

FCC/IC SAR TEST REPORT

REPORT NO.: SA110826C12A

- MODEL NO.: N300MA
 - FCC ID: PY312100184
 - IC: 4054A-12100184
 - **RECEIVED:** Aug. 26, 2011
 - **TESTED:** Oct. 11, 2011 ~ Feb. 08, 2012
 - **ISSUED:** Feb. 09, 2012
- APPLICANT: Netgear Incorporated
 - ADDRESS: 350 East Plumeria Drive San Jose, CA 95134 U.S.A
- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Dist., New Taipei City, Taiwan, R.O.C.
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 24 pages in total except Appendix. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

RELEA	SE CONTROL RECORD	3			
1.	CERTIFICATION	4			
2.	GENERAL INFORMATION	5			
2.1	GENERAL DESCRIPTION OF EUT	5			
2.2	GENERAL DESCRIPTION OF APPLIED STANDARDS	6			
2.3	GENERAL INOFRMATION OF THE SAR SYSTEM	6			
2.4	TEST EQUIPMENT	10			
2.5	GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION	11			
3.	RECIPES FOR TISSUE SIMULATING LIQUIDS	15			
4.	SYSTEM VALIDATION	17			
4.1	TEST PROCEDURE				
4.2	VALIDATION RESULTS	18			
4.3	SYSTEM VALIDATION UNCERTAINTIES	19			
5.	TEST RESULTS	20			
5.1	TEST PROCEDURES	20			
5.2	MEASURED SAR RESULTS				
6.	SAR LIMITS	23			
7.	INFORMATION ON THE TESTING LABORATORIES	24			
	NDIX A: TEST CONFIGURATIONS AND TEST DATA				
	APPENDIX B: ADT SAR MEASUREMENT SYSTEM APPENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION				
	NDIX D: SYSTEM CERTIFICATE & CALIBRATION				

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
Original release	N/A	Feb. 09, 2012

1. CERTIFICATION

PRODUCT: N300 Micro USB WiFi Adapter MODEL NO.: N300MA FCC ID: PY312100184 IC: 4054A-12100184 BRAND: NETGEAR APPLICANT: Netgear Incorporated TESTED: Oct. 11, 2011 ~ Feb. 08, 2012 STANDARDS: FCC Part 2 (Section 2.1093) FCC OET Bulletin 65, Supplement C (01-01) IEEE 1528-2003 IC RSS-102 Issue 4 (2010-03)

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report.

PREPARED BY

Pettie Chen / Specialist

, DATE : Feb. 09, 2012

APPROVED BY

Roy Wur/ Manager

, DATE : Feb. 09, 2012

4

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

EUT	N300 Micro USB WiFi Adapter		
MODEL NO.	N300MA		
FCC ID	PY312100184		
IC	4054A-12100184		
MODULATION TYPE	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM		
MODULATION TECHNOLOGY	802.11b / DSSS, 802.11g / OFDM, 802.11n / OFDM		
TRANSFER RATE	802.11b: 11 / 5.5 / 2 / 1Mbps 802.11g: 54 / 48 / 36 / 24 / 18 / 12 / 9 / 6Mbps 802.11n: up to 270Mbps		
OPERATING FREQUENCY	2412 ~ 2462MHz		
MAX. SAR (1g)	1.18 W/kg		
ANTENNA TYPE	PIFA antenna with 4dBi antenna gain		

NOTE:

1. The Tx function are listed as below.

MODULATION MODE	TX FUNCTION
802.11b	1TX
802.11g	1TX
802.11n (20MHz)	2TX
802.11n (40MHz)	2TX
	· · - · · · · ·

2. The EUT conducted average power(dBm) listed as below:

СН	FREQ.	802.11b	802.11g	802.11n (20MHz)
1	2412MHz	18.07	21.85	18.81
6	2437MHz	18.33	21.96	18.85
11	2462MHz	18.32	21.87	18.84

СН	FREQ.	802.11n (40MHz)
3	2422MHz	16.21
6	2437MHz	16.14
9	2452MHz	16.04

3. The above EUT information is declared by manufacturer and for more detailed feature description, please refer to the manufacturer's specifications or User's Manual.

2.2 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to the specifications of the manufacturer, this product must comply with the requirements of the following standards:

FCC Part 2 (2.1093) FCC OET Bulletin 65, Supplement C (01- 01) IEEE 1528-2003 IC RSS-102 Issue 4 (2010-03)

All test items have been performed and recorded as per the above standards.

2.3 GENERAL INOFRMATION OF THE SAR SYSTEM

DASY5 consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY5 software defined. The DASY5 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

6

EX3DV4 ISOTROPIC E-FIELD PROBE

CONSTRUCTION	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
FREQUENCY	10 MHz to > 6 GHz Linearity: \pm 0.2 dB (30 MHz to 6 GHz)
DIRECTIVITY	\pm 0.3 dB in HSL (rotation around probe axis) \pm 0.5 dB in tissue material (rotation normal to probe axis)
DYNAMIC RANGE	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
DIMENSIONS	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm)
APPLICATION	Typical distance from probe tip to dipole centers: 1 mm High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

NOTE

- 1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.
- 2. For frequencies above 800MHz, calibration in a rectangular wave-guide is used, because wave-guide size is manageable.
- 3. For frequencies below 800MHz, temperature transfer calibration is used because the wave-guide size becomes relatively large.

TWIN SAM V4.0

CONSTRUCTION	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2003, EN 62209-1 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.	
SHELL THICKNESS	2 ± 0.2mm	
FILLING VOLUME	15 cm deep from the ERP	
DIMENSIONS	Height: 810mm; Length: 1000mm; Width: 500mm	

SYSTEM VALIDATION KITS:

CONSTRUCTION	Symmetrical dipole with I/4 balun enables measurement of feedpoint impedance with NWA matched for use near flat phantoms filled with brain simulating solutions. Includes distance holder and tripod adaptor
CALIBRATION	Calibrated SAR value for specified position and input power at the flat phantom in brain simulating solutions
FREQUENCY	2450MHz
RETURN LOSS	> 20dB at specified validation position
POWER CAPABILITY	> 100W (f < 1GHz); > 40W (f > 1GHz)
OPTIONS	Dipoles for other frequencies or solutions and other calibration conditions upon request

DEVICE HOLDER FOR SAM TWIN PHANTOM

CONSTRUCTION

The device holder for the mobile phone device is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. The device holder for the portable device makes up of the polyethylene foam. The dielectric parameters of material close to the dielectric parameters of the air.

DATA ACQUISITION ELECTRONICS

CONSTRUCTION

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplex, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe is mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

2.4 TEST EQUIPMENT

FOR SAR MEASURENENT

NAME	BRAND	TYPE	SERIES NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Signal Generator	Agilent	E8257C	MY43320668	Dec. 27, 2010	Dec. 26, 2011
E-Field Probe	S&P	EX3DV4	3590	Feb. 25, 2011	Feb. 24, 2012
E-Field Probe	S & P	EX3DV4	3650	Oct. 26, 2011	Oct. 25, 2012
E-Field Probe	S & P	EX3DV4	3661	Jan. 27, 2012	Jan. 26, 2013
DAE	S & P	DAE4	579	Sep. 23, 2011	Sep. 22, 2012
DAE	S & P	DAE4	861	Aug. 29, 2011	Aug. 28, 2012
DAE	S & P	DAE4	1277	Jul. 29, 2011	Jul. 28, 2012
Validation Dipole	S & P	D2450V2	716	Jan. 26, 2011	Jan. 25, 2012
Validation Dipole	S & P	D2450V2	735	Jun. 22, 2011	Jun. 21, 2012

NOTE: Before starting the measurement, all test equipment shall be warmed up for 30min.

