

SPORTON International Inc. No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	NETGEAR, Inc.
Applicant Address	350 East Plumeria Drive, San Jose, California 95134-1911
FCC ID	PY312100188
Manufacturer's company	Ambit Microsystems (Shanghai) Ltd.
Manufacturer Address	No. 1925, Nanle Road, Songjiang Export Processing Zone, Shanghai, China

Product Name	R6300 WiFi Router	
Brand Name	NETGEAR	
Model Name	R6300	
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407	
Test Freq. Range	5150 ~ 5250MHz	
Received Date	Jan. 22, 2013	
Final Test Date	Feb. 05, 2013	
Submission Type	Class II Change	
Operating Mode	Master	

Statement

Test result included is for the IEEE 802.11ac (5150 ~ 5250MHz) of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.10-2009**,

47 CFR FCC Part 15 Subpart E, KDB 789033 D01 v01r02 and KDB 662911 D01 v01r02.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CERI	TIFICATE OF COMPLIANCE	
2. SUM	MARY OF THE TEST RESULT	2
3. GEN	IERAL INFORMATION	
3.1.	Product Details	
3.2.	Accessories	
3.3.	Table for Filed Antenna	5
3.4.	Table for Carrier Frequencies	
3.5.	Table for Test Modes	
3.6.	Table for Testing Locations	
3.7.	Table for Class II Change	
3.8.	Table for Supporting Units	7
3.9.	Table for Parameters of Test Software Setting	7
3.10.	Test Configurations	
4. TEST	RESULT	
4.1.	99% Occupied Bandwidth Measurement	
4.2.	Maximum Conducted Output Power Measurement	
4.3.	Power Spectral Density Measurement	
4.4.	Peak Excursion Measurement	
4.5.	Radiated Emissions Measurement	
4.6.	Band Edge Emissions Measurement	27
4.7.	Antenna Requirements	
5. LIST (OF MEASURING EQUIPMENTS	
6. TEST	LOCATION	
APPEN	DIX A. TEST PHOTOS	A1 ~ A2
APPEN	DIX B. MAXIMUM PERMISSIBLE EXPOSURE	B1 ~ B3

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR242515-03AB	Rev. 01	Initial issue of report	Feb. 08, 2013
	•		

Report No.: FR242515-03AB

Certificate No.: CB10202014

1. CERTIFICATE OF COMPLIANCE

Product Name	:	R6300 WiFi Router
Brand Name	:	NETGEAR
Model Name	:	R6300
Applicant	:	NETGEAR, Inc.
Test Rule Part(s)	:	47 CFR FCC Part 15 Subpart E § 15.402

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jan. 22, 2013 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart E					
Part	Rule Section	Result	Under Limit		
4.1	15.407(a)	26dB Spectrum Bandwidth	Complies	-	
4.2	15.407(a)	Maximum Conducted Output Power	Complies	0.11 dB	
4.3	15.407(a)	Power Spectral Density	Complies	8.03 dB	
4.4	15.407(a)	Peak Excursion	Complies	3.98 dB	
4.5	15.407(b)	Radiated Emissions	Complies	11.55 dB	
4.6	15.407(b)	Band Edge Emissions	Complies	0.63 dB	
4.7	15.203	Antenna Requirements	Complies	-	

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	± 2.3dB	Confidence levels of 95%
Maximum Conducted Output Power	± 0.5dB	Confidence levels of 95%
Power Spectral Density	± 0.5dB	Confidence levels of 95%
Peak Excursion	± 0.5dB	Confidence levels of 95%
26dB Spectrum Bandwidth / Frequency Stability	± 8.5×10 ⁻⁸	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	± 0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	± 1.9dB	Confidence levels of 95%
Radiated / Band Edge Emissions (1GHz~18GHz)	± 1.9dB	Confidence levels of 95%
Radiated Emissions (18GHz~40GHz)	± 1.9dB	Confidence levels of 95%
Temperature	± 0.7° C	Confidence levels of 95%
Humidity	± 3.2%	Confidence levels of 95%
DC / AC Power Source	± 1.4%	Confidence levels of 95%

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11ac

Items	Description
Product Type	WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From Power Adapter
Modulation	see the below table for IEEE 802.11ac
Data Modulation	ofdm (Bpsk / qpsk / 16qam / 64qam / 256qam)
Data Rate (Mbps)	see the below table for IEEE 802.11ac
Frequency Range	5150 ~ 5250MHz
Channel Number	1 for 80MHz bandwidth
Channel Band Width (99%)	11ac MCS0 (VHT 80MHz): 75.60 MHz
Maximum Conducted	11ac MCS0 (VHT 80MHz): 13.89 dBm
Output Power	
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3
The product has beam-forming	ng function for 802.11ac VHT80 in 5150-5250MHz and 5725-5850MHz.

