

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Netgear Incorporated
Applicant Address	350 East Plumeria Drive San Jose, California 95134 United States
FCC ID	PY312300209
Manufacturer's company	Wistron Neweb Corporation
Manufacturer Address	NO.789 Yujinxiang Road,Comprehensive Free Trade
	Zone,Kunshan,320000,215300 China

Product Name	Home Security
Brand Name	Netgear
Model Name	ASG1100
Test Rule	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	2405~ 2475MHz
Received Date	Mar. 01, 2013
Final Test Date	Mar. 18, 2013
Submission Type	Original Equipment

Statement

Test result included is only for the IEEE 802.15.4 ZigBee part of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2009,

47 CFR FCC Part 15 Subpart C, KDB 558074 D01 v02 and KDB 662911 D01 v01r02.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CEI	RTIFICATE OF COMPLIANCE	1
2. SUN	MMARY OF THE TEST RESULT	2
3. G E	NERAL INFORMATION	
3.1.		
3.2.	. Accessories	3
3.3.	. Table for Carrier Frequencies	3
3.4.	. Table for Filed Antenna	4
3.5.	. Table for Test Modes	5
3.6.	. Table for Testing Locations	5
3.7.	. Table for Supporting Units	7
3.8.	9	
3.9.	. Test Configurations	8
4. TES	ST RESULT	10
4.1.	. AC Power Line Conducted Emissions Measurement	10
4.2.	. Maximum Conducted Output Power Measurement	14
4.3.	. Power Spectral Density Measurement	16
4.4.	. 6dB Spectrum Bandwidth Measurement	19
4.5.	. Radiated Emissions Measurement	21
4.6.	. Emissions Measurement	30
4.7.	. Antenna Requirements	35
5. LIS1	T OF MEASURING EQUIPMENTS	36
6. TES	ST LOCATION	38
APPEI	NDIX A. TEST PHOTOS	A1 ~ A5
APPEI	NDIX B. MAXIMUM PERMISSIBLE EXPOSURE	B1 ~ B3
	NDIX C. CO-I OCATION REPORT	C1 ~ C3
APPEI	MINK C CLEICH AMDN RFPORT	11~(1

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR330126AB	Rev. 01	Initial issue of report	Mar. 20, 2013

Certificate No.: CB10203068

Page No. : 1 of 38

Issued Date : Mar. 20, 2013

1. CERTIFICATE OF COMPLIANCE

Product Name : Home Security

Brand Name : Netgear Model Name : ASG1100

Applicant : Netgear Incorporated

Test Rule Part(s) : 47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Mar. 01, 2013 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C					
Part	Rule Section	Result	Under Limit			
4.1	15.207	AC Power Line Conducted Emissions	Complies	6.94 dB		
4.2	15.247(b)(3)	Maximum Conducted Output Power	Complies	9.57 dB		
4.3	15.247(e)	Power Spectral Density	Complies	3.94 dB		
4.4	15.247(a)(2)	6dB Spectrum Bandwidth	Complies	-		
4.5	15.247(d)	Radiated Emissions	Complies	0.31 dB		
4.6	15.247(d)	Band Edge Emissions	Complies	0.49 dB		
4.7	15.203	Antenna Requirements	Complies	-		

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Maximum Conducted Output Power	±0.8dB	Confidence levels of 95%
Power Spectral Density	±0.5dB	Confidence levels of 95%
6dB Spectrum Bandwidth	±8.5×10 ⁻⁸	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Radiated / Band Edge Emissions (1GHz~18GHz)	±1.9dB	Confidence levels of 95%
Radiated Emissions (18GHz~40GHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7°C	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

Page No. : 2 of 38

Issued Date : Mar. 20, 2013

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Power Type	From Power Adapter
Modulation	DSSS (O-QPSK)
Data Rate (Mbps)	DSSS (250kbps)
Frequency Range	2405~ 2475MHz
Channel Number	15
Channel Band Width (99%)	2.44 MHz
Maximum Conducted Output	20.43 dBm
Power	
Carrier Frequencies	Please refer to section 3.3
Antenna	Please refer to section 3.4

3.2. Accessories

Power	Brand	Model	P/N	Rating	
Adaptor 1	NETGEAR	MT18-9120150-A1	332-10359-01	INPUT: 120V, 60Hz, 0.5A	
Adapter 1	NEIGEAR	M110-9120150-A1	332-10339-01	OUTPUT: 12V, 1.5A	
				INPUT: 100V to 120V, 47 to 63	
Adapter 2	NETGEAR	SAL018F1 NA 18.0W	332-10513-01	Hz, 0.6A	
				OUTPUT: 12V, 1.5A	
Others					
Cradle*1					