FOR TISSUE PROPERTY

NAME	BRAND	TYPE	SERIES NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Network Analyzer	Agilent	E8358A	US41480538	Dec. 30, 2010	Dec. 29, 2011
Network Analyzer	Agilent	E5071C	MY46104190	Apr. 15, 2011	Apr. 14, 2012
Dielectric Probe	Agilent	85070D	NA	NA	NA

NOTE:

1. Before starting, all test equipment shall be warmed up for 30min.

2. The tolerance (k=1) specified by Agilent for general dielectric measurements, deriving from inaccuracies in the calibration data, analyzer drift, and random errors, are usually $\pm 2.5\%$ and $\pm 5\%$ for measured permittivity and conductivity, respectively. However, the tolerances for the conductivity is smaller for material with large loss tangents, i.e., less than $\pm 2.5\%$ (k=1). It can be substantially smaller if more accurate methods are applied

2.5 GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION

The DASY52 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the micro-volt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvFi
	- Diode compression point	dcpi
Device parameters:	- Frequency	F
	- Crest factor	Cf
Media parameters:	- Conductivity	ζ
	- Density	ρ

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

Vi	=compensated signal of channel i	(i = x, y, z)
Ui	=input signal of channel I	(i = x, y, z)
Cf	=crest factor of exciting field	(DASY parameter)
dcpi	=diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-fieldprobes:
$$E_i = \sqrt{\frac{V_1}{Norm_i \cdot ConvF}}$$

H-fieldprobes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

Vi	=compensated signal of channel I	(i = x, y, z)
Norm _i	 sensor sensitivity of channel i μV/(V/m)2 for E-field Probes 	(i = x, y, z)
ConvF	= sensitivity enhancement in solution	
a _{ij}	= sensor sensitivity factors for H-field probes	
F	= carrier frequency [GHz]	
Ei	= electric field strength of channel i in V/m	
H _i	= magnetic field strength of channel i in A/m	

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

- ζ = conductivity in [mho/m] or [Siemens/m]
- ρ = equivalent tissue density in g/cm3

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 5 x 5 x 7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 32 x 32 x 30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid (42875 points). In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

3. RECIPES FOR TISSUE SIMULATING LIQUIDS

For the measurement of the field distribution inside the SAM phantom, the phantom must be filled with tissue simulation liquid to a depth of 15 cm

The following ingredients are used :

- WATER- Deionized water (pure H20), resistivity _16 M as basis for the liquid
- DGMBE- Diethylenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS # 112-34-5 - to reduce relative permittivity

INGREDIENT	BODY SIMULATING LIQUID 2450MHz (MSL-2450)			
Water	69.83%			
DGMBE	30.17%			
Dielectric Parameters at 22 °C	f= 2450MHz ε= 52.7 ± 5% ζ= 1.95 ± 5% S/m			

THE RECIPES FOR 2450MHz SIMULATING LIQUID TABLE

Testing the liquids using the Agilent Network Analyzer E8358A and Agilent Dielectric Probe Kit 85070D.The testing procedure is following as

- 1. Turn Network Analyzer on and allow at least 30min. warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to Network Analyzer will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature (±1°).
- 4. Set water temperature in Agilent-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Validate calibration with dielectric material of known properties (e.g. polished ceramic slab with >8mm thickness ϵ '=10.0, ϵ "=0.0). If measured parameters do not fit within tolerance, repeat calibration (±0.2 for ϵ ': ±0.1 for ϵ ").
- 7. Conductivity can be calculated from ε " by $\zeta = \omega \varepsilon_0 \varepsilon$ " = ε " f [GHz] / 18.
- 8. Measure liquid shortly after calibration. Repeat calibration every hour.
- 9. Stir the liquid to be measured. Take a sample (~ 50ml) with a syringe from the center of the liquid container.
- 10. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 11. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 12. Perform measurements.
- 13. Adjust medium parameters in DASY52 for the frequencies necessary for the measurements.
- 14. Select the current medium for the frequency of the validation.

Frequency (MHz)	Liquid Type	Liquid Temp. (℃)	Conductivity (σ)	Permittivity (εr)	Conductivity Target / Dev. (%)	Permittivity Target / Dev. (%)	Date
2450	Body	21.4	1.931	53.552	1.95 / -1.0	52.7 / 1.6	Oct. 11, 2011
2450	Body	21.8	2.015	53.957	1.95 / 3.3	52.7 / 2.4	Oct. 13, 2011
2450	Body	21.2	1.971	51.214	1.95 / 1.1	52.7 / -2.8	Dec. 16, 2011
2450	Body	20.6	1.980	51.000	1.95 / 1.5	52.7 / -3.2	Feb. 08, 2012

FOR SIMULATING LIQUID

4. SYSTEM VALIDATION

The system validation was performed in the flat phantom with equipment listed in the following table. Since the SAR value is calculated from the measured electric field, dielectric constant and conductivity of the body tissue and the SAR is proportional to the square of the electric field. So, the SAR value will be also proportional to the RF power input to the system validation dipole under the same test environment. In our system validation test, 250mW RF input power was used.

4.1 TEST PROCEDURE

Before the system performance check, we need only to tell the system which components (probe, medium, and device) are used for the system performance check; the system will take care of all parameters. The dipole must be placed beneath the flat section of the SAM Twin Phantom with the correct distance holder in place. The distance holder should touch the phantom surface with a light pressure at the reference marking (little cross) and be oriented parallel to the long side of the phantom. Accurate positioning is not necessary, since the system will search for the peak SAR location, except that the dipole arms should be parallel to the surface. The device holder for mobile phones can be left in place but should be rotated away from the dipole.

- 1. The "Power Reference Measurement" and "Power Drift Measurement" jobs are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the amplifier output power. If it is too high (above ±0.1 dB), the system performance check should be repeated; some amplifiers have very high drift during warm-up. A stable amplifier gives drift results in the DASY system below ±0.02dB.
- 2. The "Surface Check" job tests the optical surface detection system of the DASY system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ±0.1mm). In that case it is better to abort the system performance check and stir the liquid.

- 3. The "Area Scan" job measures the SAR above the dipole on a plane parallel to the surface. It is used to locate the approximate location of the peak SAR. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field, the peak detection is reliable. If a finer graphic is desired, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result.
- 4. The "Zoom Scan" job measures the field in a volume around the peak SAR value assessed in the previous "Area Scan" job (for more information see the application note on SAR evaluation).

About the validation dipole positioning uncertainty, the constant and low loss dielectric spacer is used to establish the correct distance between the top surface of the dipole and the bottom surface of the phantom, the error component introduced by the uncertainty of the distance between the liquid (i.e., phantom shell) and the validation dipole in the DASY52 system is less than ± 0.1 mm.

$$SAR_{tolerance}[\%] = 100 \times (\frac{(a+d)^2}{a^2} - 1)$$

As the closest distance is 10mm, the resulting tolerance SAR_{tolerance}[%] is <2%.

Date	Frequency (MHz)	Targeted SAR (W/kg)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)
Oct. 11, 2011	2450	53.30	12.90	51.60	-3.19
Oct. 13, 2011	2450	53.30	12.20	48.80	-8.44
Dec. 16, 2011	2450	53.30	13.60	54.40	2.06
Feb. 08, 2012	2450	51.20	12.00	48.00	-6.25

4.2 VALIDATION RESULTS

NOTE:

- 1. The target SAR is derived from validation dipole certificate report and it is calculated with nominal tissue parameter and normalized to 1W.
- 2. Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Above table shows the target SAR and measured SAR after normalized to 1W input power.
- 3. Please see Appendix for the photo of system validation test.

4.3 SYSTEM VALIDATION UNCERTAINTIES

In the table below, the system validation uncertainty with respect to the analytically assessed SAR value of a dipole source as given in the IEEE 1528 standard is given. This uncertainty is smaller than the expected uncertainty for mobile phone measurements due to the simplified setup and the symmetric field distribution.

