

FCC Test Report

Equipment	:	R6100 WiFi Router, R6000 WiFi Router		
Brand Name	:	NETGEAR		
Model No.	:	R6100, R6000		
FCC ID	:	PY312400225		
Standard	:	47 CFR FCC Part 15.247		
Operating Band	:	5725 MHz – 5850 MHz		
FCC Classification	:	DTS		
Applicant Manufacturer	:	NETGEAR, Inc. 350 East Plumeria Drive, San Jose, California 95134, USA		

The product sample received on Mar. 06, 2013 and completely tested on Apr. 19, 2013. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

aD

Jordan Hsiao Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	8
1.3	Testing Applied Standards	
1.4	Testing Location Information	9
1.5	Measurement Uncertainty	9
2	TEST CONFIGURATION OF EUT	10
2.1	The Worst Case Modulation Configuration	10
2.2	The Worst Case Power Setting Parameter	11
2.3	The Worst Case Measurement Configuration	12
2.4	Test Setup Diagram	14
3	TRANSMITTER TEST RESULT	15
3 3.1	TRANSMITTER TEST RESULT. AC Power-line Conducted Emissions.	
-		15
3.1	AC Power-line Conducted Emissions	15 20
3.1 3.2	AC Power-line Conducted Emissions 6dB Bandwidth	15 20 23
3.1 3.2 3.3	AC Power-line Conducted Emissions 6dB Bandwidth RF Output Power	15 20 23 30
3.1 3.2 3.3 3.4	AC Power-line Conducted Emissions 6dB Bandwidth RF Output Power Power Spectral Density	
3.1 3.2 3.3 3.4 3.5	AC Power-line Conducted Emissions 6dB Bandwidth RF Output Power Power Spectral Density Transmitter Radiated Bandedge Emissions	15 20 23 30 34
3.1 3.2 3.3 3.4 3.5 3.6 4	AC Power-line Conducted Emissions 6dB Bandwidth RF Output Power Power Spectral Density Transmitter Radiated Bandedge Emissions Transmitter Radiated Unwanted Emissions	15 20 23 30 34 48 48

Summary of Test Result

	Conformance Test Specifications							
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result			
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied			
3.1	15.207	AC Power-line Conducted Emissions			Complied			
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth [MHz] 20M:17.57/40M:36.29 80M: 76.29	≥500kHz	Complied			
3.3	15.247(b)	RF Output Power (Maximum Conducted (Average) Output Power)	Power[dBm]:29.93	Power[dBm]:30	Complied			
3.4	15.247(d)	Power Spectral Density	PSD[dBm/3kHz]:1.17	PSD[dBm/3kHz]:8	Complied			
3.5	15.247(c)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 5724.20MHz:30.13dB	Non-Restricted Bands: > 30 dBc Restricted Bands: FCC 15.209	Complied			
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]:11650.00MHz 67.71 (Margin 6.29dB) - PK 52.80 (Margin 1.20dB) - AV	Non-Restricted Bands: > 30 dBc Restricted Bands: FCC 15.209	Complied			

Revision History

Report No.	Version	Description	Issued Date
FR330625AI	Rev. 01	Initial issue of report	Apr. 22, 2013
			1

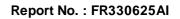
1 General Description

1.1 Information

1.1.1 RF General Information

	RF General Information									
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	RF Output Power (dBm)	Co-location				
For model: R6100										
5725-5850	а	5745-5825	149-165 [5]	2	29.77	Yes				
5725-5850	n(HT20)	5745-5825	149-165 [5]	2	29.93	Yes				
5725-5850	n(HT40)	5755-5795	151-159 [2]	2	29.44	Yes				
5725-5850	ac(VHT20)	5745-5825	149-165 [5]	2	29.74	Yes				
5725-5850	ac(VHT40)	5755-5795	151-159 [2]	2	29.30	Yes				
5725-5850	ac(VHT80)	5775	155 [1]	2	22.05	Yes				
For model: R6	6000									
5725-5850	а	5745-5825	149-165 [5]	1	29.56	Yes				
5725-5850	n(HT20)	5745-5825	149-165 [5]	1	29.31	Yes				
5725-5850	n(HT40)	5755-5795	151-159 [2]	1	29.12	Yes				
5725-5850	ac(VHT20)	5745-5825	149-165 [5]	1	29.32	Yes				
5725-5850	ac(VHT40)	5755-5795	151-159 [2]	1	29.21	Yes				
5725-5850	ac(VHT80)	5775	155 [1]	1	20.42	Yes				
Note 2: RF out Note 3: 802.11 Note 4: 802.11	5725-5850ac(VH180)5775155 [1]120.42YesNote 1: RF output power specifies that Maximum Conducted (Average) Output Power.Note 2: RF output power specifies that Maximum Peak Conducted Output Power for ac(VHT80) only.Note 3: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.Note 4: 802.11ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.Note 5: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting)									

antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)


1.1.2 Antenna Information

Antenna Category						
Equipment placed on the market without antennas						
Inte	gral antenna (antenna permanently attached)					
⊠	Temporary RF connector provided					
No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.						
Exte	ernal antenna (dedicated antennas)					
	Single power level with corresponding antenna(s).					
	Multiple power level and corresponding antenna(s).					
RF connector provided						
	□ Unique antenna connector. (e.g., MMCX, U.FL, IPX, and RP-SMA, RP-N type)					
	Standard antenna connector. (e.g., SMA, N, BNC, and TNC type)					

	Antenna General Information						
No.	No. Ant. Cat. Ant. Type Connector Gain (dBi)						
1	Integral	Printed	UFL	2.7			

1.1.3 Type of EUT

	Identify EUT			
EU	T Serial Number	N/A		
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype		
		Type of EUT		
⊠	Stand-alone			
	Combined (EUT where the radio part is fully integrated within another device)			
	Combined Equipment - Brand Name / Model No.:			
	Plug-in radio (EUT intended for a variety of host systems)			
	Host System - Brand Name / Model No.:			
	Other:			

1.1.4 Test Signal Duty Cycle

	Operated Mode for Worst Duty Cycle					
	Operated normally mode for worst duty cycle					
⊠	Operated test mode for worst duty cycle					
	Test Signal Duty Cycle (x)Power Duty Factor[dB] - (10 log 1/x)					
⊠	98.96% - IEEE 802.11a	0.05				
⊠	98.32% - IEEE 802.11n (HT20)	0.07				
⊠	98.83% - IEEE 802.11n (HT40)	0.05				
⊠	99.37% - IEEE 802.11n (VHT20)	0.03				
⊠	98.79% - IEEE 802.11n (VHT40)	0.05				
⊠	98.21% - IEEE 802.11ac (VHT80)	0.08				

1.1.5 EUT Operational Condition

Supply Voltage	⊠	AC mains	DC	
Type of DC Source		Internal DC supply	External DC adapter	Battery

1.1.6 Table for Product Listing

No.	Brand Name	Model Name	Product Name	Descriptions
1	NETGEAR	R6100	R6100 WiFi Router	2.4G, 2T2R 5.0G, 2T2R
2	NETGEAR	R6000	R6000 WiFi Router	2.4G, 2T2R 5.0G, 1T1R

Note: Both models are with the same hardware. Difference of 5GHz chain function is using software setting not by hardware modified. Both models are tested separately and recorded in the report.

1.2 Accessories and Support Equipment

	Accessories							
No.	Equipment	Brand Name	Model Name	P/N	Spec.			
1	Adapter 1	NETGEAR	AD817F20	332-10307-02	I/P:100-240Vac, 50~60Hz, 0.56A O/P:12Vdc, 1.5A Power cord: 1.85m non-shielded cable w/o core			
2	Adapter 2	NETGEAR	SAL018F1 NA	332-10375-01	I/P:100-120Vac, 47~63Hz, 0.6A O/P:12Vdc, 1.5A Power cord: 1.85m non-shielded cable w/o core			
3	Adapter 3	NETGEAR	MU18-D1201 50-A1	332-10268-01	I/P:100-240Vac, 50~60Hz, 0.6A O/P:12Vdc, 1.5A Power cord: 1.85m non-shielded cable w/o core			
4	Adapter 4	NETGEAR	AD817F10	332-10301-02	I/P:100-120Vac, 50~60Hz, 0.56A O/P:12Vdc, 1.5A Power cord: 1.85m non-shielded cable w/o core			
5	RJ45 Cable				1.5m shielded cable w/o core			

	Support Equipment						
No.	Equipment	Brand Name	Model Name	Serial No.			
1	Notebook	DELL	E5420	DoC			
2	Notebook	DELL	E5420	DoC			
3	USB Flash	Transcend	JetFlash V85				

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074
- FCC KDB 662911
- FCC KDB 412172

1.4 Testing Location Information

	Testing Location								
⊠	HWA YA	ADD	ADD : No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.						
		TEL	EL : 886-3-327-3456 FAX : 886-3-327-0973						
Test Condition Test Site No. Test Engineer Test Environmen				Test Environment	Test Date				
RF Conducted		d	TH01-HY		lan Du	22.7°C / 61.5%	Apr. 15, 2013		
AC Conduction		ction CO04-HY		Bill Hsiao	21°C / 52%	Apr. 19, 2013			
Radiated Emission03CH05-HYSam Chang25°C / 65%Mar. 20 ~ Apr. 4					Mar. 20 ~ Apr. 18, 2013				
	•		umber[643075 umber[4086B·	-					

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Ν	leasurement Uncertainty	/	
Test Item		Uncertainty	Limit
AC power-line conducted emissions	±2.26 dB	N/A	
Emission bandwidth, 6dB bandwidth	±1.42 %	N/A	
RF output power, conducted	±0.63 dB	N/A	
Power density, conducted	±0.81 dB	N/A	
Unwanted emissions, conducted	30 – 1000 MHz	±0.51 dB	N/A
	1 – 18 GHz	±0.67 dB	N/A
	18 – 40 GHz	±0.83 dB	N/A
	40 – 200 GHz	N/A	N/A
All emissions, radiated	30 – 1000 MHz	±2.56 dB	N/A
	1 – 18 GHz	±3.59 dB	N/A
	18 – 40 GHz	±3.82 dB	N/A
	40 – 200 GHz	N/A	N/A
Temperature	l	±0.8 °C	N/A
Humidity	±3 %	N/A	
DC and low frequency voltages	±3 %	N/A	
Time	±1.42 %	N/A	
Duty Cycle		±1.42 %	N/A

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

	Worst Modulation Used for Conformance Testing							
Modulation Mode	Transmit Chains (N_{TX})	Data Rate / MCS	Worst Data Rate / MCS					
For model: R6100								
11a	2	6-54Mbps	6 Mbps					
HT20	2	M0-15	MO					
HT40	2	M0-15	MO					
VHT20	2	M0-9	MO					
VHT40	2	M0-9	MO					
VHT80	2	M0-9	MO					
For model: R6000								
11a	1	6-54Mbps	6 Mbps					
HT20	1	M0-7	MO					
HT40	1	M0-7	MO					
VHT20	1	M0-9	MO					
VHT40	1	M0-9	MO					
VHT80	1	M0-9	M0					
11a: IEEE 802.1 Note 2: IEEE Std. 802.11	esconsist of below configurat 1a, HT20/HT40:IEEE 802.11 In/ac modulation consists of H ort HT20, HT40, VHT20, VHT	n, VHT20/VHT40/VHT80 IT20, HT40, VHT20, VH						

2.2 The Worst Case Power Setting Parameter

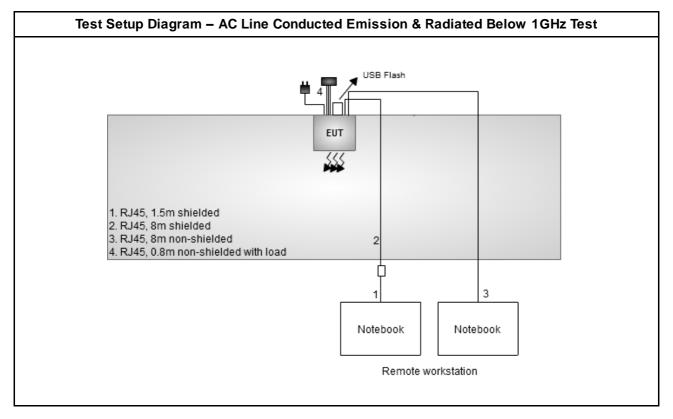
The W	lorst Ca	ase Powe	r Setting P	arameter (5	725-5850M	Hz band)			
Test Software Version	CAR	T V4.9							
For model: R6100	4								
		Test Frequency (MHz)							
Modulation Mode	NTX	NCB: 20MHz			NCB:	NCB: 80MHz			
		5745	5785	5825	5755	5795	5775		
11a,6-54Mbps	2	28	31.5	31.5	-	-	-		
HT20,M0-15	2	28	31.5	31.5	-	-	-		
HT40,M0-15	2	-	-	-	26.5	31.5	-		
VHT20,M0-9	2	27.5	31.5	31.5	-	-	-		
VHT40,M0-9	2	-	-	-	27.5	31.5	-		
VHT80,M0-9	2	-	-	-	-	-	20.5		
For model: R6000	1 1								
				Test Fre	quency (MH	lz)			
Modulation Mode	N _{TX}		NCB: 20M	Hz	NCB:	40MHz	NCB: 80MHz		
		5745	5785	5825	5755	5795	5775		
11a,6-54Mbps	1	26.5	26.5	26	-	-	-		
HT20,M0-7	1	26.5	26.5	26.5	-	-	-		
HT40,M0-7	1	-	-	-	26.5	26.5	-		
VHT20,M0-9	1	27	27	27	-	-	-		
VHT40,M0-9	1	-	-	-	27	27	-		
VHT80,M0-9	1	-	-	-	-	-	19.5		

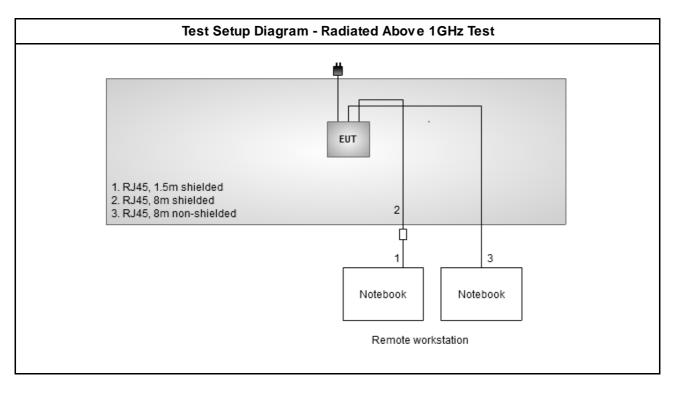
2.3 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests					
Tests Item AC power-line conducted emissions					
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz				
Operating Mode	Operating Mode Description				
1	AC Power & Radio link (WLAN), Model R6100, Adapter 2				
2	AC Power & Radio link (WLAN), Model R6000, Adapter 2				
Note:					

Note:

Adapter 1, adapter 2, adapter 3 and adapter 4 had been pretested and found that the adapter 2 was the worst case and was selected for final test.


The	The Worst Case Mode for Following Conformance Tests					
Tests Item	RF Output Power, Power Spectral Density, 6 dB Bandwidth					
Test Condition	Conducted measurement at transmit chains					
Modulation Mode	11a, HT20, HT40, VHT20, VHT40, VHT80					
Operating Mode	Operating Mode Description					
1	AC Power & Radio link (WLAN), Model R6100, Adapter 2					
2	AC Power & Radio link (WLAN), Model R6000, Adapter 2					



The	e Worst Case Mode for Fe	ollowing Conformance Te	ests			
Tests Item	Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions					
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.					
User Position		nfixed position. I mobile position and operativo orthogonal planes. The v				
EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes. The worst planes is X.						
Operating Mode < 1GHz	🛛 1. AC Power & Rad	io link (WLAN), Model R61	00, Adapter 2			
	2. AC Power & Rad	io link (WLAN), Model R60	00, Adapter 2			
Modulation Mode	11a, HT20, HT40, VHT20	, VHT40, VHT80				
	X Plane	Y Plane	Z Plane			
Orthogonal Planes of EUT	f					
Note: Adapter 1, adapter 2, ada worst case and was select	apter 3 and adapter 4 had be ted for final test.	een pretested and found that	at the adapter 2 was the			

2.4 Test Setup Diagram

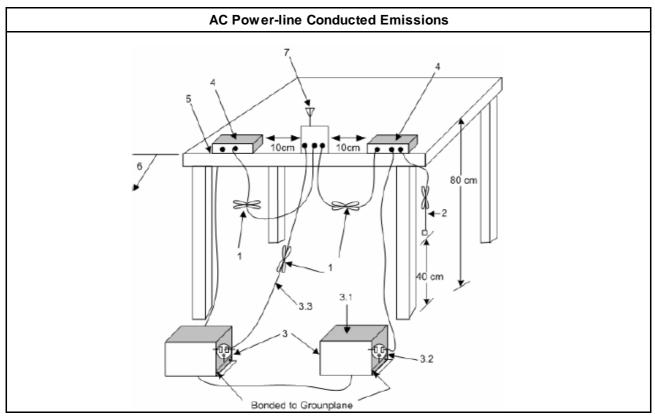
3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz) Quasi-Peak Average					
0.15-0.5	66 – 56 *	56 – 46 *			
0.5-5	56	46			
5-30	60	50			
Note 1: * Decreases with the logarith	m of the frequency.	•			

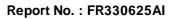
3.1.2 Measuring Instruments

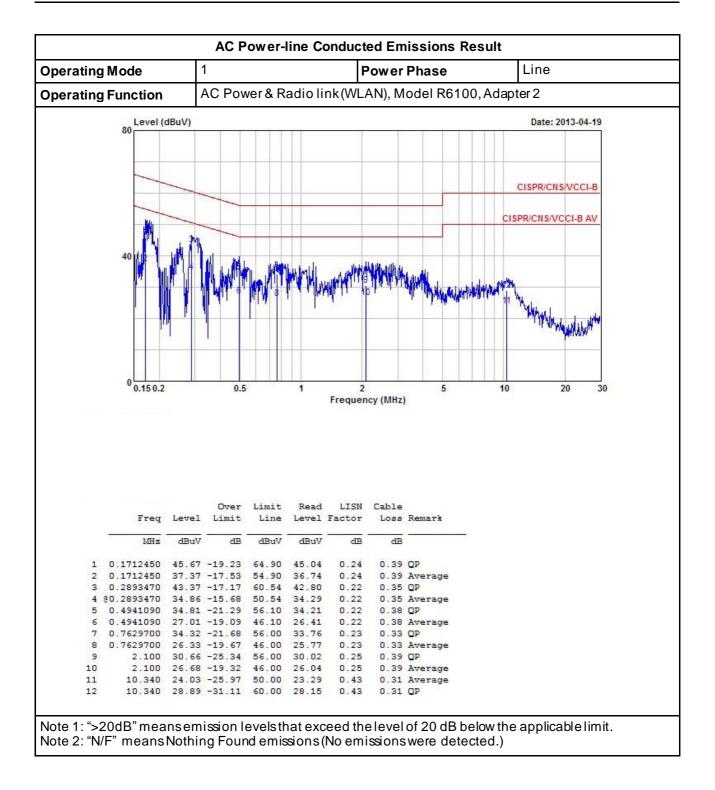

Refer a test equipment and calibration data table in this test report.

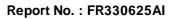
3.1.3 Test Procedures

Test Method

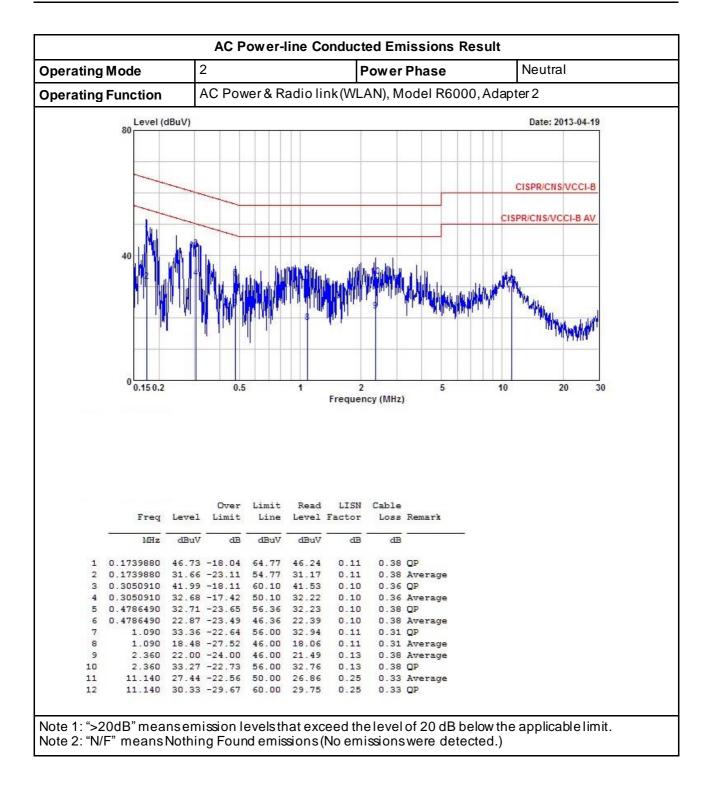
Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

