

Appendix B. Maximum Permissible Exposure

FCC ID: PY312100189 Page No. : B1 of B3

Report No.: FR261315-01

Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E 2, H 2 or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E 2, H 2 or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC ID: PY312100189 Page No. : B2 of B3

Report No.: FR261315-01

1.3. Calculated Result and Limit

For 5GHz UNII Band:

Antenna Type: PCB Antenna

Max Conducted Power for IEEE 802.11ac MCS 0/Nss1 80MHz: 14.76dBm

Directional Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
8.02	6.3387	14.7645	29.9534	0.037792	1	Complies

Note: Directional gain=GANT+10log(NANT/Nss)

For 5GHz ISM Band:

Antenna Type: PCB Antenna

Max Conducted Power for IEEE 802.11ac MCS 0/Nss1 80MHz: 22.99dBm

Directional Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
8.02	6.3387	22.9853	198.8532	0.250890	1	Complies

Note: Directional gain=GANT+10log(NANT/Nss)

FCC ID: PY312100189 Page No. : B3 of B3