Antenna & Band width

Antenna	Three (TX)		
Band width Mode	80MHz		
IEEE 802.11ac	V		

IEEE 802. 11ac Spec.

Worst Modulation Used for Conformance Testing						
IEEE 802.11	Number of Transmit Chains (Nīx)	Data Rate / MCS	Worst Data Rate / MCS	Worst Modulation Mode		
Protocol						
ac (VHT80)	ac (VHT80) 3 MCS 0-9 MCS 0-Nss1 11AC5.2G-80M					
Note 1: IEEE 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160. Then EUT support						
VHT80. (VHT: V	VHT80. (VHT: Very High Throughput).					
Note 2: Modulation modes consist of 11AC5.2G-80M.						
Note 3: 11A: 11AC: IEEE 802.11ac. 5.2G: 5.15-5.25 GHz band.						
Note 4: 80M: Channel Bandwidth 80MHz						

3.2. Accessories

Power	Brand	Model	P/N number	Rating	
Adaptor 1			222 10122 02	INPUT: 100-240V ~ 50-60Hz, 1.4A	
Auapter i	NEIGEAR N060-H120500-I1 332-10122-03		OUTPUT: 12.0V - 5.0A		
Adoptor 2				INPUT: 100-240V ~ 50-60Hz, 1.5A	
Adapter 2 NEIGEAR AD8180LF 332-10318-01		OUTPUT: 12.0V - 5.0A			
Others					
RJ-45 *1: 1.5meter, shielded cable, w/o ferrite core					

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
4	Foxconn	-	PCB Antenna	NA	3.36
5	Foxconn	-	PCB Antenna	NA	4.99
6	Foxconn	-	PCB Antenna	NA	4.18

Note: The EUT has six antennas

For IEEE 802.11ac mode (3TX/3RX):

Ant. 4, Ant. 5 and Ant. 6 could transmit/receive simultaneously.

3.4. Table for Carrier Frequencies

80MHz bandwidth systems, use Channel 42.

Frequency Band Channel No.		Frequency
5150~5250 MHz Band 1	42	5210 MHz

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Antenna
Maximum Conducted Output Power	80MHz	MCS 0-Nss1	42	4+5+6
Power Spectral Density	80MHz	MCS 0-Nss1	42	4+5+6
26dB Spectrum Bandwidth				
99% Occupied Bandwidth	90MU-7		4.2	4 . 5 . 6
Measurement	OUMITZ	10102 0-10221	42	4+3+0
Peak Excursion				
Radiated Emissions Above 1GHz	80MHz	MCS 0-Nss1	42	4+5+6
Band Edge Emissions	80MHz	MCS 0-Nss1	42	4+5+6

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.
03CH01-CB	SAC	Hsin Chu	262045	IC 4086D
TH01-CB	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC). Please refer section 6 for Test Site Address.

3.7. Table for Class II Change

This product is an extension of original one reported under Sporton project number: FR242515AA Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking
	1. 26dB Spectrum Bandwidth
	2. Maximum Conducted Output Power
It adds beam-forming function for 802.11ac VHT80	3. Power Spectral Density
mode in 5150-5250MHz and 5725-5850MHz.	4. Peak Excursion
	5. Radiated Emissions Above 1GHz
	6. Band Edge Emissions

3.8. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	D420	E2KWM3945ABG

3.9. Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters of IEEE 802.11ac MCS0 VHT 80MHz

Test Software Version	DOS
Frequency	5210 MHz
MCS0 80MHz	34.00

During the test, "DOS" under WIN XP was executed the test program to control the EUT continuously transmit RF signal.

3.10. Test Configurations

3.10.1. Radiation Emissions Test Configuration

Test Configuration: above 1GHz

ltem	Cable	Shield	Length
1	AC Power Cable	No	3.5M
2	RJ45 Cable	No	10M

4. TEST RESULT

4.1. 99% Occupied Bandwidth Measurement

4.1.1. Limit

No restriction limits. But resolution bandwidth within band edge measurement is 1% of the 99% occupied bandwidth.

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 26dB Bandwidth
RB	Approximately 1% of the emission bandwidth
VB	VBW > RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.1.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth of 300 kHz and the video bandwidth of 1000 kHz were used.
- 3. Measured the spectrum width with power higher than 26dB below carrier.

