

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	NETGEAR, Inc.
Applicant Address	350 East Plumeria Drive, San Jose, California 95134, USA
FCC ID	PY312200200

Product Name	WiFi USB Adapter		
Brand Name	NETGEAR		
Model No.	A6200		
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407		
Test Freq. Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz		
Received Date	Jun. 22, 2012		
Final Test Date	Sep. 04, 2015		
Submission Type	Class II Change		

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a/ac of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart E, KDB789033 D02 v01, KDB662911 D01 v02r01, KDB644545 D03 v01.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	VERIF	FICATION OF COMPLIANCE	1
2.	SUMN	MARY OF THE TEST RESULT	2
3.	GENE	ERAL INFORMATION	3
	3.1.	Product Details	3
	3.2.	Accessories	4
	3.3.	Table for Filed Antenna	5
	3.4.	Table for Carrier Frequencies	6
	3.5.	Table for Test Modes	7
	3.6.	Table for Testing Locations	9
	3.7.	Table for Class II Change	9
	3.8.	Table for Supporting Units	10
	3.9.	Table for Parameters of Test Software Setting	
	3.10.	EUT Operation during Test	12
	3.11.	Duty Cycle	12
	3.12.	Test Configurations	13
4.	TEST I	RESULT	15
	4.1.	26dB Bandwidth and 99% Occupied Bandwidth Measurement	15
	4.2.	6dB Spectrum Bandwidth Measurement	25
	4.3.	Maximum Conducted Output Power Measurement	31
	4.4.	Power Spectral Density Measurement	35
	4.5.	Radiated Emissions Measurement	43
	4.6.	Band Edge Emissions Measurement	61
	4.7.	Antenna Requirements	70
5.	LIST C	OF MEASURING EQUIPMENTS	71
6.	MEAS	SUREMENT UNCERTAINTY	72
AF	PEND	DIX A. TEST PHOTOS	A1 ~ A3

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR262930-05	Rev. 01	Initial issue of report	Sep. 16, 2015

Project No: CB10409091

1. VERIFICATION OF COMPLIANCE

Product Name : WiFi USB Adapter

Brand Name : NETGEAR Model No. : A6200

Applicant : NETGEAR, Inc.

Test Rule Part(s): 47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jun. 22, 2012 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

Page No. : 1 of 72

Issued Date : Sep. 16, 2015

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E						
Part	Rule Section	Result	Under Limit				
4.1	15.407(a)	26dB Spectrum Bandwidth and 99% Occupied Bandwidth	Complies	-			
4.2	15.407(e)	6dB Spectrum Bandwidth Complies		-			
4.3	15.407(a)	Maximum Conducted Output Power	Complies	14.17 dB			
4.4	15.407(a)	Power Spectral Density	Complies	29.04 dB			
4.5	15.407(b)	Radiated Emissions	Complies	10.22 dB			
4.6	15.407(b)	Band Edge Emissions	Complies	0.22 dB			
4.7	15.203	Antenna Requirements	Complies	-			

3. GENERAL INFORMATION

3.1. Product Details

Items	Description			
Product Type	WLAN (2TX, 2RX)			
Radio Type	Intentional Transceiver			
Power Type	From host system			
Modulation	IEEE 802.11a: OFDM			
	IEEE 802.11n/ac: see the below table			
Data Modulation	IEEE 802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)			
	IEEE 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)			
Data Rate (Mbps)	IEEE 802.11a: OFDM (6/9/12/18/24/36/48/54)			
	IEEE 802.11n/ac: see the below table			
Frequency Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz			
Channel Number	9 for 20MHz bandwidth ; 4 for 40MHz bandwidth			
	2 for 80MHz bandwidth			
Channel Band Width (99%)	For Non-beamforming Mode:			
	IEEE 802.11a: 16.41 MHz			
	IEEE 802.11n MCS0 (HT20): 17.37 MHz			
	IEEE 802.11n MCS0 (HT40): 37.05 MHz			
	IEEE 802.11ac MCS0/Nss1 (VHT20): 17.37 MHz			
	IEEE 802.11ac MCS0/Nss1 (VHT40): 37.05 MHz			
	IEEE 802.11ac MCS0/Nss1 (VHT80): 76.12 MHz			
	For Beamforming Mode:			
	IEEE 802.11ac MCS0/Nss1 (VHT80): 75.83 MHz			
Maximum Conducted Output	For Non-beamforming Mode:			
Power	IEEE 802.11a: 15.79 dBm			
	IEEE 802.11n MCS0 (HT20): 15.69 dBm			
	IEEE 802.11n MCS0 (HT40): 15.65 dBm			
	IEEE 802.11ac MCS0/Nss1 (VHT20): 15.83 dBm			
	IEEE 802.11ac MCS0/Nss1 (VHT40): 15.83 dBm			
	IEEE 802.11ac MCS0/Nss1 (VHT80): 13.94 dBm			
	For Beamforming Mode:			
	IEEE 802.11ac MCS0/Nss1 (VHT80): 13.94 dBm			
Carrier Frequencies	Please refer to section 3.4			
Antenna	Please refer to section 3.3			

 Report Format Version: Rev. 01
 Page No. : 3 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

Items	Description				
Communication Mode					
Beamforming Function	With beamforming for 802.11ac VHT80 in 5GHz.☐ Without beamforming				
Operating Mode	Outdoor access point				
	☐ Indoor access point				
	Fixed point-to-point access points				
	Mobile and portable client devices				

Note: The product has beamforming function for 802.11ac VHT80 in 5150-5250MHz and 5725-5850MHz.

Antenna and Band width

Antenna	Two (TX)			
Band width Mode	20 MHz	80 MHz		
IEEE 802.11a	V	Х	Х	
IEEE 802.11n	V	V	X	
IEEE 802.11ac	V	V	V	

IEEE 11n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	2	MC\$ 0-15
802.11n (HT40)	2	MC\$ 0-15
802.11ac (VHT20)	2	MCS 0-9/Nss1-2
802.11ac (VHT40)	2	MCS 0-9/Nss1-2
802.11ac (VHT80)	2	MCS 0-9/Nss1-2

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT supports HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT supports VHT20, VHT40 and VHT80.

Note 3: Modulation modes consist of below configuration:

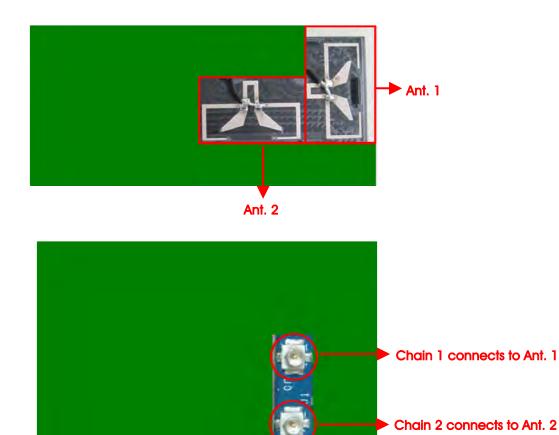
HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac

3.2. Accessories

	Others	
USB Cable * 1, Non-Shield 0.8m		

 Report Format Version: Rev. 01
 Page No. : 4 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015


3.3. Table for Filed Antenna

						Gain (dBi)	
Ant.	Brand	Model Name	Antenna Type	Antenna Type Connector 5GHz		Hz	
			2.4GHz	Band 1	Band 4		
1	WNC	-	LCD Antenna	I-PEX	4.30	4.75	4.30
2	WNC	-	LCD Antenna	I-PEX	4.30	4.75	4.30

Note: The EUT has two antennas

For IEEE 802.11a/n/ac mode (2TX/2RX):

Ant. 1 and Ant. 2 could transmit/receive simultaneously.

 Report Format Version: Rev. 01
 Page No. : 5 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

3.4. Table for Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48, 149, 153, 157, 161, 165.

For 40MHz bandwidth systems, use Channel 38, 46, 151, 159.

For 80MHz bandwidth systems, use Channel 42, 155.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5150~5250 MHz	38	5190 MHz	46	5230 MHz
Band 1	40	5200 MHz	48	5240 MHz
	42	5210 MHz	-	-
	149	5745 MHz	157	5785 MHz
5725~5850 MHz	151	5755 MHz	159	5795 MHz
Band 4	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Мо	de	Data Rate	Channel	Ant.		
Max. Conducted Output Power	Non-beamfor	ming Mode					
	11a/BPSK	Band 4	6Mbps	149/157/165	1+2		
	11n HT20	Band 4	MCS0	149/157/165	1+2		
	11n HT40	Band 4	MCS0	151/159	1+2		
	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1+2		
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1+2		
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2		
	Beamforming Mode						
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2		
Power Spectral Density	Non-beamforming Mode						
	11a/BPSK	Band 4	6Mbps	149/157/165	1+2		
	11n HT20	Band 4	MCS0	149/157/165	1+2		
	11n HT40	Band 4	MCS0	151/159	1+2		
	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1+2		
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1+2		
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2		
	Beamforming	Mode					
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2		
26dB Spectrum Bandwidth &	Non-beamfo	rming Mode					
99% Occupied Bandwidth	11a/BPSK	Band 4	6Mbps	149/157/165	1+2		
Measurement	11n HT20	Band 4	MCS0	149/157/165	1+2		
	11n HT40	Band 4	MCS0	151/159	1+2		
	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1+2		
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1+2		
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2		
	Beamforming	Mode	•	•	•		

 Report Format Version: Rev. 01
 Page No. : 7 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

6dB Spectrum Bandwidth	Non-beamfor	rming Mode					
Measurement	11a/BPSK	Band 4	6Mbps	149157/165	1+2		
	11n HT20	Band 4	MCS0	149/157/165	1+2		
	11n HT40	Band 4	MCS0	151/159	1+2		
	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1+2		
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1+2		
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2		
	Beamforming Mode						
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2		
Radiated Emission Above 1GHz	Non-beamforming Mode						
	11a/BPSK	Band 4	6Mbps	149/157/165	1+2		
	11n HT20	Band 4	MCS0	149/157/165	1+2		
	11n HT40	Band 4	MCS0	151/159	1+2		
	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1+2		
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1+2		
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2		
	Beamforming	Mode			•		
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2		
Band Edge Emission	Non-beamforming Mode						
	11a/BPSK	Band 4	6Mbps	149/157/165	1+2		
	11n HT20	Band 4	MCS0	149/157/165	1+2		
	11n HT40	Band 4	MCS0	151/159	1+2		
	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1+2		
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1+2		
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2		
	Beamforming	Mode					
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2		

Note: There are two modes of EUT, one is beamforming mode, and the other is non-beamforming mode for 802.11ac VHT80, Beamforming mode and non-beamforming mode has been test and record in this test report.