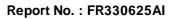

3.1.4 Test Setup

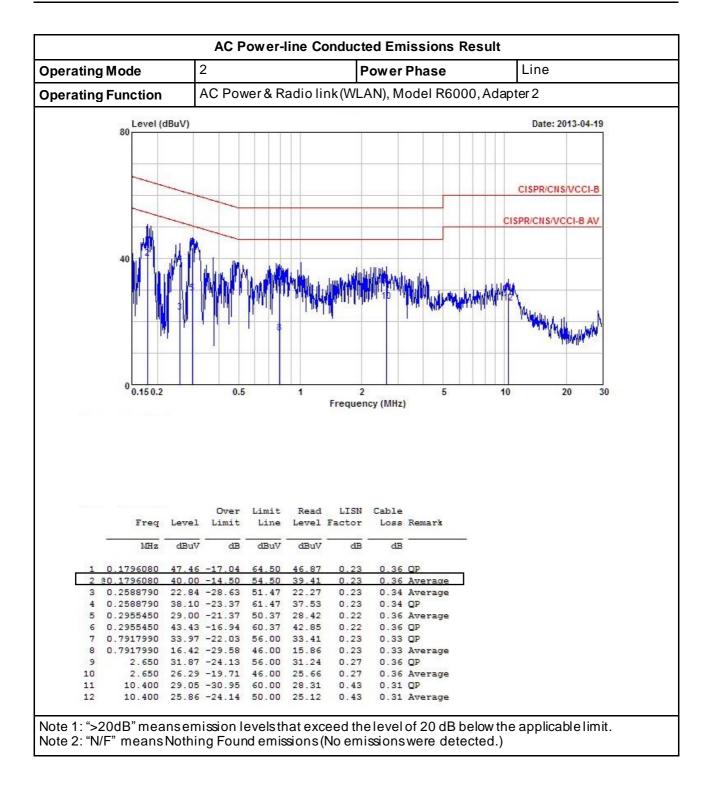



Operating Mode		1			ower	Phase	Ne	utral	
perating Function	AC F	AC Power & Radio link (WLAN), Model R6100, Adapter 2							
Level	(dBuV)						Da	ate: 2013-04-19	
80									
_							CISP	R/CNS/VCCI-B	
		~					CISPR/C	NS/VCCI-B AV	
			ndan. (bd/w	Max 4111	10	n an	WINNIN	will brow with the state	
0.150.	2	0.5	1	2 Frequen	cy (MHz)	5	10	20 30	
	G	er Limit	Read	Frequen	Cable		10	20 30	
Freq	Ov Level Lin	ver Limit hit Line	Read Level	LISN Factor	Cable Loss	2	10	20 30	
Freq	Ov Level Lim dBuV	rer Limit it Line dB dBuV	Read Level dBuV	LISN Factor dB	Cable Loss dB	Remark	10	20 30	
Freq MHz 1 0.1703400 2 0.1703400	Ov Level Lim dBuV 45.29 -19. 30.11 -24.	rer Limit Line dB dBuV 65 64.94 83 54.94	Read Level dBuV 44.79 29.61	LISN Factor dB 0.11 0.11	Cable Loss dB 0.39 0.39	Remark OP Average	10	20 30	
Freq MHz 1 0.1703400 2 0.1703400 3 0.2908840	Ov Level Lim dBuV 45.29 -19. 30.11 -24. 43.53 -16.	rer Limit Line dB dBuV 65 64.94 83 54.94 97 60.50	Read Level dBuV 44.79 29.61 43.08	LISN Factor 0.11 0.10	Cable Loss dB 0.39 0.39 0.35	Remark OP Average OP	10	20 30	
Freq MHz 1 0.1703400 2 0.1703400 3 0.2908840 4 0.2908840	Uv Level Lin dBuV 45.29 -19. 30.11 -24. 43.53 -16. 34.74 -15.	rer Limit Line dB dBuV 65 64.94 83 54.94 97 60.50 76 50.50	Read Level dBuV 44.79 29.61 43.08 34.29	LISN Factor dB 0.11 0.11	Cable Loss dB 0.39 0.39 0.35	Remark OP Average OP Average	10	20 30	
Freq MHz 1 0.1703400 2 0.1703400 3 0.2908840 4 0.2908840	Uv Level Lin dBuV 45.29 -19. 30.11 -24. 43.53 -16. 34.74 -15. 33.95 -22.	rer Limit Line dB dBuV 65 64.94 83 54.94 97 60.50 76 50.50 05 56.00	Read Level dBuV 44.79 29.61 43.08 34.29 33.48	LISN Factor 0.11 0.11 0.10 0.10	Cable Loss dB 0.39 0.35 0.35 0.35 0.37	Remark OP Average OP Average	10	20 30	
Freq MHz 1 0.1703400 2 0.1703400 3 0.2908840 4 0.2908840 5 0.5378230 6 0.5378230 7 0.7670230	Ov Level Lin dBuV 45.29 -19. 30.11 -24. 43.53 -16. 34.74 -15. 33.95 -22. 24.32 -21. 35.08 -20.	rer Limit Line dB dBuV 65 64.94 83 54.94 97 60.50 76 50.50 05 56.00 68 46.00 92 56.00	Read Level dBuV 44.79 29.61 43.08 34.29 33.48 23.85 34.64	LISN Factor dB 0.11 0.10 0.10 0.10 0.10 0.10	Cable Lose dB 0.39 0.35 0.35 0.35 0.37 0.37	Remark OP Average OP Average OP Average OP	10	20 30	
Freq MHz 1 0.1703400 2 0.1703400 3 0.2908840 4 0.2908840 5 0.5378230 6 0.5378230 6 0.5378230 7 0.7670230 8 0.7670230	Cv Level Lin dBuV 45.29 -19. 30.11 -24. 43.53 -16. 34.74 -15. 33.95 -22. 24.32 -21. 35.08 -20. 24.89 -21.	rer Limit Line dB dBuV 65 64.94 83 54.94 97 60.50 76 50.50 05 56.00 68 46.00 92 56.00 11 46.00	Read Level dBuV 44.79 29.61 43.08 34.29 33.48 23.85 34.64 23.45	LISN Factor dB 0.11 0.10 0.10 0.10 0.10 0.11 0.11	Cable Loss dB 0.39 0.35 0.35 0.35 0.37 0.37 0.33 0.33	Remark OP Average OP Average OP Average OP Average	10	20 30	
Freq MHz 1 0.1703400 2 0.1703400 3 0.2908840 4 @0.2908840 5 0.5378230 6 0.5378230 7 0.7670230 8 0.7670230 9 2.490	Ov Level Lin dBuV 45.29 -19. 30.11 -24. 43.53 -16. 34.74 -15. 33.95 -22. 24.32 -21. 35.08 -20. 24.89 -21. 30.50 -25.	rer Limit Line dB dBuV 65 64.94 83 54.94 97 60.50 76 50.50 05 56.00 68 46.00 92 56.00 11 46.00 50 56.00	Read Level dBuV 44.79 29.61 43.08 34.29 33.48 23.85 34.64 24.45 29.99	LISN Factor 0.11 0.10 0.10 0.10 0.10 0.11 0.11 0.1	Cable Loss dB 0.39 0.35 0.35 0.35 0.37 0.37 0.33 0.33 0.33	Remark OP Average OP Average OP Average OP Average OP	10	20 30	
Freq MHz 1 0.1703400 2 0.1703400 3 0.2908840 4 @0.2908840 5 0.5378230 6 0.5378230 6 0.5378230 6 0.5378230 8 0.7670230 9 2.490 10 2.490	Ov Level Lim dBuV 45.29 -19. 30.11 -24. 43.53 -16. 34.74 -15. 33.95 -22. 24.32 -21. 35.08 -20. 24.89 -21. 30.50 -25. 22.86 -23.	rer Limit Line dB dBuV 65 64.94 83 54.94 97 60.50 76 50.50 05 56.00 68 46.00 92 56.00 11 46.00 50 56.00 14 46.00	Read Level dBuV 44.79 29.61 43.08 34.29 33.48 23.85 34.64 24.45 29.99 22.35	LISN Factor 0.11 0.10 0.10 0.10 0.10 0.11 0.11 0.1	Cable Loss dB 0.39 0.35 0.35 0.37 0.37 0.37 0.33 0.33 0.37 0.37	Remark OP Average OP Average OP Average OP Average OP Average	10	20 30	
Freq MHz 1 0.1703400 2 0.1703400 3 0.2908840 4 @0.2908840 5 0.5378230 6 0.5378230 6 0.5378230 7 0.7670230 8 0.7670230 9 2.490 10 2.490 11 10.620	Ov Level Lin dBuV 45.29 -19. 30.11 -24. 43.53 -16. 34.74 -15. 33.95 -22. 24.32 -21. 35.08 -20. 24.89 -21. 30.50 -25.	rer Limit Line dB dBuV 65 64.94 83 54.94 97 60.50 76 50.50 05 56.00 11 46.00 50 56.00 14 46.00 70 50.00	Read Level dBuV 44.79 29.61 43.08 34.29 33.48 23.85 34.64 24.45 29.99 22.35 25.74	LISN Factor 0.11 0.10 0.10 0.10 0.10 0.11 0.11 0.1	Cable Loss dB 0.39 0.35 0.35 0.35 0.37 0.37 0.33 0.33 0.37 0.37 0.37	Remark OP Average OP Average OP Average OP Average OP Average Average	10	20 30	

3.1.5 Test Result of AC Power-line Conducted Emissions



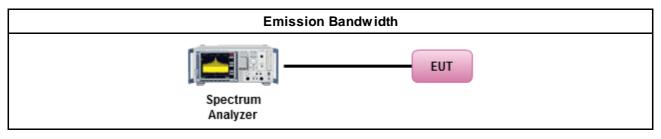




3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

	6dB Bandwidth Limit					
Sy	Systems using digital modulation techniques:					
⊠	6 dB bandwidth ≥500 kHz.					

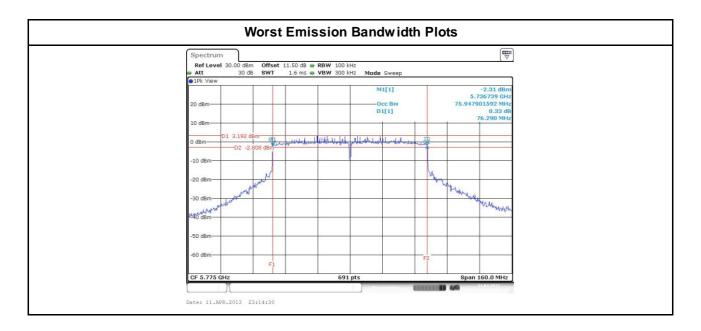

3.2.2 **Measuring Instruments**

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

			Test Method					
\boxtimes	For	For the emission bandwidth shall be measured using one of the options below:						
	\boxtimes	Ref	er as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.					
		Refer as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.						
		Referas ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.						
⊠	For conducted measurement.							
	\boxtimes	The	EUT supports single transmit chain and measurements performed on this transmit chain.					
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.						
	⊠	The	EUT supports multiple transmit chains using options given below:					
			Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.					
		⊠	Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.					

3.2.4 Test Setup


3.2.5 Test Result of Emission Bandwidth

			Em	ission Ba	andwidth	Result				
Cond	ition				Emis	sion Bar	ndwidth (MHz)		
Modulation		Frog	99% Bandwidth					6dB Ba	ndw idth	
Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4
11a	2	5745	17.37	17.25	-	-	16.41	16.29	-	-
11a	2	5785	17.60	17.66	-	-	16.29	16.35	-	-
11a	2	5825	18.18	17.95	-	-	16.29	16.29	-	-
HT20	2	5745	18.35	18.29	-	-	17.57	17.16	-	-
HT20	2	5785	18.58	18.52	-	-	16.93	17.16	-	-
HT20	2	5825	20.61	19.33	-	-	17.57	16.93	-	-
HT40	2	5755	37.16	37.16	-	-	36.29	36.29	-	-
HT40	2	5795	37.51	37.51	-	-	36.29	36.06	-	-
VHT20	2	5745	18.76	18.29	-	-	17.16	16.93	-	-
VHT20	2	5785	19.62	19.22	-	-	16.93	17.57	-	-
VHT20	2	5825	21.88	21.48	-	-	15.71	17.57	-	-
VHT40	2	5755	37.40	37.28	-	-	36.06	36.06	-	-
VHT40	2	5795	37.63	37.74	-	-	36.29	36.29	-	-
VHT80	VHT80 2 5775		78.26	77.57	-	-	75.83	75.59	-	-
Lin	nit		N/A ≥500 kHz							
Res	ult					Com	plied			
lote 1: N _{TX} = Nu	mber	ofTransm	nit Chains	6						

			Em	ission Ba	andwidth	Result				
Condi	tion				Emis	sion Bar	ndwidth (MHz)		
Modulation		F ree	99% Bandwidth					6dB Ba	ndw idth	
Modulation	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4
11a	1	5745	20.09	-	-	-	16.35	-	-	-
11a	1	5785	33.05	-	-	-	16.35	-	-	-
11a	1	5825	33.86	-	-	-	16.35	-	-	-
HT20	1	5745	19.86	-	-	-	17.57	-	-	-
HT20	1	5785	33.11	-	-	-	16.35	-	-	-
HT20	1	5825	34.04	-	-	-	16.35	-	-	-
HT40	1	5755	49.51	-	-	-	36.29	-	-	-
HT40	1	5795	37.16	-	-	-	36.29	-	-	-
VHT20	1	5745	19.16	-	-	-	17.57	-	-	-
VHT20	1	5785	33.29	-	-	-	17.57	-	-	-
VHT20	1	5825	34.56	-	-	-	17.57	-	-	-
VHT40	1	5755	37.28	-	-	-	36.29	-	-	-
VHT40	1	5795	62.52	-	-	-	36.29	-	-	-
VHT80	VHT80 1 5775		78.03	-	-	-	76.29	-	-	-
Lim	it			N/A ≥500 kHz						
Res	ult		Complied							
Note 1: N _{TX} = Nu	mber	ofTransm	it Chains	5						

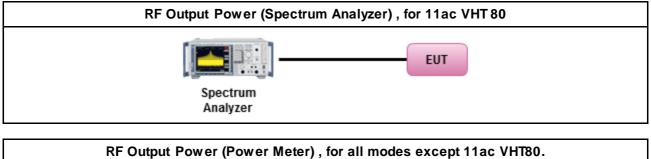
3.3 RF Output Power

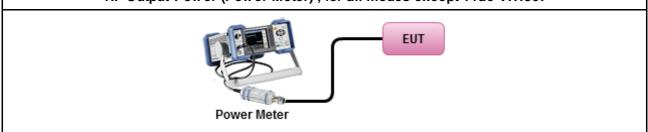
3.3.1 RF Output Power Limit

	RF Output Power Limit									
		ım Peak Conducted Output Power or Maximum Conducted Output Power Limit /HT80) only)								
\boxtimes	572	25-5850 MHz Band:								
	⊠	If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm}$ (1 W)								
	⊠	Point-to-multipoint systems (P2M): If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6) \text{ dBm}$								
		Point-to-point systems (P2P): If $G_{TX} > 6 dBi$, then $P_{Out} = 30 dBm$								
e.i.ı	r.p. F	Power Limit:								
\boxtimes	572	25-5850 MHz Band								
	⊠	Point-to-multipoint systems (P2M): P _{eirp} ≤36 dBm (4 W)								
		Point-to-point systems (P2P): N/A								
GTX	= th	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. .i.r.p. Power in dBm.								

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



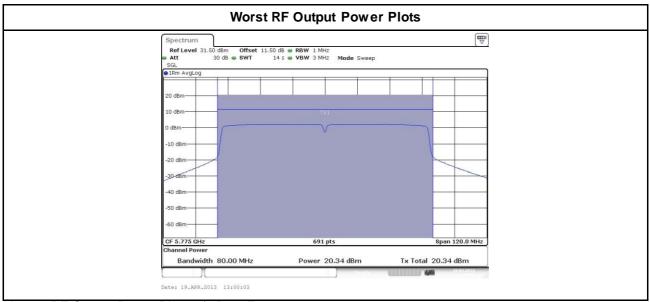

3.3.3 Test Procedures

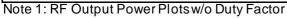
		Test Method								
	Мах	kimum Peak Conducted Output Power								
		Referas FCC KDB 558074, clause 9.1.1 Option 1 (RBW≥ EBW method).								
	Refer as FCC KDB 558074, clause 9.1.2 Option 2 (integrated band power method).									
		Refer as FCC KDB 558074, clause 9.1.3 Option 2 (peakpower meter for VBW ≥ DTS BW)								
⊠	Max	kimum Conducted Output Power								
	[dut	y cycle ≥98% or external video / power trigger]								
		Refer as FCC KDB 558074, clause 9.2.1.2 Method AVGSA-1 (spectral trace averaging).								
		Refer as FCC KDB 558074, clause 9.2.1.3 Method AVGSA-1 Alt. (slow sweep speed)								
	duty	cycle < 98% and average over on/off periods with duty factor								
		Refer as FCC KDB 558074, clause 9.2.1.4 Method AVGSA-2 (spectral trace averaging).								
	Ø	Referas FCC KDB 558074, clause 9.2.1.5 Method AVGSA-2 Alt. (slow sweep speed) For 11ac VHT 80 mode								
	RF	power meter and average over on/off periods with duty factor or gated trigger								
	Ø	Refer as FCC KDB 558074, clause 9.2.2 Method AVGPM (using an RF average power meter) For all modes except 11ac VHT80.								
⊠	For	conducted measurement.								
		The EUT supports single transmit chain and measurements performed on this transmit chain.								
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.								
		The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.								
	Ø	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG								

3.3.4 Test Setup

	Dire	ctional Gain (D	G) Result		
Transmit Chains No.		1	2	-	-
Maximum G _{ANT} (dBi)		2.7	2.7	-	-
Modulation Mode	DG			STBC	Array Gain (dB)
11a,6-54Mbps	2.7	1	1	-	-
11a,6-54Mbps	2.7	2	1	-	-
HT20,M0-7	2.7	1	1	-	-
HT20,M0-15	2.7	2	2	-	-
HT40,M0-7	2.7	1	1	-	-
HT40,M0-15	2.7	2	2	-	-
VHT20,M0-9	2.7	1	1	-	-
VHT20,M0-9	2.7	2	2	-	-
VHT40,M0-9	2.7	1	1	-	-
VHT40,M0-9	2.7	2	2	-	-
VHT80,M0-9	2.7	1	1	-	-
VHT80,M0-9	2.7	2	2	-	-
Note 1: For all transmitter outputs Any transmit signals are c All transmit signals are co Note 2: For all transmitter outputs Any transmit signals are co All transmit signals are co Note 3: For Spatial Multiplexing, D where Nss = the number Note 4: For CDD transmissions, d Directional Gain (DG) = G Array Gain = 0 dB (i.e., no Array Gain = 0 dB (i.e., no	orrelated mpletely with une orrelated mpletely Directiona of indepe irectiona ANT + Arr o array ga	d, Directional Ga qual antenna ga d, Directional Ga uncorrelated, D al Gain (DG) = G endent spatial str al gain is calculat ay Gain, where ain) for $N_{TX} \le 4$;	in = G_{ANT} + 10 lo irectional Gain = ins, directional g in =10 log[(10 ^{GW} rectional Gain = ANT + 10 log(N_{TX} eamsdata. red aspower mea Array Gain isasf	$\begin{array}{l} g(N_{T,X}) \\ G_{ANT} \\ ain is to be comp \\ ^{20} + \ldots + 10^{GN/20} \end{pmatrix}^2 \\ 10 \log[(10^{G1/10} + 10^{O(1/10)} $	

3.3.5 Directional Gain for Power Measurement




3.3.6 Test Result of Maximum Peak Conducted Output Power

For Model: R6100

			Maxi	mum Co	onducte	d Outpu	ut Powe	er Resu	lt			
Condition RF Output Power (dBm)												
Modulation Mode	N _{TV}			Chain Port 2 w/o Duty Factor (dB)	Duty Factor (dB)	Chain Port 1	Chain Port 2	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit
VHT80	VHT80 2 5775				0.08	19.23	18.85	22.05	30	2.7	24.75	36
Re	sult			Complied								

			Maxi	mum Co	onducte	d Outp	ut Powe	er Resu	lt			
Condition RF Output Power (dBm)												
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1 w/o Duty Factor (dB)	Chain Port 2 w/o Duty Factor (dB)	Duty Factor (dB)	Chain Port 1	Chain Port 2	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit
VHT80	VHT80 1 5775			-	0.08	20.42	-	20.42	30	2.7	23.12	36
Re	sult			Complied								

3.3.7 Test Result of Maximum Conducted Output Power

	Maximum Conducted Output Power											
Condi	tion		RF Output Power (dBm)									
Modulation Mode	N _{TX}	Freq. (MHz)	Chain Port 1	Chain Port 2	Chain Port 3	Chain Port 4	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit	
11a	2	5745	26.82	26.28	-	-	29.57	30	2.7	32.27	36	
11a	2	5785	27.03	26.48	-	-	29.77	30	2.7	32.47	36	
11a	2	5825	26.93	26.50	-	-	29.73	30	2.7	32.43	36	
HT20	2	5745	26.88	26.36	-	-	29.64	30	2.7	32.34	36	
HT20	2	5785	26.96	26.61	-	-	29.80	30	2.7	32.50	36	
HT20	2	5825	26.95	26.88	-	-	29.93	30	2.7	32.63	36	
HT40	2	5755	26.31	25.81	-	-	29.08	30	2.7	31.78	36	
HT40	2	5795	26.56	26.29	-	-	29.44	30	2.7	32.14	36	
VHT20	2	5745	26.49	26.12	-	-	29.32	30	2.7	32.02	36	
VHT20	2	5785	26.83	26.24	-	-	29.56	30	2.7	32.26	36	
VHT20	2	5825	26.94	26.51	-	-	29.74	30	2.7	32.44	36	
VHT40	2	5755	26.11	26.14	-	-	29.14	30	2.7	31.84	36	
VHT40	2	5795	26.42	26.15	-	-	29.30	30	2.7	32.00	36	
Resi	ılt			-	-	(Complie	d		-		

			Maximu	ım Cono	ducted C	Dutput P	ower				
Condi	RF Output Power (dBm)										
Modulation Mode	N _{TX}	Freq. (MHz)	Chain Port 1	Chain Port 2	Chain Port 3	Chain Port 4	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit
11a	1	5745	28.05	-	-	-	28.05	30	2.7	30.75	36
11a	1	5785	29.56	-	-	-	29.56	30	2.7	32.26	36
11a	1	5825	29.45	-	-	-	29.45	30	2.7	32.15	36
HT20	1	5745	28.01	-	-	-	28.01	30	2.7	30.71	36
HT20	1	5785	29.23	-	-	-	29.23	30	2.7	31.93	36
HT20	1	5825	29.31	-	-	-	29.31	30	2.7	32.01	36
HT40	1	5755	26.47	-	-	-	26.47	30	2.7	29.17	36
HT40	1	5795	29.12	-	-	-	29.12	30	2.7	31.82	36
VHT20	1	5745	27.58	-	-	-	27.58	30	2.7	30.28	36
VHT20	1	5785	29.25	-	-	-	29.25	30	2.7	31.95	36
VHT20	1	5825	29.32	-	-	-	29.32	30	2.7	32.02	36
VHT40	1	5755	26.65	-	-	-	26.65	30	2.7	29.35	36
VHT40	1	5795	29.21	-	-	-	29.21	30	2.7	31.91	36
Res	ult					C	Complie	d			

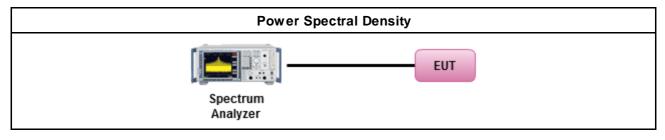
3.4 **Power Spectral Density**

3.4.1 **Power Spectral Density Limit**

Power	Spectral	Density	Limit
-------	----------	---------	-------

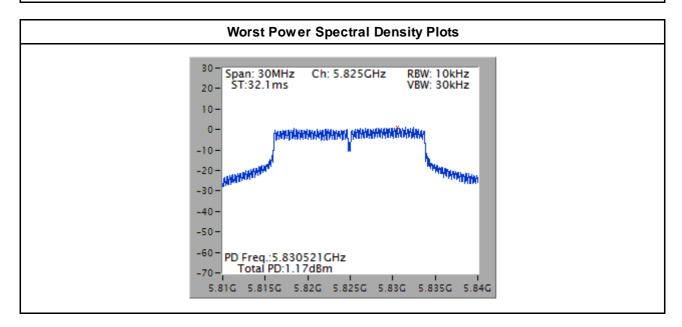
Χ Power Spectral Density (PSD) ≤8 dBm/3kHz

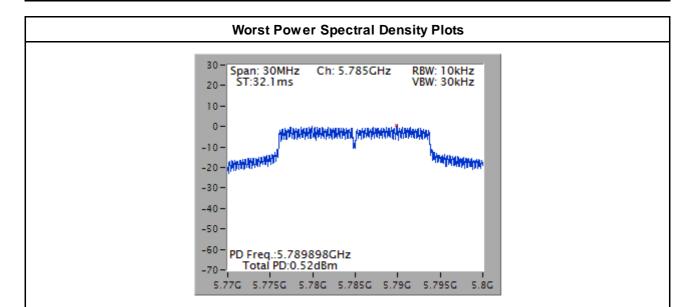
3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

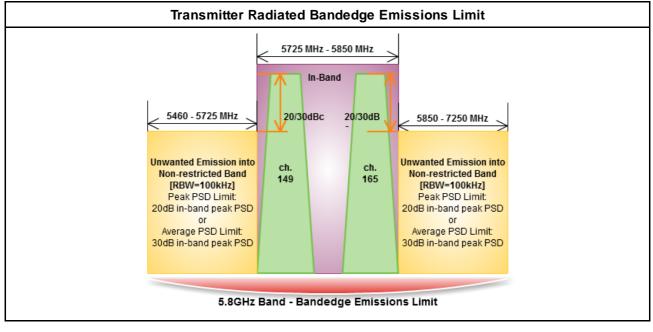
3.4.3 Test Procedures

		Test Method
X	outp the cond of th	k power spectral density procedures that the same method as used to determine the conducted ut power. If maximum peak conducted output power was measured to demonstrate compliance to putput power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum lucted output power was measured to demonstrate compliance to the output power limit, then one e average PSD procedures shall be used, as applicable based on the following criteria (the peak procedure is also an acceptable option).
		Referas FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz; detector=peak)
	[dut	v cycle ≥98% or external video / power trigger]
	⊠	Refer as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).
		Referas FCC KDB 558074, clause 10.4 Method AVGPSD-1 Alt. (slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 10.5 Method AVGPSD-2 (spectral trace averaging).
		Referas FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)
⊠	For	conducted measurement.
	Ø	The EUT supports single transmit chain and measurements performed on this transmit chain.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
	⊠	The EUT supports multiple transmit chains using options given below:
		☑ Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.