Error Description	Tolerance	Folerance Probability (±%) Distribution	Divisor	(0	C _i)		dard inty (±%)	(v _i)	
	(±%)			(1g)	(10g)	(1g)	(10g)		
	Measurement System								
Probe Calibration	6.55	Normal	1	1	1	6.55	6.55	∞	
Axial Isotropy	0.25	Rectangular	√3	0.7	0.7	0.10	0.10	∞	
Hemispherical Isotropy	1.30	Rectangular	√3	0.7	0.7	0.53	0.53	∞	
Boundary effects	1.00	Rectangular	√3	1	1	0.58	0.58	∞	
Linearity	0.30	Rectangular	√3	1	1	0.17	0.17	∞	
System Detection Limits	1.00	Rectangular	√3	1	1	0.58	0.58	∞	
Readout Electronics	0.30	Normal	1	1	1	0.30	0.30	∞	
Response Time	0.80	Rectangular	√3	1	1	0.46	0.46	∞	
Integration Time	2.60	Rectangular	√3	1	1	1.50	1.50	∞	
RF Ambient Noise	3.00	Rectangular	√3	1	1	1.73	1.73	9	
RF Ambient Reflections	3.00	Rectangular	√3	1	1	1.73	1.73	9	
Probe Positioner	0.40	Rectangular	√3	1	1	0.23	0.23	∞	
Probe Positioning	2.90	Rectangular	√3	1	1	1.67	1.67	∞	
Max. SAR Eval.	1.00	Rectangular	√3	1	1	0.58	0.58	∞	
		Test sample	e related		•	-			
Sample positioning	1.90	Normal	1	1	1	1.90	1.90	4	
Device holder uncertainty	2.80	Normal	1	1	1	2.80	2.80	4	
Output power variation-SAR drift measurement	4.50	Rectangular	√3	1	1	2.60	2.60	1	
		Dipole R	elated						
Dipole Axis to Liquid Distance	1.60	Rectangular	√3	1	1	0.92	0.92	4	
Input Power Drift	2.33	Rectangular	√3	1	1	1.34	1.34	1	
		Phantom and Tiss	ue paramet	ers					
Phantom Uncertainty	4.00	Rectangular	√3	1	1	2.31	2.31	∞	
Liquid Conductivity (target)	5.00	Rectangular	√3	0.64	0.43	1.85	1.24	∞	
Liquid Conductivity (measurement)	3.04	Normal	1	0.64	0.43	1.95	1.31	9	
Liquid Permittivity (target)	5.00	Rectangular	√3	0.6	0.49	1.73	1.41	∞	
Liquid Permittivity (measurement)	2.73	Normal	1	0.6	0.49	1.64	1.34	9	
Combined Standard Uncertainty							9.43		
Coverage Factor for 95%						Kp=2			
	Expanded	l Uncertainty (K=2)				19.46	18.85		

5. TEST RESULTS

5.1 TEST PROCEDURES

Use the software to control the EUT channel and transmission power. Then record the conducted power before the testing. Place the EUT to the specific test location. After the testing, must writing down the conducted power of the EUT into the report. The SAR value was calculated via the 3D spline interpolation algorithm that has been implemented in the software of DASY SAR measurement system manufactured and calibrated by SPEAG. According to the IEEE 1528 standards, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Verification of the power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

The area scan was performed for the highest spatial SAR location. The zoom scan was performed for SAR value averaged over 1g and 10g spatial volumes.

In the zoom scan, the distance between the measurement point at the probe sensor location (geometric center behind the probe tip) and the phantom surface is 3mm and maintained at a constant distance of ± 0.5 mm during a zoom scan to determine peak SAR locations. The distance is 2mm between the first measurement point and the bottom surface of the phantom. The secondary measurement point to the bottom surface of the phantom is with 7mm separation distance. The cube size is 5 x 5 x 7 points consists of 343 points and the grid space is 5mm.

The measurement time is 0.5s at each point of the zoom scan. The probe boundary effect compensation shall be applied during the SAR test. Because of the tip of the probe to the Phantom surface separated distances are longer than half a tip probe diameter.

In the area scan, the separation distance is 2mm between the each measurement point and the phantom surface. The scan size shall be included the transmission portion of the EUT. The measurement time is the same as the zoom scan. At last the reference power drift shall be less than \pm 5%.

Plot No.	Band	Mode	Test Position	Separation Distance (cm)	Channel	Tx Antenna	SAR₁g (W/kg)
1	802.11b	-	Horizontal Up	0.5	6	0	0.494
2	802.11b	-	Horizontal Down	0.5	6	0	0.504
3	802.11b	-	Vertical Front	0.5	6	0	0.121
4	802.11b	-	Vertical Back	0.5	6	0	0.388
5	802.11b	-	Tip Mode	0.5	6	0	0.181
23	802.11g	-	Horizontal Up	0.5	6	0	0.945
6	802.11g	-	Horizontal Down	0.5	6	0	1.18
26	802.11g	-	Vertical Front	0.5	6	0	0.199
27	802.11g	-	Vertical Back	0.5	6	0	0.79
28	802.11g	-	Tip Mode	0.5	6	0	0.337
24	802.11g	-	Horizontal Up	0.5	1	0	0.882
25	802.11g	-	Horizontal Up	0.5	11	0	0.912
7	802.11g	-	Horizontal Down	0.5	1	0	1.08
8	802.11g	-	Horizontal Down	0.5	11	0	1.02
10	802.11n	HT20	Horizontal Up	0.5	6	0+1	0.138
11	802.11n	HT20	Horizontal Down	0.5	6	0+1	0.205
29	802.11n	HT20	Vertical Front	0.5	6	0+1	0.137
30	802.11n	HT20	Vertical Back	0.5	6	0+1	0.421
31	802.11n	HT20	Tip Mode	0.5	6	0+1	0.245

5.2 MEASURED SAR RESULTS

NOTE:

1. According to KDB 248227, the SAR testing for 802.11n HT40 is not required because the maximum power of 802.11n HT40 is less than 802.11b.

2. In this testing, the limit for General Population Spatial Peak averaged over 1g, **1.6 W/kg**, is applied.

3. Please see the Appendix A for the data.

6. SAR LIMITS

	SAR (W/kg)				
HUMAN EXPOSURE	(GENERAL POPULATION / UNCONTROLLED EXPOSURE ENVIRONMENT)	(OCCUPATIONAL / CONTROLLED EXPOSURE ENVIRONMENT)			
Spatial Average (whole body)	0.08	0.4			
Spatial Peak (averaged over 1 g)	1.6	8.0			
Spatial Peak (hands / wrists / feet / ankles averaged over 10 g)	4.0	20.0			

NOTE:

1. This limits accord to 47 CFR 2.1093 – Safety Limit.

7. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation and authorization certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5.phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050

Email:<u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.adt.com.tw</u>

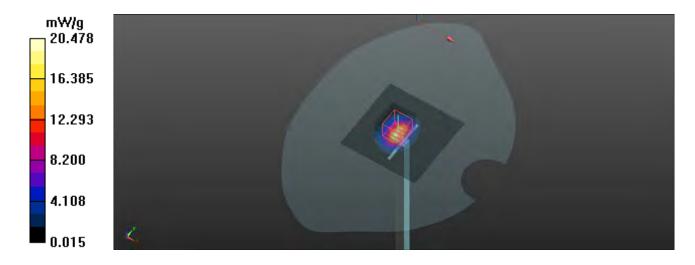
The address and road map of all our labs can be found in our web site also.