3.3. Table for Carrier Frequencies

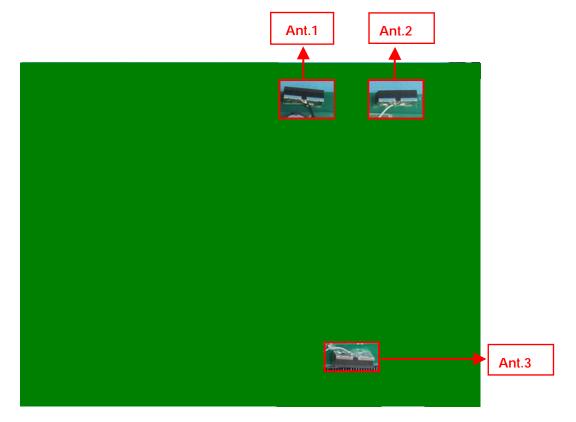
Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	11	2405 MHz	19	2445 MHz
	12	2410 MHz	20	2450 MHz
	13	2415 MHz	21	2455 MHz
0405 04754415	14	2420 MHz	22	2460 MHz
2405 ~ 2475MHz	15	2425 MHz	23	2465 MHz
	16	2430 MHz	24	2470 MHz
	17	2435 MHz	25	2475 MHz
	18	2440 MHz	-	_

Report Format Version: 01 Page No. : 3 of 38 Issued Date : Mar. 20, 2013

FCC ID: PY312300209

3.4. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Remark
1	WNC	95EAAB15.G01	PIFA Antenna	I-PEX	3.85	TX/RX
2	WNC	95EAAB15.G02	PIFA Antenna	I-PEX	4.01	TX/RX
3	WNC	95EAAB15.G03	PIFA Antenna	I-PEX	3.86	TX/RX


Note: The EUT has three antennas.

For IEEE 802.11b/g/n mode: (2TX / 2RX)

Ant. 1 and Ant. 2 will transmit/receive the signal simultaneously.

For IEEE 802.15.4 ZigBee : (1TX / 1RX)

Ant. 3 can be use as transmit and receive antenna.

Report Format Version: 01 Page No. : 4 of 38 FCC ID: PY312300209 Issued Date : Mar. 20, 2013

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Antenna
AC Power Line Conducted Emissions	Normal Link	-	-	=
Maximum Conducted Output Power	TX Mode	250 kbps	11/18/25	1
Power Spectral Density	TX Mode	250 kbps	11/18/25	1
6dB Spectrum Bandwidth				I
Radiated Emissions 9kHz~1GHz	Normal Link	-	-	-
Radiated Emissions 1GHz~10 th Harmonic	TX Mode	250 kbps	11/18/25	1
Band Edge Emissions	TX Mode	250 kbps	11/25	1

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1. EUT With Adapter 1 (MT18-9120150-A1)

Mode 2. EUT With Adapter 2 (SAL018F1 NA 18.0W)

Mode 2 is the worst case, so it was selected to record in this test report.

For Radiated Emission test:

Mode 1. laying of EUT With Adapter 1 for Zigbee and WLAN function

Mode 2. wall-hanging of EUT With Adapter 1 for Zigbee and WLAN function

Mode 3. stand of EUT With Adapter 1 for Zigbee function and WLAN function

Mode 2 has been evaluated to be the worst case, thus measurement will follow this same test mode.

Mode 4. wall-hanging of EUT With Adapter 2 for Zigbee and WLAN function

Mode 4 is the worst case, so it was selected to record in this test report.

For MPE and Co-location Test:

The EUT could be applied with WiFi + ZigBee function; therefore Maximum Permissible Exposure (Please refer to Appendix B) and Co-location (please refer to Appendix C) tests are added for simultaneously transmit between WiFi + ZigBee function.

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.
03CH01-CB	SAC	Hsin Chu	262045	IC 4086D
CO01-CB	Conduction	Hsin Chu	262045	IC 4086D
TH01-CB	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

Report Format Version: 01 Page No. : 5 of 38 FCC ID: PY312300209 Issued Date : Mar. 20, 2013

Please refer section 6 for Test Site Address.

