

No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	NETGEAR, Inc.
Applicant Address	350 East Plumeria Drive, San Jose, California 95134-1911
FCC ID	PY312100189
Manufacturer's company	Ambit Microsystems (Shanghai) Ltd.
Manufacturer Address	No. 1925, Nanle Road, Songjiang Export Processing Zone, Shanghai, China

Product Name	R6200 WiFi Router
Brand Name	NETGEAR
Model No.	R6200
Test Rule Part(s)	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	5725 ~ 5850MHz
Received Date	Apr. 07, 2012
Final Test Date	Jun. 10, 2013
Submission Type	Class II Change

Statement

SPORTON LAB.

Test result included is only for the IEEE 802.11ac (5725 ~ 5850MHz) of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.10-2009**,

47 CFR FCC Part 15 Subpart C, KDB 558074 D01 v03 and KDB 662911 D01 v01r02.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	CERT	IFICATE OF COMPLIANCE	1
2.	SUMN	MARY OF THE TEST RESULT	2
3.	GENE	ERAL INFORMATION	
	3.1.	Product Details	3
	3.2.	Accessories	4
	3.3.	Table for Filed Antenna	5
	3.4.	Table for Carrier Frequencies	6
	3.5.	Table for Test Modes	6
	3.6.	Table for Testing Locations	6
	3.7.	Table for Class II Change	6
	3.8.	Table for Supporting Units	7
	3.9.	Table for Parameters of Test Software Setting	7
	3.10.	EUT Operation during Test	7
	3.11.	Duty Cycle	8
	3.12.	Test Configurations	9
4.	TEST F	RESULT	10
	4.1.	Maximum Conducted Output Power Measurement	10
	4.2.	Power Spectral Density Measurement	12
	4.3.	6dB Spectrum Bandwidth Measurement	16
	4.4.	Radiated Emissions Measurement	19
	4.5.	Emissions Measurement	23
	4.6.	Antenna Requirements	27
5.	LIST C	of measuring equipments	28
6.	TEST L	LOCATION	
7.	MEAS	SUREMENT UNCERTAINTY	30
AP	PEND	DIX A. TEST PHOTOS	A1 ~ A2
AP	PEND	DIX B. MAXIMUM PERMISSIBLE EXPOSURE	B1 ~ B3

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR261315-01AA	Rev.01	Initial issue of report	Aug. 14, 2013

Report No.: FR261315-01AA

Certificate No.: CB10206103

1. CERTIFICATE OF COMPLIANCE

Product Name	:	R6200 WiFi Router
Brand Name	:	NETGEAR
Model No.	:	R6200
Applicant	:	NETGEAR, Inc.
Test Rule Part(s)	:	47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Apr. 07, 2012 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

am

Sam Chen SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart C					
Part	Rule Section	Description of Test	Result	Under Limit	
4.1	15.247(b)(3)	Maximum Conducted Output Power	Complies	4.99 dB	
4.2	15.247(e)	Power Spectral Density	Complies	15.59 dB	
4.3	15.247(a)(2)	6dB Spectrum Bandwidth	Complies	-	
4.4	15.247(d)	Radiated Emissions	Complies	1.49 dB	
4.5	15.247(d)	Out of Band Emission	Complies	-	
4.6	15.203	Antenna Requirements	Complies	-	

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11ac

Items	Description
Product Type	WLAN (2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From Power Adapter
Modulation	see the below table for IEEE 802.11ac
Data Modulation	For 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM /
	256QAM)
Data Rate (Mbps)	see the below table for IEEE 802.11ac
Frequency Range	5725 ~ 5850MHz
Channel Number	1 for 80MHz bandwidth
Channel Band Width (99%)	75.84 MHz
Maximum Conducted Output Power	22.99 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Antenna & Band width

Antenna	Two (TX)
Band width Mode	80MHz
IEEE 802.11ac	V

Note: The product has beamforming function for 802.11ac VHT80 in 5150-5250MHz and 5725-5850MHz.

