.05	9.15	9.12	15.11	17.00	Complies
48	5240 MHz	12.77	10.40	10.55	16.15	17.00	Complies

4.4. Power Spectral Density Measurement

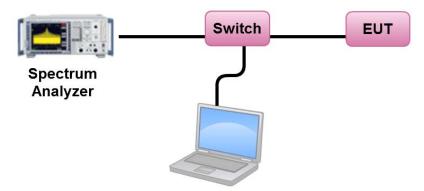
4.4.1. Limit

The power spectral density is defined as the highest level of power in dBm per MHz generated by the transmitter within the power envelope. The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

Frequency Range	Power Spectral Density limit (dBm/MHz)
5.15~5.25 GHz	4

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.


Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1000 kHz
VB	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- 2. Test was performed in accordance with KDB 789033 Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, section (C) Maximum conducted output power => (d) Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).
- 3. Multiple antenna systems was performed in accordance with KDB 662911 in-Band Power Spectral Density (PSD) Measurements (1) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Power Spectral Density

Temperature	26° C	Humidity	60%
Test Engineer	Magic Lai	Configurations	IEEE 802.11ac
Test Mode	Beamforming mode		

Configuration IEEE 802.11ac MCS0 NSS1 20MHz / Chain 4 + Chain 5 + Chain 6

Cannel	Frequency	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	1.79	4.00	Complies
40	5200 MHz	1.13	4.00	Complies
48	5240 MHz	1.22	4.00	Complies

Note: Directional gain=GANT+10log(NANT/Nss) =5.56dBi <6dBi, so the limit doesn't reduce.

Configuration IEEE 802.11ac MCS0 NSS1 40MHz / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	0.55	4.00	Complies
46	5230 MHz	1.11	4.00	Complies

Note: Directional gain=GANT+10log(NANT/Nss) =5.56dBi <6dBi, so the limit doesn't reduce.

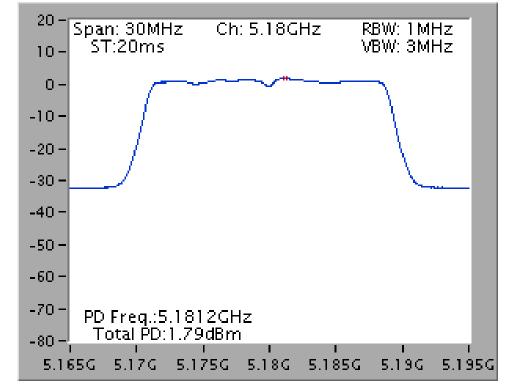
Configuration IEEE 802.11ac MCS0 NSS1 80MHz / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
42	5210 MHz	-2.78	4.00	Complies

Note: Directional gain=GANT+10log(NANT/Nss) =5.56dBi <6dBi, so the limit doesn't reduce.

Temperature	26° C	Humidity	60%
Test Engineer	Magic Lai	Configurations	IEEE 802.11a
Test Mode	Non beamforming mode		

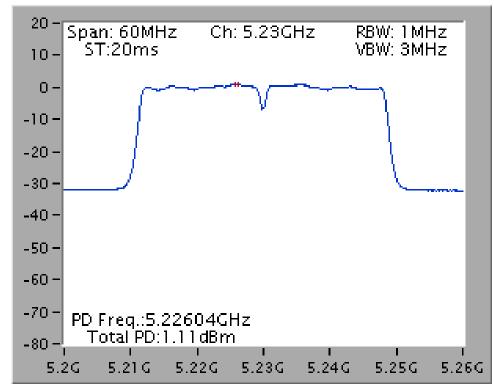
Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6


Channel	Frequency	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	0.14	4.00	Complies
40	5200 MHz	1.93	4.00	Complies
48	5240 MHz	3.03	4.00	Complies

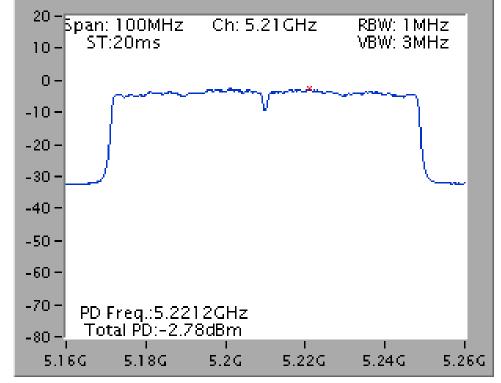
Note: Directional gain=GANT+10log(NANT/Nss) =5.56dBi <6dBi, so the limit doesn't reduce.