3.7. Table for Supporting Units

For 30MHz~1GHz and AC Power Line Conduction test

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	QDS-BRCM1049LE
Notebook	DELL	E6430	QDS-BRCM1049LE
Notebook	DELL	E6430	QDS-BRCM1049LE
USB disk	Silicon	I-Series	DoC

For above 1GHz test

Support Unit	Brand	Model	FCC ID	
Notebook	DELL	1200	E2K4965AGNM	

3.8. Table for Parameters of Test Software Setting

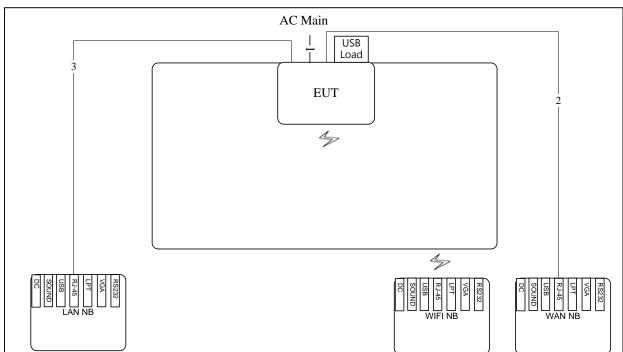
During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters of IEEE 802.15.4 ZigBee

Test Software Version	Tera Term Version 4.6.6						
Frequency	2405 MHz	2440 MHz	2475 MHz				
IEEE 802.15.4 ZigBee	0X001	0X003	-0X007				

Executed "Tera Term Version 4.6.6" was executed the test program to control the EUT continuously transmit RF signal.

: 7 of 38 Page No. FCC ID: PY312300209 Issued Date: Mar. 20, 2013



3.9. Test Configurations

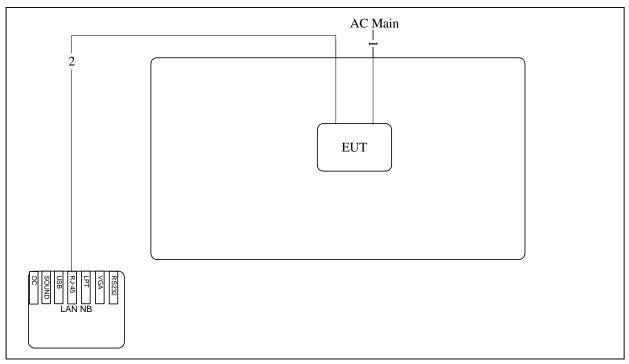
3.9.1. Conduction and Radiation Emissions Test Configuration

Test Configuration: 30MHz~1GHz and AC Power Line Conduction

Test Mode: Mode 2 and Mode 4

Item	Connection	Shield	Length		
1	Power cable	No	3M		
2	RJ-45	No	10M		
3	RJ-45	No	10M		

Report Format Version: 01 : 8 of 38 Page No. Issued Date : Mar. 20, 2013


FCC ID: PY312300209

Test Configuration: Above 1GHz

Test Mode: Mode 4

Item	Connection	Shield	Length
1	Power cable	No	3M
2	RJ-45	No	10M

Issued Date : Mar. 20, 2013

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

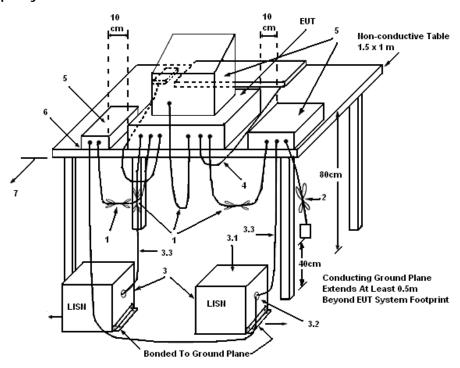
4.1.1. Limit

For a Low-power Radio-frequency Device which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

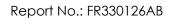
Report Format Version: 01 Page No. : 10 of 38 FCC ID: PY312300209 Issued Date : Mar. 20, 2013

4.1.4. Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 $\,\Omega$. LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

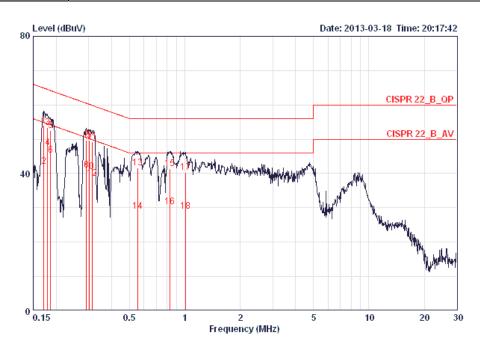
4.1.5. Test Deviation

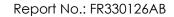

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

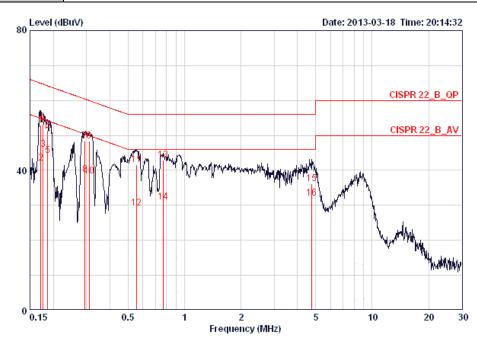
 Report Format Version: 01
 Page No. : 11 of 38