---END----

System Check_MSL2450_111011

DUT: Dipole 2450 MHz

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: B2450_1011 Medium parameters used: f = 2450 MHz; $\sigma = 1.931$ mho/m; $\epsilon_r = 53.552$; ρ


= 1000 kg/m^3 Ambient Temperature : 22.7 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(7.91, 7.91, 7.91); Calibrated: 2011/02/25
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2011/08/29
- Phantom: SAM Phantom_Front; Type: SAM; Serial: TP-1485
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

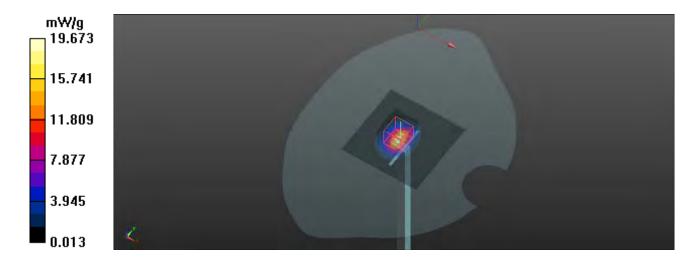
Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 20.478 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.359 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 26.349 W/kg **SAR(1 g) = 12.9 mW/g; SAR(10 g) = 5.98 mW/g** Maximum value of SAR (measured) = 19.671 mW/g

System Check_MSL2450_111013

DUT: Dipole 2450 MHz

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: B2450_1013 Medium parameters used: f = 2450 MHz; $\sigma = 2.015$ mho/m; $\epsilon_r = 53.957$; ρ


= 1000 kg/m^3 Ambient Temperature : 22.8 °C; Liquid Temperature : 21.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(7.91, 7.91, 7.91); Calibrated: 2011/02/25
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2011/08/29
- Phantom: SAM Phantom_Front; Type: SAM; Serial: TP-1485
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

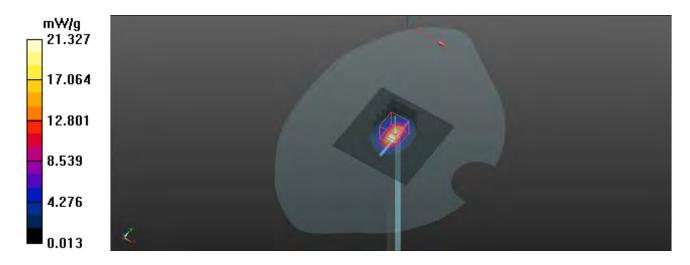
Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 19.673 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.607 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 25.005 W/kg **SAR(1 g) = 12.2 mW/g; SAR(10 g) = 5.66 mW/g** Maximum value of SAR (measured) = 18.333 mW/g

System Check_B2450_111216

DUT: Dipole 2450 MHz; Type: D2450V2; SN: 716

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: B2450_111216 Medium parameters used: f = 2450 MHz; $\sigma = 1.971$ mho/m; $\epsilon_r = 51.214$; $\rho = 1000$ kg/m³


Ambient Temperature : 22.3 °C; Liquid Temperature : 21.2 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3650; ConvF(6.89, 6.89, 6.89); Calibrated: 2011/10/26
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2011/07/29
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1654
- Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.4.5 (3634)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 21.327 mW/g

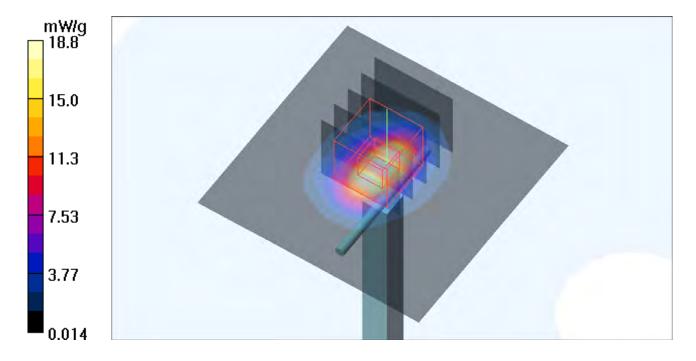
Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 103.2 V/m; Power Drift = 0.0064 dBPeak SAR (extrapolated) = 28.054 W/kg**SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.28 \text{ mW/g}** Maximum value of SAR (measured) = 20.473 mW/g

System Check_B2450_120208

DUT: Dipole 2450 MHz; Type: D2450V2; SN: 735

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: B2450_0208 Medium parameters used: f = 2450 MHz; σ = 1.98 mho/m; ϵ_r = 51; ρ = 1000 kg/m³


Ambient Temperature : 21.5 °C; Liquid Temperature : 20.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.5, 7.5, 7.5); Calibrated: 2012/01/27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2011/09/23
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1654
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

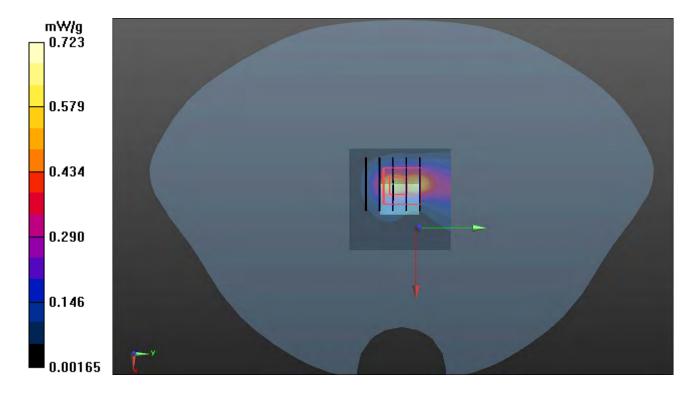
Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 18.8 mW/g

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 95.2 V/m; Power Drift = 0.074 dB Peak SAR (extrapolated) = 25.3 W/kg SAR(1 g) = 12 mW/g; SAR(10 g) = 5.55 mW/g Maximum value of SAR (measured) = 17.9 mW/g

P01 802.11b_Horizontal Up_0.5cm_Ch6

DUT: 111013C13

Communication System: 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL2450_1011 Medium parameters used: f = 2437 MHz; $\sigma = 1.914$ mho/m; $\varepsilon_r = 53.592$; ρ


= 1000 kg/m^3 Ambient Temperature : 22.5 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(7.91, 7.91, 7.91); Calibrated: 2011/2/25
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2011/8/29
- Phantom: SAM Phantom_Front; Type: SAM; Serial: TP-1485
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Ch6/Area Scan (31x31x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.640 mW/g

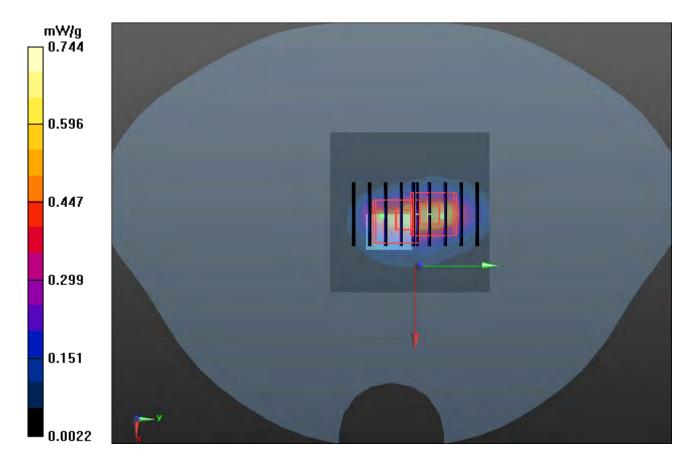
Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.358 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 1.045 W/kg SAR(1 g) = 0.494 mW/g; SAR(10 g) = 0.227 mW/g Maximum value of SAR (measured) = 0.723 mW/g

P02 802.11b_Horizontal Down_0.5cm_Ch6

DUT: 111013C13

Communication System: 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL2450_1011 Medium parameters used: f = 2437 MHz; $\sigma = 1.914$ mho/m; $\varepsilon_r = 53.592$; ρ

= 1000 kg/m^3 Ambient Temperature : 22.2 °C; Liquid Temperature : 21.4 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(7.91, 7.91, 7.91); Calibrated: 2011/2/25
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2011/8/29
- Phantom: SAM Phantom_Front; Type: SAM; Serial: TP-1485
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Ch6/Area Scan (41x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.678 mW/g

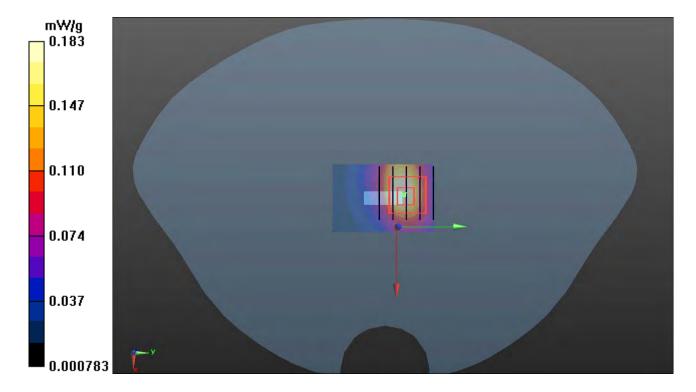
Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.419 V/m; Power Drift = -0.165 dB Peak SAR (extrapolated) = 0.983 W/kg SAR(1 g) = 0.504 mW/g; SAR(10 g) = 0.238 mW/g Maximum value of SAR (measured) = 0.744 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.419 V/m; Power Drift = -0.165 dB Peak SAR (extrapolated) = 0.862 W/kg SAR(1 g) = 0.395 mW/g; SAR(10 g) = 0.188 mW/g Maximum value of SAR (measured) = 0.661 mW/g