4.1.4. Test Setup Layout

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.1.7. Test Result of 99% Occupied Bandwidth

Temperature	25° C	Humidity	56%
Test Engineer	Satoshi Yang	Configurations	IEEE 802.11ac

Configuration IEEE 802.11ac MCS0 VHT 80MHz / Ant. 4 + Ant. 5 + Ant. 6 (3TX)

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
42	5210 MHz	79.92	75.60

26 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0 VHT80MHz / 5210 MHz /

Date: 31.JAN.2013 22:00:22

4.2. Maximum Conducted Output Power Measurement

4.2.1. Limit

For the band 5.15~5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW (17dBm) or 4 dBm + 10log B, where B is the 26 dB emissions bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1000 kHz
VB	3000 kHz
Detector	RMS
Trace	Average Sweep count 100
Sweep Time	Auto

4.2.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Test was performed in accordance with FCC Public Notice DA 02-2138, August 30, 2002.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of Maximum Conducted Output Power

Temperature	25 ℃	Humidity	56%
Test Engineer	Satoshi Yang	Configurations	IEEE 802.11ac

Configuration IEEE 802.11ac MCS0 VHT 80MHz / Ant. 4 + Ant. 5 + Ant. 6 (3TX)

Channel	Frequency	Conducted Power (dBm)		Total	Max. Limit	Docult	
Channel		Ant. 4	Ant. 5	Ant. 6	Power (dBm)	(dBm)	Kesuli
42	5210 MHz	9.07	9.07	9.22	13.89	14	Complies

Note: Directional gain=Gant+10*log(Nant/Nss) = 9dBi>6dBi, so Limit = 9dBi - FCC Std 6dBi = 3dBi, 17dBm - 3dBi = 14dBm.

Conducted Output Power Plot on Configuration IEEE 802.11ac MCS0 VHT 80MHz / 5210 MHz / Ant. 4

Date: 31.JAN.2013 21:48:28

Conducted Output Power Plot on Configuration IEEE 802.11ac MCS0 VHT 80MHz / 5210 MHz / Ant. 5

Date: 31.JAN.2013 21:47:58

Conducted Output Power Plot on Configuration IEEE 802.11ac MCS0 VHT 80MHz / 5210 MHz / Ant. 6

Date: 31.JAN.2013 21:47:22

4.3. Power Spectral Density Measurement

4.3.1. Limit

The power spectral density is defined as the highest level of power in dBm per MHz generated by the transmitter within the power envelope. The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

Frequency Range	Power Spectral Density limit (dBm/MHz)	
5.15~5.25 GHz	4	

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal		
RB	1000 kHz		
VB	3000 kHz		
Detector	RMS		
Trace	AVERAGE		
Sweep Time	Auto		
Trace Average	100 times		

4.3.3. Test Procedures

- 1. Trace A, Set RBW =1MHz, VBW = 3MHz, Span >26dB bandwidth, Max. hold.
- 2. Delta Mark trace A Maximum frequency and trace B same frequency.
- 3. Repeat the above procedure until measurements for all frequencies were complete.
- 4. Procedures refer KDB 662911: Measure and sum the spectra across the outputs. The first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way. This will likely require transferring the measured spectra to a computer, where the bin-by-bin summing can be performed.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of Power Spectral Density

Temperature	25 ℃	Humidity	56%
Test Engineer	Satoshi Yang	Configurations	IEEE 802.11ac
Test Date	Feb. 05, 2013		

Configuration IEEE 802.11ac MCS0 VHT 80MHz / Ant. 4 + Ant. 5 + Ant. 6 (3TX)

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
42	5210 MHz	-7.03	1	Complies

Note: Directional gain=Gant+10*log(Nant/Nss) = 9dBi>6dBi, so Limit = 9dBi - FCC Std 6dBi = 3dBi, 4dBm - 3dBi = 1dBm/MHz.

Power Density Plot on Configuration IEEE 802.11ac MCS0 VHT 80MHz / 5210 MHz / Ant. 4 + Ant. 5 + Ant. 6 (3TX)

4.4. Peak Excursion Measurement

4.4.1. Limit

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal		
RB	1MHz (Peak Trace) / 1MHz (Average Trace)		
VB	3MHz (Peak Trace) / 3MHz (Average Trace)		
Detector	Peak (Peak Trace) / RMS (Average Trace)		
Тгасе	Peak : Trace :Max hold/Average: Trace Average Sweep Count 100		
Sweep Time	AUTO		

4.4.3. Test Procedures

- 1. The test procedure is the same as section 4.6.3.
- 2. Trace A, Set RBW =1MHz, VBW = 3MHz, Span >26dB bandwidth, Max. hold.
- 3. Delta Mark trace A Maximum frequency and trace B same frequency.
- 4. Repeat the above procedure until measurements for all frequencies were complete.