For original test report, the following test modes were performed for all tests:

Mode 1: EUT - Z axis + antenna 0°

Mode 2: EUT - Z axis + antenna 90°

Mode 3: EUT - Z axis + antenna 180°

Mode 3 has been evaluated to be the worst case, thus measurement will follow this same test mode.

Mode 4: EUT - Y axis + antenna 180°

Mode 5: EUT - X axis + antenna 180°

 Report Format Version: Rev. 01
 Page No. : 8 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

For Radiated Emissions (1GHz~10th Harmonic)

Mode 5 generated the worst case, so it was selected to perform test and its test result was written in the report.

For Band Edge Emissions

Mode 2 generated the worst case of original test, so it was selected to perform test and its test result was written in the report.

3.6. Table for Testing Locations

Test Site Location							
Address:	ss: No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.						
TEL:	886	886-3-656-9065					
FAX:	886	886-3-656-9085					
Test Site N	o. Site Category Location FCC Reg. No. IC File No. VCCI Reg. No						
03CH01-0	CB SAC Hsin Chu 262045 IC 4086D -					-	
TH01-CE	3	OVEN Room Hsin Chu					

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Class II Change

This product is an extension of original one reported under Sporton project number: FR262930AA, FR262930AB, FR262930-02AA and FR262930-02AB

Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking		
1. Changing 5GHz Band 1 to "New	After evaluating, it's not necessary to re-test all test items for		
Rules" from "Old Rules".	5GHz Band 1 updating to "New Rules" due to the same		
Kules Holli Old Kules .	power as original filing.		
	1. 26dB Spectrum Bandwidth and 99% Occupied Bandwidth		
	2. 6dB Spectrum Bandwidth		
2. Changing 5GHz Band 4 to "New	3. Maximum Conducted Output Power		
Rules" from "Old Rules".	4. Power Spectral Density		
	5. Radiated Emissions		
	6. Band Edge Emissions		
Note: There is no change in hardware or in existing RF relevant portion.			

: 9 of 72 Page No. FCC ID: PY312200200 Issued Date : Sep. 16, 2015

Report Format Version: Rev. 01

3.8. Table for Supporting Units

For Test Site No: 03CH01-CB (Above 1GHz)

For Non-beamforming Mode:

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E4300	DoC

For Test Site No: 03CH01-CB (Above 1GHz)

For Beamforming Mode:

Support Unit	Brand	Model	FCC ID
Notebook*2	DELL	E4300	DoC
AP	Netgear	R7000	PY313200233

For Test Site No: TH01-CB

Support Unit	Brand	Model	FCC ID
Notebook	Notebook DELL		DoC

 Report Format Version: Rev. 01
 Page No. : 10 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

3.9. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

For Non-beamforming Mode:

Test Software Version	Mtool V1.0.0.10				
	Test Frequency (MHz)				
Mode	NCB: 20MHz				
	5745 MHz	5785 MHz	5825 MHz		
802.11a	46	46	46		
802.11n MCS0 HT20	46	44	46		
802.11ac MCS0/Nss1 VHT20	47	46	48		
Mode	NCB: 40MHz				
Mode	5755 MHz		5795 MHz		
802.11n MCS0 HT40	45		44		
802.11ac MCS0/Nss1 VHT40	45 45				
Mode	NCB: 80MHz				
802.11ac MCS0/Nss1 VHT80	5775 MHz				
002.11GC WC30/NSS1 VH100	38				

For Beamforming Mode:

Test Software Version	Mtool V1.0.0.10			
	Test Frequency (MHz)			
Mode	NCB: 80MHz			
	5775 MHz			
802.11ac MCS0/Nss1 VHT80	38			

 Report Format Version: Rev. 01
 Page No. : 11 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

3.10.EUT Operation during Test

For non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

For Conducted Mode:

The EUT was programmed to be in continuously transmitting mode.

For Radiated Mode:

During the test, the following programs under WIN XP were executed.

The program was executed as follows:

- 1. During the test, the EUT operation to normal function.
- 2. Executed command fixed test channel under DOS.
- 3. Executed "Lantest.exe" to link with the remote workstation to receive and transmit packet by Wireless AP and transmit duty cycle no less 98%

3.11. Duty Cycle

For Non-beamforming Mode:

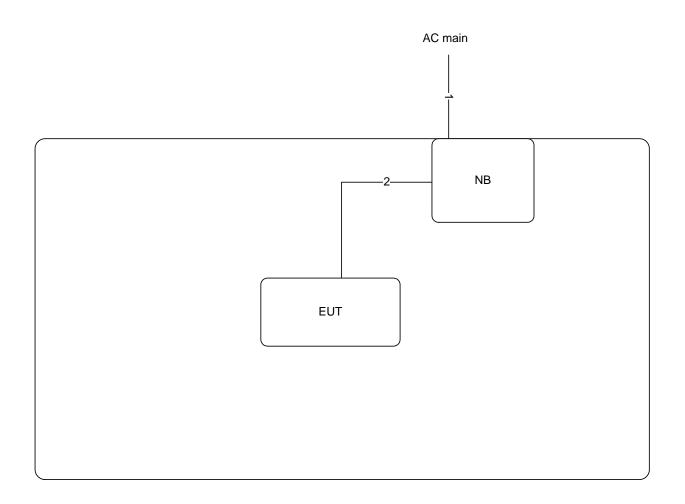
Mada	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
Mode	(ms)	(ms)	(%)	(dB)	(kHz)
802.11a	2.055	2.092	98.23	0.08	0.01
802.11n MCS0 HT20	1.909	1.938	98.50	0.07	0.01
802.11n MCS0 HT40	0.945	0.970	97.39	0.11	1.06
802.11ac MCS0/Nss1 VHT20	1.922	1.947	98.72	0.06	0.01
802.11ac MCS0/Nss1 VHT40	0.950	0.976	97.34	0.12	1.05
802.11ac MCS0/Nss1 VHT80	0.460	0.759	60.66	2.17	2.17

For Beamforming Mode:

Mode	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
	(ms)	(ms)	(%)	(dB)	(kHz)
802.11ac MCS0/Nss1 VHT80	0.599	1.095	54.73	2.62	1.67

 Report Format Version: Rev. 01
 Page No. : 12 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

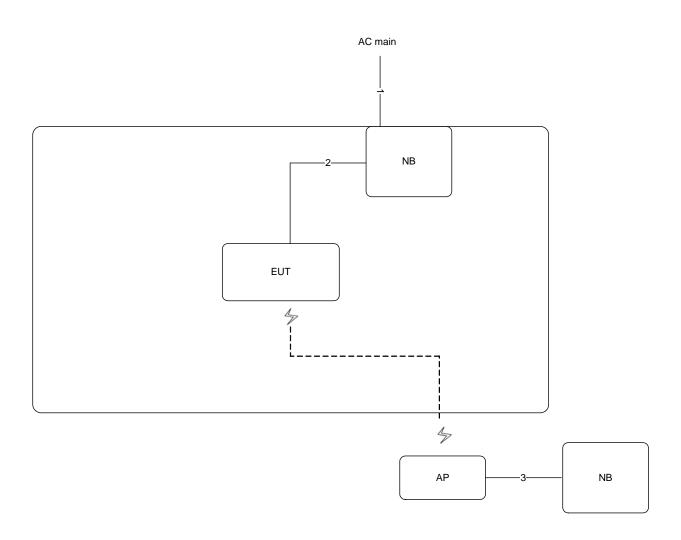


3.12. Test Configurations

3.12.1. Radiation Emissions Test Configuration

For Non-beamforming Mode:

Test Configuration: above 1GHz


Item	Connection	Connection Shielded	
1	Power cable	No	2.6
2	USB cable	Yes	1

 Report Format Version: Rev. 01
 Page No. : 13 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

For Beamforming Mode:

Test Configuration: above 1GHz

Item	Connection	Shielded	Length(m)
1	Power cable	No	2.6
2	USB cable	Yes	1
3	RJ-45 cable	No	1

 Report Format Version: Rev. 01
 Page No. : 14 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

4. TEST RESULT

4.1. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

4.1.1. Limit

No restriction limits.

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

26dB Bandwidth			
Spectrum Parameters	Setting		
Attenuation	Auto		
Span Frequency	> 26dB Bandwidth		
RBW	Approximately 1% of the emission bandwidth		
VBW	VBW > RBW		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		
	99% Occupied Bandwidth		
Spectrum Parameters	Setting		
Span	1.5 times to 5.0 times the OBW		
RBW	1 % to 5 % of the OBW		
VBW	≥ 3 x RBW		
Detector	Peak		
Trace	Max Hold		

4.1.3. Test Procedures

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission.
 Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.1.4. Test Setup Layout

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 15 of 72

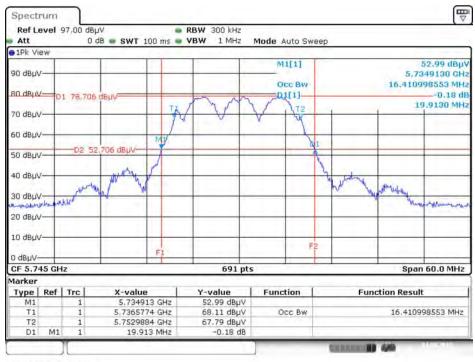
 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

4.1.7. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth

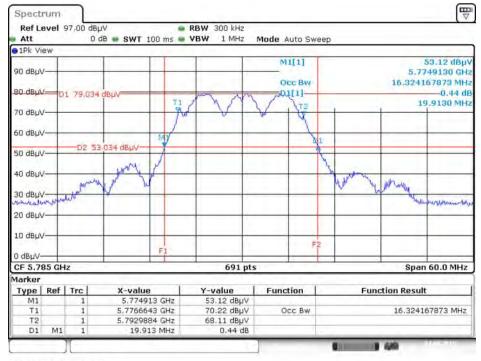
For Non-beamforming Mode:

Temperature	25℃	Humidity	45%
Test Engineer	Serway Li / Roki Liu		

Mode	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	5745 MHz	19.91	16.41
802.11a	5785 MHz	19.91	16.32
	5825 MHz	19.91	16.24
900 11-	5745 MHz	20.26	17.28
802.11n	5785 MHz	20.26	17.28
MCS0 HT20	5825 MHz	20.26	17.37
802.11n	5755 MHz	40.73	37.05
MCS0 HT40	5795 MHz	40.73	36.90
900 11 00	5745 MHz	20.17	17.37
802.11ac	5785 MHz	20.35	17.28
MCS0/Nss1 VHT20	5825 MHz	20.43	17.37
802.11ac	5755 MHz	40.87	37.05
MCS0/Nss1 VHT40	5795 MHz	40.73	36.90
802.11ac MCS0/Nss1 VHT80	5775 MHz	82.32	76.12


 Report Format Version: Rev. 01
 Page No. : 16 of 72

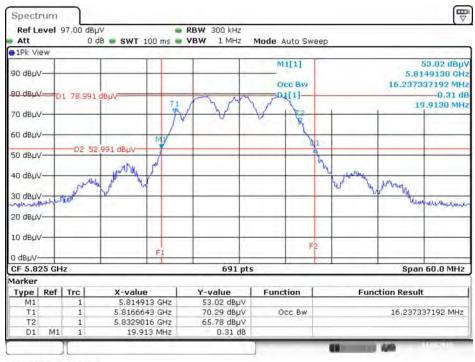
 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015



26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 2 / 5745 MHz

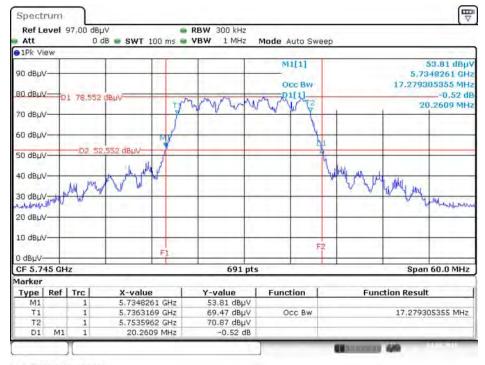
Date: 4.SEP.2015 11:07:11

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 2 / 5785 MHz


Date: 4.SEP.2015 11:08:05

 Report Format Version: Rev. 01
 Page No.
 : 17 of 72

 FCC ID: PY312200200
 Issued Date
 : Sep. 16, 2015

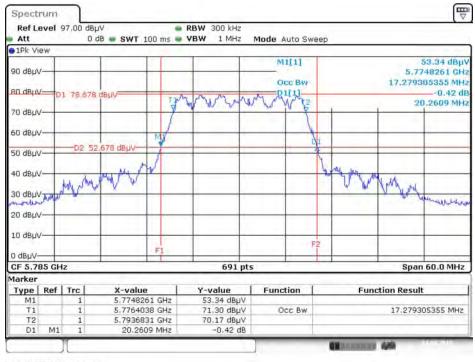


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 2 / 5825 MHz

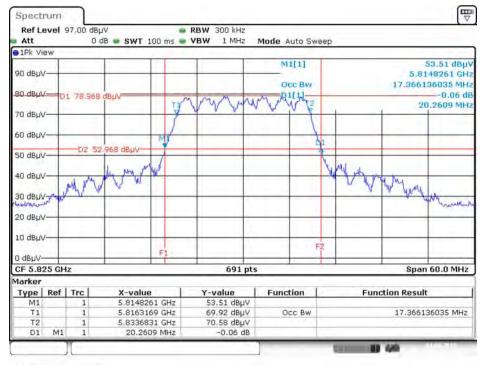
Date: 4.SEP.2015 11:08:47

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Ant. 1 + Ant. 2 / 5745 MHz

Date: 4.SEP.2015 11:12:52


 Report Format Version: Rev. 01
 Page No.
 : 18 of 72

 FCC ID: PY312200200
 Issued Date
 : Sep. 16, 2015

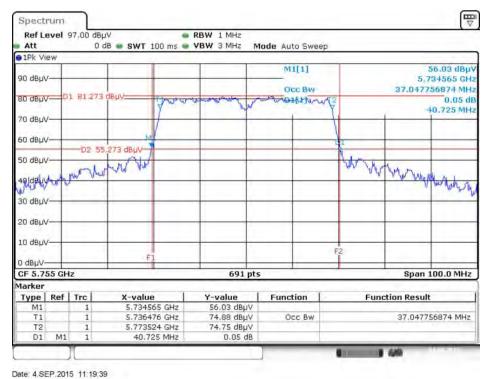

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Ant. 1

+ Ant. 2 / 5785 MHz

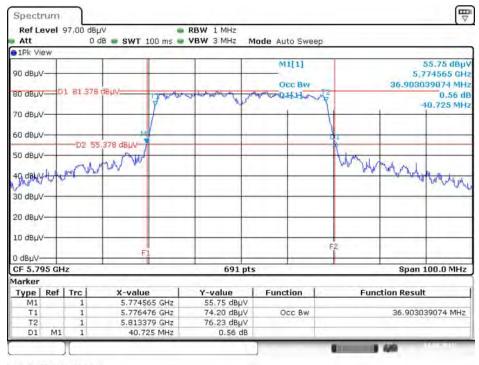
Date: 4.SEP.2015 11:13:33

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Ant. 1 + Ant. 2 / 5825 MHz

Date: 4.SEP.2015 11:14:12

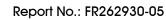

 Report Format Version: Rev. 01
 Page No. : 19 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

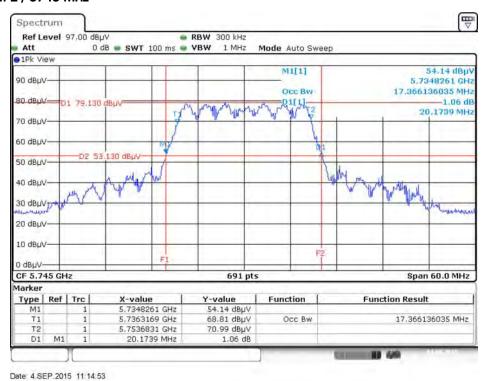

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Ant. 1

+ Ant. 2 / 5755 MHz

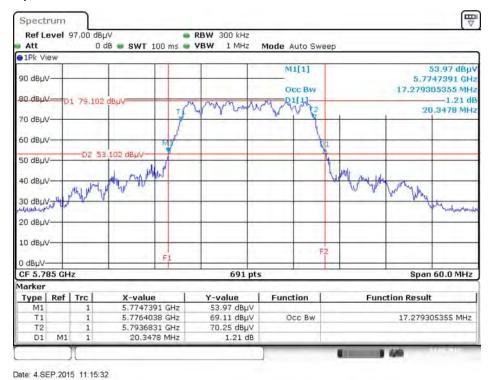
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Ant. 1


+ Ant. 2 / 5795 MHz

Date: 4.SEP.2015 11:20:18

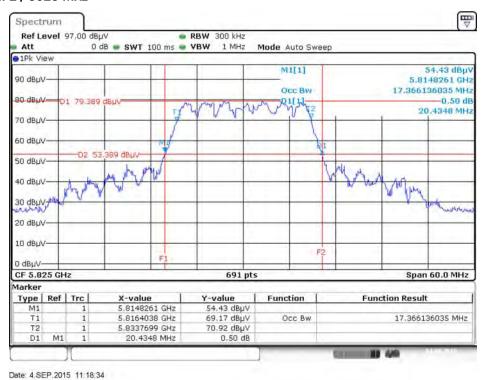

 Report Format Version: Rev. 01
 Page No.
 : 20 of 72

 FCC ID: PY312200200
 Issued Date
 : Sep. 16, 2015

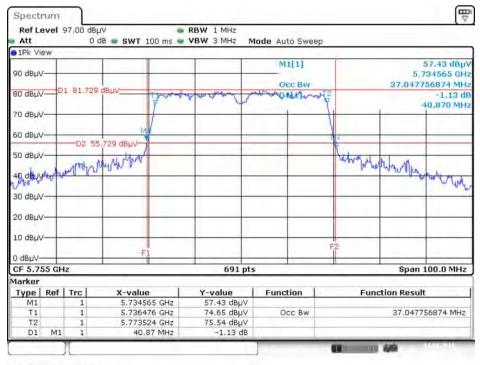


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Ant. 1 + Ant. 2 / 5745 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Ant. 1 + Ant. 2 / 5785 MHz



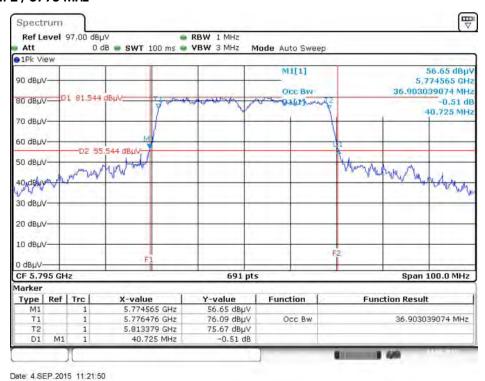
 Report Format Version: Rev. 01
 Page No.
 : 21 of 72


 FCC ID: PY312200200
 Issued Date
 : Sep. 16, 2015

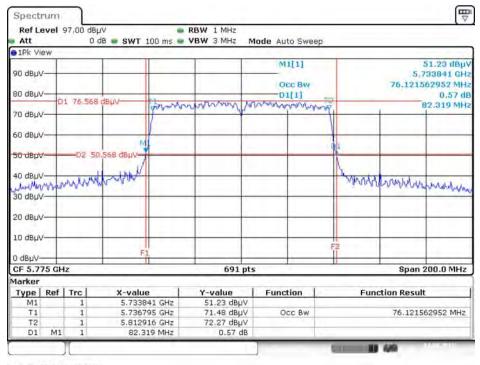
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Ant. 1 + Ant. 2 / 5825 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Ant. 1 + Ant. 2 / 5755 MHz

Date: 4.SEP.2015 11:21:14


 Report Format Version: Rev. 01
 Page No.
 : 22 of 72

 FCC ID: PY312200200
 Issued Date
 : Sep. 16, 2015

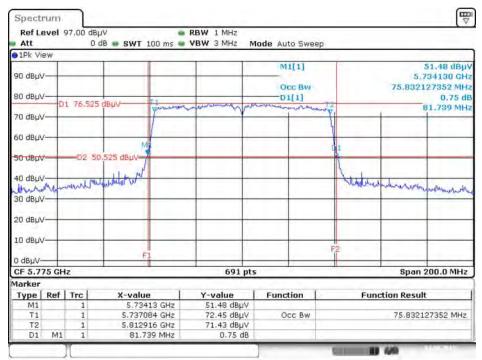


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Ant. 1 + Ant. 2 / 5795 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Ant. 1 + Ant. 2 / 5775 MHz