P03 802.11b_Vertical Front_0.5cm_Ch6

DUT: 111013C13

Communication System: 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL2450_1011 Medium parameters used: f = 2437 MHz; $\sigma = 1.914$ mho/m; $\epsilon_r = 53.592$; ρ


= 1000 kg/m^3 Ambient Temperature : 22.1 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(7.91, 7.91, 7.91); Calibrated: 2011/2/25
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2011/8/29
- Phantom: SAM Phantom_Front; Type: SAM; Serial: TP-1485
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

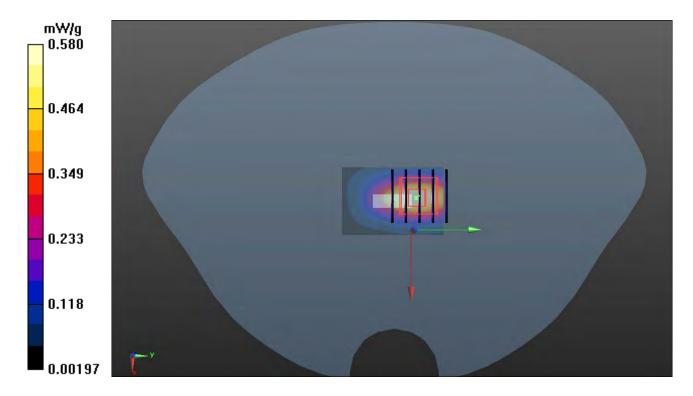
Ch6/Area Scan (21x31x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.196 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 7.656 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 0.242 W/kg SAR(1 g) = 0.121 mW/g; SAR(10 g) = 0.061 mW/g Maximum value of SAR (measured) = 0.183 mW/g

P04 802.11b_Vertical Back_0.5cm_Ch6

DUT: 111013C13

Communication System: 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL2450_1011 Medium parameters used: f = 2437 MHz; $\sigma = 1.914$ mho/m; $\varepsilon_r = 53.592$; ρ


= 1000 kg/m^3 Ambient Temperature : 22.6 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(7.91, 7.91, 7.91); Calibrated: 2011/2/25
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2011/8/29
- Phantom: SAM Phantom_Front; Type: SAM; Serial: TP-1485
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

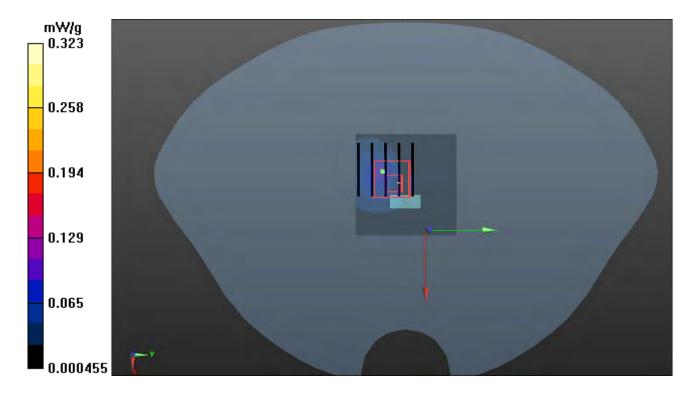
Ch6/Area Scan (21x31x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.643 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 17.343 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.776 W/kg SAR(1 g) = 0.388 mW/g; SAR(10 g) = 0.186 mW/g Maximum value of SAR (measured) = 0.580 mW/g

P05 802.11b_Tip Mode_0.5cm_Ch6

DUT: 111013C13

Communication System: 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL2450_1011 Medium parameters used: f = 2437 MHz; $\sigma = 1.914$ mho/m; $\epsilon_r = 53.592$; ρ


= 1000 kg/m^3 Ambient Temperature : 22.5 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(7.91, 7.91, 7.91); Calibrated: 2011/2/25
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2011/8/29
- Phantom: SAM Phantom_Front; Type: SAM; Serial: TP-1485
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

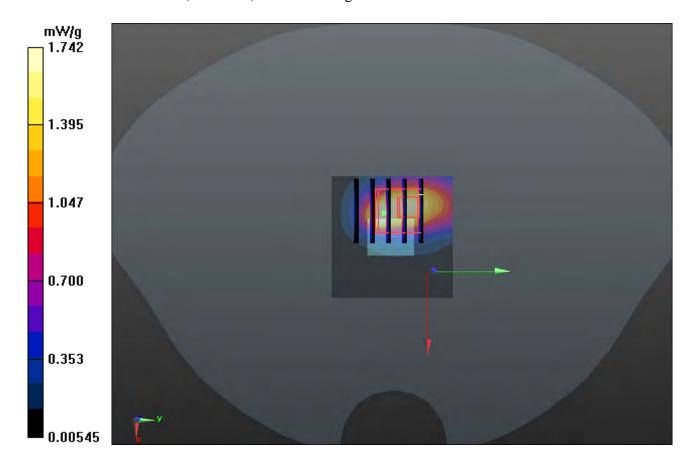
Ch6/Area Scan (31x31x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.103 mW/g

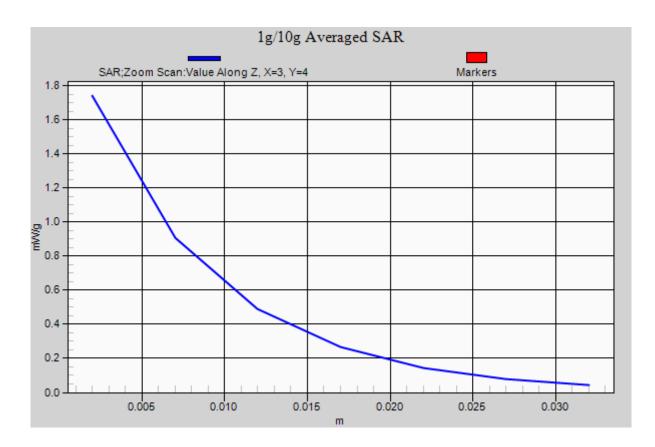
Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.876 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.450 W/kg SAR(1 g) = 0.181 mW/g; SAR(10 g) = 0.065 mW/g Maximum value of SAR (measured) = 0.323 mW/g

P06 802.11g_Horizontal Down_0.5cm_Ch6

DUT: 111013C13

Communication System: 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL2450_1011 Medium parameters used: f = 2437 MHz; $\sigma = 1.914$ mho/m; $\varepsilon_r = 53.592$; ρ


= 1000 kg/m^3 Ambient Temperature : 22.2 °C; Liquid Temperature : 21.4 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(7.91, 7.91, 7.91); Calibrated: 2011/2/25
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2011/8/29
- Phantom: SAM Phantom_Front; Type: SAM; Serial: TP-1485
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

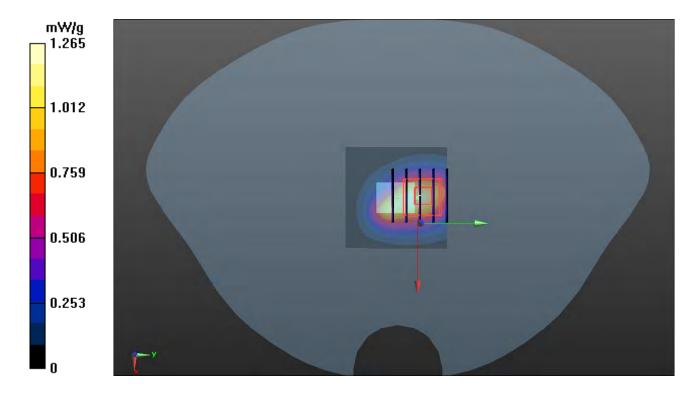
Ch6/Area Scan (31x31x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 2.002 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.593 V/m; Power Drift = -0.075 dB Peak SAR (extrapolated) = 2.578 W/kg SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.571 mW/g Maximum value of SAR (measured) = 1.742 mW/g