3.4.4 Test Setup


3.4.5 Test Result of Power Spectral Density

Power Spectral Density Result									
Cond	lition		Power Spectral D	ensity (dBm/10kHz)					
Modulation Mode N _{TX} Freq. (MHz)		Freq. (MHz)	Sum Chain	Power Limit					
11a	2	5745	0.74	8					
11a	2	5785	1.16	8					
11a	2	5825	0.70	8					
HT20	2	5745	0.19	8					
HT20	2	5785	0.00	8					
HT20	2	5825	0.97	8					
HT40	2	5755	-4.12	8					
HT40	2	5795	-3.06	8					
VHT20	2	5745	0.55	8					
VHT20	2	5785	0.42	8					
VHT20	2	5825	1.17	8					
VHT40	2	5755	-1.39	8					
VHT40	2	5795	-2.06	8					
VHT80	2	5775	-13.84	8					
Res	ult	·	Complied						
ote 1: PSD = su	m each	n transmit c	hainsby bin-to-bin PSD						


		Po	wer Spectral Density Result		
Conc	dition		Power Spectral Density (dBm/10kHz)		
Modulation Mode	N _{TX}	Freq. (MHz)	Sum Chain	Power Limit	
11a	1	5745	-1.23	8	
11a	1	5785	0.37	8	
11a	1	5825	0.21	8	
HT20	1	5745	-1.36	8	
HT20	1	5785	-0.04	8	
HT20	1	5825	0.16	8	
HT40	1	5755	-5.88	8	
HT40	1	5795	-2.90	8	
VHT20	1	5745	-1.31	8	
VHT20	1	5785	0.52	8	
VHT20	1	5825	0.24	8	
VHT40	1	5755	-5.43	8	
VHT40	1	5795	-2.79	8	
VHT80	1	5775	-14.22	8	
Res	sult		Con	plied	

3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

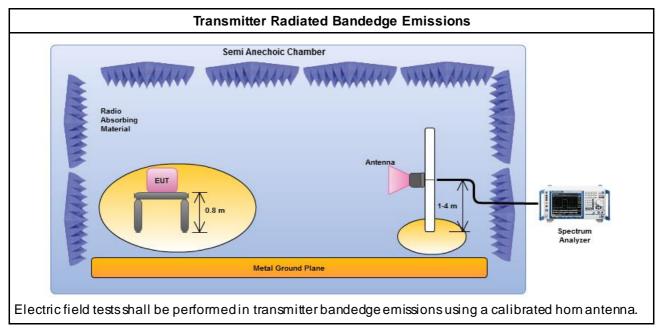
3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

		Test Method
Ø	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
⊠		er as ANSI C63.10, dause 6.9.2.2 bandedge testing shall be performed at the lowest frequency nnel and highest frequency channel within the allowed operating band.
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:
	⊠	Referas FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
	⊠	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
		□ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
		□ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).
		■ Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \ge 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
⊠	For	the transmitter bandedge emissions shall be measured using following options below:
		Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
		Referas ANSI C63.10, clause 6.9.2 for band-edge testing.
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.

Test Method


For radiated measurement, refer as FCC KDB 558074, clause 12.2.7.

□ Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). Measurements in the bandedge are typically made at a closer distance 1.0m, because the instrumentation noise floor is typically close to the radiated emission limit.

Test Method	
-------------	--

For	conducted and cabinet radiation measurement, refer as FCC KDB 558074, clause 12.2.2.
	For conducted unwanted emissions into non-restricted bands (relative emission limits). Devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.
	For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB

3.5.4 Test Setup

3.5.5 Test Result of Transmitter Radiated Bandedge Emissions

	IIa	nsmitter Ra		lacage Enns		-		
Modulation		11a		N _{TX}	2			
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol note
5460-5725	5745	116.54	5724.97	82.52	34.02	30	PK	V
5850-7250	5825	118.60	5850.00	75.80	42.80	30	PK	V
127	Low Band	edge	Date: 2013-03-19	127 127 14.3	Up Ba	ndedge	Date	e: 2013-03-
127 Level (dBuV/m) 14.3	Low Band		- Marian and the	114.3 101.6 88.9	m y			
127 Level (dBuV/m) 14.3 01.6 88.9 76.2	Low Band		FCC CLASS-B	127 114.3 101.6 88.9 76.2 63.5	m y	ndedge	F	CC CLASS
127 Level (dBuV/m) 14.3 01.6 88.9 76.2 50.8	Low Band		- Marian and the	127 114.3 101.6 88.9 76.2	m y	- 2	F	2013-03- CC CLASS- ASS-B (AVC
127 Level (dBuV/m) 114.3	Low Band		FCC CLASS-B	101.6 88.9 76.2 63.5 50.8	m y	- 2	F	CC CLASS-

Modulation		HT20		N _{TX}	2			
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol. note 1
5460-5725	5745	116.65	5724.97	84.04	32.61	30	PK	V
5850-7250	5825	116.99	5850.00	80.75	36.24	30	PK	V
	Low Band	edge			Up Ba	ndedge	-	
127 ^{Level} (dBuV/m)			Date: 2013-03-19	127 Level (dBuV/m)			Date	2013-03-19
127 Level (dBuV/m) 114.3 68.9 76.2 63.5 50.8 88.1	man and and and and and and and and and a	and the second sec	Date: 2013-03-19	114.3 million with the second		wheel concerning the second reserved	FC	2013-03-19 C CLASS-B Month Marcol
114.3 101.6 88.9 76.2 63.5 50.8	mm and an and a second		FCC CLASS-B	114.3 101.6 88.9 76.2 63.5	al an in the		FC	C CLASS-B

	Ira	Insmitter Ra	diated Bar	ndedge Emis	sions Resul	t		
Modulation		HT40		N _{TX}	2			
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol. note 1
5460-5725	5755	113.56	5719.90	83.39	30.17	30	PK	V
5850-7250	5795	113.06	5852.50	75.22	37.84	30	PK	V
	Low Band	edge			Up Ba	ndedge		
127 Level (dBuV/m) 114.3 001.6		man demand many me	Date: 2013-03-19	114.3 1 101.6	Mymmuny			2013-03-19
88.9 76.2 53.5 50.8 38.1 25.4			FCC CLASS-B FCC CLASS-B (AVG)	88.9 (1) + *** 76.2 63.5 50.8 38.1 25.4 12.7		harten den reken reken sen en e	when when have	CLASS-B

Modulation		VHT20		N _{TX}	2			
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
5460-5725	5745	116.28	5724.97	84.9	31.38	30	PK	V
5850-7250	5825	116.78	5853.72	79.47	37.31	30	PK	V
							-	
127 Level (dBuV/m)	Low Band	edge	Date: 2013-03-20	127 Level (dBuV/m) 114.3	Up Ba	ndedge	Date:	2013-03-20
127 Level (dBuV/m) 14.3 10.6 88.9 76.2 53.5 50.8		edge	2	1	Werman whether		FC.	2013-03-20 C CLASS-B SS-B (AVG)
127 Level (dBuV/m) 14.3 01.6 88.9 62.2 83.5		edge	FCC CLASS-B	114.3 101.6 88.9 76.2 63.5	Werman whether		FC.	C CLASS-B
127 Level (dBuV/m) 14.3 01.6 88.9 67.2 63.5 50.8 81.1 25.4		5730. 574	FCC CLASS-B FCC CLASS-B (AVG)	114.3 101.6 88.9 76.2 63.5 50.8 38.1 38.1 25.4	5830. 584	turnontin stragtype year	FC.	C CLASS-B
127 Level (dBuV/m) 14.3 01.6 88.9 67.2 63.5 50.8 88.1 55.4 12.7	5710. 5720.	5730. 574	FCC CLASS-B FCC CLASS-B (AVG)	114.3 101.6 88.9 76.2 63.5 50.8 38.1 25.4 12.7	5830. 584	10. 5850.	FC CLA	C CLASS-B

Modulation		VHT40		N _{TX}	2			
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
5460-5725	5755	110.94	5724.9	78.16	32.78	30	PK	V
5850-7250	5795	112.43	5858.7	71.61	40.82	30	PK	V
	Low Band	edge			Up Ba	ndedge	·	
			Date: 2013-03-21	127_Level (dBuV/m) 114.3			Dat	e: 2013-03-
127 Level (dBuVim) 114.3 101.6 88.9 76.2 63.5 50.8 8.4 76.2			Date: 2013-03-21	114.3 101.6 88.9 76.2 63.5 50.8 38.1			and the second sec	e: 2013-03-2
114.3 101.6 76.2 63.5 50.8	10. 5720. 5730.		FCC CLASS B FCC CLASS B (AVG)	114.3 101.6 76.2 63.5 50.8 38.1 25.4 12.7	5790. 5800. 5810.	5820. 5830. 5840	ا المراجع المراجع المراجع FCC Cl	CC CLASS

	Tra	Insmitter Ra	diated Bar	ndedge Emis	sions Resul	t		
Modulation		VHT80		N _{TX}	2			
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol. note 1
5460-5725	5775	103.81	5723.70	73.36	30.45	30	PK	V
5850-7250	5775	103.81	5855.18	63.64	40.17	30	PK	V
	Low Band	edge			Up Ba	ndedge		
10 8 7 6 5 3 2	4.3 1.6 8.9 6.2 3.5 					FCC CLASS-B 3 12XSSTB (ANG)		
Note 1: Measurem		5710. 5730.		ency (MHz)		5850. 5870		

	Tra	insmitter Ra	diated Bar	ndedge Emis	sions Resul	t		
Modulation		11a		N _{TX}	1			
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
5460-5725	5745	116.33	5724.90	86.18	30.15	30	PK	V
5850-7250	5825	118.25	5850.53	87.35	30.90	30	PK	V
	Low Band	edge			Up Ba	ndedge		
			Date: 2013-03-28	137 Level (dBuV/m) 123.3	- John Startung		Date	e: 2013-03-2
123.3		يقير الم		123.3 109.6		And Marketta and	Date	e: 2013-03-28
123.3				123.3	-debautra Welleringewoord	Average Antonio and Antonio	ton-selectory destant	e: 2013-03-28 CC CLASS-B ASS-B (AVG)
123.3 95.9 82.2 68.5 54.8 41.1 27.4			FCC CLASS-B	137 1233 109.6 95.9 82.2 68.5 54.8 41.1 27.4		And April and Ap	ton-substrung industrum F	and the second sec
123.3 109.6 95.9 82.2 68.5 54.8 41.1	5710. 5720. Frequency (A	5730. 5740.	FCC CLASS-B	123.3 123.3 95.9 95.9 82.2 68.5 54.8 41.1	5830. 58		ton-substrung industrum F	CC CLASS-B
123.3 95.9 95.9 82.2 68.5 54.8 41.1 27.4 13.7		5730. 5740.	FCC CLASS-B FCC CLASS-B FCC CLASS-B (AVG)	123.3 109.6 95.9 82.2 68.5 54.8 41.1 27.4 13.7	5830. 58	40. 5850.	FCC CL	CC CLASS-E ASS-B (AVG
123.3 95.9 95.9 82.2 68.5 54.8 41.1 27.4 13.7		5730. 5740.	FCC CLASS-B FCC CLASS-B FCC CLASS-B (AVG)	123.3 109.6 95.9 82.2 68.5 54.8 41.1 27.4 13.7	5830. 58	40. 5850.	FCC CL	CC CLASS-E ASS-B (AVG

Non-restricted Band (MHz) Test Ch. Freq. (MHz) In-band PSD [i] (dBuV/100kHz) NBE Freq. (MHz) Out-band PSD [o] (dBuV/100kHz) [i] – [o] (dB) Limit (dB) 5460-5725 5745 116.63 5724.55 86.24 30.39 30	Level Type	Pol.
	PK	V
5850-7250 5825 117.72 5850.15 86.65 31.07 30	PK	V
Low Bandedge Up Bandedge		
23.3 2 2 4 122.5 123.5 123.5 123.5 123.5 109.6 <th></th> <th>C CLASS-B SS-B (AVG)</th>		C CLASS-B SS-B (AVG)
13.7 056855690. 5700. 5710. 5720. 5730. 5740. 5750. 5755. 05815 5820. 5830. 5840. 5850.	5860.	5870

Modulation		HT40		N _{TX}	1			
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
5460-5725	5755	111.19	5724.6	80.74	30.45	30	PK	V
5850-7250	5795	113.48	5861.2	78.94	34.54	30	PK	V
	Low Band	edge			Up Ba	ndedge	-	-
		2	Date: 2013-03-28	137 Level (dBuV/m) 123.3			Date:	2013-03-28
123.3 109.6 95.9 82.2 68.5 54.8			Date: 2013-03-28 FCC CLASS-B FCC CLASS-B (AVG)	123.3 109.6 95.9 82.2 68.5 54.8		and advertised with the second	mar and a set of the	2013-03-28
123.3 109.6 95.9 82.2 68.5			FCC CLASS-B	123.3 109.6 95.9 82.2 68.5			man and a set of the	CCLASS-B

		VHT20		N _{TX}	1			
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
5460-5725	5745	116.32	5724.9	86	30.32	30	PK	V
5850-7250	5825	116.73	5850.31	86.55	30.18	30	PK	V
	Low Band	edge			Up Ba	ndedge		
123.3 109.6 95.9 82.2 68.5 54.8 41.1 27.4 13.7 13.7	5710. 5720.		FCC CLASS B FCC CLASS B (AVG)	123.3 109.6 4 109 109 109 109 109 109 109 109 109 109		and the second se	1	C CLASS-B SS-B (AVG)

Modulation		VHT40		N _{TX}	1			
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol. note 1
5460-5725	5755	110.81	5724.20	80.68	30.13	30	PK	V
5850-7250	5795	113.99	5852.50	83.8	30.19	30	PK	V
	Low Band	edge			Up Ba	ndedge		
137Level (dBuV/m)			Date: 2013-03-28	137 Level (dBuV/m) 123.3			Dat	e: 2013-03-28
123.3 109.6 95.9 82.2 68.5	1 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm		Date: 2013-03-28	137 123.3 109.6 95.9 82.2 68.5		renderation for a second se	Marine 2	e: 2013-03-28
23.3 09.6 95.9 82.2	10. 5720. 5730.	5740. 5750. 57	FCC CLASS-B	137 1233 109.6 95.9 82.2 68.5 54.8 41.1 27.4 13.7	790. 5800. 5810.	5820. 5830. 5840	ecc cl	ac/alass/g

	I				sions Resul	•		
Modulation		VHT80		N _{TX}	1			
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol. note 1
5460-5725	5775	103.35	5724.65	73.02	30.33	30	PK	V
5850-7250	5775	103.35	5867.62	69.07	34.28	30	PK	V
	Low Band	edge			Up Ba	ndedge		
	137 123.3	n)	2		Da	te: 2013-03-28		
		1	-2 		welden ward for an and for an and	te: 2013-03-28		

3.6 Transmitter Radiated Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3
Note 1: Test distance for fr	equencies at or above 30 l	MHz, measurements may be	e performed at a distance

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

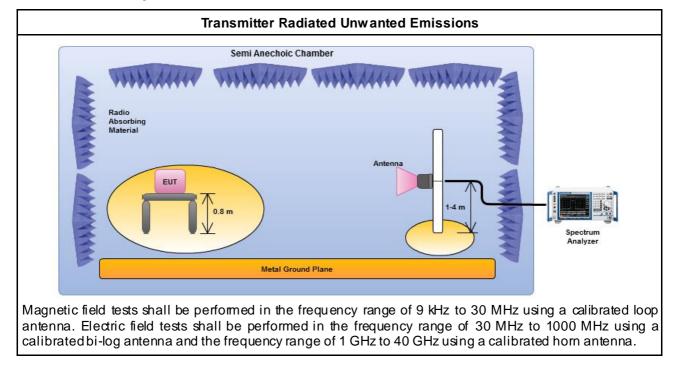
Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a doser distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Un-restricted Ban	d Emissions Limit
RF output power procedure	Limit (dB)
Peak output power procedure	20
Average output power procedure	30
any 100 kHz outside the authorized frequenc the maximum measured in-band peak PSD le Note 2: If the average output power procedure is used	en the peak conducted output power measured within y band shall be attenuated by at least 20 dB relative to evel.

demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.6.3 Test Procedures

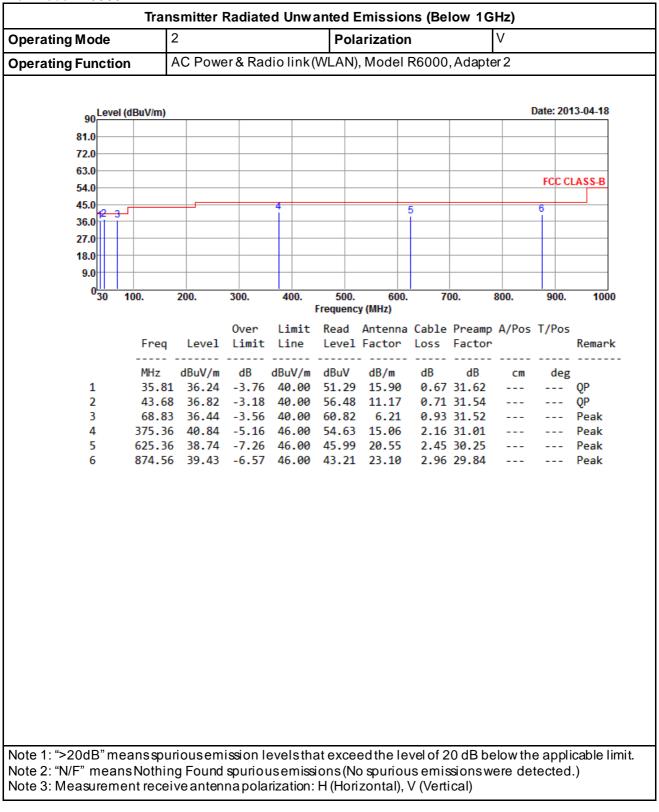
		Test Method
X	perf equi extra dista	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement pment. When performing measurements at a distance other than that specified, the results shall be apolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density asurements).
		Measurements in the frequency range 10 GHz - 18GHz are typically made at a doser distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.
		Measurements in the frequency range above 18 GHz - 25GHz are typically made at a doser distance 0.5m, because the instrumentation noise floor is typically dose to the radiated emission limit.
	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
⊠	For	the transmitter unwanted emissions shall be measured using following options below:
		Referas FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
	⊠	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
		□ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
		□ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW $\geq 1/T$, where T is pulse time.
		□ Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
		Refer as FCC KDB 558074, clause 12.2.3 measurement procedure Quasi-Peaklimit.
⊠	For	radiated measurement, refer as FCC KDB 558074, clause 12.2.7.
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.
	⊠	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.
	Ø	Refer as ANSI C63.10, clause 6.6 for radiated emissions from above 1 GHz.

	Test Method
For	conducted and cabinet radiation measurement, refer as FCC KDB 558074, clause 12.2.2.
	For conducted unwanted emissions into non-restricted bands (relative emission limits). Devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.
	For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB

3.6.4 Test Setup

3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.