Note: All the test values were listed in the report.

For plots, only the channel with maximum results was shown.

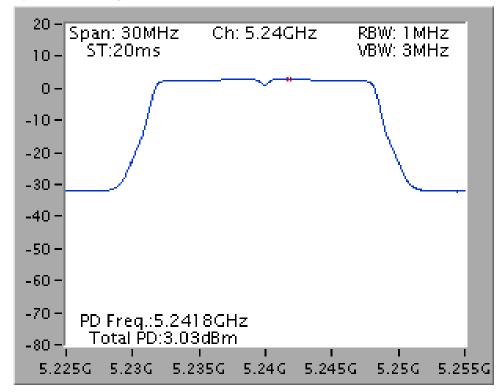


Power Density Plot on Configuration IEEE 802.11ac MCS0 NSS1 20MHz /


Chain 4 + Chain 5 + Chain 6 / 5180 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0 NSS1 40MHz /

Chain 4 + Chain 5 + Chain 6 / 5230 MHz



Power Density Plot on Configuration IEEE 802.11ac MCS0 NSS1 80MHz /

Chain 4 + Chain 5 + Chain 6 / 5210 MHz

Power Density Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5240 MHz

4.5. Peak Excursion Measurement

4.5.1. Limit

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1MHz (Peak Trace) / 1MHz (Average Trace)
VB	3MHz (Peak Trace) / 3MHz (Average Trace)
Detector	Peak (Peak Trace) / RMS (Average Trace)
Trace	Peak : Trace :Max hold/Average: Trace Average Sweep Count 100
Sweep Time	AUTO

4.5.3. Test Procedures

- 1. The test procedure is the same as section 4.6.3.
- 2. Trace A, Set RBW =1MHz, VBW = 3MHz, Span >26dB bandwidth, Max. hold.
- 3. Delta Mark trace A Maximum frequency and trace B same frequency.
- 4. Repeat the above procedure until measurements for all frequencies were complete.

4.5.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.5.7. Test Result of Peak Excursion

Temperature	26° C	Humidity	60%
Test Engineer	Magic Lai	Configurations	IEEE 802.11ac
Test Mode	Beamforming mode		

Configuration IEEE 802.11ac MCS0 NSS1 20MHz / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
40	5200 MHz	8.35	13	Complies

Configuration IEEE 802.11ac MCS0 NSS1 40MHz / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
38	5190 MHz	8.21	13	Complies

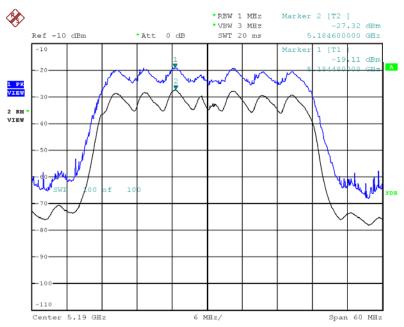
Configuration IEEE 802.11ac MCS0 NSS1 80MHz / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Peak Excursion (dB)		
42	5210 MHz	8.87	13	Complies

Temperature	26° C	Humidity	60%
Test Engineer	Magic Lai	Configurations	IEEE 802.11a
Test Mode	Non beamforming mode		

Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6

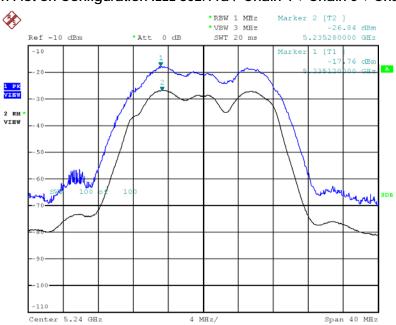
Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
48	5240 MHz	9.08	13	Complies



Peak Excursion Plot on Configuration IEEE 802.11ac MCS0 NSS1 20MHz /


Date: 8.MAR.2013 20:40:29

Peak Excursion Plot on Configuration IEEE 802.11ac MCS0 NSS1 40MHz / Chain 4 + Chain 5 + Chain 6 / 5190 MHz


Date: 8.MAR.2013 20:34:26

Peak Excursion Plot on Configuration IEEE 802.11ac MCS0 NSS1 80MHz /

Date: 8.MAR.2013 20:36:10

Peak Excursion Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5240 MHz

Date: 8.MAR.2013 20:39:16

4.6. Radiated Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an -27dBm peak limit or average and peak limits of 15.209. For transmitters operating in the In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