Date: 4.SEP.2015 11:22:49

 Report Format Version: Rev. 01
 Page No.
 : 23 of 72


 FCC ID: PY312200200
 Issued Date
 : Sep. 16, 2015

For Beamforming Mode:

Temperature	25℃	Humidity	45%
Test Engineer	Serway Li		

Mode	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
802.11ac MCS0/Nss1 VHT80	5775 MHz	81.74	75.83
IVICSU/INSST VHTOU			

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Ant. 1 + Ant. 2 / 5775 MHz

Date: 4.SEP.2015 11:04:39

 Report Format Version: Rev. 01
 Page No. : 24 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

4.2. 6dB Spectrum Bandwidth Measurement

4.2.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

a.i.a., z.c.i.		
6dB Spectrum Bandwidth		
Spectrum Parameters	Setting	
Attenuation	Auto	
Span Frequency	> 6dB Bandwidth	
RBW	100kHz	
VBW	≥ 3 x RBW	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

4.2.3. Test Procedures

For Radiated 6dB Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth.
- Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions
 Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

4.2.4. Test Setup Layout

For Radiated 6dB Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No.
 : 25 of 72

 FCC ID: PY312200200
 Issued Date
 : Sep. 16, 2015

4.2.7. Test Result of 6dB Spectrum Bandwidth

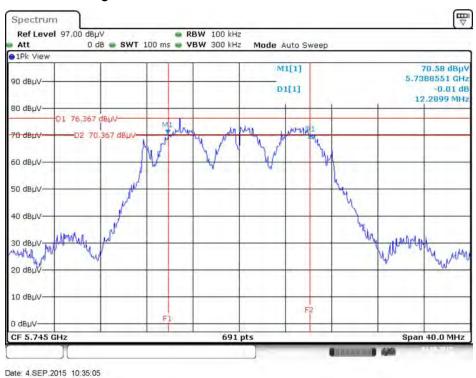
For Non-beamforming Mode:

Temperature	25℃	Humidity	45%
Test Engineer	Serway Li / Roki Liu		

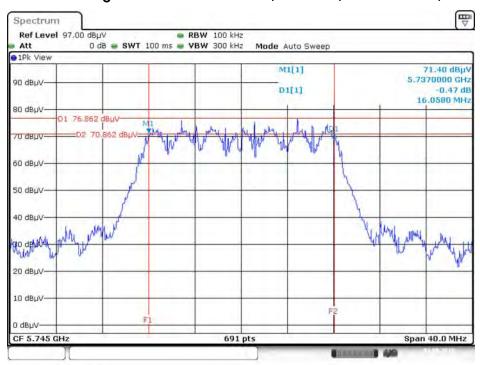
Mode	Frequency	6dB Bandwidth (MHz)	Min. Limit (kHz)	Test Result
	5745 MHz	12.29	500	Complies
802.11a	5785 MHz	12.93	500	Complies
	5825 MHz	12.93	500	Complies
802.11n	5745 MHz	16.06	500	Complies
MCS0/Nss1 HT20	5785 MHz	16.06	500	Complies
101030/14331 11120	5825 MHz	16.70	500	Complies
802.11n	5755 MHz	35.83	500	Complies
MCS0 HT40	5795 MHz	35.48	500	Complies
802.11ac	5745 MHz	16.12	500	Complies
MCS0/Nss1	5785 MHz	16.06	500	Complies
VHT20	5825 MHz	16.06	500	Complies
802.11ac MCS0/Nss1	5755 MHz	35.71	500	Complies
VHT40	5795 MHz	35.71	500	Complies
802.11ac MCS0/Nss1 VHT80	5775 MHz	75.07	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

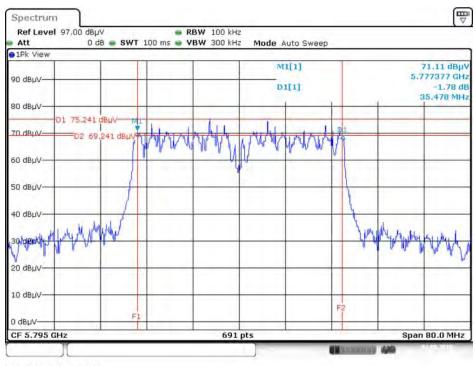

 Report Format Version: Rev. 01
 Page No. : 26 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

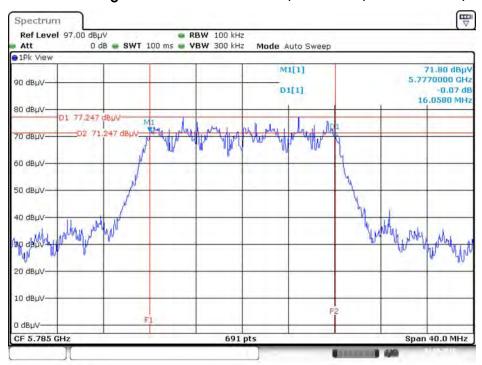


6 dB Bandwidth Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 2 / 5745 MHz

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0/Nss1 HT20 / Ant. 1 + Ant. 2 / 5745 MHz

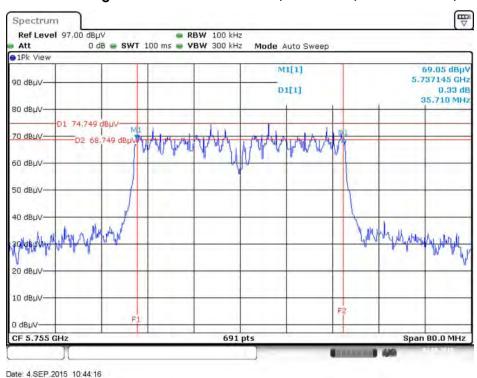


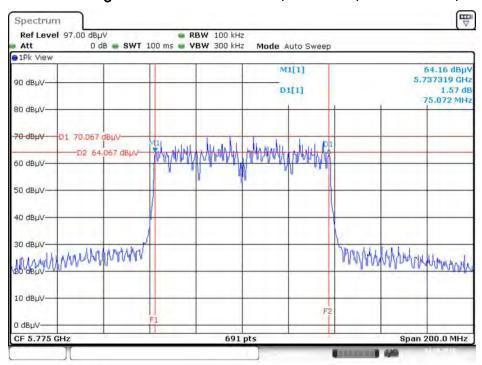
Date: 4.SEP.2015 10:38:40



6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Ant. 1 + Ant. 2 / 5795MHz

Date: 4.SEP.2015 10:43:20


6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Ant. 1 + Ant. 2 / 5785 MHz

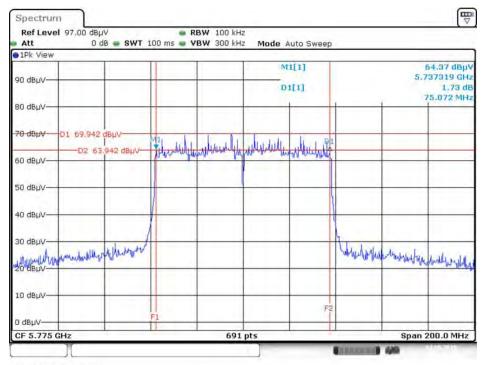

Date: 4.SEP.2015 10:41:14

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Ant. 1 + Ant. 2 / 5755MHz

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Ant. 1 + Ant. 2 / 5775 MHz

Date: 4.SEP.2015 10:46:01

For Beamforming Mode:


Temperature	25℃	Humidity	45%
Test Engineer	Serway Li		

Mode	Frequency	6dB Bandwidth (MHz)	Min. Limit (kHz)	Test Result
802.11ac MC\$0/Nss1 VHT80	5775 MHz	75.07	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Ant. 1 + Ant. 2 / 5775 MHz

Date: 4.SEP.2015 10:53:24

 Report Format Version: Rev. 01
 Page No. : 30 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

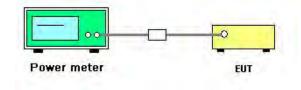
Frequency Band		Limit
5.15~5.25 GHz		
Оре	erating Mode	
	Outdoor access point	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
	Indoor access point	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	Fixed point-to-point access points	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm). Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
	Mobile and portable client devices	The maximum conducted output power over the frequency band of operation shall not exceed 250 mW (24dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

 Report Format Version: Rev. 01
 Page No. : 31 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

\square	5.725~5.85 GHz	The maximum conducted output power over the				
	0.720 0.00 0112					
		frequency band of operation shall not exceed 1 W				
		(30dBm). If transmitting antennas of directional gain				
		greater than 6 dBi are used, both the maximum				
		conducted output power and the maximum power				
		spectral density shall be reduced by the amount in de-				
		that the directional gain of the antenna exceeds 6 dBi.				
		However, fixed point-to-point U-NII devices operating in				
		this band may employ transmitting antennas with				
		directional gain greater than 6 dBi without any				
ı		corresponding reduction in transmitter conducted				
		power.				

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	AVERAGE

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- 2. Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).
- 3. Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No.
 : 32 of 72

 FCC ID: PY312200200
 Issued Date
 : Sep. 16, 2015

4.3.7. Test Result of Maximum Conducted Output Power

For Non-beamforming Mode:

Temperature	25°C	Humidity	45%
Test Engineer	Serway Li / Roki Liu	Test Date	Sep. 04, 2015

Mada	Frequency	Conducted Power (dBm)			Max. Limit	Doorth
Mode		Ant. 1	Ant. 2	Total	(dBm)	Result
	5745 MHz	12.72	12.43	15.59	30.00	Complies
802.11a	5785 MHz	12.41	12.80	15.62	30.00	Complies
	5825 MHz	12.93	12.62	15.79	30.00	Complies
802.11n	5745 MHz	12.68	12.55	15.63	30.00	Complies
MCS0/Nss1	5785 MHz	12.74	12.61	15.69	30.00	Complies
HT20	5825 MHz	12.68	12.43	15.57	30.00	Complies
802.11n	5755 MHz	12.70	12.58	15.65	30.00	Complies
MCS0 HT40	5795 MHz	12.68	12.53	15.62	30.00	Complies
802.11ac	5745 MHz	12.52	12.91	15.73	30.00	Complies
MCS0/Nss1	5785 MHz	12.69	12.51	15.61	30.00	Complies
VHT20	5825 MHz	12.73	12.91	15.83	30.00	Complies
802.11ac MCS0/Nss1	5755 MHz	12.72	12.58	15.66	30.00	Complies
VHT40	5795 MHz	12.84	12.80	15.83	30.00	Complies
802.11ac MCS0/Nss1 VHT80	5775 MHz	10.74	11.11	13.94	30.00	Complies

For Beamforming Mode:

Temperature	25 ℃	Humidity	45%
Test Engineer	Serway Li	Test Date	Sep. 04, 2015

Mode	Fraguenov	Conducted Power (dBm)			Max. Limit	Result
IVIOGE	Frequency	Ant. 1	Ant. 2	Total	(dBm)	Kesuli
802.11ac						
MCS0/Nss1	5775 MHz	10.74	11.11	13.94	28.69	Complies
VHT80						

Note:
$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 7.31 \, \text{dBi, so limit} = 30 - (7.31-6) = 28.69 \, \text{dBm/MHz}$$

 Report Format Version: Rev. 01
 Page No. : 34 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

4.4. Power Spectral Density Measurement

4.4.1. Limit

The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

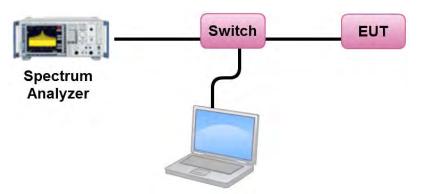
	Frequency Band	Limit
5.15	5~5.25 GHz	
Оре	erating Mode	
	Outdoor access point	17 dBm/MHz
	Indoor access point	17 dBm/MHz
	Fixed point-to-point access points	17 dBm/MHz
Mobile and portable client devices		11 dBm/MHz
5.72	25~5.85 GHz	30 dBm/500kHz

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1000 kHz
VBW	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times

Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10\log(500kHz/RBW)$ to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.