 FCC ID: PY312300209
 Issued Date : Mar. 20, 2013



4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	24°C	Humidity	48%
Test Engineer	Sin Chang	Phase	Line
Test Mode	Mode 2		



			0ver	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.17125	54.02	-10.88	64.90	53.67	0.16	0.19	QP
2	0.17125	42.01	-12.89	54.90	41.66	0.16	0.19	AVERAGE
3	0.17961	53.48	-11.02	64.50	53.14	0.15	0.19	QP
4 @	0.17961	47.56	-6.94	54.50	47.22	0.15	0.19	AVERAGE
5	0.18640	52.60	-11.59	64.20	52.26	0.15	0.19	QP
6	0.18640	45.36	-8.83	54.20	45.02	0.15	0.19	AVERAGE
7	0.29243	49.74	-10.72	60.46	49.39	0.15	0.20	QP
8	0.29243	40.95	-9.51	50.46	40.60	0.15	0.20	AVERAGE
9	0.30348	49.75	-10.40	60.15	49.40	0.15	0.20	QP
10	0.30348	40.60	-9.55	50.15	40.25	0.15	0.20	AVERAGE
11	0.31495	49.30	-10.54	59.84	48.95	0.15	0.20	QP
12	0.31495	38.64	-11.20	49.84	38.29	0.15	0.20	AVERAGE
13	0.55520	41.70	-14.31	56.00	41.34	0.16	0.20	QP
14	0.55520	29.02	-16.99	46.00	28.66	0.16	0.20	AVERAGE
15	0.83047	41.37	-14.63	56.00	41.01	0.16	0.20	QP
16	0.83047	30.23	-15.77	46.00	29.87	0.16	0.20	AVERAGE
17	1.005	40.41	-15.59	56.00	40.04	0.17	0.20	QP
18	1.005	29.04	-16.96	46.00	28.67	0.17	0.20	AVERAGE

Temperature	24°C	Humidity	48%
Test Engineer	Sin Chang	Phase	Neutral
Test Mode	Mode 2		

		Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
		MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1		0.17125	53.02	-11.88	64.90	52.75	0.08	0.19	QP
2		0.17125	42.00	-12.90	54.90	41.73	0.08	0.19	AVERAGE
3	e	0.17584	46.05	-8.63	54.68	45.78	0.08	0.19	AVERAGE
4		0.17584	53.12	-11.56	64.68	52.85	0.08	0.19	QP
5		0.18640	44.28	-9.91	54.20	44.01	0.08	0.19	AVERAGE
6		0.18640	51.54	-12.65	64.20	51.27	0.08	0.19	QP
7		0.29398	48.49	-11.92	60.41	48.21	0.08	0.20	QP
8		0.29398	38.75	-11.66	50.41	38.47	0.08	0.20	AVERAGE
9		0.30998	48.31	-11.66	59.97	48.03	0.08	0.20	QP
10		0.30998	38.33	-11.64	49.97	38.05	0.08	0.20	AVERAGE
11		0.55520	41.56	-14.44	56.00	41.28	0.08	0.20	QP
12		0.55520	29.24	-16.76	46.00	28.96	0.08	0.20	AVERAGE
13		0.76702	42.95	-13.05	56.00	42.66	0.09	0.20	QP
14		0.76702	30.91	-15.09	46.00	30.62	0.09	0.20	AVERAGE
15		4.772	36.08	-19.92	56.00	35.62	0.14	0.32	QP
16		4.772	32.08	-13.92	46.00	31.62	0.14	0.32	AVERAGE

Note:

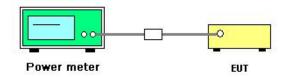
Level = Read Level + LISN Factor + Cable Loss.

4.2. Maximum Conducted Output Power Measurement

4.2.1. Limit

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	Average

4.2.3. Test Procedures

- 1. Test procedures refer KDB558074 v01 r02 section 8.2.3 option 3.
- 2. This procedure provides an alternative for determining the RMS output power using a broadband RF average power meter with a thermocouple detector.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 14 of 38 FCC ID: PY312300209 Issued Date : Mar. 20, 2013

4.2.7. Test Result of Maximum Conducted Output Power

Temperature	25°C	Humidity	56%
Test Engineer	Wen Chao	Configurations	802.15.4 Zigbee
Test Date	Mar. 08, 2013		