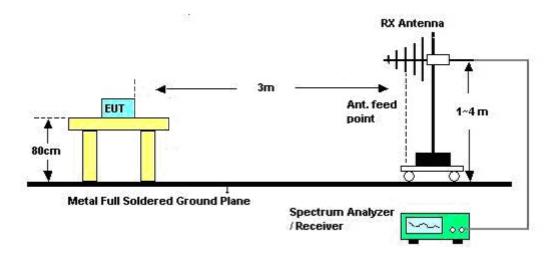
Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.6.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.



4.6.4. Test Setup Layout

For radiated emissions below 1GHz

For radiated emissions above 1GHz

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.6.7. Results of Radiated Emissions (9kHz~30MHz)

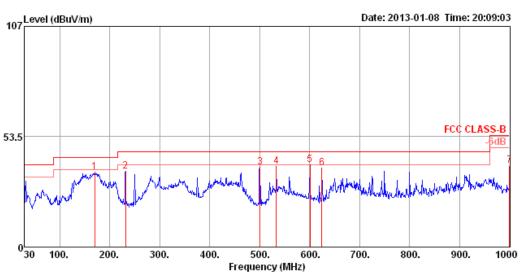
Temperature	26° C	Humidity	60%
Test Engineer	David Tseng	Configurations	Normal Link
Test Date	Jan. 08, 2013		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

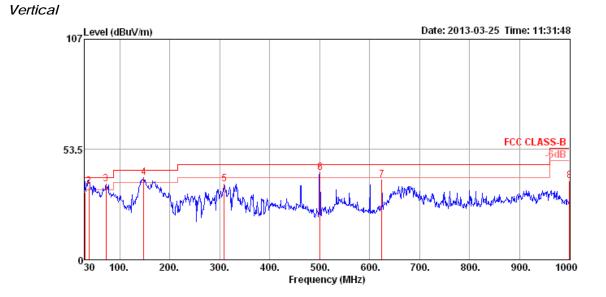
The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);


Limit line = specific limits (dBuV) + distance extrapolation factor.

4.6.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	26° C	Humidity	60%
Test Engineer	David Tseng	Configurations	Normal Link
Test Mode	Mode 1. EUT with Adapter 1		