3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Operating Mo	de	· ·	1			Pola	rization		Y	V		
Operating Fur	oction	/	AC Powe	r & Rad	io link(\	VLAN)	Model	R6100,	Adapte	er 2		
											D-4 204	2 04 40
90	Level (lBuV/m)									Date: 201	13-04-18
81.0												
72.0										_		
63.0												
54.0											FCC C	LASS-B
45.0	0 0 1				4			5			6	
36.0								Ť –		_		
27.0										_		
18.0					_							
9.0					_						_	
0	30 1	00.	200.	300.	400.	500. Frequenc	600 y (MHz)	. 7	0 0.	800.	900.	1000
				0ver			Antenna	Cable	Preamp	A/Pos	T/Pos	
		Freq	Level	Limit	Line		Factor			-	17105	Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg	
1		35.68		-3.88	40.00	51.09	15.98		31.62			QP
2		43.58		-3.12 -3.52	40.00 40.00	56.50 60.90	11.22 6.18		31.54 31.53			QP Peak
4		375.48		-5.05	46.00	54.74	15.06		31.01			Peak
5		625.44		-7.14	46.00	46.11	20.55		30.25			Peak
6		874.65			46.00				29.85			Peak
Note 1: ">20dE Note 2: "N/F" n Note 3: Measu	neans	Nothir	ng Found	spuriou	usemissi	ons(N	o spurio	usemis	ssionsw			

Operating Mode		1			Pola	rization		I	Η		
Operating Functio	n	AC Powe	er & Rac	lio link(\	VLAN),	, Model F	R6100,	Adapte	er 2		
90	(dBuV/m)								I	Date: 201	13-04-18
81.0											
72.0											
63.0									_		
54.0										FCC C	LASS-B
45.0				4			5			6	
36.0	12										
27.0											
18.0											
9.0				_							
0 <mark></mark>	100.	200.	300.	400.	500. Frequenc	600. sy (MHz)	7	D O.	800.	900.	1000
			0ver	Limit	Read	Antenna	Cable	Preamp	A/Pos	T/Pos	
	Freq	Level	Limit			Factor					Remark
	MHz	dBuV/m		dBuV/m		dB/m	dB	dB	cm	deg	
1	110.6			43.50	50.96			31.54			Peak
2 3	140.4	2 32.74 3 39.78	-10.76					31.27 30.90			Peak Peak
4		4 42.85						31.01			QP
5	624.4			46.00				30.26			Peak
6	875.7	6 41.96	-4.04	46.00	45.74	23.10	2.97	29.85			Peak

Operating Mode	2	2			Pol	arizatio	n		Н		
Operating Functior	n A	AC Powe	er & Rad	diolink	(WLAN)	, Model	R6000	, Adapte	er 2		
90	dBuV/m)								I	Date: 201	3-04-18
81.0											
72.0											
63.0											
54.0										FCC CI	LASS-B
45.0				4			-				
36.0	1 2	3					5			ĭ	
27.0											
18.0											
9.0											
0 <mark>30 1</mark>	100.	200.	300.	400.	500. Frequenc	600 y (MHz)	. 7	00.	800.	900.	1000
	_		0ver			Antenna				T/Pos	
	Freq	Level	Limit	Line		Factor		Factor			Remark
	MHz	dBuV/m	dB	dBuV/m		dB/m	dB	dB	cm	deg	
1		31.76						31.53			Peak
2	140.36							31.27			Peak
3		39.65 42.66		46.00 46.00	56.27 56.44			30.90 31.01			Peak QP
5						20.54		30.26			Peak
6						23.10		29.85			Peak
lote 1: ">20dB" me	ansspur	iousem	issionl	evelsth	atexce	edthele	evel of 2	0 dB be	elow the	e appli	cable lir
ote 2: "N/F" means		~ [iono/N						\ \

3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

Modulation M	ode		l1a			Test	Freq. (N	1Hz)	Ę	5745		
N _{TX}			2			Pola	rization		١	/		
	Lovo	l (dBu)//m)									Date: 201	3.03.20
97	Leve	l (dBuV/m)									Dute: 201	
87.3	\$											
77.6	i 🗕										FCC CL	ASS-B
67.9)			6								
58.2	2									FCC	CLA <mark>SS-E</mark>	3 (AVG)
48.5	j ₂₄			-5								
38.8	\$ 1 1											
29.1	1											
19.4	1									_		
9.7												
	'1000	4000.6000	.8000.	12000.	16000.	20000 Frequence		0. 28	000. 3	2000.	36000.	40000
				0ver	Limit	Read	Antenna	Cable	Preamp	A/Pos	T/Pos	
		Freq	Level	Limit			Factor					Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg	
1		1200.00		-18.14		42.42			37.64			Average
2			42.63			49.19			37.64			Peak
3			30.65			35.90			36.80			Average
4	-		42.91			48.16			36.80			Peak
5		11490.00							34.90 34.90			Average
6	,	11490.00	00.45	-12.55	74.00	40.51	50.49	10.00	54.90			Peak
Note 1: ">20d	3" m	eansspu	riousem	issionl	evelsth	at exce	ed the le	vel of 2	0 dB be	low th	e applio	cable limi
Note 2: "N/F" r												
	Irem	ent recei	veanten	ina pola	rization	: H (Hor	izontal),	V (Vert	ical)			
Note 3: Measu										eld str	ength a	s measur
lote 3: Measu		ou sunac										
lote 3: Measu lote 4: For res					V-Limit:	so that t	he AV le	veldoe	esnotne	edto	be repc	orted in
lote 3: Measu lote 4: For res	e Pe	eak-Dete			V-Limit:	so that t	he AV le	veldoe	esnotne	edto	be repo	orted in
Note 3: Measu Note 4: For res with th additio Note 5: For un	ie Pe on. i-rest	eak-Dete	ctor mee inds, unv	tsthe A							-	

Modulation Mod	e 1	1a			Test	Freq. (N	1Hz)	ę	5745		
N _{TX}	2				Pola	rization		ł	-1		
Lev	rel (dBuV/m)									Date: 201	3-03-20
97											
87.3		_									
77.6										FCC CL	ASS-B
67.9			6								
58.2			5						FCC	CLASS-E	3 (AVG)
48.52			- T								
38.8									_		
29.1											
19.4		_									
9.7											
										00000	
-100	0 4000.6000.	8000.	12000.	16000.	20000 Frequenc		0. 28	000. 3	2000.	36000.	40000
			0ver	Limit	Read	Antenna	Cable	Preamp	A/Pos	T/Pos	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor			Remark
1	MHz		dB		dBuV			dB		deg	A
1	1200.00 1200.00							37.64 37.64			Average Peak
2	1200.00		-27.14		32.11			36.80			Average
4	1500.00							36.80			Peak
5	11490.00							34.90			Average
6	11490.00							34.90			Peak
				1 .1		1.1 1			1 4		
Note 1: ">20dB" r											
Note 2: "N/F" mea									ere de	etected.)
Note 3: Measurer									ماما جات	- معمدا-	
Note 4: For restric with the F	cted bands, Peak-Detec										
addition.											

Modulation N	Node	;	11a			Test	t Freq. (N	/IHz)	Ę	5785		
N _{TX}			2			Pola	arization		١	/		
	Love	d (d Du)//m)									Date: 201	3-03-20
ç	97	el (dBuV/m)										
87	.3											
77	.6										FCC CL	ASS-B
67	.9			6								
58	.2			5						FCC	CLASS-E	3 (AVG)
48	.5 4											
38	.8											
29	.1											
19	.4											
9	.7											
	0 <mark>1000</mark>	0 4000.6000). 8000.	12000.	1600	0. 2000 Frequent		0. 28	000. 3	2000.	36000.	40000
				0ver	Limi		Antenna	Cabla	Decome		T /Poc	
		Freq	l evel	Limit			Factor				1/205	Remark
		MHz	dBuV/m	dB	dBuV/	m dBuV	dB/m	dB	dB	cm	deg	
	1	1200.00	33.96	-20.04	54.0	0 40.52	27.94	3.14	37.64		_	Average
	2	1200.00	40.89	-33.11	74.0	0 47.45	27.94		37.64			Peak
	3	1500.00		-23.75		0 35.50			36.80			Average
	4		9 42.13						36.80			Peak
	5 6						38.56 38.56		34.90 34.90			Average Peak
	0	11570.00	00.49	-7.51	74.0	0 32.44	50.50	10.55	54.90			reak
Note 1: ">200	lB" m	ieansspu	iriousem	issionl	evels	that exce	ed the le	vel of 2	0 dB be	low th	e appli	cable limi
Note 2: "N/F"	mea	nsNothi	ng Found	lspuriou	usem	ssions (N	lo spuriou	usemis	ssionsw			
Note 3: Meas												
Note 4: For re	stric	ted bands	s, the pea	akmeas	ureme	entisfully	/sufficier	nt, as th	e max fi			
with t		eak-Dete	ctormee	tsthe A	V-Lim	tso that	the AV le	veldoe	esnotne	edto	be repo	ortedin
	• • •											
addit					-	_		_	-	_		
Note 5: For u	n-res	tricted ba measure	ands, unv	vanted	emissi	onsshall	be atten	uated b	oy at lea	ist 30 c	B relat	ive to the

97 Level (dBuV/m) Date: 2013-03-20 87.3	Junc Date: 2013-03-20 87.3	Modulation Mod	e 1	1a			Test	Freq. (N	1Hz)	ť	5785		
87.3 77.6 6 </th <th>87.3 77.6 6<!--</th--><th>N_{TX}</th><th>2</th><th>2</th><th></th><th></th><th>Pola</th><th>rization</th><th></th><th>ł</th><th>H</th><th></th><th></th></th>	87.3 77.6 6 </th <th>N_{TX}</th> <th>2</th> <th>2</th> <th></th> <th></th> <th>Pola</th> <th>rization</th> <th></th> <th>ł</th> <th>H</th> <th></th> <th></th>	N _{TX}	2	2			Pola	rization		ł	H		
87.3 77.6 6 </th <th>87.3 6</th> <th>Lev</th> <th>rel (dBuV/m)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Date: 201</th> <th>3-03-20</th>	87.3 6	Lev	rel (dBuV/m)									Date: 201	3-03-20
77.6 7 7 7 7 7 7 7 7 7 1	77.6 7 6 7 6 7 6 7 6 7 7 7 7 7 7 7	97											
67.9 58.2 48.5 38.8 49.1 19.4 9.7 0 1000 4000.6000.8000. 1200. 16000. 20000. 24000. 28000. 32000. 36000. 40000 Frequency (MHz) 0 Ver Limit Read Antenna Cable Preamp A/Pos T/Pos Freq Level Limit Line Level Factor Loss Factor Remark 0 Ver Limit Read Antenna Cable Preamp A/Pos T/Pos Freq Level Limit Line Level Factor Loss Factor Remark 1 1200.00 35.65 -18.35 54.00 42.21 27.94 3.14 37.64 Averag 2 1200.00 43.72 -30.28 74.00 50.28 27.94 3.14 37.64 Peak 3 1500.00 27.24 -26.76 54.00 32.49 28.00 3.55 36.80 Averag 4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Averag	67.9 6												
58.2 FCC CLASS-B (AVG) 48.5 - 48.5 - 48.5 - 49.1 - 19.4 - 9.7 - 01000 4000.6000.8000. 12000. 1100.0 20000. 24000. 28000. 32000. 36000. 4000 Frequency (MHz) - 0 - 0 - 1100 400.0 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 11100 - 11100 - 11100 - 11100 - 11100 <td< td=""><td>07.9 58.2 FCC CLASS-B (AVG) 48.5 5 6 6 FCC CLASS-B (AVG) 48.5 6 6 6 6 6 38.8 6 6 6 6 6 6 9.7 6 6 6 6 6 6 6 9.7 6 6 6 6 6 6 6 6 9.7 6 6 6 6 6 6 6 6 6 9.7 6</td><td></td><td></td><td></td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td><td>FCC CL</td><td>ASS-B</td></td<>	07.9 58.2 FCC CLASS-B (AVG) 48.5 5 6 6 FCC CLASS-B (AVG) 48.5 6 6 6 6 6 38.8 6 6 6 6 6 6 9.7 6 6 6 6 6 6 6 9.7 6 6 6 6 6 6 6 6 9.7 6 6 6 6 6 6 6 6 6 9.7 6				6							FCC CL	ASS-B
48.5 38.8 29.1 19.4 9.7 0 1000 4000.6000.8000. 12000. 16000. 20000. 24000. 28000. 32000. 36000. 40000 Frequency (MHz) Over Limit Read Antenna Cable Preamp A/Pos T/Pos Freq Level Limit Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB dB cm deg 1 1200.00 35.65 -18.35 54.00 42.21 27.94 3.14 37.64 Averag 2 1200.00 43.72 -30.28 74.00 50.28 27.94 3.14 37.64 Peak 3 1500.00 27.24 -26.76 54.00 32.49 28.00 3.55 36.80 Averag 4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Averag	48.5 4 48.5 4 48.5 4 48.5 4 48.5 4 48.5 4 48.5 4 48.5 4 48.5 4 48.5 4 48.5 4 48.5 4 48.5 4 48.5 4 48.5 4 48.5 4 48.5 4				ĭ								
38.8 4 -	38.8 38.8 38.8 38.8 38.8 38.8 39.1 30.1 30.0 40000 4000 4000 4000 4000 4000 4000 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1				5						FCC	CLASS-	3 (AVG)
29.1 3 1	29.1 1	48.52											
19.4 9.7	19.4 9.7	38.8											
9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	9.7 0 1000 4000.6000.8000. 12000. 16000. 20000. 24000. 28000. 32000. 36000. 40000 Frequency (MHz) 0 0 0 0 0 0 0 0 0 0 0 0 0	29.1											
0 1000 4000.6000.8000. 12000	0 1000 4000.6000.8000. 12000. 12000. 12000. 12000. 12000. 12000. 12000. 12000. 12000. 12000. 12000. 12000. 12000. 12000. 12000. 1000	19.4											
Frequency (MHz) Over Limit Read Antenna Cable Preamp A/Pos T/Pos Freq Level Limit Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV/m dBuV dBuV dB/m dB cm deg 1 1200.00 35.65 -18.35 54.00 42.21 27.94 3.14 37.64 Average 2 1200.00 43.72 -30.28 74.00 50.28 27.94 3.14 37.64 Peak 3 1500.00 27.24 -26.76 54.00 32.49 28.00 3.55 36.80 Average 4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Average	Frequency (MHz) Over Limit Read Antenna Cable Preamp A/Pos T/Pos Freq Level Limit Line Level Factor Loss Factor Cable Preamp A/Pos T/Pos MHz dBuV/m dB dBuV/m dBuV dB/m dB dB cm deg 1 1200.00 35.65 -18.35 54.00 42.21 27.94 3.14 37.64 Average 2 1200.00 43.72 -30.28 74.00 50.28 27.94 3.14 37.64 Peak 3 1500.00 27.24 -26.76 54.00 32.49 28.00 3.55 36.80 Average 4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Average	9.7									_		
Freq Level Line Level Factor Remark MHz dBuV/m dB dBuV/m dBuV/m dBuV dB dB cm deg 1 1200.00 35.65 -18.35 54.00 42.21 27.94 3.14 37.64 Average 2 1200.00 43.72 -30.28 74.00 50.28 27.94 3.14 37.64 Peak 3 1500.00 27.24 -26.76 54.00 32.49 28.00 3.55 36.80 Average 4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Average	Freq Level Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV/m dBuV dB/m dB dB cm deg 1 1200.00 35.65 -18.35 54.00 42.21 27.94 3.14 37.64 Average 2 1200.00 43.72 -30.28 74.00 50.28 27.94 3.14 37.64 Peak 3 1500.00 27.24 -26.76 54.00 32.49 28.00 3.55 36.80 Average 4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Average	0 <mark>100</mark>	0 4000.6000.	.8000.	12000.				0. 28	000. 3	2000.	36000.	40000
Freq Level Limit Line Level Factor Remark MHz dBuV/m dB dBuV/m dBuV/m dBuV duV	Freq Level Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV/m dBuV dB/m dB dB cm deg 1 1200.00 35.65 -18.35 54.00 42.21 27.94 3.14 37.64 Average 2 1200.00 43.72 -30.28 74.00 50.28 27.94 3.14 37.64 Peak 3 1500.00 27.24 -26.76 54.00 32.49 28.00 3.55 36.80 Average 4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Average				Over	Limit	Read	Antenna	Cable	Preamp	A/Pos	T/Pos	
MHz dBuV/m dB dBuV/m dBuV/m dBuV dB/m dB dB cm deg 1 1200.00 35.65 -18.35 54.00 42.21 27.94 3.14 37.64 Average 2 1200.00 43.72 -30.28 74.00 50.28 27.94 3.14 37.64 Peak 3 1500.00 27.24 -26.76 54.00 32.49 28.00 3.55 36.80 Average 4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Average	MHz dBuV/m dB dBuV/m dBuV dB/m dB dB cm deg 1 1200.00 35.65 -18.35 54.00 42.21 27.94 3.14 37.64 Average 2 1200.00 43.72 -30.28 74.00 50.28 27.94 3.14 37.64 Peak 3 1500.00 27.24 -26.76 54.00 32.49 28.00 3.55 36.80 Average 4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Average		Freq	Level							-	.,	Remark
1 1200.00 35.65 -18.35 54.00 42.21 27.94 3.14 37.64 Average 2 1200.00 43.72 -30.28 74.00 50.28 27.94 3.14 37.64 Peak 3 1500.00 27.24 -26.76 54.00 32.49 28.00 3.55 36.80 Average 4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Average	1 1200.00 35.65 -18.35 54.00 42.21 27.94 3.14 37.64 Average 2 1200.00 43.72 -30.28 74.00 50.28 27.94 3.14 37.64 Peak 3 1500.00 27.24 -26.76 54.00 32.49 28.00 3.55 36.80 Average 4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Average												
2 1200.00 43.72 -30.28 74.00 50.28 27.94 3.14 37.64 Peak 3 1500.00 27.24 -26.76 54.00 32.49 28.00 3.55 36.80 Average 4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Average	2 1200.00 43.72 -30.28 74.00 50.28 27.94 3.14 37.64 Peak 3 1500.00 27.24 -26.76 54.00 32.49 28.00 3.55 36.80 Average 4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Average											_	
3 1500.00 27.24 -26.76 54.00 32.49 28.00 3.55 36.80 Averag 4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Averag	31500.0027.24-26.7654.0032.4928.003.5536.80Average41500.0039.45-34.5574.0044.7028.003.5536.80Peak511570.0051.59-2.4154.0037.5438.5610.3934.90Average												
4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Averag	4 1500.00 39.45 -34.55 74.00 44.70 28.00 3.55 36.80 Peak 5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Average	_											
5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Averag	5 11570.00 51.59 -2.41 54.00 37.54 38.56 10.39 34.90 Average	_											-
	-	-											
													-
Note 1: ">20dB" means sourious emission levels that exceed the level of 20 dB below the applicable li		Note 2: "N/F" mea Note 3: Measurer Note 4: For restric	ansNothin ment recei cted bands	g Found veanten , the pea	l spurioù ina pola ak meas	usemiss rization: urement	ons(N H (Hor is fully	o spuriou zontal), sufficien	us emis V (Vert t, as th	sionsw ical) e max fi	ere de ield str	tected. ength a	.) Is measu
with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in	Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measu with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in	Note 5: For un-re	stricted ba			emissior	sshall	be atten	uated	oy at lea	ast 30 o	B relat	ive to the

Modulatio	on Mode	e 1	1a			Test	Freq. (N	1Hz)	Ę	5825		
N _{TX}		2				Pola	rization		١	/		
	Lev	el (dBuV/m)									Date: 201	3-03-20
	87.3											
	77.6			6							FCC CI	ASS-B
	67.9			- i								
	58.2			5						FCC	CLASS-	B (AVG)
	48.524											
	38.8 <mark>1</mark>											
	29.1											
	19.4									_		
	9.7											
	0 <mark>100</mark>	0 4000.6000.	8000.	12000.	16000.	20000 Frequenc). 28	000. 3	2000.	36000.	40000
						-						
		F	1	0ver			Antenna				T/Pos	Demonto
		Freq	Level	Limit	Line	Level	Factor	LOSS	Factor			Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg	
	1	1200.00							37.64		-	Average
	2	1200.00	41.36	-32.64	74.00	47.92	27.94		37.64			Peak
	3	1500.00	30.59	-23.41	54.00	35.84	28.00	3.55	36.80			Average
	4	1500.00							36.80			Peak
	5	11650.00										Average
	6	11650.00	66.84	-7.16	74.00	52.69	38.62	10.43	34.90			Peak
"												
		neans spur										
		ansNothin								ere de	tected	.)
		nent receiv								old otr	anoth o	
wi	th the P	ted bands, eak-Detec										
	dition.	stricted ba										

Modulation N	lode	9	11a			Test	Freq. (N	1Hz)	ţ	5825		
N _{TX}			2			Pola	rization		I	4		
	Lev	el (dBuV/m)									Date: 201	3-03-20
87												
77				6							FCC CL	ASS-B
67				Ť								
58				5						FCC	CLASS-E	3 (AVG)
48	.5 ₂₄											
38	8											
29	1											
19	4											
9	7											
	0 <mark>100</mark>	0 4000.600). 8000.	12000.	16000.	20000 Frequenc		0. 28	000. 3	2000.	36000.	40000
				0ver	limi+	-	Antenna	Cable	Preamn	A/Pos	T/Pos	
		Frea	l eve]	Limit			Factor					Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg	
	1	1200.0	35.61	-18.39	54.00	42.17	27.94	3.14	37.64			Average
	2		0 43.25			49.81			37.64			Peak
	3		26.86						36.80			Average
	4		0 40.33			45.58			36.80			Peak
	5 6		52.6267.12						34.90 34.90			Average Peak
	0	11030.0	07.12	-0.00	74.00	52.57	30.02	10.45	54.90			reak
	D" -					<u>at av aa</u>						o o b lo lino
Note 1: ">20d Note 2: "N/F"												
Note 2: Meas											iccieu.	.,
Note 4: For re	stric		s, the pea	akmeas	uremen	tisḟully	sufficien	t, as th	e max fi			
addit Note 5: For u	on.										•	

Modulation M	ode	11a			Tes	t Freg. (MHz)		5745		
N _{TX}		1				arizatior			V		
*IX					1.01		•				
										D-4 004	
97	Level (dBuV/m))								Date: 201	3-03-28
87.3											
77.6										FCC CI	ASS-B
67.9	4		6								
58.2			5						FCO	CLASS-	B (AVG)
48.5											
38.8 29.1											
29.1											
9.7											
-	1000 4000.600	0.8000.	12000.	16000.	20000 Frequenc		0. 28	000. 3	32000.	36000.	40000
			0ver			Antenna	Cable	Preamp	A/Pos	T/Pos	
	Free	l Level	Limit			Factor			-	1,105	Remark
1	MHz	dBuV/m		dBuV/m			dB	dB	cm	deg	A
1		00 38.28 00 50.95						35.84 35.84			Average Peak
3		00 47.96						34.96			Average
4		60.86						34.96			Peak
5		00 47.62									Average
6	11490.0	60.02	-13.98	74.00	46.08	38.49	10.35	34.90			Peak
lote 1: ">20dE											
lote 2: "N/F" n lote 3: Measu									ere de	etected	.)
lote 3. Measu									field et	renath	asmeasur
	e Peak-Det										
additio										2 F 3	
auuntu											
ote 5: For un	-restricted b ium measur			emission	sshall	be atten	uated b	oy at lea	ast 30 o	dB relat	ive to the