IEEE 11ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS		
802.11ac (VHT80)	2	MCS 0-9/Nss1		
Note 1: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT support VHT20, VHT40 and VHT80. Note 2: Modulation modes consist of below configuration: VHT20/VHT40/VHT80: IEEE 802.11ac				

3.2. Accessories

Power	Brand	Model	P/N	Rating	
Adaptor 1	NETGEAR	P030WF120B	332 10200 02	INPUT: 100-240VAC, 50/60Hz, 1.0A	
Adapter i		11200-6LF	332-10200-02	OUTPUT: 12VDC, 2.5A	
Adaptor 2	NETGEAR		332-10234-01	INPUT: 100-240VAC, 50/60Hz, 0.8A	
Addpiel 2		MU30-3120230-A1		OUTPUT: 12VDC, 2.5A	
Others					
RJ-45 Cable, Non-shielded, 10m					

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi	i)
1	Master Wave	124-0015-001	PCB Antenna	I-PEX	5GHz Band	5.26
2	Master Wave	124-0022-001	PCB Antenna	I-PEX	5GHz Band	4.75
3	Master Wave	124-0020-001	PCB Antenna	I-PEX	2.4GHz Band	2.6
4	Master Wave	124-0021-001	PCB Antenna	I-PEX	2.4GHz Band	3.98

Note: The EUT has four antennas. Two for 2.4GHz antennas, and two 5GHz antennas.

For IEEE 802.11a/n/ac mode (2TX/2RX):

Chain 1 and Chain 2 could transmit/receive simultaneously.

3.4. Table for Carrier Frequencies

80MHz bandwidth systems, use Channel 155.

Frequency Band	Channel No.	Frequency
5725~5850 MHz	155	5775 MHz

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Chain
Maximum Conducted Output Power	80MHz	MCS 0/Nss1	155	1+2
Power Spectral Density	80MHz	MCS 0/Nss1	155	1, 2
6dB Spectrum Bandwidth	80MHz	MCS 0/Nss1	155	1+2
Radiated Emissions Above 1GHz	80MHz	MCS 0/Nss1	155	1+2
Out of Band Emission	80MHz	MCS 0/Nss1	155	1+2

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.
03CH01-CB	SAC	Hsin Chu	262045	IC 4086D
TH01-CB	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

Please refer section 6 for Test Site Address.

3.7. Table for Class II Change

This product is an extension of original one reported under Sporton project number: FR261315AB Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking		
It adds beam-forming function for 802.11ac VHT80 mode in 5150-5250MHz and 5725-5850MHz.	1. Maximum Conducted Output Power		
	2. Power Spectral Density		
	3. 6dB Spectrum Bandwidth		
	4. Radiated Emissions Above 1GHz		
	5. Out of Band Emission		

3.8. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6220	D2A62L1989V5
Notebook	DELL	E6220	D2A62L1989V5
WiFi USB Adapter	NETGEAR	A6200	PY312200200

3.9. Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters of IEEE 802.11ac MCS 0/Nss1 80MHz

Test Software Version	Manual Tool 1.0.0.9
Frequency	5775 MHz
MCS0 80MHz	76

3.10. EUT Operation during Test

For Conducted Mode:

The EUT was programmed to be in continuously transmitting mode.

For Radiated Mode:

During the test, the following programs under WIN XP were executed.

The program was executed as follows:

- 1. During the test, the EUT operation to normal function.
- 2. Executed command fixed test channel under DOS.
- 3. Executed "Latest.exe" to link with the remote workstation to receive and transmit packet by Wifi Dongle and transmit duty cycle no less 98%.

3.11. Duty Cycle

Date: 10.JUN.2013 16:32:47

3.12. Test Configurations

3.12.1. Radiation Emissions Test Configuration

Test Configuration: Above 1GHz

Item	Connection	Shielded	Length
1	Power cable	No	1.8m
2	RJ-45 cable	No	10m

4. TEST RESULT

4.1. Maximum Conducted Output Power Measurement

4.1.1. Limit

For Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter output power.

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	Average

4.1.3. Test Procedures

- 1. Test procedures refer KDB 558074 D01 v03 section 9.2.2 Measurement using a power meter (PM).
- 2. This procedure provides an alternative for determining the RMS output power using a broadband RF average power meter with a thermocouple detector.