Configuration IEEE 802.15.4 Zigbee

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
11	2405 MHz	19.22	30.00	Complies
18	2440 MHz	20.43	30.00	Complies
25	2475 MHz	9.73	30.00	Complies

4.3. Power Spectral Density Measurement

4.3.1. Limit

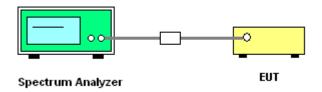
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	5-30 % greater than the DTS channel bandwidth.
RB	≥ 3 kHz
VB	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto couple

4.3.3. Test Procedures


- 1. Test procedures refer KDB 558074 v01 r02 section 9.1 option 1
- Spectrum analyzer must be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span/RBW in order to ensure bin-to-bin spacing of ≤ RBW/2 so that narrowband signals are not lost between frequency bins.
- 3. Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
- 4. Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$ (use of a greater number of measurement points than this minimum requirement is recommended).
- 5. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
- 6. The resulting PSD level must be ≤ 8 dBm.

 Report Format Version: 01
 Page No. : 16 of 38

 FCC ID: PY312300209
 Issued Date : Mar. 20, 2013

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of Power Spectral Density

Temperature	25°C	Humidity	56%
Test Engineer	Wen Chao	Configurations	802.15.4 Zigbee

Configuration IEEE 802.15.4 Zigbee

Fraguency	Power Density (dBm / 3kHz)	Cinalo Dort Limit (dDm /2kllz)	Dogult
Frequency	Ant. 3	Single Port Limit (dBm/3kHz)	Result
2405 MHz	4.06	8.00	Complies
2440 MHz	3.93	8.00	Complies
2475 MHz	-6.83	8.00	Complies

Note: PSD Limit =8dBm-(10log(1))=8dBm/3kHz

Note: All the test values were listed in the report.

For plots, only the channel with maximum results was shown.

Power Density Plot on Configuration 802.15.4 Zigbee / 2405 MHz

Date: 8.MAR.2013 20:58:04

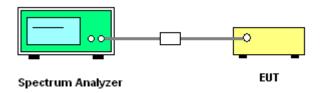
Report Format Version: 01 Page No. : 18 of 38
FCC ID: PY312300209 Issued Date : Mar. 20, 2013

4.4. 6dB Spectrum Bandwidth Measurement

4.4.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.4.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 6dB Bandwidth
RB	1-5 % or DTS BW, not exceed 100KHz
VB	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. Test was performed in accordance with KDB 558074 Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 5.1.1 EBW Measurement Procedure
- 3. Multiple antenna system was performed in accordance with KDB 662911 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

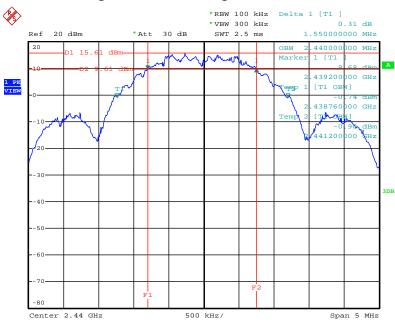
The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: 01
 Page No. : 19 of 38

 FCC ID: PY312300209
 Issued Date : Mar. 20, 2013

4.4.7. Test Result of 6dB Spectrum Bandwidth

Temperature	25°C	Humidity	56%
Test Engineer	Wen Chao	Configurations	802.15.4 Zigbee


Configuration 802.15.4 Zigbee

•	•				
Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
11	2405 MHz	1.57	2.43	500.00	Complies
18	2440 MHz	1.55	2.44	500.00	Complies
25	2475 MHz	1.57	2.43	500.00	Complies

Note: All the test values were listed in the report.

For plots, only the channel with maximum results was shown.

6 dB Bandwidth Plot on Configuration 802.15.4 Zigbee / 2440 MHz

Date: 8.MAR.2013 21:13:45

Report Format Version: 01 Page No. : 20 of 38 FCC ID: PY312300209 Issued Date : Mar. 20, 2013

4.5. Radiated Emissions Measurement

4.5.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance	
(MHz)	(micorvolts/meter)	(meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	100kHz / 300kHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

 Report Format Version: 01
 Page No. : 21 of 38

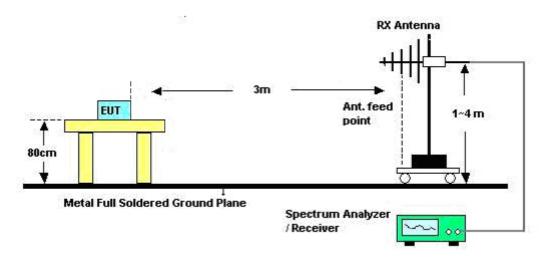
 FCC ID: PY312300209
 Issued Date : Mar. 20, 2013