 Report Format Version: Rev. 01
 Page No. : 35 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- 2. Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices section (F) Maximum Power Spectral Density (PSD).
- 3. Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.
- 5. For 5.725~5.85 GHz, the measured result of PSD level must add 10log(500kHz/RBW) and the final result should ≤ 30 dBm.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No.
 : 36 of 72

 FCC ID: PY312200200
 Issued Date
 : Sep. 16, 2015

4.4.7. Test Result of Power Spectral Density

For Non-beamforming Mode:

Temperature	25 ℃	Humidity	45%
Test Engineer	Serway Li / Roki Liu		

Configuration IEEE 802.11a / Ant. 1 + Ant. 2

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
149	5745 MHz	2.39	-3.01	-0.62	28.69	Complies
157	5785 MHz	2.40	-3.01	-0.61	28.69	Complies
165	5825 MHz	2.66	-3.01	-0.35	28.69	Complies

Note:
$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 7.31 \, \text{dBi, so limit} = 30 - (7.31-6) = 28.69 \, \text{dBm/MHz}$$

Configuration IEEE 802.11n MCS0/Nss1 HT20 / Ant. 1 + Ant. 2

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	l Limit	Result
149	5745 MHz	2.24	-3.01	-0.77	28.69	Complies
157	5785 MHz	2.20	-3.01	-0.81	28.69	Complies
165	5825 MHz	2.19	-3.01	-0.82	28.69	Complies

Note:
$$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 7.31 dBi$$
, so $limit=30-(7.31-6)=28.69 dBm/MHz$

Configuration IEEE 802.11n MCS0 HT40 / Ant. 1 + Ant. 2

	Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Limit	Result
	151	5755 MHz	-0.48	-3.01	-3.49	28.69	Complies
Ī	159	5795 MHz	-0.45	-3.01	-3.46	28.69	Complies

Note:
$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 7.31 dBi, so limit=30-(7.31-6)=28.69 dBm/MHz$$

 Report Format Version: Rev. 01
 Page No.
 : 37 of 72

 FCC ID: PY312200200
 Issued Date
 : Sep. 16, 2015

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Ant. 1 + Ant. 2

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	IIIMI	Result
149	5745 MHz	2.25	-3.01	-0.76	28.69	Complies
157	5785 MHz	2.15	-3.01	-0.86	28.69	Complies
165	5825 MHz	2.41	-3.01	-0.60	28.69	Complies

Note:
$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 7.31 \, \text{dBi, so limit} = 30 - (7.31-6) = 28.69 \, \text{dBm/MHz}$$

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Ant. 1 + Ant. 2

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	I IMIT	Result
151	5755 MHz	-0.74	-3.01	-3.75	28.69	Complies
159	5795 MHz	-0.32	-3.01	-3.33	28.69	Complies

Note:
$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 7.31 \, \text{dBi, so limit} = 30 - (7.31-6) = 28.69 \, \text{dBm/MHz}$$

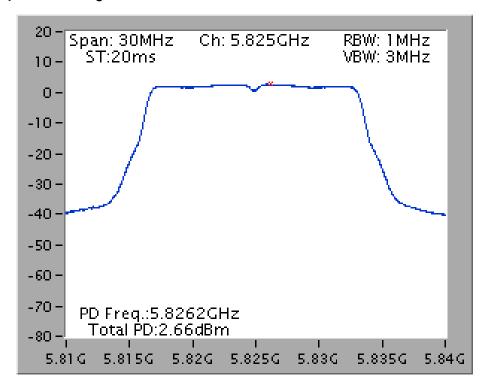
Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Ant. 1 + Ant. 2

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
155	5775 MHz	-5.40	-3.01	-8.41	28.69	Complies

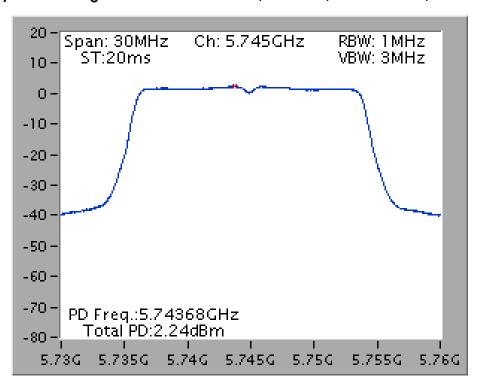
Note:
$$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 7.31 dBi, so limit=30-(7.31-6)=28.69 dBm/MHz$$

Note: All the test values were listed in the report.

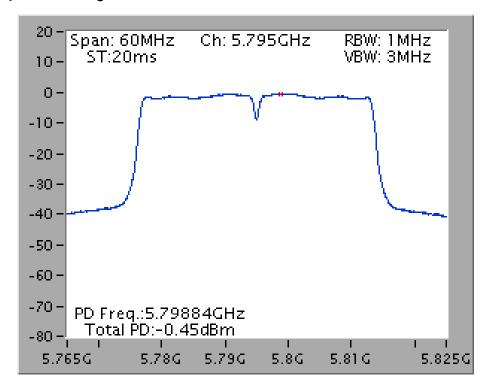
For plots, only the channel with worse result was shown.

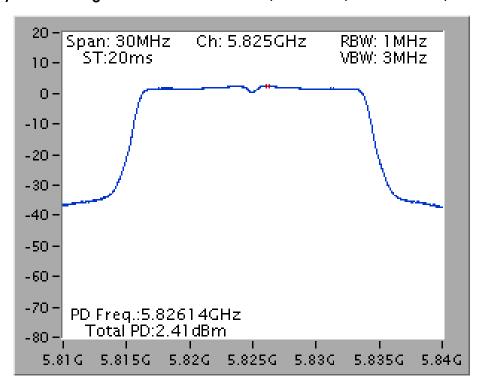

 Report Format Version: Rev. 01
 Page No. : 38 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015



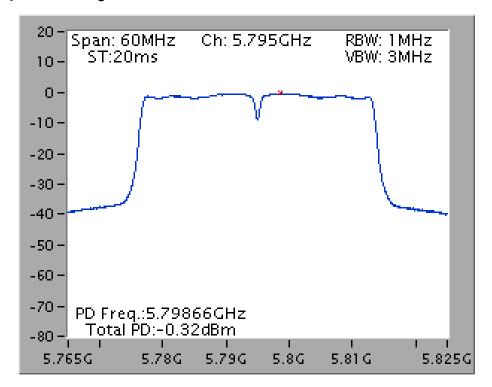
Power Density Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 2 / 5825 MHz


Power Density Plot on Configuration IEEE 802.11n MCS0/Nss1 HT20 / Ant. 1 + Ant. 2 / 5745 MHz

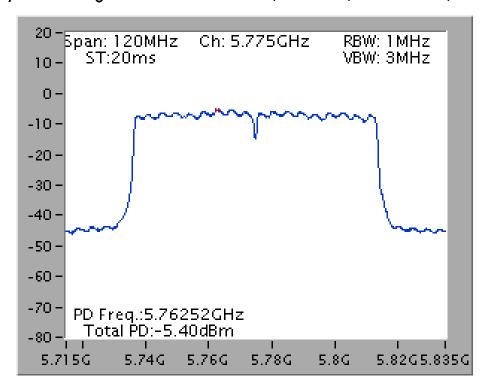


Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Ant. 1 + Ant. 2 / 5795 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Ant. 1 + Ant. 2 / 5825 MHz



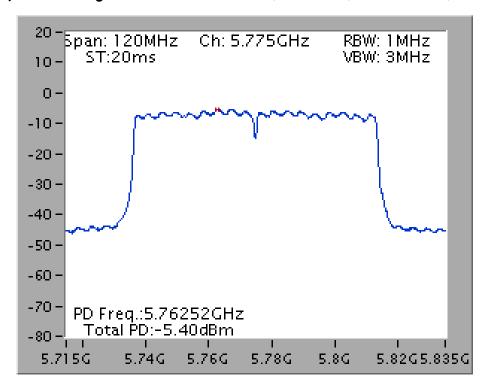
Page No. : 40 of 72 Issued Date : Sep. 16, 2015



Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Ant. 1 + Ant. 2 / 5795 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Ant. 1 + Ant. 2 / 5775 MHz

For Beamforming Mode:


Temperature	25 ℃	Humidity	45%
Test Engineer	Serway Li		

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Ant. 1 + Ant. 2

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
155	5775 MHz	-5.40	-3.01	-8.41	28.69	Complies

Note:
$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 7.31 \, \text{dBi, so limit} = 30 - (7.31 - 6) = 28.69 \, \text{dBm/MHz}$$

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Ant. 1 + Ant. 2 / 5775 MHz

 Report Format Version: Rev. 01
 Page No. : 42 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

4.5. Radiated Emissions Measurement

4.5.1. Limit

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance			
(MHz)	(micorvolts/meter)	(meters)			
0.009~0.490	2400/F(kHz)	300			
0.490~1.705	24000/F(kHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

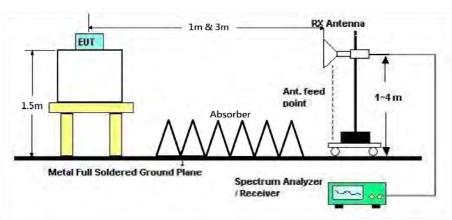
 Report Format Version: Rev. 01
 Page No. : 43 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

4.5.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 1m & 3m far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


 Report Format Version: Rev. 01
 Page No. : 44 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

4.5.4. Test Setup Layout

For Radiated Emissions: Above 1GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

For Non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in beamforming transmitting mode.