Horizontal

		Limit	0ver	Read	CableA	ntenna	Preamp	A/Pos	T/Pos		
Freq	Level	Line	Limit	Level	Loss	Factor	Factor			Pol/Phase	Remark
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
169.68	36.23	43.50	-7.27	57.03	1.59	9.13	31.52	200	249	HORIZONTAL	Peak
231.76	36.57	46.00	-9.43	56.25	1.84	9.93	31.45	150	317	HORIZONTAL	Peak
500.45	38.55	46.00	-7.45	50.22	2.82	16.92	31.41	100	8	HORIZONTAL	Peak
533.43	39.28	46.00	-6.72	50.04	2.90	17.72	31.38	150	360	HORIZONTAL	Peak
600.36	39.92	46.00	-6.08	49.59	3.12	18.45	31.24	150	329	HORIZONTAL	Peak
624.61	38.29	46.00	-7.71	47.90	3.18	18.61	31.40	150	320	HORIZONTAL	Peak
1000.00	39.65	54.00	-14.35	45.18	4.21	21.44	31.18	100	28	HORIZONTAL	Peak
	MHz 169.68 231.76 500.45 533.43 600.36 624.61	MHz dBuV/m 169.68 36.23 231.76 36.57 500.45 38.55 533.43 39.28 600.36 39.92 624.61 38.29	Freq Level Line MHz dBuV/m dBuV/m 169.68 36.23 43.50 231.76 36.57 46.00 500.45 38.55 46.00 533.43 39.28 46.00 600.36 39.92 46.00 624.61 38.29 46.00	Freq Level Line Limit MHz dBuV/m dBuV/m dB 169.68 36.23 43.50 -7.27 231.76 36.57 46.00 -9.43 500.45 38.55 46.00 -7.45 533.43 39.28 46.00 -6.72 600.36 39.92 46.00 -6.08 624.61 38.29 46.00 -7.71	Freq Level Line Limit Level MHz dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m 169.68 36.23 43.50 -7.27 57.03 231.76 36.57 46.00 -9.43 56.25 500.45 38.55 46.00 -7.45 50.22 533.43 39.28 46.00 -6.72 50.04 600.36 39.92 46.00 -6.08 49.59	Freq Level Line Limit Level Loss MHz dBuV/m dBuV/m dB dBuV dB dBuV dB 169.68 36.23 43.50 -7.27 57.03 1.59 31.76 231.76 36.57 46.00 -9.43 56.25 1.84 500.45 38.55 46.00 -7.45 50.22 2.82 533.43 39.28 46.00 -6.72 50.04 2.90 600.36 39.92 46.00 -6.08 49.59 3.12 624.61 38.29 46.00 -7.71 47.90 3.18	Freq Level Lime Limit Level Loss Factor MHz dBuV/m dBuV/m dB dBuV dB dB/m 169.68 36.23 43.50 -7.27 57.03 1.59 9.13 231.76 36.57 46.00 -9.43 56.25 1.84 9.93 500.45 38.55 46.00 -7.45 50.22 2.82 16.92 533.43 39.28 46.00 -6.72 50.04 2.90 17.72 600.36 39.92 46.00 -6.08 49.59 3.12 18.45 624.61 38.29 46.00 -7.71 47.90 3.18 18.61	Freq Level Lime Limit Level Loss Factor Factor MHz dBuV/m dBuV/m dB dBuV dB dB/m dB 169.68 36.23 43.50 -7.27 57.03 1.59 9.13 31.52 231.76 36.57 46.00 -9.43 56.25 1.84 9.93 31.45 500.45 38.55 46.00 -7.45 50.22 2.82 16.92 31.41 533.43 39.28 46.00 -6.72 50.04 2.90 17.72 31.38 600.36 39.92 46.00 -6.08 49.59 3.12 18.45 31.24 624.61 38.29 46.00 -7.71 47.90 3.18 18.61 31.40	Freq Level Limit Level Loss Factor Factor MHz dBuV/m dBuV/m dB dBuV dB dB/m dB cm 169.68 36.23 43.50 -7.27 57.03 1.59 9.13 31.52 200 231.76 36.57 46.00 -9.43 56.25 1.84 9.93 31.45 150 500.45 38.55 46.00 -7.45 50.22 2.82 16.92 31.41 100 533.43 39.28 46.00 -6.72 50.04 2.90 17.72 31.38 150 600.36 39.92 46.00 -6.08 49.59 3.12 18.45 31.24 150 624.61 38.29 46.00 -7.71 47.90 3.18 18.61 31.40 150	Freq Level Line Limit Level Loss Factor Factor MHz dBuV/m dBuV/m dB dBuV dB dB/m dB cm deg 169.68 36.23 43.50 -7.27 57.03 1.59 9.13 31.52 200 249 231.76 36.57 46.00 -9.43 56.25 1.84 9.93 31.45 150 317 500.45 38.55 46.00 -7.45 50.22 2.82 16.92 31.41 100 8 533.43 39.28 46.00 -6.72 50.04 2.90 17.72 31.38 150 360 600.36 39.92 46.00 -6.08 49.59 3.12 18.45 31.24 150 329 624.61 38.29 46.00 -7.71 47.90 3.18 18.61 31.40 150 320	Freq Level Limit Level Loss Factor Pol/Phase MHz dBuV/m dB dBuV dB dB/m dB cm deg 169.68 36.23 43.50 -7.27 57.03 1.59 9.13 31.52 200 249 HORIZONITAL 231.76 36.57 46.00 -9.43 56.25 1.84 9.93 31.45 150 317 HORIZONITAL 500.45 38.55 46.00 -7.45 50.22 2.82 16.92 31.41 100 8 HORIZONITAL 533.43 39.28 46.00 -6.72 50.04 2.90 17.72 31.38 150 360 HORIZONITAL 600.36 39.92 46.00 -6.08 49.59 3.12 18.45 31.24 150 329 HORIZONITAL 624.61 38.29 46.00 -7.71 47.90 3.18 18.61 31.40 150 320 HORIZONITAL

	Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos	Pol/Phase	Remark
_	MHz	dBu\//m	dBu\∕/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	30.00	32.71	40.00	-7.29	45.90	0.64	17.98	31.81	125	32	VERTICAL	QP
2 qp	38.05	35.72	40.00	-4.28	53.10	0.72	13.78	31.88	150	330	VERTICAL	QP
Зрр	72.68	36.68	40.00	-3.32	61.76	1.01	5.64	31.73	150	170	VERTICAL	Peak
4 !	148.34	40.07	43.50	-3.43	60.02	1.46	10.14	31.55	100	323	VERTICAL	Peak
5	309.36	36.86	46.00	-9.14	52.72	2.15	13.37	31.38	150	97	VERTICAL	Peak
6 !	500.45	42.40	46.00	-3.60	54.07	2.82	16.92	31.41	150	356	VERTICAL	Peak
7	624.61	38.66	46.00	-7.34	48.27	3.18	18.61	31.40	125	314	VERTICAL	Peak
8	1000.00	38.29	54.00	-15.71	43.82	4.21	21.44	31.18	125	337	VERTICAL	Peak

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6.9. Results for Radiated Emissions (1GHz~40GHz)

Temperature	26° C		Humidit	ty	60	60%				
Test Engineer	David Ts	eng	Configurations		IEEE 802.11ac MCS0 NSS1 20MHz Ch 36					
5		3	3	e egu ee		/ Chain 4 + Chain 5 + Chain 6				
Test Date	Jan. 12, 1	2013	Test Mo	de	Be	Beamforming mode				
Horizontal										
Freq	Limit evel Line					Remark	A/Pos	T/Pos	Pol/Phase	
MHz di	uV/m dBuV/m	dB dBu	W dB	dB/m	dB		cm	deg		
	6.87 74.00 4.22 54.00	-17.13 43.7 -9.78 31.6		38.15 38.15	35.59 35.59	Peak Average	100 100		HORIZONTAL HORIZONTAL	

Freq	Level	Limit Line						Remark	A/Pos	T/Pos	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
15531.12 15533.92								~	100 100		VERTICAL VERTICAL

Temperature	26° C	Humidity	60%
Test Engineer	David Isang	Configurations	IEEE 802.11ac MCS0 NSS1 20MHz Ch 40
Test Engineer	David Tseng	Configurations	/ Chain 4 + Chain 5 + Chain 6
Test Date	Jan. 12, 2013	Test Mode	Beamforming mode
Horizontal			

Read CableAntenna Preamp Limit Over A/Pos T/Pos Freq Level Line Limit Level Loss Factor Factor Remark Pol/Phase MHz dBuV/m dBuV/m dB dB/m dB dB dBuV deg cm 1 15593.16 56.17 74.00 -17.83 43.11 10.60 38.04 35.58 Peak 2 15599.00 43.87 54.00 -10.13 30.81 10.60 38.04 35.58 Average 100 347 HORIZONTAL 3655 347 HORIZONTAL

Freq	Level	Limit Line						Remark	A/Pos	T/Pos	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
15592.92 15606.32								~	100 100		VERTICAL VERTICAL

Temperature	26 °C	Humidity	60%
Test Engineer	David Isang	Configurations	IEEE 802.11ac MCS0 NSS1 20MHz Ch 48
Test Engineer	David Tseng	Configurations	/ Chain 4 + Chain 5 + Chain 6
Test Date	Jan. 10, 2013	Test Mode	Beamforming mode

	Freq	Level							Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	 dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	5401.14	46.29	54.00	-7.71	43.74	3.51	34.12	35.08	Average	112	124	HORIZONTAL
2	5402.10	56.90	74.00	-17.10	54.35	3.51	34.12	35.08	Peak	112	124	HORIZONTAL
3	15720.08	37.20	54.00	-16.80	28.97	6.14	37.48	35.39	Avenage	100	164	HORIZONTAL
4	15720.08	48.63	74.00	-25.37	40.40	6.14	37.48	35.39	Peak	100	164	HORIZONTAL

	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1 2 3 4	5392.56 5392.89 15720.08 15720.08	53.57 37.27	54.00 54.00	-0.43 -16.73	51.06 29.04	3.50 6.14	34.09 37.48	35.08 35.39	Average Average	100 100 100 100	160 88	VERTICAL VERTICAL VERTICAL VERTICAL

Temperature	26° C	Humidity	60%
Tost Engineer	David Isong	Configurations	IEEE 802.11ac MCS0 NSS1 40MHz Ch 38
Test Engineer	David Tseng	Configurations	/ Chain 4 + Chain 5 + Chain 6
Test Date	Jan. 15, 2013	Test Mode	Beamforming mode