4.5.3. Test Procedures

1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


Report Format Version: 01 Page No. : 22 of 38 FCC ID: PY312300209 Issued Date : Mar. 20, 2013



4.5.4. Test Setup Layout

For radiated emissions below 1GHz

For radiated emissions above 1GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 23 of 38 FCC ID: PY312300209 Issued Date : Mar. 20, 2013

4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	24.5°C	Humidity	57%
Test Engineer	Sean Ku	Configurations	Normal Link
Test Date	Mar. 09, 2013		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

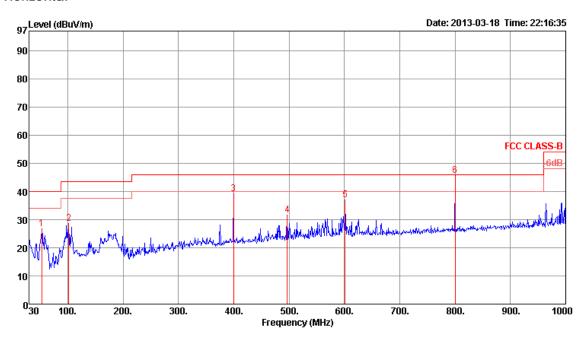
Note:

The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

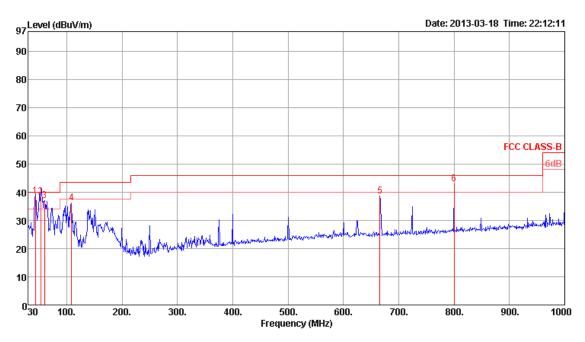
Report Format Version: 01 Page No. : 24 of 38 FCC ID: PY312300209 Issued Date : Mar. 20, 2013



4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24.5℃	Humidity	57%
Test Engineer	Magic Lai	Test Mode	Mode 4

Horizontal


	Freq	Level	Limit Line	Over Limit		CableA Loss				A/Pos	T/P o s	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	53.28	26.69	40.00	-13.31	45.63	0.85	8.00	27.79	Peak	100	0	HORIZONTAL
2	101.78	28.66	43.50	-14.84	43.93	1.18	11.14	27.59	Peak	100	0	HORIZONTAL
3	399.57	39.26	46.00	-6.74	48.50	2.30	16.06	27.60	Peak	100	0	HORIZONTAL
4	496.57	31.67	46.00	-14.33	39.53	2.65	17.57	28.08	Peak	100	0	HORIZONTAL
5	601.33	36.88	46.00	-9.12	43.40	2.81	18.77	28.10	Peak	100	0	HORIZONTAL
6	800.18	45.69	46.00	-0.31	50.30	3.22	19.77	27.60	QP	117	49	HORIZONTAL

 Report Format Version: 01
 Page No. : 25 of 38

 FCC ID: PY312300209
 Issued Date : Mar. 20, 2013

Vertical

	Freq	Level	Limit Line	Over Limit			Antenna Factor			A/Pos	T/P o s	Pol/Phase
	MHz	dBuV/m	dBuV/m	——dB	dBuV	dB	dB/m	——dB		cm	deg	
1	43.58	38.59	40.00	-1.41	54.79	0.72	10.88	27.80	QP	100	120	VERTICAL
2	53.28	38.26	40.00	-1.74	57.20	0.85	8.00	27.79	QP	100	21	VERTICAL
3	60.07	36.95	40.00	-3.05	57.03	0.91	6.77	27.76	Peak	400	0	VERTICAL
4	108.57	36.12	43.50	-7.38	50.80	1.23	11.65	27.56	Peak	400	0	VERTICAL
5	666.32	38.62	46.00	-7.38	44.64	3.03	18.98	28.03	Peak	400	0	VERTICAL
6	800.18	42.88	46.00	-3.12	47.49	3.22	19.77	27.60	Peak	400	ø	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log \text{ Emission level (uV/m)}$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.5.9. Results for Radiated Emissions (1GHz~10th Harmonic)

Temperature	24.5℃	Humidity	57%
Test Engineer	Sean Ku	Configurations	802.15.4 Zigbee CH 11
Test Date	Mar. 09, 2013		