Modulati	on Mod	е	11a			Tes	t Freq. (MHz)		5745		
N _{TX}			1			Pola	arization	1		Н		
	97	el (dBuV/m)									Date: 201	3-03-28
	87.3											
	77.6										FCC CI	ASS-B
	67.9	4		6								
	58.2	2		-İ						FC	CLASS-	B (AVG)
	48.5			1								
	38.8											
	29.1											
	19.4 9.7											
	⁰ 100	0 4000.600	0.8000.	12000.	16000.	20000 Frequenc		0. 28	000. 3	32000.	36000.	40000
				0ver		-	Antenna	Cable	Preamp	A/Pos	T/Pos	
		Freq	Level				Factor					Remark
	1	MHz 2600 0	dBuV/m 0 39.15	dB -14 85						сm	deg	Average
	2		0 51.35									-
	3		0 45.42									
	4		0 58.87									
	5 6		0 46.22 0 60.42									Average Peak
							20112	10100	2			
Note 1 · ">	20dR" r	neansso	uriousen	nission	evelsth	aterce	edthele	vel of 2	0 dB b	elow th	e annli	cable limit.
Note 2: "N												
Note 3: M	easurer	ment rece	eiveanter	napola	rization:	H (Hori	zontal),	V (Verti	ical)			
												asmeasur
		Peak-Dete	ectormee	etsthe A	V-Limits	o that t	he AV le	veldoe	esnotn	eedto	be repo	ortedin
	ddition.	strictedh	ande un	vanted	amiesion	schall	ha attan	liatod H	watler	aet 20 /	R rola	tive to the
		nmeasur			511133101	Soliali	se allell		yailea	101 00 (u leidi	

Modulatio	on Mod	e	11a			Tes	t Freq. (MHz)		5785		
N _{TX}			1			Pola	arization	<u>،</u>		V		
	97	el (dBuV/m)									Date: 201	3-03-28
	87.3									_		
	77.6										FCC CI	ASS-B
	67.9	4		6								
	58.2	2 3		-						FC	CLASS-	B (AVG)
	48.5	1										
	38.8											
	29.1 19.4											
	9.7											
		0 4000.600		42000	46000	20000	24000	200	000 7	32000.	2000	40000
	100	10 4000.000	J. 8000.	12000.	16000.	Frequenc		J. 28	000. 3	2000.	36000.	40000
				0ver			Antenna				T/Pos	
		Freq	Level	Limit	Line		Factor					Remark
		MHz	dBuV/m	dB	dBuV/m		dB/m			cm	deg	
	1		0 38.62									Average
	2		0 51.33									
	3 4		0 49.10 0 61.58									
	5		0 48.40									Average
	6		0 62.00									Peak
Note 1: ">:	20dB" r	neanssou	iriousem	issionl	evelstha	atexce	ed the le	vel of 2	0 dB be	elowth	e appli	cable limit.
Note 2: "N	/F" mea	ansNothi	ng Found	lspuriou	usemiss	ions(No	o spuriou	ıs emis	ssionsw			
Note 3: M												
												asmeasur
	th the F dition.	eak-Dete	ctormee	istne A	v-Limits	otnatt	IE AV IE	veiaoe	SNOTN	edito	ne lebo	nean
Note 5: Fo		stricted ba	ands. unv	vantede	emission	sshall	be atten	uated b	ov at lea	ast 30 d	dB relat	tive to the
		nmeasure							,			

lodulatio I _{TX}							1 163	t Freq. (5785		
			1					arizatio			Н		
	o7 Lev	el (dBuV/m)									Date: 201	3-03-28
	87.3												
	77.6			_			_					FCC CI	ASS-B
	67.9				6								
	58.2	2			ľ						FC	C CLASS-	B (AVG)
	48.5	1 +		_	-5		_						
	38.8			-									
	29.1			-									
	19.4			-									
	9.7												
	0 ¹⁰⁰	0 4000.60	00.8000.		12000.	16000.	20000		0. 28	000.	32000.	36000.	40000
							Frequenc						
		-			0ver			Antenna				5 T/Pos	
		Fre	q Lev	/el	Limit	Line		Factor			` 		Remark
		MHz	dBuV	//m	dB	dBuV/m	dBuV		dB		cm	deg	
	1	2600.						32.40					Average
	2							32.40					
	3							34.44					
	4 5							34.44 38.56					Peak Average
	6							38.56					Peak
lote 1: ">2	0dB"n	neanssp	urious	em	issionlo	evelsth	at exce	edthele	evel of 2	0 dB b	elowth	ne appli	cable limit.
lote 2: "N/													
lote 3: Me													
													asmeasur
		eak-Det	ectorm	eet	tsthe A	V-Limit	so that t	he AV le	eveldoe	esnotn	eedto	be repo	ortedin
	dition.	ntrioto d l	م م م م		onto d	micei -		h a a 44 a			oct 0.0	ما ۲۰۰۰ م	
lote 5: Foi		nmeasu				ennissi 0	nssnall	be atter	iuated (by at lea	asi 30 (ub rela	uve to the

Modulati	on Mode	e	11a			Tes	t Freq. (MHz)		5825		
N _{TX}			1			Pola	arization	1		V		
	97	el (dBuV/m)									Date: 201	3-03-28
	87.3									_		
	77.6										FCC CI	ASS-B
	67.9			6								
	58.2	4		-						FC	CLASS-	B (AVG)
	48.5	3		1						_		
	38.8											
	29.1 19.4											
	9.7											
	-100	0 4000.600	0.8000.	12000.	16000.	20000 Frequenc		0. 28	000. 3	32000.	36000.	40000
				0ver	Limit	Read	Antenna	Cable	Preamp	A/Pos	T/Pos	
		Freq	Level	Limit	Line							Remark
		 MU~	dD: 1/ /m		dBuV/m		dD /m					
	1	MHz 1200.0	0 35.82	dB -18.18			-			с т	deg	Average
	2		0 47.66									-
	3		0 38.69									
	4 5		0 51.39 0 48.67									Peak Average
	6		0 48.07 0 62.47									Peak
	-											
Noto 1 · ">	204P"~	100ncon	iriousom	iccion	ovoloth	atovas	adthala	vol of 9		alowth		cabla limit
Note 1: > Note 2: "N												cable limit.
Note 3: M										5.0 ut		•,
										field st	rength	asmeasui
W	ith the P		ctormee									
	ddition.		l -				h n - 11				י ייי חו	den al contra
		stricted bank			emission	nsshall	be atten	uated b	by at lea	ast 30 (dB relat	tive to the

Modulati	on Mode	•	11	1a					Tes	Frec	į. (I	MHz)		5825	5	
N _{TX}			1						Pola	arizat	ion			Н		
	97Lev	el (dBuV/n	n)												Date: 201	13-03-28
	87.3										_					
	77.6										_				FCC CI	LASS-B
	67.9				6						-					
	58.2 48.5	4			5									FC	C CLASS-	B (AVG)
	38.8	3														
	29.1															
	19.4				_						_					
	9.7															
	0 <mark>100</mark>	0 4000.60	00.8	000.	12	000.	160		20000		4000). 28	000.	32000.	36000.	40000
									Frequenc			C 1 1			T (D	
		Fre	a	Level		ver imit			Kead Level						s T/Pos	Remark
	1	MHz		dBuV/m				-	dBuV 43.23			dB	dB 37.64	CM		Average
	2								54.68							Peak
	3								38.16							Average
	4								50.38							Peak
	5								33.82 46.42							Average Peak
	•				-						-	20112	2			. con
																cable limit
Note 2: "N														vere d	etected	.)
Note 3: M														الماما	++	
wi	ith the P															asmeasu ortedin
	ddition.	triotod	har	de un	Nor	tod -	mi~	nion	e ch all	he of	on	uated h	watla	ad 20	dB role	tive to the
	or un-res aximum						=1115	มบท	รษาสแ	Jean	en		yatie	ası 30	upiela	tive to the

3.6.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20

Modulation M	lode	•	HT20			Tes	t Freq. (I	MHz)		5745			
N _{TX}			2			Pola	arizatior	۱		V			
9	7 Leve	el (dBuV/m)									Date: 2	013-03-2	20
87.													
77.											FCC	CLASS-E	
				_							ree	CLA33-L	
67.				6									
58.				-5						FCO	CLAS	S-B (AVG	<u>)</u>
48.	5 ₂ 4												-
38.	8												-
29.	1									_			-
19.	4												_
9.													_
5.	<u></u>												
	01000	0 4000.6000	.8000.	12000.	16000.	20000 Frequenc). 28	000. 3	32000.	3600	0. 400	000
				0ver		-	Antenna	Cable	Preamn	A/Pos	T/Po	c	
		Freq	l eve]	Limit			Factor				1/10	Rema	rk
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	de	g	
	1		34.22						37.64			Aver	age
	2		40.87						37.64			Peak	
	3		30.15						36.80				
	4		42.57						36.80				
	5	11490.00							34.90				
	6	11490.00							34.90				_
Note 1: ">20d	B" m	eanssou	riousem	issionl	evelstha	atexce	ed the le	vel of 2	0 dB be	elowth	e anr	licable	limit
Note 2: "N/F"													
Note 3: Meas										2.2 40		,	
Note 4: For re with tl	stric ne Po		s, the pea	akmeas	suremen	tisfully	/sufficie	nt, astł	ne max		•		
additi Note 5: For ui	n-res	tricted ba			emission	sshall	be atten	uated b	oy at lea	ast 30 o	dB rel	ativeto	o the

Modulation Mo	de	HT20			Test	Freq. (N	/Hz)		5745		
N _{TX}		2			Pola	arization			Н		
14	evel (dBuV/m	`								Date: 201	3-03-20
87.3										500.01	
77.6			6								ASS-B
67.9			Î								
58.2			5						FC	CLASS-	B (AVG)
48.52											
38.8											
29.1											
19.4											
9.7											
010	000 4000.600	00.8000.	12000.	16000.	20000 Frequency		. 28	000. 3	32000.	36000.	40000
			0ver	limit	Read	Antenna	Cable	Preamp	A/Pos	T/Pos	
	Free	q Level				Factor					Remark
	MHz		dB						cm	deg	
1		00 35.89						37.64			Average
2		00 43.57 00 26.11						37.64 36.80			
4		00 20.11 00 40.87						36.80			Peak
5		00 51.90									
6		00 64.69									Peak
Note 1: ">20dB"	maansen	uriouson	niccion	ovaleth	atoxco	od the lev	vol of 2		alowth	o annli	cable limit
Note 2: "N/F" me											
Note 3: Measure									5.5 at		•,
Note 4: For restr									field st	rength	asmeasur
	Peak-Det										
Note 5: For un-re				emissior	sshall	be atteni	uated b	oy at lea	ast 30 d	dB relat	tive to the

Modulation Mode	HT20			Test	Freq. (M	/Hz)		5785		
N _{TX}	2			Pola	rization			V		
97	/m)								Date: 201	3-03-20
87.3									TCC CI	ACC 0
77.6 67.9										ASS-B
58.2		Î						500	CLASS-	
48.5		\$							- CLA33-1	5 (AVO)
38.8 <mark>1</mark>										
29.1										
19.4										
9.7		_								
01000 4000.	5000. 8000.	12000.	16000.	20000. Frequency		. 28	000. 3	32000.	36000.	40000
		0ver	Limit	Read	Antenna	Cable	Preamp	A/Pos	T/Pos	
Fi	req Level	Limit	Line							Remark
	lz dBuV/m 0.00 34.59		-		dB/m 27 9/1		ав 37.64	CM	deg	Average
	0.00 41.34						37.64			Peak
	.00 30.48						36.80			Average
	0.00 42.89						36.80			Peak
	0.00 50.35									Average
6 11570	0.00 63.34	-10.66	74.00	49.29	38.56	10.39	34.90			Peak
Note 1: ">20dB" means Note 2: "N/F" means No Note 3: Measurement re Note 4: For restricted ba with the Peak-D	thing Found eceive anten unds, the pea	spuriou na pola akmeas	usemissi rization: suremen	ons(No H (Horiz t isfully	spuriou zontal), \ sufficier	semis / (Verti nt, asth	sionsw ical) ne max	ere de field st	rength	.) asmeasu
addition. Note 5: For un-restricted maximum meas			emission	sshallb	oe atteni	uated b	oy at lea	ast 30 d	dB relat	ive to the

MHz dBuV/m dB dBuV/m dBuV dB/m dB dB cm deg 1 1200.00 36.45 -17.55 54.00 43.01 27.94 3.14 37.64 Averag 2 1200.00 44.12 -29.88 74.00 50.68 27.94 3.14 37.64 Peak	Modulation Mode	HT20			Test	Freq. (I	MHz)		5785		
873 77.6 67.9 84.5 84.5 84.5 94.6 9.7 9 6 1 1000 6 1000 6 1000 7 1000 7 1000	N _{TX}	2			Pola	rization			Н		
87.3 77.6 67.9 84.5 24.85 24.95 24.00 2000. 2000. 2000. 32000. 32000. 36000. 40000 Frequency (MHz) Ver Limit Limit Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dB dBuV/m dB dBuV/m dB dB cm deg 1 1200.00 36.45 -17.55 54.00 33.91 27.94 3.14 37.64	Level (dB	uV/m)								Date: 201	3-03-20
77.6 67.9 6 7.9 7.0 7											
67.9 6 7.0 7.											
0.1 0			6							FCC CI	ASS-B
48.5 38.8 39.1 39.00 36000 4000 6000 4000 70.0 1000 4000.0 60.0 120.0 1600.0 20.00 24000 28000 32000 36000 40000 MHz dBuV/m dB dBuV/m dB dBuV/m dB/m dB dB memore Memore Memore Memore 2 1200.00 44.12 29.88 74.00 50.68 27.94 3.14 37.64 Averag 4 1500.00 41.39 32.61 74.00 45.64 28.00 3.55 6.80 Peak 5 11570.00 52.10 -1.90 54.00 38.55 10.39 34.90 Averag </td <td></td>											
38.8 29.1 13.4 37.0 1000 4000.6000.8000. 12000. 12000. 16000. 2000. 24000. 28000. 32000. 36.8 7.0 1000 4000.6000.8000. 12000. 12000. 12000. 2000. 24000. 28000. 32000. 36.8 7.0 NHz dBuV/m dBuV/m dBuV dBuV/m dBuV dBuV/m dBuV dBuV/m dBuV dBuV/m dBuV dBuV 3.158.0 dBuV 3.158.0 dBuV 3.159.0 dBuV 3.168.0 dBuV <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100</td> <td>CLASS-</td> <td>B (AVG)</td>			-						100	CLASS-	B (AVG)
29.1 19.4	1										
19.4 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
9.7 0 1000 4000.6000.8000. 12000. 16000. 20000. 24000. 28000. 32000. 36000. 40000 Freq Level Limit Read Antenna Cable Preamp A/Pos T/Pos Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dB/m dB dB dB cm deg 1 1200.00 36.45 -17.55 54.00 43.01 27.94 3.14 37.64 Averag 2 1200.00 44.12 -29.88 74.00 50.68 27.94 3.14 37.64 Averag 4 1500.00 26.58 -27.42 54.00 31.83 28.00 3.55 36.80 Averag 4 1500.00 26.78 -7.30 74.00 38.05 38.55 10.39 34.90 Averag 6 11570.00 56.70 -7.30 74.00 52.65 38.56 10.39 34.90 Peak Note 1: ">>20dB" means spurious emission levels that exceed the level of 20 dB below the applicable lin <td></td>											
0 1000.4000.6000.8000. 12000. 16000.2000.24000.24000.28000.32000.36000.40000 Freq Level Limit Read Antenna Cable Preamp A/Pos T/Pos Freq Level Limit Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dB dBuV dB dB cm deg 1 1200.00 36.45 -17.55 54.00 43.01 27.94 3.14 37.64 Averag 2 1200.00 66.58 -27.42 54.00 31.83 28.00 3.55 36.80 Averag 4 1500.00 52.10 -1.90 54.00 38.05 38.56 10.39 34.90 Averag 6 11570.00 66.70 -7.30 74.00 52.65 38.56 10.39 34.90 Peak Note 1: ">>20dB" means spurious emission level sthat exceed the level of 20 dB below the applicable lin Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were											
Frequency (MHz) Over Limit Read Antenna Cable Preamp A/Pos T/Pos Freq Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dB udv/m dB udvv/m dB udv/m dB udvv/m dB udv/m dB udvv/m											
Freq Level Limit Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV dBv dB/m dB dB cm deg 1 1200.00 36.45 -17.55 54.00 43.01 27.94 3.14 37.64 Averag 2 1200.00 44.12 -29.88 74.00 50.68 27.94 3.14 37.64 Averag 3 1500.00 41.39 -32.61 74.00 46.64 28.00 3.55 36.80 Averag 6 11570.00 65.70 -7.30 74.00 38.55 10.39 34.90 Peak Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable link Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)	°1000 400	0.6000.8000.	12000.). 28	000. 3	32000.	36000.	40000
MHz dBuV/m dB dBuV/m dBuV/m dB/m dB dB cm deg 1 1200.00 36.45 -17.55 54.00 43.01 27.94 3.14 37.64 Averag 2 1200.00 44.12 -29.88 74.00 50.68 27.94 3.14 37.64 Averag 4 1500.00 26.58 -27.42 54.00 31.83 28.00 3.55 36.80 Averag 4 1500.00 41.39 -32.61 74.00 46.64 28.00 3.55 36.80 Peak 5 11570.00 52.10 -1.90 54.00 38.05 38.56 10.39 34.90 Peak 6 11570.00 66.70 -7.30 74.00 52.65 38.56 10.39 34.90 Peak Note 1: "> ">>20dB" means spurious emission levels that exceed the level of 20 dB below the applicable lin Note 2: "N/F" means Nothing Found spurious emissions										T/Pos	
1 1200.00 36.45 -17.55 54.00 43.01 27.94 3.14 37.64 Averag 2 1200.00 44.12 -29.88 74.00 50.68 27.94 3.14 37.64 Peak 3 1500.00 26.58 -27.42 54.00 31.83 28.00 3.55 36.80 Averag 4 1500.00 41.39 -32.61 74.00 46.64 28.00 3.55 36.80 Peak 5 11570.00 52.10 -1.90 54.00 38.05 38.56 10.39 34.90 Averag 6 11570.00 66.70 -7.30 74.00 52.65 38.56 10.39 34.90 Peak Note 1: ">>20dB" means spurious emission levels that exceed the level of 20 dB below the applicable line Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizont		Freq Level	Limit	Line	Level	Factor	Loss	Factor			Remark
1 1200.00 36.45 -17.55 54.00 43.01 27.94 3.14 37.64 Averag 2 1200.00 44.12 -29.88 74.00 50.68 27.94 3.14 37.64 Peak 3 1500.00 26.58 -27.42 54.00 31.83 28.00 3.55 36.80 Averag 4 1500.00 41.39 -32.61 74.00 46.64 28.00 3.55 36.80 Peak 5 11570.00 52.10 -1.90 54.00 38.05 38.56 10.39 34.90 Averag 6 11570.00 66.70 -7.30 74.00 52.65 38.56 10.39 34.90 Peak Note 1: ">>20dB" means spurious emission levels that exceed the level of 20 dB below the applicable line Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizont	-			dDu1//m							
2 1200.00 44.12 -29.88 74.00 50.68 27.94 3.14 37.64 Peak 3 1500.00 26.58 -27.42 54.00 31.83 28.00 3.55 36.80 Averag 4 1500.00 41.39 -32.61 74.00 46.64 28.00 3.55 36.80 Peak 5 11570.00 52.10 -1.90 54.00 38.05 38.56 10.39 34.90 Peak 6 11570.00 66.70 -7.30 74.00 52.65 38.56 10.39 34.90 Peak										_	Average
3 1500.00 26.58 -27.42 54.00 31.83 28.00 3.55 36.80 Averag 4 1500.00 41.39 -32.61 74.00 46.64 28.00 3.55 36.80 Peak 5 11570.00 52.10 -1.90 54.00 38.05 38.56 10.39 34.90 Averag 6 11570.00 66.70 -7.30 74.00 52.65 38.56 10.39 34.90 Peak											
 5 11570.00 52.10 -1.90 54.00 38.05 38.56 10.39 34.90 Averag 6 11570.00 66.70 -7.30 74.00 52.65 38.56 10.39 34.90 Peak Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable lin Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as meas with the Peak-Detector meets the AV-Limits the AV level does not need to be reported in											
6 11570.00 66.70 -7.30 74.00 52.65 38.56 10.39 34.90 Peak Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable lin Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as mea with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in	4 15	00.00 41.39	-32.61	74.00	46.64	28.00	3.55	36.80			Peak
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable lin Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as mea with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in											
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as mea with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in	6 115	70.00 66.70	-7.30	74.00	52.65	38.56	10.39	34.90			Peak
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as mea with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in											
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as mea with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in											
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as mea with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in											
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as mea with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in											
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as mea with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in											
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as mea with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in											
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as mea with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in									ere de	etected	.)
with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in									field et	renath	asmeasu
	with the Peak-										
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.				emission	sshalll	be atten	uated b	oy at lea	ast 30 o	dB relat	tive to the

Modulation Mode	HI	Г20			Tes	t Freq. (MHz)		5825		
N _{TX}	2				Pol	arizatior	า		V		
97Level (dB	uV/m)									Date: 201	3-03-20
87.3											
77.6											ASS-B
67.9			6								
58.2			5						100	CLASS-	B (AVG)
48.5 ₂₄											
38.813											
29.1											
19.4 9.7											
01000 400	0.6000.80	000.	12000.	16000	Frequenc		0. 28	000. 3	32000.	36000.	40000
			0ver		t Read					T/Pos	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor			Remark
	MHz d		dB	dBull	n dBuV	dB/m	dB		 ст		
1 12					a 41.50			37.64		deg	Average
					a 48.25			37.64			0
					36.12			36.80			
4 19	500.00	43.33	-30.67	74.00	48.58	28.00	3.55	36.80			Peak
					36.54						Average
6 116	50.00	63.68	-10.32	74.00	a 49.53	38.62	10.43	34.90			Peak
Note 1: ">20dB" mear											
Note 2: "N/F" means									ere de	etected	.)
Note 3: Measurement									fiold a	ronath	200000
Note 4: For restricted with the Peak addition.											
Note 5: For un-restrict maximumme				emissio	onsshall	be atten	uated b	oy at lea	ast 30 d	dB relat	tive to the

Modulatio	n Mode		HT20			Tes	t Freq. (MHz)		5825		
N _{TX}			2			Pola	arizatior	١		Н		
	Leve	l (dBuV/m)									Date: 201	3-03-20
	87.3											
	77.6			6							FCC CI	ASS-B
	67.9			Ť								
	58.2			5						FCC	CLASS-	B (AVG)
	48.5 <mark>2</mark>											
	38.8											+
	29.1											
	19.4											
	9.7											
	0 <mark>1000</mark>	4000.600	0.8000.	12000.	16000.	20000 Frequenc		0. 28	000. 3	32000.	36000.	40000
				0ver	limit	Read	Antenna	Cable	Preamp	A/Pos	T/Pos	
		Frea	Level				Factor				171.05	Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg	
	1		0 36.81						37.64			Average
	2		0 44.58						37.64			
	3		0 26.96						36.80			
	4		0 41.69 0 52.80						36.80 34.90			Peak Average
	6		0 67.71									Peak
	F"mea asurem restrict h the Pe dition.	nsNothi ient rece ed banc eak-Dete	ng Found live anter s, the pe ector mee	d spurio nna pola akmea etsthe A	usemiss arization suremen V-Limits	sions(No : H (Hori nt isfully so that th	o spuriou zontal), / sufficie ne AV le	us emis V (Vert nt, asth vel doe	ssionsw ical) ne max esnot ne	ere de field st eed to l	tected rength be repo	.) asmeasu ortedin

Modulatio	on Moo	de		H	T20					Test	Freq.	(MHz))		5745			
N _{TX}				1						Pola	rizatio	on			V			
	97 <mark>Le</mark>	evel (di	BuV/m)													Date:	2013	3-03-28
	87.3-																	
	77.6															FC	с сь	ASS-B
	67.9		4			6												
	58.2	2	i			Ĩ					_		_		FC	C CLA	SS-B	(AVG)
	48.5	-Ĩ-	3			-												
	38.8	1											_					
	29.1																	
	19.4																	
	9.7																	
	0	00 40	00.600	0.8	000.	12	000.	1600	00.	20000	240	00.	2800)0. 3	2000.	360	000.	40000
										Frequency	(MHz)							
)ver			Read						5 T/P		
			Fred		Leve]	LL	.imit	Lin	e	Level	Factor	Loss	5 F	actor				Remark
			MHz		dBuV/n		dB	dBuV	/m	dBuV	dB/m	dB		dB	cm	d	 log	
	1	2								37.16				35.84			_	Average
	2									49.92								Peak
	3	5	112.0	00	49.28	3 -	4.72	54.	00	43.16	34.41	6.6	57 3	34.96			-	Average
	4									55.66				34.96				Peak
	5									34.04								Average
	6	11	490.0	90	61.86) -1	12.14	74.	00	47.92	38.49	10.1	55 2	34.90			-	Peak
Note 1: ">																		
Note 2: "N															ere de	etect	ed.)
Note 3: M															لأحابا	har		
Note 4: Fo																		
			-Dete	ect	orme	ets	tne A	v-Lim	nts	o that th	ie AV I	eveld	oes	notne	edto	be re	эро	rtedin
	dition	-	todh	<u>~</u> ~	do un		ntada	mim	10-	o ch c l l	~~~**~	nunte	ィト・		NH 20	4D	104	
Note 5: Fo	or un-re aximu		iea p	an	us, un	wa	ntede	suuss	aon	ssnall	be atte	nuateo	ιØ	atiea	151 30	иыre	ati	ivetothe

Modulatio	n Mod	е	HT20			Tes	Freq. (MHz)		5745		
N _{TX}			1			Pola	arization	<u>,</u> ו		Н		
	97Lev	el (dBuV/m)									Date: 201	3-03-28
	87.3											
	77.6										FCC CI	ASS-B
	67.9	4		6								
	58.2	2								FC	CLASS-	B (AVG)
	48.5											
	38.8											
	29.1											
	19.4											
	9.7											
	0 <mark>100</mark>	0 4000.600	0.8000.	12000.	16000.	20000		0. 28	000. 3	32000.	36000.	40000
						Frequenc			_		-	
		Frea	Loval	Over			Antenna Factor				i T/Pos	Remark
			Lever									Nelliar K
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg	
	1		0 39.45									Average
	2		0 51.84						35.84			
	3 4		0 46.22 0 59.59									
	5		0 48.52									Average
	6		0 61.62									Peak
NI-4. 4 " *						- 1 -				. 1		
Note 1: ">2 Note 2: "N/												cable limit.
Note 2. M												•)
										field s	trenath	asmeasur
		eak-Dete										
	dition.											
Note 5: Fo					emissior	nsshall	be atten	uated b	oy at lea	ast 30 (dB relat	tive to the
ma	aximun	nmeasure	ed in-ban	d level.								