Freq	Level	Limit Line					Antenna Factor		T/Pos	A/Pos	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 p 15569.56 2 a 15569.57	57.07 44.16	74.00 54.00	-16.93 -9.84	45.53 32.62	7.86 7.86	34.81 34.81	38.49 38.49	Peak Average	250 250		HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line		Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 a 2 p	15569.72 15569.87	44.48 57.31	54.00 74.00	-9.52 -16.69	32.94 45.77	7.86 7.86	34.81 34.81	38.49 38.49	Average Peak	158 158		VERTICAL VERTICAL

Temperature	26 °C	Humidity	60%
Test Engineer	David Tseng	Configurations	IEEE 802.11ac MCS0 NSS1 40MHz Ch 46
lest Engineer	David Iserig	Configurations	/ Chain 4 + Chain 5 + Chain 6
Test Date	Jan. 15, 2013	Test Mode	Beamforming mode

Freq	Level	Lîmît Lîne					Antenna Factor		T/Pos	A/Pos	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 p 15690.07 2 a 15690.15	57.74 44.02	74.00 54.00	-16.26 -9.98	46.30 32.58	7.90 7.90	34.92 34.92	38.46 38.46	Peak Average	260 260		HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Antenna Factor	T/Pos	A/Pos	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m	 deg	Cm	
	15690.31 15690.46								112 112		VERTICAL VERTICAL

Temperature	26 ℃	Humidity	60%			
Test Engineer	David Tseng	Configurations	IEEE 802.11ac MCS0 NSS1 80MHz Ch 42			
Test Engineer	David Iserig	Configurations	/ Chain 4 + Chain 5 + Chain 6			
Test Date	Jan. 15, 2013	Test Mode	Beamforming mode			
Test Date	Jan. 15, 2013	Test Mode	Beamorning mode			

Freq	Level	Lîmît Lîne					Antenna Factor		T/Pos	A/Pos	Pol/Phase
MHz	dBu∛/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 p 15629.92 2 a 15630.41	56.70 43.89	74.00 54.00	-17.30 -10.11	45.22 32.41	7.89 7.89	34.88 34.88	38.47 38.47	Peak Average	$\begin{smallmatrix} 111\\111 \end{smallmatrix}$		HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line		Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 p 2 a	15629.74 15630.50	56.30 43.95	74.00 54.00	-17.70 -10.05	44.82 32.47	7.89 7.89	34.88 34.88	38.47 38.47	Peak Average	260 260		VERTICAL VERTICAL

Temperature	26° C	Humidity	60%				
Tost Engineer	David Isong	Configurations	IEEE 802.11a Ch 36				
Test Engineer	David Tseng	Configurations	/ Chain 4 + Chain 5 + Chain 6				
Test Date	Jan. 12, 2013	Test Mode	Non beamforming mode				
Horizontal							

	Freq	Level							Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1 2	15544.76 15550.00									100 100		HORIZONTAL HORIZONTAL

Freq	Level		Over Limit					A/Pos	T/Pos	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	 cm	deg	
15531.24 15534.00								100 100		VERTICAL VERTICAL

Temperature	26 ℃	Humidity	60%				
Tost Engineer	David Isong	Configurations	IEEE 802.11a Ch 40				
Test Engineer	David Tseng	Configurations	/ Chain 4 + Chain 5 + Chain 6				
Test Date	Jan. 12, 2013	Test Mode	Non beamforming mode				
Horizontal							

	Freq	Level	Limit Line						Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1 2	15602.44 15608.92								~	100 100		HORIZONTAL HORIZONTAL

Freq	Level	Limit Line						Remark	A/Pos	T/Pos	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
15590.32 15592.60								~	100 100		VERTICAL VERTICAL

Temperature	26 ℃	Humidity	60%
Tost Engineer	David Isong	Configurations	IEEE 802.11a Ch 48
Test Engineer	David Tseng	Configurations	/ Chain 4 + Chain 5 + Chain 6
Test Date	Jan. 10, 2013	Test Mode	Non beamforming mode

	Freq	Level	Limit Line				Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	5402.01	47.13	54.00	-6.87	44.58	3.51	34.12	35.08	Average	101	90	HORIZONTAL
2	5402.17	57.24	74.00	-16.76	54.69	3.51	34.12	35.08	Peak	101	90	HORIZONTAL
3	15720.01	36.48	54.00	-17.52	28.25	6.14	37.48	35.39	Average	101	361	HORIZONTAL
4	15720.01	49.11	74.00	-24.89	40.88	6.14	37.48	35.39	Peak	101	361	HORIZONTAL