Horizontal

	Freq	Level	Limit Line	Over Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg	
1	4810.74	45.86	74.00	-28.14	41.94	5.76	33.36	35.20	Peak	100	310	HORIZONTAL
2	4810.82	32.76	54.00	-21.24	28.84	5.76	33.36	35.20	Average	100	310	HORIZONTAL

Vertical

				Over						A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol/Phase	2
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg	_
1	4810.86	36.91	54.00	-17.09	32.99	5.76	33.36	35.20	Average	137	210 VERTICAL	
2	4810.94	48.02	74.00	-25.98	44.10	5.76	33.36	35.20	Peak	137	210 VERTICAL	

 Report Format Version: 01
 Page No. : 27 of 38

 FCC ID: PY312300209
 Issued Date : Mar. 20, 2013

Temperature	24.5°C	Humidity	57%
Test Engineer	Sean Ku	Configurations	802.15.4 Zigbee CH 18
Test Date	Mar. 09, 2013		

Horizontal

	Freq	Level	Limit Line	Over Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg	
1 2	4879.01 4879.22								Average Peak	100 100		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg	
1	4879.05 4880.96								Peak Average	100 100		VERTICAL VERTICAL

Temperature	24.5°C	Humidity	57%
Test Engineer	Sean Ku	Configurations	802.15.4 Zigbee CH 25
Test Date	Mar. 09, 2013		

Horizontal

	Freq	Level		Over Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg	
1 2	4949.31 4950.30								Peak Average	100 100		HORIZONTAL HORIZONTAL

Vertical

	Enco	Lough		Over					Remark	A/Pos	T/Pos	Pol/Phase
	rreq	rever	Line	LIMIT	Level	L055	ractor	ractor	Kellark			PO1/Pilase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	4950.55	45.99	74.00	-28.01	41.75	5.83	33.61	35.20	Peak	100	125	VERTICAL
2	4952.29	33.58	54.00	-20.42	29.34	5.83	33.61	35.20	Average	100	125	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log \text{ Emission level (uV/m)}$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 29 of 38

Issued Date: Mar. 20, 2013

4.6. Emissions Measurement

4.6.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	100 kHz /300 kHz for Peak

4.6.3. Test Procedures

For Radiated band edges Measurement:

1. The test procedure is the same as section 4.5.3, only the frequency range investigated is limited to 100MHz around band edges.

For Conducted Out of Band Emission Measurement:

- Test was performed in accordance with KDB 558074 v02 Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 10.1 Unwanted Emissions into Non-Restricted Frequency Bands Measurement Procedure
- The conducted emission test is performed on each TX port of operating mode without summing or adding 10log (N) since the limit is relative emission limit.
 Only worst data of each operating mode is presented.

 Report Format Version: 01
 Page No. : 30 of 38

 FCC ID: PY312300209
 Issued Date : Mar. 20, 2013

4.6.4. Test Setup Layout

For Radiated band edges Measurement:

This test setup layout is the same as that shown in section 4.5.4.

For Conducted Out of Band Emission Measurement:

This test setup layout is the same as that shown in section 4.4.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.6.7. Test Result of Band Edge and Fundamental Emissions

Temperature	24.5℃	Humidity	57%		
Test Engineer	Sean Ku	Configurations	802.15.4 Zigbee CH 11, 18, 25		
Test Date	Mar. 09, 2013				

Channel 11

	Freq	Level	Limit Line	Over Limit				Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	2389.40	62.97	74.00	-11.03	30.95	3.97	28.05	0.00	Peak	147	240	HORIZONTAL
2	2390.00	53.51	54.00	-0.49	21.49	3.97	28.05	0.00	Average	108	240	HORIZONTAL
 3	2405.00	115.83			83.75	3.99	28.09	0.00	Average	147	240	HORIZONTAL
4	2405.60	120.45			88.37	3.99	28.09	0.00	Peak	147	240	HORIZONTAL

Item 3, 4 are the fundamental frequency at 2405 MHz.

Channel 18

	Freq	Level	Limit Line	Over Limit			Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg	
1	2390.00	44.16	54.00	-9.84	12.14	3.97	28.05	0.00	Average	101	252	VERTICAL
2	2390.00	53.98	74.00	-20.02	21.96	3.97	28.05	0.00	Peak	101	252	VERTICAL
3	2440.00	105.89			73.69	4.02	28.18	0.00	Average	101	252	VERTICAL
4	2440.40	110.41			78.21	4.02	28.18	0.00	Peak	101	252	VERTICAL
5	2483.50	44.58	54.00	-9.42	12.27	4.05	28.26	0.00	Average	101	252	VERTICAL
6	2483.50	54.95	74.00	-19.05	22.64	4.05	28.26	0.00	Peak	101	252	VERTICAL

Item 3, 4 are the fundamental frequency at 2440 MHz.