P07 802.11g_Horizontal Down_0.5cm_Ch1

DUT: 111013C13

Communication System: WLAN 2450; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: MSL2450_1011 Medium parameters used: f = 2412 MHz; $\sigma = 1.882$ mho/m; $\epsilon_r = 53.651$; ρ


= 1000 kg/m^3 Ambient Temperature : 22.1 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(7.91, 7.91, 7.91); Calibrated: 2011/2/25
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2011/8/29
- Phantom: SAM Phantom_Front; Type: SAM; Serial: TP-1485
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

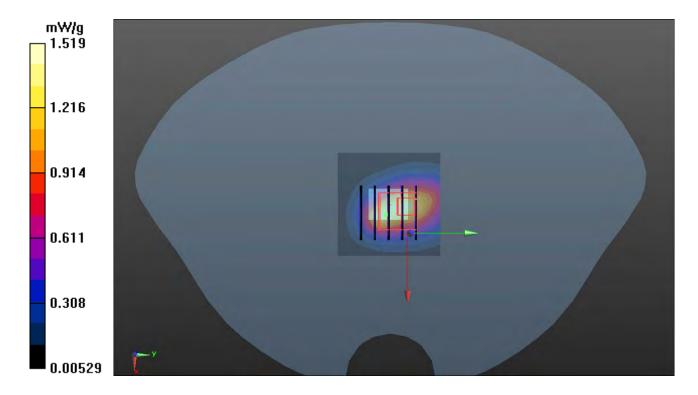
Ch1/Area Scan (31x31x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.265 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 24.013 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 2.120 W/kg SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.528 mW/g Maximum value of SAR (measured) = 1.566 mW/g

P08 802.11g_Horizontal Down_0.5cm_Ch11

DUT: 111013C13

Communication System: WLAN 2450; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: MSL2450_1011 Medium parameters used: f = 2412 MHz; $\sigma = 1.882$ mho/m; $\varepsilon_r = 53.651$; ρ


= 1000 kg/m^3 Ambient Temperature : 22.3 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

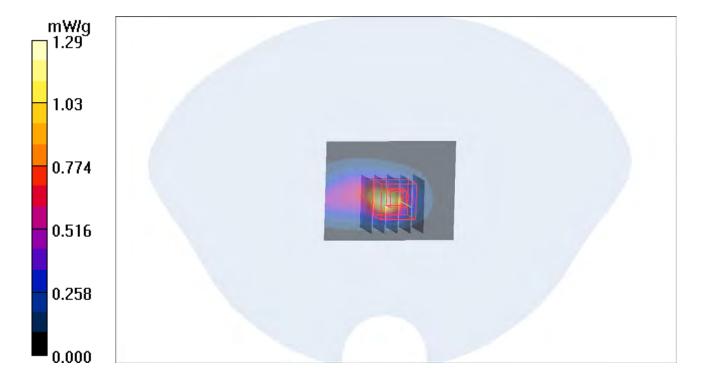
- Probe: EX3DV4 SN3590; ConvF(7.91, 7.91, 7.91); Calibrated: 2011/2/25
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2011/8/29
- Phantom: SAM Phantom_Front; Type: SAM; Serial: TP-1485
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Ch1/Area Scan (31x31x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.443 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 25.133 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 2.101 W/kg SAR(1 g) = 1.02 mW/g; SAR(10 g) = 0.495 mW/g Maximum value of SAR (measured) = 1.519 mW/g

P23 802.11g_Horizontal Up_0.5cm_Ch6_Ant0

DUT: 110826C12


Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: B2450_111216 Medium parameters used: f = 2437 MHz; $\sigma = 1.95$ mho/m; $\epsilon_r = 51.3$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.3 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

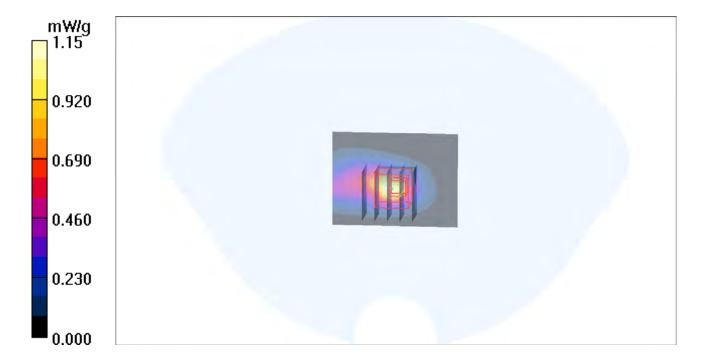
- Probe: EX3DV4 SN3650; ConvF(6.89, 6.89, 6.89); Calibrated: 2011/10/26
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2011/07/29
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1654
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch6/Area Scan (31x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.29 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.9 V/m; Power Drift = -0.086 dB Peak SAR (extrapolated) = 2.18 W/kg SAR(1 g) = 0.945 mW/g; SAR(10 g) = 0.411 mW/g Maximum value of SAR (measured) = 1.43 mW/g

P24 802.11g_Horizontal Up_0.5cm_Ch1_Ant0

DUT: 110826C12


Communication System: 802.11g; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: B2450_111216 Medium parameters used: f = 2412 MHz; $\sigma = 1.92$ mho/m; $\epsilon_r = 51.4$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.3 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

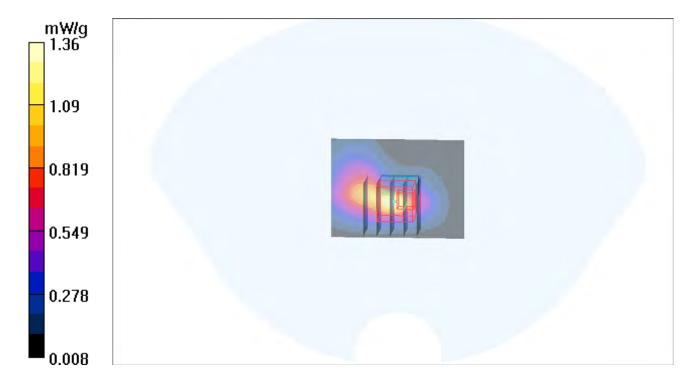
- Probe: EX3DV4 SN3650; ConvF(6.89, 6.89, 6.89); Calibrated: 2011/10/26
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2011/07/29
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1654
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch1/Area Scan (31x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.15 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.9 V/m; Power Drift = 0.195 dB Peak SAR (extrapolated) = 2.03 W/kg SAR(1 g) = 0.882 mW/g; SAR(10 g) = 0.391 mW/g Maximum value of SAR (measured) = 1.31 mW/g

P25 802.11g_Horizontal Up_0.5cm_Ch11_Ant0

DUT: 110826C12


Communication System: 802.11g; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: B2450_111216 Medium parameters used: f = 2462 MHz; $\sigma = 1.99$ mho/m; $\epsilon_r = 51.2$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 22.3 °C; Liquid Temperature : 21.2 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3650; ConvF(6.89, 6.89, 6.89); Calibrated: 2011/10/26
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2011/07/29
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1654
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

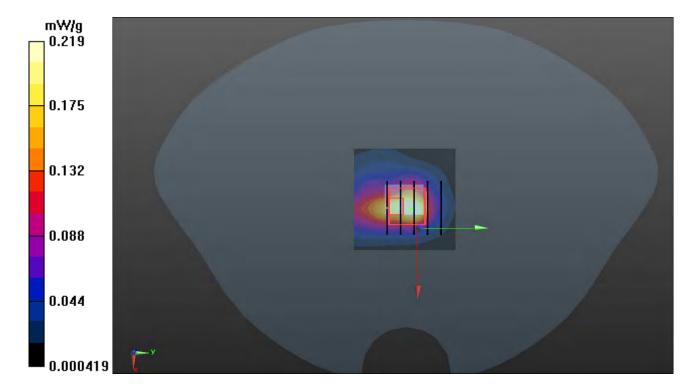
Ch11/Area Scan (31x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.36 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.7 V/m; Power Drift = -0.154 dB Peak SAR (extrapolated) = 1.94 W/kg SAR(1 g) = 0.912 mW/g; SAR(10 g) = 0.427 mW/g Maximum value of SAR (measured) = 1.37 mW/g