Vertical

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	5393.99	53.85	54.00	-0.15	51.34	3.50	34.09	35.08	Average	100	169	VERTICAL
2	5395.67	64.47	74.00	-9.53	61.96	3.50	34.09	35.08	Peak	100	169	VERTICAL
3	15720.00	37.41	54.00	-16.59	29.18	6.14	37.48	35.39	Avenage	110	111	VERTICAL
4	15720.00	48.43	74.00	-25.57	40.20	6.14	37.48	35.39	Peak	110	111	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.7. Band Edge Emissions Measurement

4.7.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an -27dBm peak limit or average and peak limits of 15.209. In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 3MHz for Peak

4.7.3. Test Procedures

1. The test procedure is the same as section 4.6.3, only the frequency range investigated is limited to 100MHz around bandedges.

4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.7.7. Test Result of Band Edge and Fundamental Emissions

Temperature	26 ℃	Humidity	60%
			IEEE 802.11ac MCS0 NSS1 20MHz
Test Engineer	David Tseng	Configurations	Ch 36, 40, 48 /
			Chain 4 + Chain 5 + Chain 6
Test Date	Jan. 15, 2013	Test Mode	Beamforming mode

Channel 36

	Freq	Level	Limit Line	Over Limit	Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBu∛/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 2 ! 3 p 4 a	5097.00 5097.00 5182.00 5182.00	53.76 111.88				4.31 4.31 4.36 4.36	0.00	33.06 33.19	Average	85 85 85 85	108 108	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line	Over Limit				Antenna Factor		T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 2 ! 3 p 4 a	5112.00 5122.00 5199.00 5199.00	53.88 112.79	74.00 54.00	-9.45 -0.12	27.14 16.47 75.20 63.25	4.32 4.32 4.37 4.37	0.00 0.00 0.00 0.00	33.09 33.22	Average	94 94 94 94	112 112	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

	Freq	Level	Limit Line	Over Limit				Antenna Factor	Remark	T/Pos	A/Pos	Pol/Phase
_	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 p 2 a 3 4 !	5239.00 5239.00 5395.00 5402.00	100.50 63.67	74.00	-10.33 -0.23		4.39 4.39 4.50 4.50	0.00 0.00 0.00 0.00	33.27 33.54	Average	87 87 87 87	100 100	VERTICAL VERTICAL VERTICAL VERTICAL

Item 1, 2 are the fundamental frequency at 5240 MHz.

Temperature	26 ℃	Humidity	60%
Tost Engineer	David Isong	Configurations	IEEE 802.11n MCS0 40MHz Ch 38, 46 /
Test Engineer	David Tseng	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Jan. 15, 2013	Test Mode	Beamforming mode

Channel 38

	Freq	Level	Limit Line	Over Limit				Antenna Factor	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m	 deg	Cm	
1 ! 2 3 p 4 a	5112.00 5127.00 5194.00 5195.00	63.54 109.81		-0.68 -10.46		4.32 4.33 4.37 4.37	0.00 0.00 0.00 0.00	33.11 33.22	86 86 86	112 112	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5190 MHz.

Channel 46

	Freq	Level	Limit Line	Over Limit	Read Level			Antenna Factor	Rema rk	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 2 ! 3 p 4 a 5 !	5147.00 5147.00 5224.00 5225.00 5395.00 5395.00	64.24 53.65 110.79 99.73 63.10 53.29	74.00 54.00 74.00 54.00	-9.76 -0.35 -10.90 -0.71	26.76 16.17 73.16 62.07 25.06 15.25	4.34 4.34 4.38 4.39 4.50 4.50	0.00 0.00 0.00 0.00 0.00 0.00	33.25 33.27 33.54	Average Peak Average	86 86 86 86 86	100 100 100 100 100 100	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5230 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Temperature	26 ℃	Humidity	60%
Test Engineer	David Isang	Configurations	IEEE 802.11ac MCS0 80MHz Ch 42 /
Test Engineer	David Tseng	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Jan. 15, 2013	Test Mode	Beamforming mode