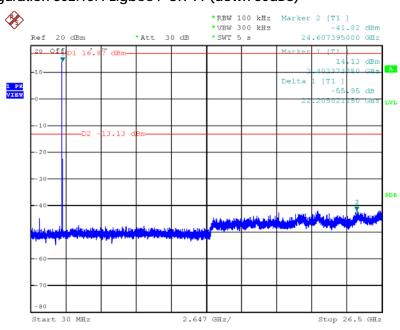
Channel 25

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg	
1	2475.00	106.95			74.64	4.05	28.26	0.00	Average	143	263	HORIZONTAL
2	2475.60	111.46			79.15	4.05	28.26	0.00	Peak	143	263	HORIZONTAL
3	2483.50	63.86	74.00	-10.14	31.55	4.05	28.26	0.00	Peak	143	263	HORIZONTAL
4	2483.90	53.39	54.00	-0.61	21.08	4.05	28.26	0.00	Average	143	263	HORIZONTAL

Item 1, 2 are the fundamental frequency at 2475 MHz.

 Report Format Version: 01
 Page No. : 32 of 38

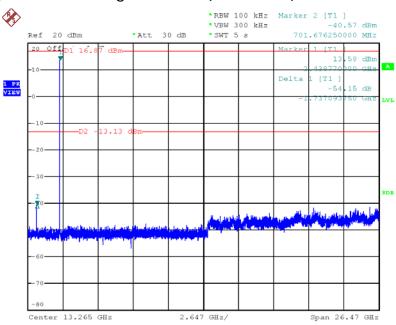

 FCC ID: PY312300209
 Issued Date : Mar. 20, 2013


For Emission not in Restricted Band

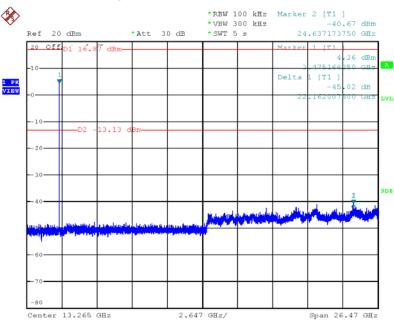
Plot on Configuration 802.15.4 Zigbee / Reference Level

Date: 8.MAR.2013 21:05:15

Plot on Configuration 802.15.4 Zigbee / CH 11 (down 30dBc)



Date: 8.MAR.2013 21:35:11



Plot on Configuration 802.15.4 Zigbee / CH 18 (down 30dBc)

Date: 8.MAR.2013 21:32:29

Plot on Configuration 802.15.4 Zigbee / CH 25 (down 30dBc)

Date: 8.MAR.2013 21:30:44

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Report Format Version: 01 Page No. : 35 of 38 FCC ID: PY312300209 Issued Date : Mar. 20, 2013

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Jan. 11, 2013	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26.5GHz ~ 40GHz	Jul. 31, 2012	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100056	9KHz~40GHz	Nov. 16, 2012	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9KHz ~ 2.75GHz	Mar. 20, 2012	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N.C.R	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100377	9kHz ~ 2.75GHz	Oct. 23, 2012	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Nov. 26, 2012	Conduction (CO01-CB)
V- LISN	Schwarzbeck	NSLK 8127	8127-478	9kHz ~ 30MHz	Jun. 22, 2012	Conduction (CO01-CB)
Impulsbegrenzer Pulse Limiter	Rohde&Schwarz	ESH3-Z2	100430	9kHz~30MHz	Feb. 03, 2013	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	0.15MHz~30MHz	Dec. 04, 2012	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	-	Conduction (CO01-CB)
Signal analyzer	R&S	FSV40	100979	9KHz~40GHz	Oct. 08, 2012	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 05, 2012	Conducted (TH01-CB)
RF Power Divider	Woken	2 Way	0120A02056002D	2GHz ~ 18GHz	Nov. 18, 2012	Conducted (TH01-CB)
RF Power Divider	Woken	3 Way	MDC2366	2GHz ~ 18GHz	Nov. 18, 2012	Conducted (TH01-CB)
RF Power Divider	Woken	4 Way	0120A04056002D	2GHz ~ 18GHz	Nov. 18, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)

Page No. : 36 of 38

Issued Date : Mar. 20, 2013

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 28, 2012	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Nov. 27, 2012	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

"*" Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

Report Format Version: 01 Page No. : 37 of 38 FCC ID: PY312300209 Issued Date : Mar. 20, 2013

6. TEST LOCATION

SHIJR	ADD	:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
SHISK			• • • • • • • • • • • • • • • • • • • •
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4Fl., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085