4.5.7. Results for Radiated Emissions (1GHz~40GHz)

For Non-beamforming Mode:

Temperature	24°C Humidity 5		55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11a CH 149 /
Test Engineer	Owen nsu	Configurations	Ant. 1 + Ant. 2
Test Date	Jul. 22, 2015		

Horizontal

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHZ	dBuV/m	dBu√/m	dB	dBul/	dB	dB/m	dB	Ċm	deg		
1	11493.44	42.86	54.00	-11.14	29.26	8.73	39.20	34.33	178	130	HORIZONTAL	Average
2	11494.24	56, 28	74.00	-17.72	42,68	8.73	39,20	34.33	178	130	HORIZOHTAL	Peak

Vertical

	Freq	Level					The second second	Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHZ	dBuV/m	dBu√/m	dB	dBu//	dB	dB/m	dB	Ċm	cm deg		
1	11492.08	42.97	54.00	-11.03	29.37	8.73	39.20	34.33	191	156	VERTICAL	Average
2	11492.45	56,20	74.00	-17.30	42.60	8,73	39, 20	34.33	191	156	VERTICAL	Peak

 Report Format Version: Rev. 01
 Page No. : 46 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

Temperature	24°C	Humidity	55%		
Tost Engineer	Owen Hsu	Configurations	IEEE 802.11a CH 157 /		
Test Engineer	Oweri risu	Configurations	Ant. 1 + Ant. 2		
Test Date	Jul. 22, 2015				

Horizontal

	Freq	Level			Read Level	24.700	2.1.8 2.15	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHZ	dBu√/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	11569.30	56.21	74.00	-17.79	42.63	8.78	39,17	34.37	164	178	HORIZONTAL	Peak
2	11571.17	43.19	54.00	-10.81	29.61	8.78	39.17	34.37	164	178	HORIZONTAL	Average

	Freq	Le/el	Limit Line	Limit	1.00	CableAntenna Loss Factor			1.300 1.3.4 1.	T/Pos	Pol/Phase	Remark
	MHZ	dBuV/m	BuV/m dBuV/m			dB	dB/m	dB	cm	deg		
1	11573.89	56.41	74.00	-17.59	42.83	8.78	39,17	34.37	169	126	VERTICAL	Peak
2	11574.67	43.45	54.00	-10.55	29.87	8.78	39.17	34.37	169	126	VERTICAL	Average

Temperature	24°C	Humidity	55%		
Test Engineer	Owen Hsu	Configurations	IEEE 802.11a CH 165/		
Test Engineer	Owen asu	Configurations	Ant. 1 + Ant. 2		
Test Date	Jul. 22, 2015				

Horizontal

	Freq	Level	Limit Line	Over Limit	7.00	34.70.00.41	0.18 0.15000	Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHz	dBu√/m	dBuV/m	dB	dBu∨	₫B	dB/m	dB	cm	deg		
1	11650.09	56.71	74.00	-17.29	43.15	8.82	39, 15	34.41	167	221	HORIZONTAL	Peak
2	11651.85	43.63	54.00	-18.37	30.09	8.82	39.13	34.41	167	221	HORIZONTAL	Average

	Freq	Level	Limit Line		1000	14.700.00	2.2.4	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHZ	dBu√/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	11648.18	58.67	74.00	-15.33	45.11	8.82	39,15	34.41	138	294	VERTICAL	Peak
2	11652.16	43.49	54.00	-10.51	29.95	8.82	39.13	34.41	138	294	VERTICAL.	Average

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11n MCS0/Nss1 HT20 CH 149 /
lou Enginoei	OwenThod	Coringaranorio	Ant. 1 + Ant. 2
Test Date	Jul. 22, 2015		

Horizontal

	Freq	Le/el	Limit Line	and the same of		34.700.00	2.1.4 2.100	Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHZ	dBu√/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	11487.15	56.06	74.00	-17.94	42.46	8.73	39.20	34.33	134	231	HORIZONTAL	Peak
2	11489.41	43.03	54.00	-10.97	29.43	8.73	39.20	34.33	134	231	HORIZONTAL	Average

	Freq	Level	Limit Line				1.790 0.000	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHZ	dBuV/m	dBu√/m	dB	dBuV	dB	dB/m	dB	- cm	deg		
1	11487.84	43.10	54.00	-10.90	29.50	8.73	39.20	34.33	117	293	VERTICAL	Average
2.	11492 84	56 33	74.00	-17.67	42.73	8 73	39.20	34 33	117	293	VERTICAL	Peak

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11n MCS0 HT20 CH 157 /
Test Engineer	Owen asu	Configurations	Ant. 1 + Ant. 2
Test Date	Jul. 22, 2015		

Horizontal

	Freq	Le/el		Over Limit	12.1			Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHZ	dBu√/m	dBu√/m	dB	dBul/	de	dB/m	dB	cm	deg		
1	11569.90	43.45	54.00	-10.55	29.87	8.78	39.17	34.37	162	295	HORIZONTAL	Average
2	11572.72	57.28	74.00	-15.72	43.70	8.78	39.17	34.37	162	295	HORIZONTAL	Peak

	Freq	Le/el	Limit Line		7.000	34.70.003.	2.1.4 5.15	Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHz	dBuV/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	11566.70	56.39	74.00	-17.61	42.81	8.78	39,17	34.37	157	81	VERTICAL	Peak
2	11572.66	43.55	54.00	-10.45	29.97	8.78	39.17	34.37	157	81	VERTICAL.	Average

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11n MCS0 HT20 CH 165 /
Test Engineer	Owen asu	Configurations	Ant. 1 + Ant. 2
Test Date	Jul. 22, 2015		

Horizontal

	Freq	Le/el	Limit Line			24.77.22.34	2.2.8	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHZ	dBuV/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg	1	
1	11648.42	57.45	74.00	-16.55	43.89	8.82	39, 15	34.41	149	182	HORIZONTAL	Peak
2	11648.99	43.78	54.00	-18.22	30.22	8.82	39.15	34.41	149	182	HORIZONTAL	Average

	Freq	Le/el			12.4		1 100 0 1 1 1 1 1	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu√/m	dBu√/m	dB	dBul	dB	dB/m	dB	Ċm	deg		
1	11651.11	43.75	54.00	-10.25	30.21	8.82	39.13	34.41	185	96	VERTICAL	Average
2	11652.79	57.23	74.00	-16.77	43.69	8.82	39, 13	34,41	185	96	VERTICAL	Peak

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11n MCS0 HT40 CH 151 /
Total Enigenees		9 a. a	Ant. 1 + Ant. 2
Test Date	Jul. 23, 2015		

Horizontal

	Freq	Level					The second second	Preamp Factor	1000	T/Pas	Pol/Phase	Remark
	MHZ	dBu√/m	dBu√/m	dB	dBul/	dB	dB/m	dB	Ċm	deg		
1	11514.62	43.11	54.00	-10.89	29,53	8.73	39.20	34.35	146	192	HORIZONTAL	Average
2	11514.67	56,47	74.00	-17.53	42.89	8,73	39,20	34.35	146	192	HORIZONTAL	Peak

	Freq	Level			Charles Contract		1 100 0 1 100	Preamp Factor		T/Pas	Pol/Phase	Remark
	MHZ	dBu√/m	dBu√/m	dB	dBuV	dB	dB/m	dB	Ċm	deg		
1	11505.54	42.90	54.00	-11.10	29.30	8.73	39.20	34.33	198	96	VERTICAL	Average
2	11513.60	56.65	74.00	-17.35	43.07	8.73	39.20	34.35	198	96	VERTICAL	Peak

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11n MCS0 HT40 CH 159 / Ant. 1 + Ant. 2
Test Date	Jul. 23, 2015		

Horizontal

	Freq	Le/el	Limit Line			24.70.00.10	2.7 4 2.22	Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHZ	dBuV/m	dBuV/m	dB	dBu√	d₿	dB/m	dB	cm	deg	1	
1	11585.77	56.57	74.00	-17.43	43.02	8.78	39,16	34.39	132	260	HORIZONTAL	Peak
2	11594.60	43.30	54.00	-10.70	29.73	8.80	39.16	34.39	132	260	HORIZONTAL	Average

	Freq	Le/el	Limit Line		7.000	14.70.00.10	2.1 4 - 1.5 1.55	Preamp Factor	1.36 0. 4.4	T/Pos	Pol/Phase	Remark
	MHz	dBu√/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg	2	
1	11591.13	56.34	74.00	-17.66	42.79	8.78	39,16	34.39	188	310	VERTICAL	Peak
2	11592.71	42.98	54.00	-11.02	29.43	8.78	39.16	34.39	188	310	VERTICAL	Average

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 149 / Ant. 1 + Ant. 2
Test Date	Jul. 23, 2015		

Horizontal

	Freq	Level	Limit Line				1	Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHZ	dBu√/m	dBu√/m	dB	dBulV	dB	dB/m	dB	Ċm	deg		
1	11488.63	42.58	54.00	-11.42	28.98	8.73	39.20	34.33	120	217	HORIZONTAL	Average
2	11494.76	56,12	74.00	-17.88	42.52	8,73	39, 20	34.33	120	217	HORIZOHTAL	Peak

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHZ	dBu√/m	dBu√/m	dB	dBuV	dB	dB/m	dB	Ċm	deg		
1	11485.17	42.32	54.00	-11.68	28.72	8.73	39.20	34.33	145	199	VERTICAL	Average
2	11494 56	55 82	74 00	-12 12	42.22	8 73	30.20	3/1 33	1.48	100	VEDITEAL	Deal

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 157 /
lesi Engineei	Owerr Hsu	Comiguidions	Ant. 1 + Ant. 2
Test Date	Jul. 23, 2015		

Horizontal

	Freq	Level	Limit Line	and the later of				Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu√/m	dBuV/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1	11570.94	55.91	74.00	-18.09	42.33	8.78	39,17	34.37	170	167	HORIZONTAL	Peak
2	11571.25	43.07	54.00	-10.93	29.49	8.78	39.17	34.37	170	167	HORIZONTAL	Average