P10 802.11n_20M_Horizontal Up_0.5cm_Ch6

DUT: 111013C13

Communication System: WLAN 2450; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL2450_1013 Medium parameters used: f = 2437 MHz; $\sigma = 1.996$ mho/m; $\epsilon_r = 53.979$; ρ


= 1000 kg/m^3 Ambient Temperature : 22.8 °C; Liquid Temperature : 21.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(7.91, 7.91, 7.91); Calibrated: 2011/2/25
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2011/8/29
- Phantom: SAM Phantom_Front; Type: SAM; Serial: TP-1485
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

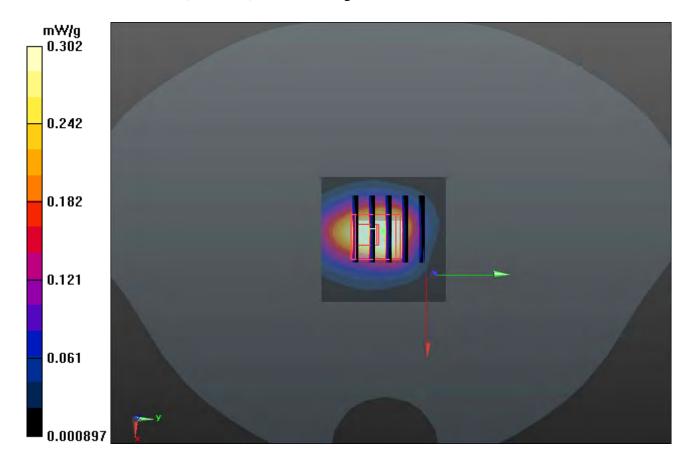
Ch6/Area Scan (31x31x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.244 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 9.505 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.297 W/kg SAR(1 g) = 0.138 mW/g; SAR(10 g) = 0.071 mW/g Maximum value of SAR (measured) = 0.219 mW/g

P11 802.11n_20M_Horizontal Down_0.5cm_Ch6

DUT: 111013C13

Communication System: WLAN 2450; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL2450_1013 Medium parameters used: f = 2437 MHz; $\sigma = 1.996$ mho/m; $\varepsilon_r = 53.979$; ρ


= 1000 kg/m^3 Ambient Temperature : 22.8 °C; Liquid Temperature : 21.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(7.91, 7.91, 7.91); Calibrated: 2011/2/25
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2011/8/29
- Phantom: SAM Phantom_Front; Type: SAM; Serial: TP-1485
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Ch6/Area Scan (31x31x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.421 mW/g

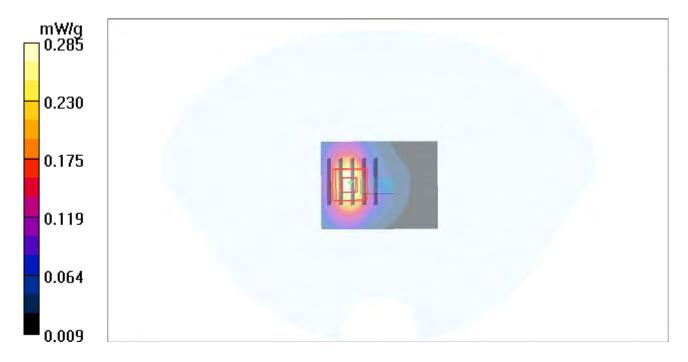
Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 12.936 V/m; Power Drift = -0.069 dB Peak SAR (extrapolated) = 0.344 W/kg SAR(1 g) = 0.205 mW/g; SAR(10 g) = 0.085 mW/g Maximum value of SAR (measured) = 0.302 mW/g

P26 802.11g_Vertical Front_0.5cm_Ch6_Ant0

DUT: 110826C12

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: B2450_0208 Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 51$; $\rho = 1000$

kg/m³


Ambient Temperature : 21.5 °C; Liquid Temperature : 20.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.5, 7.5, 7.5); Calibrated: 2012/01/27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2011/09/23
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1654
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch6/Area Scan (31x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.285 mW/g

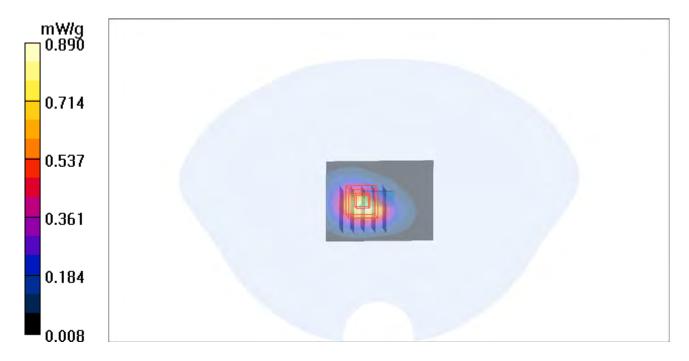
Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.49 V/m; Power Drift = 0.146 dB Peak SAR (extrapolated) = 0.426 W/kg SAR(1 g) = 0.199 mW/g; SAR(10 g) = 0.099 mW/g Maximum value of SAR (measured) = 0.308 mW/g

P27 802.11g_Vertical Back_0.5cm_Ch6_Ant0

DUT: 110826C12

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1

Medium: B2450_0208 Medium parameters used: f = 2437 MHz; σ = 1.96 mho/m; ϵ_r = 51; ρ = 1000 kg/m³


Ambient Temperature : 21.4 °C; Liquid Temperature : 20.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.5, 7.5, 7.5); Calibrated: 2012/01/27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2011/09/23
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1654
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch6/Area Scan (31x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.890 mW/g

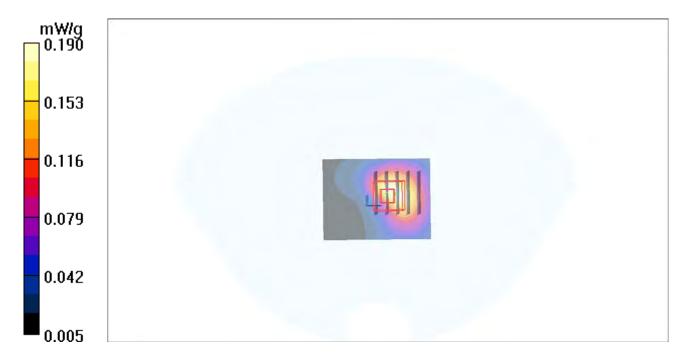
Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.3 V/m; Power Drift = 0.121 dB Peak SAR (extrapolated) = 1.73 W/kg SAR(1 g) = 0.790 mW/g; SAR(10 g) = 0.367 mW/g Maximum value of SAR (measured) = 1.10 mW/g

P28 802.11g_Tip Mode_0.5cm_Ch6_Ant0

DUT: 110826C12

Communication System: 802.11g; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: B2450, 0208 Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mbo/m; s = 51

Medium: B2450_0208 Medium parameters used: f = 2437 MHz; σ = 1.96 mho/m; ϵ_r = 51; ρ = 1000 kg/m³


Ambient Temperature : 21.5 °C; Liquid Temperature : 20.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.5, 7.5, 7.5); Calibrated: 2012/01/27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2011/09/23
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1654
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch6/Area Scan (31x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.190 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.0 V/m; Power Drift = 0.050 dB Peak SAR (extrapolated) = 0.873 W/kg SAR(1 g) = 0.337 mW/g; SAR(10 g) = 0.126 mW/g Maximum value of SAR (measured) = 0.625 mW/g