Channel 42

	Freq	Level	Limit Line	Over Limit				àntenna Factor		T/Pos	A/Pos	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 2 ! 3 a 4 p	5132.00 5137.00 5199.00 5205.00	67.48 53.87 94.39 108.17	74.00 54.00		30.04 16.43 56.80 70.58	4.33 4.33 4.37 4.37	0.00 0.00 0.00 0.00	33.11 33.22	Average Average	94 94 94 94	100 100	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5210MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Temperature	26 ℃	Humidity	60%
Tost Engineer	David Isong	Configurations	IEEE 802.11a Ch 36, 40, 48
Test Engineer	David Tseng	Configurations	/ Chain 4 + Chain 5 + Chain 6
Test Date	Jan. 10, 2013	Test Mode	Non beamforming mode

Channel 36

	Freq	Level	Limit Line					Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1 2 3 4	5097.12 5097.44 5178.40 5178.72	64.61 101.10	74.00			3.42 3.44	33.58 33.58 33.73 33.73	0.00 0.00	Average Peak Average Peak	102 102 102 102	93 93	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line		Read Level					A/Pos		1/Phase
	MHz	dBư√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	5117.95	53.94	54.00	-0.06	16.91	3.42	33.61	0.00	Average	100	66 VE	RTICAL
2	5127.56	64.49	74.00	-9.51	27.42	3.43	33.64	0.00	Peak	100	66 VE	RTICAL
3	5197.44	111.40			74.19	3.45	33.76	0.00	Peak	100	66 VE	RTICAL
4	5198.08	100.99			63.78	3.45	33.76	0.00	Average	100	66 VE	RTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

		_			Read					A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBư√/m	dBu\//m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	5239.04	102.26			64.98	3.46	33.82	0.00	Average	104	84	VERTICAL
2	5239.04	112.13			74.85	3.46	33.82	0.00	Peak	104	84	VERTICAL
3	5357.31	57.23	74.00	-16.77	19.71	3.49	34.03	0.00	Peak	104	84	VERTICAL
4	5359.14	46.04	54.00	-7.96	8.52	3.49	34.03	0.00	Average	104	84	VERTICAL

Item 1, 2 are the fundamental frequency at 5240 MHz.

Note:

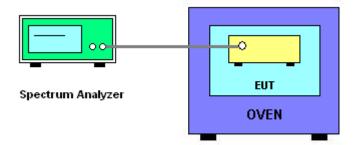
Emission level (dBuV/m) = 20 log Emission level (uV/m) Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4.8. Frequency Stability Measurement

4.8.1. Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emissions is maintained within the band of operation under all conditions of normal operation as specified in the user's manual or ±20ppm (IEEE 802.11nspecification).

4.8.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RB	10 kHz
VB	10 kHz
Sweep Time	Auto

4.8.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature rule is -30°C~50°C.

4.8.4. Test Setup Layout

4.8.5. Test Deviation

There is no deviation with the original standard.

4.8.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.8.7. Test Result of Frequency Stability

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
(V)	5200
126.50	5199.9555
110.00	5199.9765
93.50	5199.9936
Max. Deviation (MHz)	0.044500
Max. Deviation (ppm)	8.56

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)
(°C)	5200
-30	5199.9954
-20	5199.9933
-10	5199.9923
0	5199.9910
10	5199.9899
20	5199.9870
30	5199.9854
40	5199.9823
50	5199.9812
Max. Deviation (MHz)	0.018800
Max. Deviation (ppm)	3.62

4.9. Antenna Requirements

4.9.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.9.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100377	9kHz ~ 2.75GHz	Oct. 23, 2012	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Nov. 26, 2012	Conduction (CO01-CB)
V- LISN	Schwarzbeck	NSLK 8127	8127-478	9kHz ~ 30MHz	Jun. 22, 2012	Conduction (CO01-CB)
Impulsbegrenzer Pulse Limiter	Rohde&Schwarz	ESH3-Z2	100430	9kHz~30MHz	Feb. 21, 2012	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	0.15MHz~30MHz	Dec. 04, 2012	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	-	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Jan. 11, 2012	Radiation (03CH01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Jan. 11, 2013	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26.5GHz ~ 40GHz	Jul. 31, 2012	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100056	9KHz~40GHz	Nov. 16, 2012	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9KHz ~ 2.75GHz	Mar. 20, 2012	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N.C.R	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9KHz~40GHz	Oct. 08, 2012	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 05, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)

Instrument	Manufacturer	Model No. Serial No.		Characteristics	Calibration Date	Remark
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 28, 2012	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Nov. 27, 2012	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

"*" Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

6. TEST LOCATION

-	r		
SHIJR	ADD	:	6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7Fl., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4Fl., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085