Modulatio	n Mod e	e	HT20			Tes	Freq. (MHz)		5785		
N _{TX}			1				arization	-		V		
						-						
	ozLev	el (dBuV/m)									Date: 201	3-03-28
	87.3											
	77.6										FCC CI	ASS-B
	67.9	4		6								
	58.2	2		Ť						FC	CLASS-	B (AVG)
	48.5			5								
	38.8	1										
	29.1											
	19.4											
	9.7											
	⁰ 100	0 4000.600	0.8000.	12000.	16000.	20000		0. 28	000. 3	32000.	36000.	40000
						Frequenc						
		[non	Laval	0ver			Antenna Factor				T/Pos	Domonto
		Freq	Level				Factor					Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg	
	1		0 38.45									Average
	2		0 51.19									
	3 4		0 49.09 0 61.42									
	5		0 47.79									Average
	6	11570.0	0 61.71	-12.29	74.00	47.66	38.56	10.39	34.90			Peak
												cable limit.
lote 2: "N/I										ere de	etected	.)
Note 3: Me										الماما -		
		ted banc eak-Dete										asmeasur
	dition.	ear-Dele	cior mee	isine A	v-LIIIIII S	บแลเเ	IE AV IE	veruue	5110111	eeulo	ne ieho	neum
lote 5: For		stricted b	ands, unv	wantede	emission	sshall	be atten	uated b	oy at lea	ast 30 (dB relat	tive to the
		nmeasure							,			

Modulatio	on Mod	e	HT20			Tes	t Freq. (MHz)		5785		
N _{TX}			1			Pola	arizatior	1		Н		
	97	el (dBuV/m)									Date: 201	3-03-28
	87.3											
	77.6										FCC CI	ASS-B
	67.9	4		6								
	58.2	2		5						FC	CLASS-	B (AVG)
	48.5	1										
	38.8											
	29.1											
	19.4											
	9.7											
	⁰ 100	0 4000.600	0.8000.	12000.	16000.	20000 Frequenc		0. 28	000. 3	32000.	36000.	40000
				0ver		-	Antenna	Cable	Preamn	A/Pos	T/Pos	
		Freq	Level				Factor				1/105	Remark
		MHz		dB						cm	deg	
	1 2		0 39.69 0 51.79									Average Peak
	3		0 46.09									-
	4		0 59.44									
	5		0 48.50									Average
	6	115/0.0	0 61.00	-13.00	74.00	46.95	38.56	10.39	34.90			Peak
												cable limit.
Note 2: "N										ere de	etected	.)
Note 3: M Note 4: Fo										field et	renath	asmeasur
wi	th the F	Peak-Dete										
	dition.											
Note 5: Fo		stricted banning and the stricted banning and the stricted banning and the stricted banning and the stricted ba			emission	sshall	be atten	uated b	by at lea	ast 30 o	B relat	ive to the

Modulation Mode	HT20			Test	Freq. (I	MHz)		5825		
N _{TX}	1				arization	-		V		
97 Level (dBuV	m)								Date: 201	3-03-28
87.3										
77.6									FCC CL	ASS-B
67.9		6								
58.2								FCC	CLASS-	B (AVG)
48.5										
38.8										
19.4										
9.7										
0 <mark>1000 4000.</mark>	5000.8000. 1	12000.	16000.	20000). 28	000. 3	2000.	36000.	40000
		Over		Frequenc		Cabla	Decomp	A /Dec	T /Doc	
Fi	eq Level	Over Limit	Line	Level	Antenna Factor	Loss				Remark
 Mł	lz dBuV/m	dB			dB/m		dB	 cm	deg	
	.00 35.64	-18.36	54.00	42.20	27.94	3.14	37.64			Average
	.00 47.39									Peak
	.00 38.15 - .00 50.88 -									Average Peak
	.00 47.77									Average
	.00 62.27 -									
Note 1: ">20dB" means Note 2: "N/F" means No Note 3: Measurement re Note 4: For restricted ba with the Peak-D addition. Note 5: For un-restricted maximum meas	thing Found s eceive antenr nds, the pea etector meets I bands, unwa	spuriou na polar k meas s the AV anted e	semissi ization: uremen /-Limits	ons(No H(Hori tisfully othattl	o spuriou zontal), ' v sufficien ne AV lev	is emis V (Verti nt, asth vel doe	sionsw ical) ne max esnot ne	ere de field st eed to l	tected. rength be repo	.) asmeasure ortedin

Modulatio	n Mod	e	HT20			Tes	Freq. (MHz)		5825		
N _{TX}			1			Pola	arization	<u>,</u>		Н		
	97Lev	el (dBuV/m)									Date: 201	3-03-28
	87.3									_		
	77.6										- ғсс сі	ASS-B
	67.9			6								
	58.2	4								FC	CLASS-	B (AVG)
	48.5	3										
	38.8											
	29.1											
	19.4											
	9.7											
	⁰ 100	0 4000.600	0.8000.	12000.	16000.	20000 Frequenc). 28	000. 3	32000.	36000.	40000
				0ver		-	Antenna	Cabla	Droomn	A /Doc	T/Doc	
		Frea	Level				Factor				1/F05	Remark
		MHz		dB						cm	deg	
	1 2		0 36.74 0 47.88						37.64			Average Peak
	2		0 47.88 0 39.54									Average
	4		0 51.69									Peak
	5		0 48.97									Average
	6	11650.0	0 61.87	-12.13	74.00	47.72	38.62	10.43	34.90			Peak
Vote 1: ">2	20dB" r	neanssou	iriousem	issionl	evelsth	atexce	ed the le	vel of 2	0 dB be	elowth	e appli	cable limit.
Note 2: "N/												
Note 3: Me	easurer	nent rece	iveanter	napola	rization:	H (Hori	zontal), '	V (Verti	cal)			
												asmeasur
		Peak-Dete	ctormee	tsthe A	V-Limits	o that t	ne AV le	veldoe	esnotne	edto	be repo	ortedin
ad Note 5: Fo	dition.	stricted by	ande unv	vanted	miesion	schall	he atten	liatod h	watlor	act 20 /	- R rolat	ive to the
		nmeasure			511122101	1991411	oe allen	ualeul	yailea	131 30 (

3.6.9 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT40

Modulatio	n Mod	е	HT40			Tes	t Freq. (MHz)		5755		
N _{TX}			2			Pola	arizatior	۱		V		
	Lov	vel (dBuV/m)									Date: 201	3-03-20
	97											
	87.3											
	77.6										FCC CI	ASS-B
	67.9									_		
	58.2			6						FCC	CLASS-	B (AVG)
	48.5			5								
	38.8											
	3											
	29.1											
	19.4											
	9.7											
	0	4000 000	0000	42000	40000	20000	2400		000 1	2000	20000	40000
	100	00 4000.6000	.8000.	12000.	16000.	20000 Frequenc		0. 28	000. 3	32000.	36000.	40000
				0ver	Limit	Read	Antenna	Cable	Preamp	A/Pos	T/Pos	
		Freq	Level	Limit			Factor					Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg	
	1	1200.00) 34.51		54.00	41.07		3.14	37.64			Average
	2		41.43						37.64			Peak
	3		30.49						36.80			Average
	4		43.05						36.80			Peak
	5		46.90						34.90			Average
	6		59.94						34.90			Peak
	0.10."					. 4 .				. 1		
Note 1: ">2												
Note 2: "N/										ere de	rected	.)
Note 3: Me												
		Peak-Dete										
Note 5: For	un-re				emissior	sshall	be atten	uated l	oy at lea	ast 30 o	Brelat	tive to the

Modulation Mode	ŀ	HT40			Test	: Freq. (I	MHz)		5755		
N _{TX}	2	2			Pola	arization			Н		
Level	(dBuV/m)									Date: 201	3-03-20
87.3										TCC CI	ACC 0
77.6 67.9										ruu u	ASS-B
58.2			6							CLASS-	
48.5 ₂₄			5						- ru	, CLA33-1	D (AVO)
38.8											
29.1											
19.4											
9.7		_									
0	4000.6000.	8000.	12000.	16000.	20000 Frequenc). 28	000. 3	2000.	36000.	40000
			0ver			Antenna	Cabla	Decome	A /Dec	T /Dec	
	Frea	Level				Factor					Remark
	MHz		dB			-			cm	deg	
1						27.94		37.64			Average
2	1200.00					27.94 28.00		37.64 36.80			Peak Average
4	1500.00							36.80			Peak
-	11510.00										Average
	11510.00										Peak
Note 1: ">20dB" me											
Note 2: "N/F" mear									ere de	tected.	.)
Note 3: Measureme									fiold at	ronath	200000
Note 4: For restricte with the Pe										•	
addition.		lormee	sistile A		งและแ	IG AV IG		51101116	seulo	ne ieht	neum
Note 5: For un-rest	ricted bai	nds. un	wanted	emission	nsshall	be atten	uated b	ov at lea	ast 30 o	Brelat	ive to the
		d in-ban						.,			

Modulation	Mode	•	HT40					Tes	t Fr	eq. (I	MHz)		5795			
N _{TX}			2					Pol	ariz	ation			V			
	Leve	el (dBuV/m)												Date: 20	13-03-20	
	97															
87	7.3															
7	7.6			-					_					FCC C	LASS-B	
67	.9				6											
58	3.2												FC	C CLASS	B (AVG)	
48	3.5 4			-	5											
38	3.8								_							
29).1															
19	.4															
).7															
	⁰ 100	4000.600	0.8000.	1	2000.	160)00. I	20000 Frequenc		24000 Hz)). 28	000.	32000.	36000	4000	0
					0ver	Lir		-			Cable	Preamp		T/Pos		
		Free	Lev									Factor		.,	Remark	k
		MHz	dBuV	/m	dB	dBu\	V/m	dBuV	d	B/m	dB	dB	cm	deg		
	1		00 34.									37.64			Averag	ge
	2		00 41.									37.64				
	3		00 30.							8.00		36.80				ge
	4		00 43.									36.80			Peak	
	5 6	11590.0													Averag	ge
	0	11590.0	.00	5Z -	12.00	74	.00	40.25	5	0.0/	10.40	54.90			Peak	
Note 1: ">20	dB" m	eanssp	uriouse	emis	sionl	evel	stha	at exce	edt	he le	vel of 2	0 dB b	elow th	ne appl	icable li	imit.
Note 2: "N/F"																
Note 3: Mea															-	
Note 4: For r													field s	trength	asmea	asui
		eak-Dete														
addi																
Note 5: For u	n-res	tricted b	ands, u	nwa	intede	emis	sion	sshall	be	atten	uated b	by at lea	ast 30	dB rela	tive to t	the

Modulation	Node	•	Н	Т40					Те	st F	Freq. (MHz	z)		5795			
N _{TX}			2						Po	olar	izatio	n			Н			
	Love	el (dBuV/m)														Date:	2013	-03-20
ç	97 C																2010	
87	.3																	
77	.6															FC	C CL/	<mark>∖SS-B</mark>
67	.9				6										_			
58	.2				_							_			FC	C CLA	SS-B	(AVG)
48	.524			+	1													
38	.8																	
29	.1														_			
19	.4																	
9	.7																	
	0 <mark>1000</mark>	0 4000.600	0.8	000.	12	000.	160)00.	200 Freque		2400 MHz)	0.	280	000. 3	32000.	360	00.	40000
					0	ver	Lir		-		-	Cak	10	Preamp		= т/р	05	
		Fred	1	Level										Factor		\$ 1/1		Remark
		MHz	C	dBuV/m		dB	dBu\	V/m	dBuV		dB/m			dB	cm	d	eg	
	1	1200.0												37.64				Average
	2	1200.0									27.94			37.64				Peak
	3	1500.0									28.00			36.80				Average
	4 5	1500.0												36.80				Peak
	6	11590.0																Average Peak
	•	11550.0		02.00	-1	1.52	/4		40.0	1	50.57	10.	40	54.50				Cak
Note 1: ">200																		
Note 2: "N/F"															ere de	etect	ed.)	
Note 3: Meas															<i>.</i>			
Note 4: For re																		
		eak-Dete	ecto	ormee	etst	he A	V-Lir	nits	o that	t the	e AV le	velo	doe	snotn	eedto	be re	ероі	tedin
addit	-	ال جغم الله		ala	•		· · · ·	ai -	a al-	11 1	a 11 -						de C	vata (l
Note 5: For u	n-res	ancted b	and	us. un	wai	itede	emis	sion	ssna	11 D6	e atten	iuate	ea p	ov at lea	JST 30	аыtе	elati	vetothe

Modulat	ion Ma	ode			Η	T40						Tes	st F	req. (MH:	z)		5755			
N _{TX}					1							Ро	lari	zatio	n			V			
	97	eve	l (dB	uV/m)														Date	: 201	3-03-28
	87.3																	_			
	77.6					_	_												FC	c ci	ASS-B
	67.9																				
	58.2		_	4		_	_	6										FC	C CLA	SS-E	3 (AVG)
	48.5			3				-5													
	38.8	1		_		_	_	_													
	29.1	_		_		_	_														
	19.4	_		_		_															
	9.7			_		_	-	_													
	0	1000	400	0.60	00.8	000.		120	00.	160	000.	2000	0.	2400	0.	28	000. 3	32000.	36	000.	40000
												Frequen	cy (N								
								0\	er	Lir	nit	Read	An	tenna	a Cal	ble	Preamp	A/Pos	5 T/I	os	
				Fre	9	Lev	el	Li	mit	Li						55	Factor				Remark
			-	MU-						40.0						 D					
	1			MHz GØ (dBuV 38	-	0 -19		ави 54.		dBuV 37.53		IB/m 2.40			dB 35.84	Cm		deg	Average
	2									74		50.04					35.84				
	3																34.95		-		Average
	4																34.95				Peak
	5																34.90				Average
	6		112	10.0	00	59.	22	-14		74	.00	45.30	כי	0.51	10	. 30	34.90		-		Peak
											- (1.			1	1	. (0		. I		12	
Note 1: " Note 2: "																					cable lim
Note 2. Note 3: N																		ele di	5180	.eu.	.)
																		fields	tren	ath	asmeas
																	snotne				
	dditio			• •														0			
										emis	sion	sshall	be	atten	uate	ed b	yatlea	ast 30	dB re	əlat	ive to the
	naxim																				

Modulation	Mode	;	HT40			Tes	t Freq. ((MHz)		5755		
N _{TX}		-	1				arizatio			н		
						•						
	ozLev	el (dBuV/m)									Date: 201	3-03-28
	87.3											
	77.6										FCC CI	ASS-B
	67.9											
:	58.2	4		6						FC	C CLASS-	B (AVG)
	48.5	3		-5-								
:	38.8											
:	29.1											
	19.4											
	9.7											
	0 <mark>100</mark>	0 4000.600	0.8000.	12000). 1600			0. 28	000.	32000.	36000.	40000
						Frequenc						
		F		0ve		it Read						D
		Freq	Leve.	L L1M	1t Line	e Level	Factor					Remark
		MHz	dBuV/ı	n dB	dBuV	/m dBuV		dB		cm	deg	
	1	2600.0				00 38.06		4.84			-	Average
	2					00 50.39						
	3 4					00 38.18 00 51.94						
	5					00 32.03						Average
	6					00 44.92						Peak
lata 1. "> 0(thatawaa						ooblo limit
lote 1: ">2(lote 2: "N/F												
lote 3: Mea											siecieu	•)
lote 4: For										field s	trenath	asmeasur
						it so that t						
add	ition.											
lote 5: For						onsshall	be atter	nuated b	oy at lea	ast 30 (dB relat	tive to the
max	kimum	measur	ed in-ba	nd leve	el.							

Modulatior	Mode	;	HT40				Tes	Freq. (MHz)		5795		
N _{TX}			1					arization			V		
	oz Leve	el (dBuV/m))									Date: 201	3-03-28
	87.3												
	77.6			_								FCC CI	ASS-B
	67.9				6								
-	58.2	4			6						FC	CLASS-	B (AVG)
	48.5 <mark>2</mark>				-5								
:	38.8	3											
:	29.1			+-	_								
	19.4			+									
	9.7			+									
	0 <mark>100</mark>	0 4000.600	0.8000.		12000.	16000.	20000		0. 28	000. 3	32000.	36000.	40000
							Frequenc						
					0ver			Antenna					D
		Free	l Ten	e1 	Limit	Line		Factor		Factor			Remark
		MHz	dBuV	/m	dB	dBuV/m				dB	cm	deg	
	1							27.94		37.64			Average
	2							27.94					
	3 4							32.40 32.40					
	5							38.57					Average
	6							38.57					Peak
lata 1 · "> 0/			uriouo	. m i		ovoloth	atavaa	od the le	vol of 0		alawth	o o n n li	achla limit
lote 1: >20 lote 2: "N/F													cable limit.
lote 3: Mea													•)
											field s	renath	asmeasur
								ne AV le					
add	ition.												
lote 5: For						emission	nsshall	be atten	uated b	oy at lea	ast 30 (dB relat	tive to the
max	kimum	measur	ed in-b	and	level.								