4.1.4. Test Setup Layout

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.1.7. Test Result of Maximum Conducted Output Power

Temperature	25°C	Humidity	56%
Test Engineer	Mgic Lai	Configurations	IEEE 802.11ac
Test Date	Jun. 10, 2013		

Configuration IEEE 802.11ac MCS0/Nss1 80MHz / Chain 1 + Chain 2

Channel	Fraguanay	Conducted Power (dBm)		Total	Max. Limit	Docult
	riequency	Chain 1	Chain 2	Power (dBm)	(dBm)	Kesuli
155	5775 MHz	19.96	19.99	22.99	27.98	Complies

Note: Directional gain=GANT+10log(NANT/Nss)=8.02dBi >6dBi, so limit=30 - (8.02 - 6)=27.98dBm.

4.2. Power Spectral Density Measurement

4.2.1. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS channel bandwidth.
RBW	$3 \text{ kHz} \le \text{RBW} \le 100 \text{kHz}$
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto couple

4.2.3. Test Procedures

- Test procedures refer KDB 558074 D01 v03 section 10.2 Method PKPSD (peak PSD) & KDB 662911 D01 v01r02 section In-Band Power Spectral Density (PSD) Measurements option (2) Measure and add 10 log(NANT) dB.
- 2. Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
- 3. Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$ (use of a greater number of measurement points than this minimum requirement is recommended).
- 4. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
- 5. The resulting PSD level must be ≤ 8 dBm.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of Power Spectral Density

Temperature	25℃	Humidity	56%
Test Engineer	Mgic Lai	Configurations	IEEE 802.11ac

Configuration IEEE 802.11ac MCS0/Nss1 80MHz / Chain 1, Chain 2

Channel	Fraguanay	Power Density	y (dBm/3kHz)	Single Port Limit	Docult
		Chain 1	Chain 2	(dBm/3kHz)	Result
155	5775 MHz	-11.73	-10.60	4.99	Complies

Note: PSD Limit =(8dBm/3kHz -(10log(2))=4.99dBm/3kHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 80MHz / Chain 2 / 5775 MHz

Date: 10.JUN.2013 17:05:50

4.3. 6dB Spectrum Bandwidth Measurement

4.3.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 6dB Bandwidth
RBW	100kHz
VBW	≥ 3×RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- Test was performed in accordance with KDB 558074 D01 v03 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 8.0 DTS 6-dB signal bandwidth option 1.
- 3. Multiple antenna system was performed in accordance with KDB 662911 D01 v01r02 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of 6dB Spectrum Bandwidth

Temperature	25℃	Humidity	56%
Test Engineer	Mgic Lai	Configurations	IEEE 802.11ac

Configuration IEEE 802.11ac MCS0/Nss1 80MHz / Chain 1 + Chain 2

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
155	5775 MHz	76.16	75.84	500	Complies

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 80MHz / Chain 1 + Chain 2 / 5775 MHz

Date: 10.JUN.2013 17:08:28

4.4. Radiated Emissions Measurement

4.4.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1GHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1GHz / RBW 120kHz for QP

4.4.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in beamforming transmitting mode.

4.4.7. Results for Radiated Emissions (1GHz~10th Harmonic)

Temperature	25.6℃	Humidity	56%
Test Engineer	Jim Huang	Configurations	IEEE 802.11ac MCS0/Nss1 80MHz CH 155 / Chain 1 + Chain 2
Test Date	Jun. 05, 2013		

Horizontal

	Freq	Level	Limit Line	0∨er Limit	Read Level	Cable# Loss	Antenna Factor	Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	5133.27	52.51	54.00	-1.49	50.47	3.43	33.64	35.03	Average	100	62	HORIZONTAL
2	5133.30	60.25	74.00	-13.75	58.21	3.43	33.64	35.03	Peak	100	62	HORIZONTAL
3	11543.43	53.32	74.00	-20.68	44.68	5.13	38.81	35.30	Peak	137	110	HORIZONTAL
4	11550.16	41.06	54.00	-12.94	32.42	5.13	38.81	35.30	Average	137	110	HORIZONTAL

Vertical

	Freq	Level	Limit Line	0∨er Limit	Read Level	CableA Loss	ntenna Factor	Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∨/m	dBu∨/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	5133.30	49.01	54.00	-4.99	46.97	3.43	33.64	35.03	Average	100	92	VERTICAL
2	5133.30	57.88	74.00	-16.12	55.84	3.43	33.64	35.03	Peak	100	92	VERTICAL
3	11553.85	51.80	74.00	-22.20	43.15	5.13	38.82	35.30	Peak	100	203	VERTICAL
4	11563.30	38.18	54.00	-15.82	29.53	5.13	38.82	35.30	Average	100	203	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.5. Emissions Measurement

4.5.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100 kHz / 300 kHz for Peak

4.5.3. Test Procedures

For Radiated band edges Measurement:

1. The test procedure is the same as section 4.5.3, only the frequency range investigated is limited to 100MHz around band edges.