	Freq	Le/el	Limit Line		2.4-0.49	34.70.00.31	2.1.8	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHZ	dBu√/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg	1	
1	11566.58	56.23	74.00	-17.77	42.65	8.78	39,17	34.37	157	126	VERTICAL	Peak
2	11572.20	42.69	54.00	-11.31	29.11	8.78	39.17	34.37	157	126	VERTICAL	Average

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 165 /
Test Engineer	Owen asu	Configurations	Ant. 1 + Ant. 2
Test Date	Jul. 23, 2015		

Horizontal

	Freq	Level					1	Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHZ	dBu√/m	dBu√/m	dB	dBul	dB	dB/m	d₿	Ċm	deg		
1	11645.59	43.30	54.00	-10.70	29.74	8.82	39.15	34.41	171	206	HORIZONTAL	Average
2	11650.36	57.13	74.00	-16.87	43.57	8.82	39, 15	34,41	171	206	HORIZONTAL	Peak

		Level		Over Limit			1.000	Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHz	dBu√/m	dBu√/m	dB	dBuV	dB	dB/m	dB	çm	deg		
1	11646.96	42.92	54.00	-11.08	29.36	8.82	39.15	34.41	146	159	VERTICAL	Average
2.	11650.48	56.43	74.00	-17.57	42.87	8.82	39.15	34 41	146	159	VERTICAL	Peak

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 151 / Ant. 1 + Ant. 2
Test Date	Jul. 23, 2015		

Horizontal

	- 0.0X	Le/el		Over Limit	7.7.	24.700.00	2.1.8 2.15	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu√/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg	1	
1	11506.29	56.08	74.00	-17.92	42.48	8.73	39.20	34.33	138	166	HORIZONTAL	Peak
2	11507.95	43.01	54.00	-10.99	29.41	8.73	39.20	34.33	138	166	HORIZONTAL	Average

Vertical

	Freq	Level	Limit Line		100			Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHZ	dBu√/m	dBuV/m	dB	dBulV	dB	dB/m	dB	Ċm	deg		
1	11507.05	42.72	54.00	-11.28	29,12	8.73	39.20	34.33	116	212	VERTICAL	Average
2	11507.58	56.11	74.00	-17.89	42,51	8.73	39,20	34.33	116	212	VERTICAL	Peak

Page No. : 57 of 72

Issued Date : Sep. 16, 2015

Temperature	24°C	Humidity	55%			
Test Engineer	Owen Hsu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 159 /			
lesi Engineei	Owell fisu	Cornigulations	Ant. 1 + Ant. 2			
Test Date	Jul. 23, 2015					

Horizontal

	- 770	Level	Limit Line			34.70.00.30	2.2.8	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB	cm	deg	1	
1	11585.66	56.64	74.00	-17.36	43.09	8.78	39,16	34.39	125	140	HORIZONTAL	Peak
2	11588.41	43.08	54.00	-10.92	29.53	8.78	39.16	34.39	125	140	HORIZONTAL	Average

	Freq	Le/el	Limit Line		2.00	34.70.00.31	2.1.4 -1.5 1.55	Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHz	dBuV/m	dBuV/m	dB	dBu∨	₫B	dB/m	dB	cm	deg	1	
1	11585.47	55.86	74.00	-18.14	42.31	8.78	39,16	34.39	166	217	VERTICAL	Peak
2	11591.16	42.68	54.00	-11.32	29.13	8.78	39.16	34.39	166	217	VERTICAL	Average

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 CH 155 /
Test Date	I 22 2015		Ant. 1 + Ant. 2
Test Date	Jul. 23, 2015		

Horizontal

	700	Le/el		Over Limit				Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHŹ	dBu√/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	11551.82	56.38	74.00	-17.62	42.83	8.75	39,17	34.37	172	238	HORIZONTAL	Peak
2	11554.63	43.24	54.00	-10.76	29.69	8.75	39.17	34.37	172	238	HORIZONTAL	Average

Vertical

		Level	Limit Over F el Line Limit Le		11.0		A CORPORATION OF THE PERSON OF		1000	T/Pos	Pol/Phase	Remark
	MHz	dBu√/m	dBu√/m	dB	dBul/	dB	dB/m	dB	cm	deg		
1	11549.87	42.74	54.00	-11.26	29.17	8.75	39.19	34.37	204	274	VERTICAL	Average
2	11553.08	55.93	74.00	-18.07	42.38	8.75	39.17	34.37	204	274	VERTICAL	Peak

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 59 of 72

Issued Date : Sep. 16, 2015

For Beamforming Mode:

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 CH 155 /
Test Engineer	Owen asu	Configurations	Ant. 1 + Ant. 2
Test Date	Jul. 23, 2015		

Horizontal

		Level	Limi t Line		Read Level			Preamp Factor		A/Pos	Remark	Pol/Phase
		dBuV/m	dBuV/m	/m dB		dB dB/m	- dB	deg	Cm			
1 2	11550.00 11552.20	38.20 52.87	54.00 74.00	-15.80 -21.13	27.58 42.25	6.55 6.55	38.71 38.71	34.64 34.64	310 310		Average Peak	HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line					Preamp Factor		A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	11546.16 11550.94	38.82 52.39		-15.18 -21.61	28.21 41.77	6.54		34.64 34.64	281 281		Average Peak	VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: Rev. 01 FCC ID: PY312200200

Page No. : 60 of 72 Issued Date : Sep. 16, 2015

4.6. Band Edge Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1 MHz / 3MHz for Peak

4.6.3. Test Procedures

1. The test procedure is the same as section 4.5.3.

4.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.5.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

 Report Format Version: Rev. 01
 Page No. : 61 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

4.6.6. EUT Operation during Test

For Non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in beamforming transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 62 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

4.6.7. Test Result of Band Edge and Fundamental Emissions

For Non-beamforming Mode:

Temperature	24 °C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11a CH 149, 157, 165 / Ant. 1 + Ant. 2
Test Date	Jul. 22, 2015		AIII. I T AIII. 2

Channel 149

	Freq	Le/el	Limit Line			Cableantenna P Loss Factor F		the second second	A/Pos	T/Pos	Pol/Phase	Remark
	MHZ	dBuv/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg	,	
1	5713.70	60.48	68.20	-7.72	54.54	5.85	34,45	34.36	102	44	HORIZOHTAL	Peak
2	5723.55	66.89	78.20	-11.31	60.90	5.85	34,50	34.36	102	44	HORIZONTAL	Peak
3:	5746.74	98.77			92.71	5.88	34.55	34.37	102	44	HORIZONTAL	Average
4	5747.03	109.83			103.77	5.88	34,55	34.37	102	44	HORIZONTAL	Peak

Item 3, 4 are the fundamental frequency at 5745 MHz.

Channel 157

	Freq	Le/el	Limit	Over	Read Level			Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHz	d8u∀/m	dBuV/m	dB	dBu√	dB	dB/m	dB	- čm	deg		
1	5702.84	62,91	68.20	-5.29	57.03	5.83	34,40	34.35	101	43	HORIZOHTAL	Peak
2	5722.11	60,60	78.20	-17.60	54.66	5.85	34.45	34.36	101	43	HORIZONTAL	Peak
3	5782.40	98,63			92,45	5.90	34,65	34.37	101	43	HORIZOHTAL	Average
4	5787.03	109,66			103.47	5.92	34,65	34.38	101	43	HORIZONTAL	Peak
5	5850.87	60.63	78.20	-17.57	54.22	5.95	34.85	34.39	101	43	HORIZONTAL	Peak
6	5862.89	63,62	68.20	-4.58	57.14	5.97	34,90	34.39	101	43	HORIZOHTAL	Peak

Item 3, 4 are the fundamental frequency at 5785 MHz.

Channel 165

	Freq	Le/el	Limit Line		Read Level	14 7 4 5	0.10 - 712	D 0 - 2 - 2 - 2 - 2	A/Pos	T/Pos	Pol/Phase	Remark
	MHZ	dBuV/m	dBu√/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1	5827.03	99.58			93.22	5.94	34.80	34.38	101	43	HORIZOHTAL	Average
2	5827.03	109.69			103.33	5.94	34.80	34.38	101	43	HORIZONTAL	Peak
3	5852.03	51.19	78.20	-17.01	54.78	5.95	34.85	34.39	101	43	HORIZONTAL	Peak
4	5860.00	60.75	68.20	-7.45	54.29	5.95	34.90	34.39	101	43	HORIZONTAL	Peak

Item 1, 2 are the fundamental frequency at 5825 MHz.

Temperature	24°C	Humidity	55%
Tost Engineer	Owen Hsu		IEEE 802.11n MCS0/Nss1 HT20
Test Engineer	Owen asu	Configurations	CH 149, 157, 165 / Ant. 1 + Ant. 2
Test Date	Jul. 22, 2015		

Channel 149

	Freq	Freq	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu√/m	dBuV/m	dB	dBu√	dB	dB/m	dB	čm	deg				
1	5710.80	60,47	68.20	-7.73	54.53	5.85	34.45	34.36	102	44	HORIZONTAL	Peak.		
2	5723.70	72-07	78.20	-6.13	66.08	5.85	34.50	34.36	102	44	HORIZONTAL	Peak.		
3	5746.01	109,28			103.22	5.88	34.55	34,37	102	44	HORIZONTAL	Peak		
4	5746.16	99.05			92.99	5.88	34,55	34.37	102	44	HORIZOHTAL	Average		

Item 3, 4 are the fundamental frequency at 5745 MHz.

Channel 157

	26-04	Le/el	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MH2	dBu∀/m	dBu\/m	dB	dBuV	dB	dB/m	dB	Ċm	deg		
1	5708.63	62,39	68.20	-5.81	56.45	5.85	34.45	34.36	101	40	HORIZOHTAL	Peak
2	5724.13	60,36	78.20	-17,84	54.37	5.85	34.50	34.36	101	40	HORIZONTAL	Peak
3	5781.53	107,98			101.80	5.90	34,65	34.37	101	40	HORIZOHTAL	Peak
4	5786.16	98,90			92.71	5.92	34,65	34.38	101	40	HORIZONTAL	Average
5	5852.32	60.47	78.20	-17.73	54.06	5.95	34.85	34.39	101	40	HORIZONTAL	Peak
6	5863.76	62,61	68.20	-5.59	56.13	5.97	34,90	34.39	101	40	HORIZOHTAL	Peak

Item 3, 4 are the fundamental frequency at 5785 MHz.