Modulatio	n Mode	•	HT40			Tes	t Freq. (MHz)		5795		
N _{TX}			1				arization			Н		
	97	el (dBuV/m)									Date: 201	3-03-28
	87.3											
	77.6										FCC CI	ASS-B
	67.9			6								
	58.2	1								FC	CLASS-	B (AVG)
	48.5	3										
	38.8											
	19.4											
	9.7											
		0 4000.600	1.8000	12000.	16000.	20000	. 2400	0 28	000. 3	32000.	36000.	40000
						Frequenc				20001		
		_		0ver			Antenna					
		Freq	Level	Limit	Line		Factor		Factor			Remark
		MHz	dBuV/m	dB	dBuV/m				dB	cm	deg	
	1		0 36.49						37.64			Average
	2		0 47.89									
	3 4		0 39.60 0 51.69									
	5		0 46.34									Average
	6	11590.0	0 59.31	-14.69	74.00	45.24	38.57	10.40	34.90			Peak
Note 1: ">2	0dB" m	eansso	iriousem	hission	evelsthe	aterce	ed the le	vel of 2	0 dB b	alow th	e annli	cable limit
Note 2: "N/												
Note 3: Me												,
Note 4: For	restric	ted band	s, the pe	akmeas	suremen	ntisfully	/sufficie	nt, asth	ne max			
		eak-Dete	ctormee	tsthe A	V-Limits	o that t	he AV le	veldoe	esnotn	eedto	be repo	ortedin
	dition.	trioto d l-	anda	uontod		o ob o l'	ha atta			at 20 -	Drala	hunte the
Note 5: For		measure			emission	Issnall	be atten		by at lea	asi 30 (ieiai	iive to the

3.6.10 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT20

N _{TX} 97 ^{Level (}	2				Test		,				
oz Level (0			Pola	arization	1		V		
07	(dBuV/m)									Date: 201	3-03-20
51											
87.3											
77.6										FCC CI	ASS-B
67.9			6								
58.2									FCC	CLASS-	B (AVG)
48.5 24			ə								
38.8									_		
29.1											
19.4											
9.7											
5.1											
⁰ 1000 4	4000.6000.	8000.	12000.	16000.	20000 Frequenc). 28	000. 3	32000.	36000.	40000
			0ver	limit	Read	Antenna	Cable	Preamp	A/Pos	T/Pos	
	Freg	Level	Limit			Factor				1/103	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg	
1	1200.00	34.81	-19.19	54.00	41.37	27.94	3.14	37.64			Average
2	1200.00	41.65	-32.35	74.00	48.21	27.94	3.14	37.64			Peak
3	1500.00	30.61	-23.39	54.00	35.86	28.00	3.55	36.80			Average
4	1500.00	42.91	-31.09	74.00	48.16	28.00		36.80			Peak
	1490.00							34.90			Average
6 1	1490.00	62.31	-11.69	74.00	48.37	38.49	10.35	34.90			Peak
Note 1: ">20dB" me Note 2: "N/F" mean	sNothing	g Found	spuriou	usemissi	ons(No	spuriou	is emis	ssionsw			
Note 3: Measureme Note 4: For restricte with the Pea addition.	ent receiv d bands	/eanten , the pea	na pola ak meas	rization: suremen	H (Hori tisfully	zontal), ` ⁄ sufficie	V (Vert ht, astł	ical) ne max	field st	rength	asmeasu

Modulation Mode	VI	HT20			Tes	t Freq. (N	MHz)		5745		
N _{TX}	2				Pola	arization	l		Н		
97 Level (dBr	ıV/m)									Date: 201	3-03-20
87.3										TCC CI	ACC 0
77.6 67.9			6							FCC CL	A33-D
58.2			ĭ							CLASS-	
48.52			-5						- FU	- CLA33-	D (AVO)
38.8											
29.1											
19.4											
9.7											
0 <mark>1000 400</mark>	0.6000.8	000.	12000.	16000.	20000 Frequenc		. 28	000. 3	32000.	36000.	40000
			0ver	limit	-	Antenna	Cable	Preamp	A/Pos	T/Pos	
	Freq	Level	Limit			Factor			-	.,	Remark
-											
			dB		dBuV				cm	deg	
					42.17	27.94 27.94		37.64 37.64			Average Peak
					31.39			36.80			Average
						28.00		36.80			
						38.49					Average
6 114	90.00	64.28	-9.72	74.00	50.34	38.49	10.35	34.90			Peak
Note 1: ">20dB" mean Note 2: "N/F" meansN											
Note 3: Measurement											•,
Note 4: For restricted t with the Peak- addition.	bands, ⁻	the pea	akmeas	sureme	ntisfully	/sufficier	nt, as th	ne max			
Note 5: For un-restricto maximumme				emissio	nsshall	be atten	uated b	by at lea	ast 30 o	dB relat	ive to the

Modulatio	on Mode	;	VHT20					Tes	t Fre	eq. (I	MHz)		5785			
N _{TX}			2					Pola	ariza	ation	١		V			
	Leve	el (dBuV/m)												Date: 2	013-03-2	20
																7
	87.3															-
	77.6													FCC	CLASS-	В
	67.9			- 6	8											_
	58.2				-								FC	C CLAS	S-B (AVC	i)
	48.5				, 											_
	38.8															_
	29.1															_
	19.4															
	9.7															
	⁰ 100	0 4000.600	0.8000.	12	2000.	160		20000 Frequenc		24000 z)). 28	000.	32000.	3600	0. 40	000
				0	Over	Lin		Read		-	Cable	Pream	p A/Po	s T/Po	s	
		Free	Level		imit						Loss				Rema	ark
		MHz	dBuV/r	 n	dB	dBu\	//m	dBuV		 /m	dB	dB	 cm	de	 σ	
	1		0 33.9									37.64			Aver	rage
	2		0 40.69							.94		37.64				_
	3		0 30.14					35.39		.00		36.80			-	
	4		0 42.2									36.80				_
	5		0 50.2												Aver	rage
	6	11570.0	62.89) -1	11.11	74.	00	48.84	38	.56	10.39	34.90			Peal	< -
	00.10"					<u> </u>										
Note 1: ">																e limit.
Note 2: "N													were d	etecte	a.)	
Note 3: M													<i></i>			
NINTA 1 · Fr			ds, the pe													
	th the P	eak-Dete	ectorme	ets	the A	V-Lir	nitso	o that t	he A	Vlev	veldoe	esnotr	needto	be rep	oorted	in
wi																
wi ac	dition.															
wi ac Note 5: Fo	or un-res		ands, ur ed in-ba			emis	sion	sshall	be a	tten	uated b	by at le	ast 30	dB rela	ativet	o the

Modulation Mode	VHT20			Test	Freq. (N	MHz)		5785		
N _{TX}	2			Pola	arization			Н		
97	//m)								Date: 201	3-03-20
87.3 77.6									ECC CI	ASS-B
67.9		-6							100 01	
58.2								FCO	CLASS-	B (AVG)
48.5										
38.8										
29.1										
19.4										
9.7										
⁰ 1000 4000.	6000.8000.	12000.	16000.	20000 Frequency		. 28	000. 3	32000.	36000.	40000
		0ver		-	Antenna	Cable	Preamn	A/Pos	T/Pos	
F	req Level				Factor					Remark
	Hz dBuV/m 0.00 34.96		dBuV/m					сm	deg	Average
	0.00 54.96 0.00 42.84						37.64 37.64			Peak
	0.00 27.63						36.80			-
	0.00 40.45						36.80			Peak
	0.00 51.58 0.00 64.61									Average Peak
0 1157	0.00 04.01	-9.39	74.00	50.50	50.50	10.39	54.90			reak
Note 1: ">20dB" means										
Note 2: "N/F" means No								ere de	tected	.)
Note 3: Measurement re Note 4: For restricted ba								fiald et	ronath	asmaasu
with the Peak-D addition.										
Note 5: For un-restricted maximum meas			emissior	nsshall	be atten	uated b	oy at lea	ast 30 o	dB relat	tive to the

Modulation M	ode		VHT20)				Test	t Fre	eq. (N	MHz)		582	25			
N _{TX}			2					Pola	ariza	ation			V				
															ate: 201	2 02 20	
97	Lever	(dBuV/m)													ale. 201	3-03-20	
87.3					_				_					_			
77.6	j														FCC CL	ASS-B	
67.9				-	6												
58.2					1									FCC	CLASS-I	B (AVG)	
48.5					5												
38.8	FT																
29.1	3																
19.4																	
9.7																	
(1000 4	4000.600	0.8000.	1	2000.	160		20000 Frequenc		24000 z)	. 28	000.	32000		36000.	40000	D
					0ver	lin	it	Read	Δnt	enna	Cable	Pream	n Δ/P	05	T/Pos		
		Frea	Leve	1	Limit			Level							1,105	Remark	c
		MHz	dBuV/	m	dB	dBuV	//m	dBuV	dB	/m	dB	dB	c	m	deg		
1		1200.0	0 34.2	5 -	19.75	54.	00	40.81	27	.94	3.14	37.64		-		Averag	ge
2		1200.0	0 41.2	9 -	32.71	74.	00	47.85	27	.94		37.64		-		Peak	
3			0 30.1									36.80		-		Averag	ge
4			0 42.1									36.80		-		Peak	
5			0 50.2											-		Averag	ge
6) 1	11650.0	0 63.0	4 -	10.96	/4.	00	48.89	38	.62	10.43	34.90		-		Peak	
Note 1: ">20dl	3" m o		urique e	mi	ccion l	aval	ethe	t oxco	adth		vol of 2			the	annli	cable li	imit
Note 1: >2001 Note 2: "N/F" r																	
Note 3: Measu														uci	00100	.,	
Note 4: For res													fiold	l etr	enath	asmor	ລຸດເມ
			ector me														
additio			SCIOLINE	els	sine A	v-LII	nits	omatt	ie A	v iev	veruoe	511011	ieed	0.0	ie ieho	neum	
		inte d b												.			ha
Note 5: For un																	

Modulation I	Node	;	VHT20				Tes	t Freq	. (N	/Hz)		5825			
N _{TX}			2				Pola	arizati	on			Н			
	Leve	el (dBuV/m)											Date: 20	013-03-2	0
															7
87															
77									-				FCC	CLASS-E	5
67				6 I											1
58				-5					-	_		FC	CLASS	S-B (AVG	
	.52								-						1
38															1
29									-						-
19	.4								-						1
9	.7								-						1
	0100	0 4000.600	0.8000.	12000.	16	000.	20000 Frequenc		000	. 280	000.	32000.	3600	0. 400	00
				0ver	. Li	mit	Read	Anten	na	Cable	Preamp	A/Pos	T/Po	s	
		Freq	Level	Limi							Factor			Rema	rk
		MHz	dBuV/m				dBuV					cm	de	-	
	1		0 35.28								37.64			Aver	<u> </u>
	2 3		0 43.04 0 26.48								37.64 36.80				
	4		0 20.40 0 39.25								36.80			_	-
	5		0 51.45											Aver	
	6		0 64.32												<u> </u>
Note 1: ">200	dB" m	neansspi	uriousen	nissior	leve	lstha	at exce	edthe	Ie۱	/el of 2	0 dB b	elowth	ie app	licable	limit.
Note 2: "N/F"															
Note 3: Meas	surem	nent rece	eiveante	nnapo	lariza	tion:	H (Hori	zonta	I), \	/ (Verti	cal)				
Note 4: For re															
		eak-Dete	ectormee	etsthe	AV-Li	mits	o that t	he AV	lev	el doe	snotn	eedto	be rep	orted	in
addit	-		_				_								
Note 5: For u	n-res mum		ands, un	wante	demis	ssior	sshall	be att	enι	lated b	ov at lea	ast 30 (dB rela	ativeto	o the

Modulation M	ode	•	V	HT20					Test	Freq.	(MHz)			5745			
N _{TX}			1						Pola	rizatio	n			V			
97	Leve	el (dBuV/r	n)												Date: 20	13-03-28	•
87.3	s																
77.0	;														FCC	LASS-B	
67.9	• •	4			6									_			
58.2	2	2	-											FC	CLASS	-B (AVG)	
48.5		t † Ť	-		Ť												
38.8			-									-					
29.1																	
19.4			-														
9.7																	
	100	4000.6	000.8	3000.	12	000.	160		20000		00.	2800	0. 3	2000.	36000). 4000	0
					~				Frequenc					A (D	T (D		
		Fre	n	Level		ver imit				Antenna Factor					1/Pos	5 Remar	k
			-4														
		MH:		dBuV/m		dB		-	dBuV		dB		dB	cm	de	g	
1				38.55						32.40			5.84			Avera	ge
2				51.23 49.10									5.84 4.96				σe
-				62.26												_	5-
5	5			48.42													ge
6	5	11490	.00	61.32	-1	2.68	74.	00	47.38	38.49	10.3	5 3	4.90			Peak	
additio Note 5: For un	nea Iren stric e P on. -res	nsNot nent re- ted bar eak-De tricted	hing ceiv nds, tect ban	Found reanter the pea for mee	l sp ina akr tst var	uriou pola neas he A' nted e	isen rizat surer V-Lir	nissi ion: nen nits	ons(No H(Hori tisfully othattl	o spurio zontal), sufficie ne AV le	us em , V (Ve ent, as evel do	nissi rtic the bes	onsw al) e max not ne	ere de field s eedto	tected trengtl be rep	d.) n asme ortedii	easu n

	/lodulatio	n Mo	de		١	/HT	20					Tes	t Fr	ea. (MHz)		5745			
ar.a	N _{TX}						-								-					
ar.a												1								
ar.a		97 ^{Le}	evel (dBuV	//m)													Date: 201	13-03-28	
Of 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. tot 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. tot 2: "WF" means Nothing Found spurious emissions. No spurious emissions were detected.) tot 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) tot 4: For certificited bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limits that the AV level does not need to be reported in addition. additi																				
				_														FCC C	LASS-B	
59.2 59.2 59.2 59.4 59.4 59.4 50.4		67.9						6												
38.8 1		58.2	2	-	•			Ť									FC	C CLASS-	B (AVG)	
Out 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. to 46.88 38.49 10.35 34.90 Peak 11490.00 60.82 13.18 74.00 46.88 38.49 10.35 34.90 Peak 104 Peak 104 Peak 105 Peak 105 Peak 105 Peak 106 Peak 106 Peak 106 Peak		48.5	╁	+				-												
19.4		38.8						_									_			
9.7 0000 4000.6000.8000. 12000. 16000. 20000. 24000. 28000. 32000. 36000. 40000 Freq Level Limit Limit Read Antenna Cable Preamp A/Pos T/Pos Freq Level Limit Limit Limit Read Antenna Cable Preamp A/Pos T/Pos Mtz dBuV/m dB dBuV/m dBuV dBuV dB dB		29.1						-												
0 1000 4000.6000.8000. 12000. 12000. 2000. 24000. 28000. 32000. 36000. 40000 Frequency (MHz) Over Limit Read Antenna Cable Preamp A/Pos T/Pos MHz dBuV/m dB dBuV dBv dB																				
Frequency (MHz) Over Limit Limit Lime Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dB/w dB/m dB dB cm deg 1 2600.00 39.49 14.51 54.00 38.09 32.40 4.84 35.84		9.7																		
Over Limit Read Antenna Cable Preamp A/Pos T/Pos Miz dBuV/m dB dBuV/m dB dB cm deg 1 2600.00 39.49 -14.51 54.00 38.09 32.40 4.84 35.84		0 <mark>-1</mark> (000 4	4000.	6000.	8000		120	000.	160					0. 28	000.	32000.	36000.	40000	
Freq Level Limit Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV/m dBuV dB/m dB dB cm deg 1 2600.00 39.49 -14.51 54.00 38.09 32.40 4.84 35.84 Average 2 2600.00 51.78 -22.22 74.00 50.38 32.40 4.84 35.84 Average 4 5112.00 59.47 -14.53 74.00 53.35 34.41 6.67 34.96 Peak 5 11490.00 48.12 -5.88 54.00 34.18 38.49 10.35 34.90 Peak 6 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>6-11-</td><td>D</td><td>A (D</td><td>т (р</td><td></td><td></td></tr<>								•				-		-	6-11-	D	A (D	т (р		
MHz dBuV/m dB dBuV/m dBu DuV/m dBu DuV/m <td></td> <td></td> <td></td> <td>F</td> <td>rea.</td> <td>٩١</td> <td>vel</td> <td></td> <td>s I/Pos</td> <td>Remark</td> <td></td>				F	rea.	٩١	vel											s I/Pos	Remark	
1 2600.00 39.49 -14.51 54.00 38.09 32.40 4.84 35.84 Average 2 2600.00 51.78 -22.22 74.00 59.38 32.40 4.84 35.84 Peak 3 5112.00 66.08 -7.92 54.00 39.96 34.41 6.67 34.96 Average 4 5112.00 59.47 -14.53 74.00 53.35 34.41 6.67 34.96 Average 6 11490.00 48.12 -5.88 54.00 34.18 38.49 10.35 34.90 Average 6 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak																				
2 2600.00 51.78 -22.22 74.00 50.38 32.40 4.84 35.84 Average 3 5112.00 46.08 -7.92 54.00 39.96 34.41 6.67 34.96 Average 4 5112.00 59.47 -14.53 74.00 53.35 34.41 6.67 34.96 Average 6 11490.00 48.12 -5.88 54.00 34.18 38.49 10.35 34.90 Peak 6 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak				М	Ηz	dBu	ıV∕m		dB	dBu\	//m	dBuV	dE	/m	dB	dB	cm			
 3 5112.00 46.08 -7.92 54.00 39.96 34.41 6.67 34.96 Average 4 5112.00 59.47 -14.53 74.00 53.35 34.41 6.67 34.96 Peak 5 11490.00 48.12 -5.88 54.00 34.18 38.49 10.35 34.90 Average 6 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 																			_	
4 5112.00 59.47 -14.53 74.00 53.35 34.41 6.67 34.96 Peak 5 11490.00 48.12 -5.88 54.00 34.18 38.49 10.35 34.90 Average 6 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak 0 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 40.80 Peak 0 11490.00 60.82 -13.18 74.00 40.80 Peak 0 11490.00 60.82 -13.18 74.00 40.80 Peak 0 11490.00 60.82 -13.18 74.00 40.80																				
 5 11490.00 48.12 -5.88 54.00 34.18 38.49 10.35 34.90 Average 6 11490.00 60.82 -13.18 74.00 46.88 38.49 10.35 34.90 Peak ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement isfully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limits othat the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the		_																	-	
ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement isfully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the		5																		
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the		6	1	149	0.00	60	.82	-1	3.18	74.	00	46.88	38	.49	10.35	34.90			Peak	
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limitso that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the	lote 1 · ">?	20dB"	me	ans	snur	iou	sem	niss	ionl	evel	sthe	atexce	edt	hele	vel of 2	0 dB b	elowt	ne annli	cable lim	nit
ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																				n u
ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the																			,	
addition. ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the	lote 4: Fo	rrestr	icte	d ba	ands	, the	ере	akr	neas	surer	nen	tisfull	y su	ficie	nt, astl	ne max				sure
ote 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the				ak-D	etec	torr	nee	tst	he A'	V-Lir	nits	o that	he /	AV le	veldoe	esnotn	eedto	be repo	ortedin	
										emise	sion	sshall	ре а	atten	uated	by at lea	ast 30	dB rela	tive to the	е

Modulatio	n Mo	de			VH	HT20)					Te	st	Freq. (MHz)		5785			
N _{TX}					1									izatior	_		V			
	97	evel	(dBu	V/m)														Date: 20	13-03-28	•
	87.3	_					-	_												
	77.6																	FCC C	LASS-B	
	67.9		_	4			+	6												
	58.2	2					-										FC	C CLASS	-B (AVG)	
	48.5			Ť			+	Ť												
	38.8																			
	29.1						+													
	19.4						+												_	
	9.7						1													
	0 ^L	000	4000	.600	0.80	000.		1200	0.	160	000.	2000		2400). 28	000.	32000.	36000	. 4000	00
												Frequer	-					T (D		
				rea		Lova	.1	0ve								Preamp Factor		s T/Pos	Remar	J.
				req		Leve													Nemar	'к
			N	١Hz	d	lBuV/	m/m	dl	В	dBu\	V/m	dBuV		dB/m	dB	dB	cm	deg	l.	
	1															35.84			Avera	ge
	2															35.84				
	3 4															34.95 34.95				ige
	5															34.90			Avera	ge
	6															34.90			Peak	
Note 1: ">2																				limit.
Note 2: "N/ Note 3: Me	asur	eme	enti	rece	eive	ant	enr	nap	ola	rizat	ion:	H (Ho	riz	ontal), '	V (Vert	ical)				
		Pe																trength be rep		
Note 5: Fo		esti								emis	sior	nsshal	۱b	e atten	uated b	oy at lea	ast 30	dB rela	tiveto	the

Modulatio	on Mo	de		\	/HT	20					Tes	t F	req. ((MH ₂	z)		5785	5		
N _{TX}				1									zatio	-	-,		H	-		
	oz Le	evel	(dBuV	/m)														Date: 2	013	-03-28
	87.3																			
	77.6																	FCC	CLA	SS-B
	67.9	-					6													
	58.2	2	4	4			Ť										FC	C CLAS	S-B	(AVG)
	48.5	Ť					- 5													
	38.8	+1	_																	
	29.1		_			_														
	19.4																			
	9.7				-															
	0 <mark>10</mark>	000 4	4000.	6000.	8000		120	00.	160		2000		2400)0.	280	000. 3	32000.	3600	0.	40000
											Frequen									
			-					/er								Preamp		s T/Po		
			FI	req	Le	vel	L		Lin		Level					Factor			h	lemark
			M	Hz	dBu	V/m		IB			dBuV		lB/m			dB	cm	de	g	
	1		2600	9.00											84	35.84				Verage
	2															35.84				^v eak
	3															34.95				lverage
	4 5															34.95 34.90				Peak Average
	6															34.90				eak
lote 1: ">	20dB"	me	ans	spur	ious	sem	issi	on l	evels	stha	atexce	ed	the le	evelo	of 2	0 dB be	elowt	he apr	blica	able limit.
lote 2: "N	l/F" me	ean	sNo	thing	g Fo	und	spi	uriou	usen	nissi	ons(N	lo s	purio	user	nis	sionsw	ere d	etecte	d.)	-
lote 3: M																				
																				smeasur
			ak-D	etec	torr	nee	tst	ne A'	V-Lin	nits	o that	the	AV le	evelo	loe	snotn	edto	be rep	oor	tedin
	ddition		into	1				toda	mic		o ob o l'	ha	0.000			wotle	of 20		~ +:-	into the
lote 5: Fo	or un-re aximu								emis	aon	ssnall	be	atter	iuate	eu D	by at lea	asi 30	ub rel	ally	veioine
111	алтти	1111	neat	Juie	a 111-1	Jan	uie	vG1.												

Modulatio	on Mode	e	VHT20			Tes	t Freq. (MHz)		5825		
N _{TX}			1				arizatior	_		V		
										-		
	97Lev	el (dBuV/m)									Date: 201	3-03-28
	87.3											
	77.6										FCC CI	ASS-B
	67.9			6								
	58.2	4		5						FCO	CLASS-	B (AVG)
	48.5	3										
	38.8											
	29.1 19.4											
	9.7											
		0 4000.600	0.0000	42000	46000	20000	24000	20	000 7	22000	36000.	40000
	100	0 4000.000	0.8000.	12000.	16000.	Frequenc		J. 28	000. 3	32000.	30000.	40000
				0ver			Antenna					
		Free	Level	Limit	t Line				Factor			Remark
		MHz	dBuV/m	dB	dBuV/m		dB/m		dB	cm	deg	
	1		0 35.10				-				-	Average
	2		0 46.89									
	3 4		0 38.08									
	5		0 50.76 0 48.69									Average
	6		0 61.74									Peak
Note 1 · ">	20dR" n	ieansso	uriousem	nission	levelsth	atexce	edthele	vel of 2	0 dB h	elow th	e appli	cable limit.
Note 2: "N												
Note 3: M	easuren	nent rece	eiveanter	napol	arization:	H (Hori	zontal), '	V (Verti	cal)			
Note 4: Fo	or restric	ted band	ls, the pe	akmea	asuremer	ntisfully	/sufficie	nt, asth	ne max			asmeasui
		eak-Dete	ectormee	etsthe /	AV-Limits	so that t	he AV le	veldoe	snotn	eedto	be repo	ortedin
	dition.	triotode	anda ur	vonto-			ho ottor	untod L		not 20 -		tive to the
	aximum					ISSIAI	ne allen	uated	y at lea	ລອເວU (Dieigi	tive to the

Modulatio	on Mode	; 	VI	HT20				Tes	st F	req. (I	MHz)		5825		
N _{TX}			1					Ро	lar	izatior	1		Н		
	97	el (dBuV/m)											Date: 201	3-03-28
	87.3														
	77.6													FCC CI	ASS-B
	67.9				6										
	58.2	4			5								FC	C CLASS-	B (AVG)
	48.5	3													
	38.8														
	29.1 19.4														
	9.7														
	°100	0 4000.60	00.8	000.	1200)0.	16000). 2000 Frequen		2400(MHz)	0. 28	000.	32000.	36000.	40000
					0v	er	Limi	t Read	A	ntenna	Cable	Preamp	A/Pos	s T/Pos	
		Fre	q	Level	Li	mit		Leve							Remark
		MHz		dBuV/m	 d	 R	dBuV/	m dBuV		dB/m	dB	dB		deg	
	1							11 UBUV 0 43.04				37.64			Average
	2							0 54.29				37.64			_
	3							0 38.19							
	4 5							0 50.20 0 34.11							
	6							0 46.8							Average Peak
	Ũ	110501		01.05		••••	/	4010			10.45	54.50			- cuit
															cable limit.
Note 2: "N													ere de	etected	.)
Note 3: Mo													field -	tropath	0000000
		ted ban eak-Det													asmeasu
	dition.		501		เอเป	ΞA	v -∟11111	i so inal	ult		veruue	SHULH	00010	ne ieht	neum
Note 5: Fo		stricted b	ban	ds, unv	/ant	ede	emissio	onsshal	lbe	atten	uated b	oy at lea	ast 30	dB relat	ive to the
	aximum														–

3.6.11 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT40

Modulat	ion Mode	e	VHT40			Tes	t Freq. (I	MHz)		5755		
N _{TX}			2			Pola	arization	۱		V		
	97 Lev	el (dBuV/m)									Date: 201	3-03-20
	87.3									_		
	77.6									_	FCC CI	ASS-B
	67.9			6								
	58.2			-ĭ						FCC	CLASS-	
	48.5			5							CLASS	
	38.8											
	[3]											
	29.1											
	19.4											
	9.7											
	0 <mark>100</mark>	0 4000.6000	. 8000.	12000.	16000.	20000). 28	000. 3	32000.	36000.	40000
						Frequenc						
		_		0ver			Antenna				T/Pos	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor			Remark
	1	MHz	dBuV/m 33.91	dB	dBuV/m		dB/m 27.94	dB	dB 37.64	Cm	deg	Average
	1 2		40.86						37.64			Peak
	3		29.86			35.11			36.80			Average
	4		42.14						36.80			Peak
	5	11510.00							34.90			Average
	6	11510.00							34.90			Peak
Note 1: ":	>20dB" n	neanssou	riousem	issionl	evelstha	atexce	ed the le	vel of 2	0 dB be	elow th	e appli	cable limit
		ansNothir										
		nent recei										
Note 4: F w	or restric		s, the pea	akmeas	suremen	ntisfully	/sufficie	nt, astł	ne max			asmeasu ortedin
2	ddition.											