For Radiated Out of Band Emission Measurement:

- Test was performed in accordance with KDB 558074 D01 v03 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 10.1 Unwanted Emissions into Non-Restricted Frequency Bands Measurement Procedure
- The radiated emission test is performed on each TX port of operating mode without summing or adding 10log (N) since the limit is relative emission limit. Only worst data of each operating mode is presented.

4.5.4. Test Setup Layout

For Radiated band edges Measurement: This test setup layout is the same as that shown in section 4.5.4. For Radiated Out of Band Emission Measurement: This test setup layout is the same as that shown in section 4.5.4.

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in beamforming transmitting mode.

Date: 28.APR.2013 18:46:22

Plot on Configuration IEEE 802.11ac MCS0/Nss1 80MHz / CH 155 / 30MHz~5725MHz (down 30dBc)

Date: 28.APR.2013 18:50:57

Plot on Configuration IEEE 802.11ac MCS0/Nss1 80MHz / CH 155 / 5850MHz~40000MHz (down 30dBc)

Date: 28.APR.2013 18:51:52

4.6. Antenna Requirements

4.6.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.6.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26.5GHz ~ 40GHz	Jul. 31, 2012	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100056	9KHz~40GHz	Nov. 16, 2012	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N.C.R	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9KHz~40GHz	Oct. 08, 2012	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 04, 2013	Conducted (TH01-CB)
RF Power Splitter	Anaren	42100	17930	2GHz ~ 18GHz	N.C.R	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 28, 2012	
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Nov. 27, 2012	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

6. TEST LOCATION

SHIJR	ADD	:	6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7Fl., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4Fl., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085

7. MEASUREMENT UNCERTAINTY

	Uncertainty of x_i			
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Cable loss	0.038	dB	normal(k=2)	0.019
Attenuator	0.047	dB	normal(k=2)	0.024
Power Meter specification	0.300	dB	normal(k=2)	0.150
Power Sensor specification	0.300	dB	normal(k=2)	0.150
Mismatch Receiver VSWR 1= Antenna VSWR 2= Pre Amplifier VSWR 3=	-0.080	dB	U-shaped	0.060
combined standard uncertainty Ue(y)	0.403			
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)	0.806			

Uncertainty of Conducted Emission Measurement

Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)

	Uncertainty of x_i			
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	0.1908	dB	normal(k=1)	0.1908
Cable loss	0.1685	dB	normal(k=2)	0.0843
Antenna gain	0.1912	dB	normal(k=2)	0.0956
Site imperfection	1.3091	dB	Triangular	0.5344
Pre-amplifier gain	0.3043	dB	normal(k=2)	0.1521
Transmitter antenna	1.7	dB	rectangular	0.9815
Signal generator	0.5	dB	rectangular	0.2887
Mismatch	0.08	dB	u-shape	0.244
Spectrum analyzer	0.8	dB	rectangular	0.4619
combined standard uncertainty Ue(y)	1.2965			
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)	2.593			

	Uncertainty of x_i			
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	0.1864	dB	normal(k=1)	0.1864
Cable loss	0.1666	dB	normal(k=2)	0.0833
Antenna gain	0.1904	dB	normal(k=2)	0.0952
Site imperfection	0.4882	dB	Triangular	0.1993
Pre-amplifier gain	0.2688	dB	normal(k=2)	0.1344
Transmitter antenna	1.7	dB	rectangular	0.9815
Signal generator	0.5	dB	rectangular	0.2887
Mismatch	0.08	dB	u-shape	0.244
Spectrum analyzer	0.8	dB	rectangular	0.4619
combined standard uncertainty Ue(y)	1.1874			
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)	2.3749			

Uncertainty of Radiated Emission Measurement (18GHz ~ 40GHz)