Channel 165

	Freq	Le/el	Limit Line	Over	1-17-2-19	14 75 85 35	0.00 - 0.00	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHZ	dBuV/m	dBu√/m	d8	dBu√	dB	dB/m	dB	cm	deg		
1	5827.03	99.06			92.70	5.94	34,80	34.38	285	45	VERTICAL	Peak
2	5831.95	88.65			82.29	5.94	34.80	34.38	285	45	VERTICAL	Average
3	5852.60	60,33	78.20	-17.87	53.92	5.95	34.85	34.39	285	45	VERTICAL	Peak
4	5866.08	61.69	68.20	-6.51	55.21	5.97	34.90	34.39	285	45	VERTICAL	Peak

Item 1, 2 are the fundamental frequency at 5825 MHz.

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11n MCS0 HT40 CH 151, 159 /
lesi Engineer	Oweri risu	Configurations	Ant. 1 + Ant. 2
Test Date	Jul. 22, 2015		

Channel 151

	Freq	Level	Limit Line	Over	Read Level			Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHz	dBuV/m	dBuV/m	dB	dBu√	dB	dB/m	dB	čm	deg		_
1	5713.84	67,11	68,20	-1.09	61.17	5.85	34.45	34.36	102	43	HORIZONTAL	Peak:
2	5723.84	71,60	78.20	-6.60	65.61	5.85	34.50	34.36	102	43	HORIZONTAL	Peak.
3	5750,66	106,45			100.39	5.88	34.55	34,37	102	43	HORIZONTAL	Peak
4	5750.95	95.99			89.93	5.88	34,55	34.37	102	43	HORIZONTAL	Average

Item 3, 4 are the fundamental frequency at 5755 MHz.

Channel 159

	Freq	Le/el	Limit	Over Limit				Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
-	MH2	dBu∀/m	dBu√/m	dB	dBu√	dB	dB/m	dB	čm	deg		
1	5711.53	61,28	68.20	-6,92	55.34	5.85	34.45	34.36	101	42	HORIZOHTAL	Peak
2	5723.70	60,85	78.20	-17,35	54.86	5.85	34.50	34.36	101	42	HORIZONTAL	Peak
3	5798.47	96,05			89.81	5.92	34,70	34.38	101	42	HORIZOHTAL	Average
4	5798.47	106.20			99.96	5.92	34,70	34.38	101	42	HORIZONTAL	Peak
5	5852.17	61.20	78.20	-17.00	54.79	5.95	34.85	34.39	101	42	HORIZONTAL	Peak
6	5860.87	62,87	68.20	-5.33	56.39	5.97	34,90	34.39	101	42	HORIZOHTAL	Peak

Item 3, 4 are the fundamental frequency at 5795 MHz.

Issued Date : Sep. 16, 2015

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu Configurations		IEEE 802.11ac MCS0/Nss1 VHT20
lesi Engineer	Owen risu	Cornigulations	CH 149, 157, 165 / Ant. 1 + Ant. 2
Test Date	Jul. 22, 2015		

Channel 149

	Freq	Le/el	Limit Line	1 5 7 7 5	Read Level	14 70 30 30	0.10 - 7.13	0.00	A/Pos	T/Pos	Pol/Phase	Remark
-	MHz	dBuV/m	dBu√/m	dB	dBul√	dB	dB/m	dB	cm	deg	,	
1	5713.84	61.04	68.20	-7.16	55.10	5.85	34.45	34.36	101	44	HORIZOHTAL	Peak
2	5723.84	70.14	78.20	-8.06	64.15	5.85	34.50	34.36	101	44	HORIZONTAL	Peak
3	5746.16	99.10			93.04	5.88	34.55	34.37	101	44	HORIZONTAL	Average
4	5746.45	109.46			103.40	5.88	34,55	34.37	101	44	HORIZONTAL	Peak

Item 3, 4 are the fundamental frequency at 5745 MHz.

Channel 157

	Freq	Le/el	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MH2	d8u∨/m	dBu\/m	dB	dBu√	dB	dB/m	dB	- čm	deg		
1	5706,32	62,62	68.20	-5,58	56.69	5.83	34,45	34.35	100	42	HORIZOHTAL	Peak
2	5721.82	60, 26	78.20	-17,94	54.32	5.85	34.45	34.36	100	42	HORIZONTAL	Peak
3	5783.84	109,26			103.07	5.92	34,65	34.38	100	42	HORIZOHTAL	Peak
4	5785.87	99,31			93.12	5.92	34,65	34.38	100	42	HORIZONTAL	Average
5	5850.29	61.92	78.20	-16.28	55.51	5.95	34.85	34.39	100	42	HORIZONTAL	Peak
6	5861.45	63,06	68.20	-5.14	56.58	5.97	34,90	34.39	100	42	HORIZOHTAL	Peak

Item 3, 4 are the fundamental frequency at 5785 MHz.

Channel 165

	Freq	Le/el	Limit Line	Over Limit	Read Level	14 7 2 2 2	0.00 41713	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHZ	dBu√/m	dBu√/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	5825.16	99.68			93.32	5.94	34.80	34.38	101	43	HORIZOHTAL	Average
2	5826.16	109.36			103.00	5.94	34.80	34.38	101	43	HORIZONTAL	Peak
3	5850.29	50.74	78.20	-17.46	54.33	5.95	34.85	34.39	101	43	HORIZONTAL	Peak
4	5860.87	61.28	68.20	-5.92	54.80	5.97	34,90	34.39	101	43	HORIZONTAL	Peak

Item 1, 2 are the fundamental frequency at 5825 MHz.

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11ac MCSO/Nss1 VHT40
lesi Engineer	Oweri risu	Configurations	CH 151, 159 / Ant. 1 + Ant. 2
Test Date	Jul. 22, 2015		

Channel 151

	Freq	Le/el	Limit Line	Over	Read Level	11-2		Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark	
4	MHz	dBuV/m	dBu√/m	dB	dBu√	dB	dB/m	dB	cm	deg	,	-	-
1	5712.68	67.77	68.20	-0.43	61.83	5.85	34.45	34.36	103	44	HORIZOHTAL	Peak	
2	5722.11	70.65	78.20	-7.55	64.71	5.85	34.45	34.36	103	44	HORIZONTAL	Peak	
3	5751.24	96.20			90.14	5.88	34.55	34.37	103	44	HORIZONTAL	Average	
4	5751.24	106,79			100,73	5.88	34.55	34.37	103	44	HORIZONTAL	Peak	

Item 3, 4 are the fundamental frequency at 5755 MHz.

Channel 159

	Freq	Le/el	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
-	MHz	dBu∨/m	dBu\/m	dB	dBuV	dB	dB/m	dB	- čmi	deg		
1	5713.55	61.71	68.20	-6,49	55.77	5.85	34.45	34.36	100	44	HORIZOHTAL	Peak
2	5720.95	62.08	78.20	-15.12	56.14	5.85	34.45	34.36	100	44	HORIZONTAL	Peak
3	5793.55	107,09			100,85	5.92	34,70	34.38	100	44	HORIZOHTAL	Peak
4	5798.18	96,87			90.63	5.92	34,70	34.38	100	44	HORIZONTAL	Average
5	5850.00	60.70	78.20	-17.50	54.29	5.95	34.85	34.39	100	44	HORIZONTAL	Peak
6	5862.03	62.88	68.20	-5.32	56.40	5.97	34,90	34.39	100	44	HORIZOIITAL	Peak

Item 3, 4 are the fundamental frequency at 5795 MHz.

Issued Date : Sep. 16, 2015

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 155 /
Test Engineer	Owen asu	Configurations	Ant. 1 + Ant. 2
Test Date	Jul. 22, 2015		

Channel 155

	Freq	Le/el	Limit Line	Limit				Preamp Factor	A/Pos	T/Pas	Pol/Phase	Remark
	MHz	d8uV/m	dBu\/m	dB	dBu√	dB	dB/m	dB	çm	deg		
1	5712.83	65, 69	68.20	-z.51	59.75	5.85	34.45	34.36	102	40	HORIZOHTAL	Peak
2	5723.55	66,33	78.20	-11.87	60.34	5.85	34.50	34.36	102	40	HORIZONTAL	Peak
3	5763.42	93,95			87.84	5.88	34,60	34.37	102	40	HORIZOHTAL	Average
4	5763.42	104,03			97.92	5.88	34,60	34.37	102	40	HORIZONTAL	Peak
5	5852.89	64.15	78.20	-14.05	57.74	5.95	34.85	34.39	102	40	HORIZONTAL	Peak
6	5862.17	63.95	68.20	-4.25	57.47	5.97	34,90	34.39	102	40	HORIZOHTAL	Peak

Item 3, 4 are the fundamental frequency at 5775 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

: 68 of 72 Page No. FCC ID: PY312200200 Issued Date : Sep. 16, 2015

For Beamforming Mode:

Temperature	24°C	Humidity	55%
Test Engineer	Owen Hsu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 155 /
Test Engineer	Owen asu	Configurations	Ant. 1 + Ant. 2
Test Date	Jul. 22, 2015		

Channel 155

1	5712.11	67.84	68.20	-0.36	63.28	6.10	32.06	33.60	100	317 Peak	HORIZONTAL
2	5717.17	65.83	78.20	-12.37	61.27	6.10	32.06	33.60	100	317 Peak	HORIZONTAL
3	5780.07	104.99			100.33	6.12	32.14	33.60	100	317 Peak	HORIZONTAL
4	5787.30	95.11			90.45	6.12	32.14	33.60	100	317 Average	HORIZONTAL
5	5852.04	63.44	78.20	-14.76	58.68	6.15	32.22	33.61	100	317 Peak	HORIZONTAL
6	5866.51	67.98	68.20	-0.22	63.19	6.16	32.24	33.61	100	317 Peak	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5775 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

 Report Format Version: Rev. 01
 Page No. : 69 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

 Report Format Version: Rev. 01
 Page No. : 70 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Oct. 28, 2014	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 21, 2015	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 12, 2015	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Nov. 25, 2014	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Nov. 06, 2014	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-1	N/A	1 GHz ~ 40 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-2	N/A	1 GHz ~ 40 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100979	9kHz~40GHz	Dec. 12, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-7	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-8	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-9	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-6	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
Power Sensor	Agilent	U2021XA	MY53410001	50MHz~18GHz	Nov. 03, 2014	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

 Report Format Version: Rev. 01
 Page No. : 71 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz \sim 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%

 Report Format Version: Rev. 01
 Page No. : 72 of 72

 FCC ID: PY312200200
 Issued Date : Sep. 16, 2015