Modulation Mode	VHT40			Test	Freq. (N	/Hz)		5755		
N _{TX}	2			Pola	arization			Η		
97 <mark>Level (dBu</mark>	V/m)								Date: 201	3-03-20
87.3									500.01	
77.6		<u> </u>								ASS-B
67.9										
58.2		-5						FCC	CLASS-	B (AVG)
48.5 ₂										
38.8										
29.1										
19.4										
9.7										
⁰ 1000 4000	.6000.8000.	12000.	16000.	20000 Frequency		. 28	000. 3	2000.	36000.	40000
		0ver	Limit	Read	Antenna	Cable	Preamp	A/Pos	T/Pos	
-	req Level				Factor					Remark
-										
		ı dB	-					cm	deg	
	00.00 35.61 00.00 43.42						37.64 37.64			Average Peak
	00.00 45.42 00.00 26.81						36.80			
	00.00 39.64						36.80			Peak
5 115	10.00 51.03	-2.97	54.00	37.06	38.51					Average
6 115	10.00 64.12	-9.88	74.00	50.15	38.51	10.36	34.90			Peak
Note 1: ">20dB" mean Note 2: "N/F" means N Note 3: Measurement Note 4: For restricted b with the Peak-I addition. Note 5: For un-restricted	othing Foun receive ante ands, the pe Detector me	d spurio nna pola akmea: etsthe A	usemiss arization: suremer V-Limits	ions(No H(Hori htisfully cothatth	o spuriou zontal), \ v sufficier ne AV Iev	semis / (Verti nt, asth vel doe	sionsw ical) ne max esnot ne	ere de field st eed to l	rength be repo	.) asmeasu ortedin

Modulation Mode	VHT40			Test	t Freq. (N	/Hz)		5795		
N _{TX}	2			Pola	arization			V		
97 Level (dBu	V/m)								Date: 201	3-03-20
87.3									500.01	
77.6										ASS-B
67.9		6								
58.2		5						FCC	CLASS-	B (AVG)
48.5										
38.8										
29.1										
19.4										
9.7										
01000 4000	.6000.8000.	12000.	16000.	20000 Frequenc		. 28	000. 3	2000.	36000.	40000
		0ver			Antenna	Cable	Preamp	A/Pos	T/Pos	
F	req Level				Factor					Remark
	· · · · · · · · · · · · · · · · · · ·									
		dB						cm	deg	
	0.00 33.24						37.64			Average
	0.00 40.35 0.00 29.35						37.64 36.80			
	0.00 41.69						36.80			Peak
	0.00 48.86									-
6 1159	0.00 61.93	-12.07	74.00	47.86	38.57	10.40	34.90			Peak
Note 1: ">20dB" mean Note 2: "N/F" means N Note 3: Measurement Note 4: For restricted b with the Peak-I addition. Note 5: For un-restricted	othing Found receive anter ands, the pe Detector mee	d spuriou nna pola akmeas etsthe A	usemiss arization: suremen V-Limits	ions(No H(Hori htisfully cothattl	o spuriou zontal), \ v sufficier ne AV Iev	semis / (Verti nt, asth vel doe	sionsw ical) ne max esnot ne	ere de field st eed to l	rength be repo	.) asmeasu ortedin

Modulation Mod	e `	VHT40			Tes	t Freq. (N	MHz)		5795		
N _{TX}	2	2			Pola	arization			Н		
Lev	el (dBuV/m)									Date: 201	3-03-20
87.3										TCC CI	ACC 0
77.6 67.9			6								ASS-B
58.2			6							CLASS-	
48.5			-5						ru	. CLA33-I	5 (AVG)
38.8											
29.1 3											
19.4											
9.7											
	0 4000.6000.	8000.	12000.	16000.	20000 Frequenc). 28	000. 3	32000.	36000.	40000
			0		-		C-1-1-	D	A /D	т (П	
	Freq	Level	Over Limit	Line	Level	Antenna Factor	Loss				Remark
	MHz	dBuV/m	dB	dBuV/m				dB	 cm	deg	
1		-				27.94		37.64			Average
2						27.94		37.64			Peak
3						28.00		36.80			Average
4						28.00		36.80			Peak
5	11590.00 11590.00										Average Peak
Ŭ	11550.00	05.45	10.51	/4.00	43.42	50.57	10.40	54.50			1 Curk
Note 1: ">20dB" r											
Note 2: "N/F" mea									ere de	lected.	.)
Note 3: Measurer Note 4: For restric	cted bands	, the pe	akmeas	suremer	ntisfully	/sufficier	nt, asth	ne max			
addition. Note 5: For un-re	eak-Deteo										
NOTO 5' FOR UD_RO	etrictad ha	nde lini	vanted	nussion	nsenall	na attanı	ligtod k	ny at log	act '() r	IN relat	ive to the

Modulati	on Mo	de	ľ	VHT40				Tes	t Freq. (MHz)		5755		
N _{TX}				1				Pola	arizatio	n		V		
	97 C	evel (dB	uV/m)										Date: 20	13-03-28
	87.3-													
	77.6												FCC C	LASS-B
	67.9		4											
	58.2	2	4		6							FC	CLASS-	B (AVG)
	48.5	Ī	3		-5									
	38.8													
	29.1													
	19.4	+ +												
	9.7													
	0	00 400	0.6000	.8000.	12	000.	16000.	20000	. 2400	0. 28	DOO. 3	32000.	36000	40000
								Frequenc	y (MHz)					
						ver			Antenna				T/Pos	
			Freq	Leve]	. L	imit	Line	Level	Factor		Factor			Remark
		-	MHz	dBuV/n		dB	dBuV/m	dBuV		dB	dB	cm	deg	
	1			-			54.00				35.84			Average
	2								32.40		35.84			Peak
	3								34.42					
	4								34.42					
	5								38.51 38.51					Average Peak
	0	115	10.00	59.50	, -1	4.70	74.00	45.55	50.51	10.50	54.90			reak
Note 1: ">	·20dB"	mear	sspu	riouser	niss	ion l	evelsth	at exce	edthele	vel of 2	0 dB be	elow th	e appl	icable limit
Note 2: "N														
Note 3: N														
														asmeasu
			Deteo	ctorme	etst	he A'	V-Limits	so that t	he AV le	veldoe	snotn	eedto	be rep	ortedin
	ddition		مطامح	nda		ato d			ho otto			ort 20	ا مه ا	tive to the
VUIC 51 H	or un-re	estrict	eu pa	nas, un	war	itede	emissior	issnall	ve atter	luated b	y at lea	มระ 3 0 (лы гега	tive to the

Modulatio	n Mod	е	V	HT40				Tes	t Freq.	(MHz)		5755		
N _{TX}		•	1						arizatio			Н		
	97	/el (dBuV/ı	n)										Date: 201	3-03-28
	87.3													
	77.6												FCC CI	ASS-B
	67.9				6									
	58.2	2			Ť							FC	C CLASS-	B (AVG)
	48.5	1 3			-1									
	38.8													
	29.1													
	19.4													
	9.7													
	0 <mark>10</mark>	0 4000.6	000.8	000.	120	00.	16000.			00. 28	000. 3	32000.	36000.	40000
					•			Frequenc				A (D	T (D	
		Fr		Loval		er mit		Read					5 T/Pos	Remark
			eq 	Level										Nelliar K
		MH	z	dBuV/m	d	В	dBuV/m	dBuV	dB/m	dB	dB	cm	deg	
	1							38.03						Average
	2							50.35						
	3 4							38.08						
	5							32.43						Average
	6							45.33						Peak
lata 1 · "> 0	040"		-	<u></u>	iooi	on L	avalatk	otovoo	od tho la	avel of C		aloutk		aabla limit
lote 1: ">2 lote 2: "N/														
Note 3: Me														•/
Note 4: For												field s	trength	asmeasu
wit	h the F							so that t						
ado	dition.													
lote 5: For							emissio	nsshall	be atter	nuated b	oy at lea	ast 30	dB relat	ive to the
ma	ximur	nmeasu	ured	in-ban	ale	vel.								

Modulation	Mode	•	VHT40			Tes	Freq. (MHz)		5795		
N _{TX}			1				arizatior	-		V		
										-		
	97	el (dBuV/m)									Date: 201	3-03-28
:	37.3											
ī	77.6										FCC CI	ASS-B
	67.9			6								
	58.2	4								FC	CLASS-	B (AVG)
	48.5	3										
	38.8 29.1											
	19.4											
	9.7											
		0 4000.600	0 9000	12000.	16000.	20000	. 2400	n 20	000. 3	32000.	36000.	40000
	1000	4000.000	0.0000.	12000.		Frequenc		J. 20		2000.	50000.	40000
				0ver			Antenna					
		Freq	Level	Limit	Line		Factor		Factor			Remark
		MHz	dBuV/m	dB	dBuV/m				dB	cm	deg	
	1		0 35.55						37.64			Average
	2		0 47.39									
	3 4		0 38.64 0 51.29									
	5		0 45.96									Average
	6		0 59.63									Peak
Note 1: ">20												
Note 2: "N/F	" mea	nsNothi	ng Found	lspuriou	usemissi	ons(No	spuriou	ıs emis	ssionsw			
Note 3: Mea										finition	المعمما	
Note 4: For			ls, the pe ector mee									
	ition.			isule A	v-LinnitS	oinati	IC AV IC	veruue	ิรามิเม	eeulo	ne ieht	
Note 5: For		tricted b	ands, unv	wanted	emission	sshall	be atten	uated b	oy at lea	ast 30 d	dB relat	tive to the
		measur						-	•			_

Modulation	Mode	•	VHT40				Tes	Freq. ((MHz)		5795		
N _{TX}			1				Pola	arizatio	n		Н		
	97	el (dBuV/m)										Date: 201	3-03-28
8	37.3												
7	7.6											FCC CI	LASS-B
	7.9			6									
	58.2	4									FC	C CLASS-	B (AVG)
	8.5	3											
	8.8 9.1												
	9.1												
	9.7												
		0 4000.600	0.0000	4200		000	20000	2400	0 20	000 '	22000	2000	40000
	100	J 4000.000	0.8000.	1200	U. 10	i000. I	Frequenc		10. 28	000. 3	32000.	36000.	40000
				0ve				Antenna				T/Pos	
		Free	Level	l Lim	nit Li			Factor			•		Remark
		MHz	dBuV/r	 dB a	dBu		dBuV	dB/m			сm	deg	
	1		0 36.43							37.64			Average
	2	1200.0	0 47.7	7 -26.	23 74	1.00	54.33	27.94	3.14	37.64			_
	3		0 39.4										
	4 5		0 51.78 0 46.7										Peak Average
	6		0 59.68										Peak
	-												
Note 1 . "- 00				n loci :		الم ما	4	ا ج الجام		י חי		a cm - P	aab != !'''
Note 1: ">20 Note 2: "N/F													
Note 2: Mea													•)
Note 4: For											field s	trenath	asmeasu
			ectorme										
add	ition.												
Note 5: For						ssion	sshall	be atter	nuated b	oy at lea	ast 30 (dB relat	tive to the
max	imum	measur	ed in-ba	ndlev	el.								

3.6.12 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT80

Modulation Mode	e \	/HT80			Tes	t Freq. (I	MHz)		5775		
N _{TX}	2	2			Pola	arization	1		V		
97 Lev	el (dBuV/m)									Date: 201	3-03-20
87.3											
77.6										FCC CI	ASS-B
67.9											
58.2			6						FCC	CLASS-	
48.5			Ť							CLASS	
38.8			5								
13											
29.1											
19.4											
9.7											
0 <mark>110</mark>	0 4000.6000.	8000.	12000.	16000.	20000). 28	000. 3	2000.	36000.	40000
					Frequenc			_			
	-		0ver			Antenna				T/Pos	D
	Freq	Level	Limit	Line	Level	Factor	LOSS	Factor			Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	сm	deg	
1	1200.00				40.99			37.64			Average
2	1200.00							37.64			Peak
3	1500.00							36.80			Average
4	1500.00							36.80			Peak
5	11550.00	41.74	-12.26	54.00	27.72	38.54	10.38	34.90			Average
6	11550.00	54.44	-19.56	74.00	40.42	38.54	10.38	34.90			Peak
Note 1: ">20dB" n Note 2: "N/F" mea Note 3: Measurer Note 4: For restric	ans Nothin nent recei ted bands	g Found ve anten , the pea	spuriou napola akmeas	usemissi rization: suremen	ions(No H(Hori ntisfully	o spuriou zontal), \ ⁄ sufficier	is emis V (Vert nt, astł	ssionsw ical)	ere de field st	rength	.) asmeasu

Modulat	ion Mode	e	VHT80			Tes	Freq. (MHz)		5775		
N _{TX}			2			Pola	arizatior	n		Н		
	Lev	el (dBuV/m)								Date: 201	13-03-20
	87.3 77.6										FCCC	LASS-B
	67.9											
	58.2			6						FCC	CLASS-	B (AVG)
	48.5 ₂₄											
	38.8											
	29.1											
	19.4											
	9.7											
	0 <mark>100</mark>	0 4000.600	00.8000.	12000.	16000.	20000 Frequenc		0. 28	000. 3	32000.	36000.	40000
				0ver	Limit	Read	Antenna	Cable	Preamp	A/Pos	T/Pos	
		Free	q Leve	l Limit			Factor					Remark
	1	MHz		m dB 8 -17.72					dB 37.64	Cm	deg	Average
	2			4 -29.96					37.64			<u> </u>
	3			8 -27.72					36.80			
	4	1500.0	00 41.3	8 -32.62	74.00	46.63	28.00		36.80			
	5			4 -11.06								
	6	11550.0	00 55.4	1 -18.59	/4.00	41.39	38.54	10.38	34.90			Peak
	>20dB" n N/F" mea											cable limit
	/leasurer											,
Note 4: F v		ted ban	ds, the p	eakmea	suremer	ntisfully	sufficie	nt, astł	ne max			asmeasu ortedin
	For un-res naximum				emissior	isshall	be atten	uated b	by at lea	ast 30 d	B relat	tive to the

Modulatio	n Mod	е	VHT80				Tes	t Freq.	(MHz)	5775					
N _{TX}			1	1				Pol	Polarization						
	97	vel (dBuV/m)										Date: 20	13-03-28	
	87.3														
	77.6												FCC (LASS-B	
	67.9														
	58.2	4			6							FC	C CLASS	-B (AVG)	
	48.5 <mark>2</mark>				-\$										
	38.8														
	29.1											_			
	19.4														
	9.7														
	0 <mark>10</mark>	00 4000.60	00.8	000.	120	00.	16000			00. 28	000. 3	32000.	36000	. 40000)
								Frequence	y (MHz):						
		_				er		Read					5 T/Pos		
		Fre	q	Level	Li	mit	Line	Level		Loss	Factor	•		Remark	C
		MHz		dBuV/m	d	В	dBuV/r	ı dBuV			dB	cm	deg	, ,	
	1			-				41.61			37.64			, Averag	ge
	2							53.45			37.64			Peak	
	3			38.41						4.84					ge
	4 5) 49.79) 30.52							70
	6) 43.72						~	3e
	-														
Note 1: ">2	0dB" r	neanss	ourio	ousem	issi	on le	evelst	nat exce	edthel	evel of 2	20 dB be	elowth	ne appl	icable li	mit.
Note 2: "N/	F" me	ansNoth	ing	Found	spι	iriou	usemis	sions (N	o spurio	bus emi	ssionsw				
Note 3: Me															
Note 4: For															
		Peak-Det	ecto	ormee	tsth	e A	V-Limi	so that t	he AV I	eveldoe	esnotn	eedto	be rep	ortedin	l
	dition.			do .		ام ما	micei	nochall	ha a4-	nucted	huatle	ant 20	امە	tive to t	h c
Note 5: For	un-re	stricted	Jano	us. unv	vani	teae	emissio	nssnall	De atte	nuated	ovatiea	4ST 30 (OR LEIS	ative to t	.ne

Modulation Mode			1	VHT80					Т	Test Freq. (MHz)					57	5Hz) 5775						
N _{TX}			_	1				-	Polarization				н									
-17											-	0.0		•								
		evel	(dBuV/	m)															Date:	201:	3-03-28	
	87.3 77.6																		ECO	с сі	ASS-B	
	67.9																				A33-D	
	58.2			_			6						_					FCO	CLA	SS-B	(AVG)	
	48.5	2	_	_			-5								_							
	38.8	3		_	_	_								-								
	29.1			_		_						-		-								
	19.4			_								-										
	9.7	_	_		_							-		-	_							
	0	000	4000.6	6000.	8000.		120	00.	160	000.	20	000.	24	000.	. 28	000.	3200	0.	360	00.	40000	
											Freque	ency	(MHz)									
								/er								Pream		Pos	T/P	os		
			Fr	eq	Le	vel	Li	mit	Li							Facto	r				Remark	
			MH		dBu	 V/m		IR	dBul		dBu				dB	dB			 b	eg		
	1															37.64				_	Average	
	2															37.64					Peak	
	3															35.84					Average	!
	4 5															35.84					Peak	
	6															34.90 34.90					Average Peak	
	Ŭ		11000				-						50.5		10.50	54.50					- cuit	
lote 1: ">2																						nit.
lote 2: "N/F	-" m	ear	nsNot	hing	g Fo	und	spι	uriou	usen	nissi	ons	(No	spuri	ou	semis	ssions						
lote 3: Mea																	<i>.</i>					
lote 4: For																						sure
with add			ак-De	etec	torn	nee	tstr	ie A	v-Lir	nits	io tha	it tr	ie AV	iev	eldoe	snotr	need	tO	be re	эро	rtedin	
lote 5: For			ricted	har	nds	แทง	van	ted	emie	sion	is sha	all b	e atte	ın	lated h	vatle	ast ?	30 6	dR r≏	lati	ve to th	e
			neas							5.01		A.I. K	June			.,				au		-

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9 kHz ~ 2.75 GHz	Mar. 26, 2013	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRO NIK	NSLK 8127	8127-477	9kHz – 30MHz	Jan. 21, 2013	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9 kHz ~ 30 MHz	Apr. 16, 2013	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	CB049	9 kHz ~ 30 MHz	Apr. 25, 2012	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP	100055	9Kz – 40GHz	Jun. 06, 2012	Radiation (03CH05-HY)
Receiver	R&S	ESIB26	100337	20Hz – 26.5GHz	Jun.21, 2012	Radiation (03CH05-HY)
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH05-HY	30 MHz - 1 GHz 3m	N/A	Radiation (03CH05-HY)
Amplifier	COM-POWER	PA-103	161241	1 MHz ~ 1 GHz	Feb. 26, 2013	Radiation (03CH05-HY)
Amplifier	Agilent	8449B	3008A02665	1GHz – 26.5 GHz	Aug. 28, 2012	Radiation (03CH05-HY)
Horn Antenna	ETS-LINDGREN	3117	66584	1GHz~18GHz	Aug. 09, 2012	Radiation (03CH05-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz ~ 40GHz	Jan. 08, 2013	Radiation (03CH05-HY
RF Cable-R03m	Jye Bao	RG142	03CH05-HY	30 MHz - 1 GHz	Oct. 14, 2012	Radiation (03CH05-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX104	03CH05-HY	1GHz~40GHz	Oct. 14, 2012	Radiation (03CH05-HY)
Bilog Antenna	SCHAFFNER	CBL6111C	2725	30 MHz - 1 GHz	Oct. 06, 2012	Radiation (03CH05-HY)
Turn Table	HD	HD100	420/611	0 - 360 degree	N/A	Radiation (03CH05-HY)
Antenna Mast	HD	HD100	240/666	1 m - 4 m	N/A	Radiation (03CH05-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz ~ 40GHz	Apr. 19, 2011	Radiation (03CH05-HY)
Loop Antenna	R&S	HFH2-Z2	860004/0001	9 kHz - 30 MHz	Jul. 03, 2012	Radiation (03CH05-HY)

Note: Calibration Interval of instruments listed above is two year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101486	9KHz~40GHz	Nov 14, 2012	Conducted (TH01-HY)
Spectrum Analyzer	R&S	FSP 40	100593	9KHz ~ 40GHz	Aug. 14, 2012	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jun. 19, 2012	Conducted (TH01-HY)
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 02, 2012	Conducted (TH01-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP- SD	MAA1112-007	-20 ~ 100℃	Nov 21, 2012	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 26, 2012	Conducted (TH01-HY)
Power Sensor	Anritsu	MA2411B	1027452	300MHz ~ 40GHz	Sep. 08, 2012	Conducted (TH01-HY)
Power Meter	Power Meter Anritsu		1124009	300MHz ~ 40GHz Sep. 08, 2012		Conducted (TH01-HY)
RF Cable-2m	HUBER+SUHNER	SUCOFLEX_104	SN 345675/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)
RF Cable-3m HUBER+SUHNER		SUCOFLEX_104	SN 345669/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.