4.4.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Peak Excursion

Temperature	25 ℃	Humidity	56%
Test Engineer	Satoshi Yang	Configurations	IEEE 802.11ac

Configuration IEEE 802.11ac MCS0 VHT80MHz / Ant. 4 + Ant. 5 + Ant. 6 (3TX)

Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
42	5210 MHz	9.12	13	Complies

Peak Excursion Plot on Configuration IEEE 802.11ac MCS0 VHT 80MHz / 5210 MHz /

Date: 4.FEB.2013 17:25:41

4.5. Radiated Emissions Measurement

4.5.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). For transmitters operating in the In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance	
(MHz)	(micorvolts/meter)	(meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.5.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

4.5.4. Test Setup Layout

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.5.7. Results for Radiated Emissions (1GHz~40GHz)

Temperature	24.5° C	Humidity	60%		
Tost Engineer	lim Huang	Configurations	IEEE 802.11ac MCS0 80MHz CH 42 /		
rest Engineer	Jinnuang	Configurations	Ant. 4 + Ant. 5 + Ant. 6 (3TX)		
Test Date	Feb. 04, 2013				
lorizontal					
Free	Limit Over q Level Line Limit	Read CableAntenna Level Loss Factor	Preamp A/Pos T/Pos Factor Pol/Phase Remark		
MH:	z dBuV/m dBuV/m dB	dBu∀ dB dB/m	dB cm deg		
1 pp 15631.03	7 42.45 54.00 -11.55	27.97 10.36 38.75	34.63 100 117 HORIZONTAL Average		
2 pk 15631.33	7 53.05 74.00 -20.95	38.57 10.36 38.75	34.63 100 117 HORIZONTAL Peak		

Vertical

	Freq	Level	Limit Line	0∨er Limit	Read Level	CableA Loss	ntenna Factor	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark	
	MHz	dBu\∕/m	dBu\∕/m	dB	dBu∨	dB	dB/m	dB	cm	deg			
1 pp 2 pl	15633.24 15633.68	39.63 52.28	54.00 74.00	-14.37 -21.72	25.15 37.80	10.36 10.36	38.75 38.75	34.63 34.63	100 100	311 311	VERTICAL VERTICAL	Average Peak	

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6. Band Edge Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 3MHz for peak

4.6.3. Test Procedures

- 1. The test procedure is the same as section 4.6.3, only the frequency range investigated is limited to 100MHz around bandedges.
- 2. In case the emission is fail due to the used RB/VB is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

4.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.6.7. Test Result of Band Edge and Fundamental Emissions

Temperature	24.5° C	Humidity	60%		
Tost Engineer	Satoshi Vana	Configurations	IEEE 802.11ac MCS0 80MHz CH 42 /		
rest Engineer	satushi rang	Configurations	Ant. 4 + Ant. 5 + Ant. 6 (3TX)		
Test Date	Jan. 22, 2013				

Channel 42

	Freq	Level	Limit Line	Over Limit	Read Level	CableA Loss	ntenna Factor	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
-	MHz	dBu\∕/m	dBu\//m	dB	dBu∨	dB	dB/m	dB	cm	deg		·
1	5050.00	60.66	74.00	-13.34	21.79	5.93	32.94	0.00	100	86	VERTICAL	Peak
2 !	5050.32	53.37	54.00	-0.63	14.50	5.93	32.94	0.00	100	86	VERTICAL	Average
3 рр	5182.00	93.97			54.92	6.01	33.04	0.00	100	86	VERTICAL	Average
4 pk	5197.20	105.57			66.50	6.02	33.05	0.00	100	86	VERTICAL	Peak

Item 3, 4 are the fundamental frequency at 5210 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Jan. 11, 2013	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
forHorn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26.5GHz ~ 40GHz	Jul. 31, 2012	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100056	9KHz~40GHz	Nov. 16, 2012	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9KHz ~ 2.75GHz	Mar. 20, 2012	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N.C.R	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9KHz~40GHz	Oct. 08, 2012	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 05, 2012	Conducted (TH01-CB)
Signal Generator	R&S	SMR40	100302	10MHz-40GHz	Nov. 27, 2012	Conducted (TH01-CB)
RF Power Divider	Woken	2 Way	0120A02056002D	2GHz ~ 18GHz	Nov. 18, 2012	Conducted (TH01-CB)
RF Power Divider	Woken	3 Way	MDC2366	2GHz ~ 18GHz	Nov. 18, 2012	Conducted (TH01-CB)
RF Power Divider	Woken	4 Way	0120A04056002D	2GHz ~ 18GHz	Nov. 18, 2012	Conducted (TH01-CB)
Signal generator	R&S	SMU200A	102782	10MHz-40GHz	Sep. 26, 2012	Conducted (TH01-CB)
Horn Antenna	COM-POWER	AH-118	071187	071187 1GHz – 18GHz		Conducted (TH01-CB)
Horn Antenna	COM-POWER	AH-118	071042	1GHz – 18GHz	Dec. 06, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 28, 2012	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Nov. 27, 2012	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

"*" Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

6. TEST LOCATION

SHIJR	ADD	:	6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7Fl., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4Fl., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085