P29 802.11n_20M_Vertical Front_0.5cm_Ch6_Ant0,1

DUT: 110826C12

Communication System: 802.11n_20MHz; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: B2450_0208 Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\varepsilon_r = 51$; $\rho = 1000$

kg/m³ Ambient Temperature : 21.5 °C; Liquid Temperature : 20.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.5, 7.5, 7.5); Calibrated: 2012/01/27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2011/09/23
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1654
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

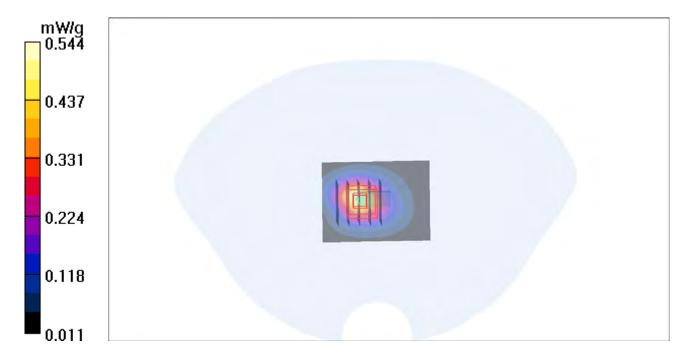
Ch6/Area Scan (31x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.172 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.0 V/m; Power Drift = -0.116 dB Peak SAR (extrapolated) = 0.308 W/kg SAR(1 g) = 0.137 mW/g; SAR(10 g) = 0.067 mW/g Maximum value of SAR (measured) = 0.196 mW/g

P30 802.11n_20M_Vertical Back_0.5cm_Ch6_Ant0,1

DUT: 110826C12

Communication System: 802.11n_20MHz; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: B2450_0208 Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\varepsilon_r = 51$; $\rho = 1000$


kg/m³ Ambient Temperature : 21.4 °C; Liquid Temperature : 20.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.5, 7.5, 7.5); Calibrated: 2012/01/27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2011/09/23
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1654
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

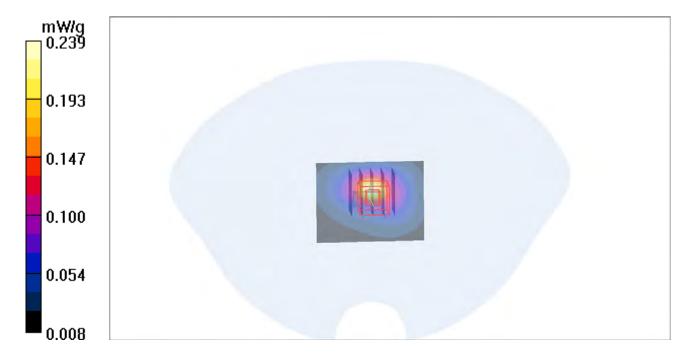
Ch6/Area Scan (31x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.544 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.3 V/m; Power Drift = -0.196 dB Peak SAR (extrapolated) = 0.903 W/kg SAR(1 g) = 0.421 mW/g; SAR(10 g) = 0.197 mW/g Maximum value of SAR (measured) = 0.635 mW/g

P31 802.11n_20M_Tip Mode_0.5cm_Ch6_Ant0,1

DUT: 110826C12

Communication System: 802.11n_20MHz; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: B2450_0208 Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\varepsilon_r = 51$; $\rho = 1000$

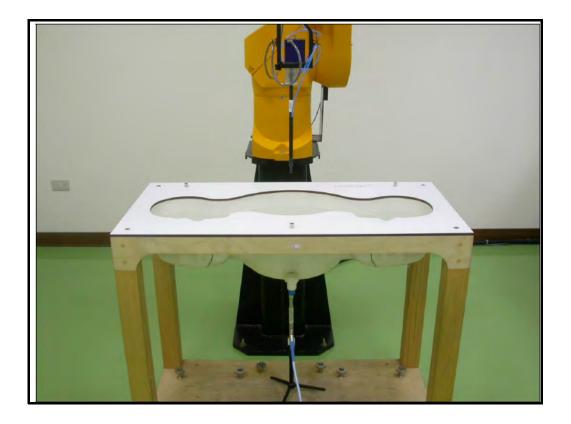

kg/m³ Ambient Temperature : 21.6 °C; Liquid Temperature : 20.6 °C

DASY4 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.5, 7.5, 7.5); Calibrated: 2012/01/27
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2011/09/23
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1654
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Ch6/Area Scan (31x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.239 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.0 V/m; Power Drift = -0.114 dB Peak SAR (extrapolated) = 0.622 W/kg SAR(1 g) = 0.245 mW/g; SAR(10 g) = 0.097 mW/g Maximum value of SAR (measured) = 0.422 mW/g



APPENDIX B: BV ADT SAR MEASUREMENT SYSTEM

APPENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION

APPENDIX D: SYSTEM CERTIFICATE & CALIBRATION

D1: DOSIMETRIC E-FIELD PROBE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client BV ADT (Auden)

Certificate No: EX3-3590_Feb11

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3590

Calibration procedure(s)

QA CAL-01.v7, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v3 Calibration procedure for dosimetric E-field probes

Calibration date:

February 25, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41495277	01-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41498087	01-Apr-10 (No. 217-01136)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161) Mar-11	
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160) Mar-11	
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	23-Apr-10 (No. DAE4-654_Apr10)	Apr-11
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	Allas
Approved by:	Niels Kuster	Quality Manager	V.KG
This calibration certificate	shall not be reproduced except in ful	l without written approval of the laborato	Issued: February 25, 2011

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\theta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z are numerical linearization parameters in dB assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media.
- VR: VR is the validity range of the calibration related to the average diode voltage or DAE voltage in mV.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3590

Calibrated:

Manufactured: March 23, 2009 February 25, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.51	0.48	0.51	± 10.1 %
DCP (mV) ^B	94.6	95.5	92.8	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	Х	0.00	0.00	1.00	119.0	±2.7 %
			Y	0.00	0.00	1.00	141.4	
			Z	0.00	0.00	1.00	115.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

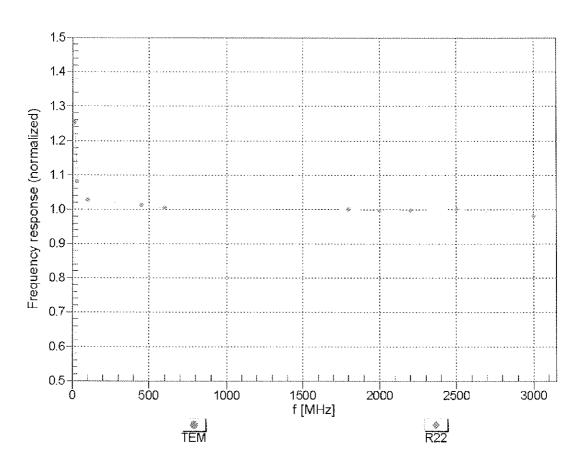
^a Numerical linearization parameter: uncertainty not required.

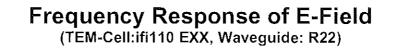
^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	41.5	0.90	10.21	10.21	10.21	0.56	0.68	± 12.0 %
1640	40.3	1.29	9.25	9.25	9.25	0.68	0.60	± 12.0 %
1750	40.1	1.37	9.03	9.03	9.03	0.79	0.58	± 12.0 %
1950	40.0	1.40	8.45	8.45	8.45	0.55	0.66	± 12.0 %
2300	39.5	1.67	8.14	8.14	8.14	0.40	0.80	± 12.0 %
2450	39.2	1.80	7.73	7.73	7.73	0.29	1.00	± 12.0 %
2600	39.0	1.96	7.53	7.53	7.53	0.28	1.06	± 12.0 %
3500	37.9	2.91	7.55	7.55	7.55	0.36	1.03	± 13.1 %
5200	36.0	4.66	5.51	5.51	5.51	0.30	1.80	± 13.1 %
5300	35.9	4.76	5.17	5.17	5.17	0.30	1.80	± 13.1 %
5500	35.6	4.96	5.00	5.00	5.00	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.52	4.52	4.52	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.53	4.53	4.53	0.50	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

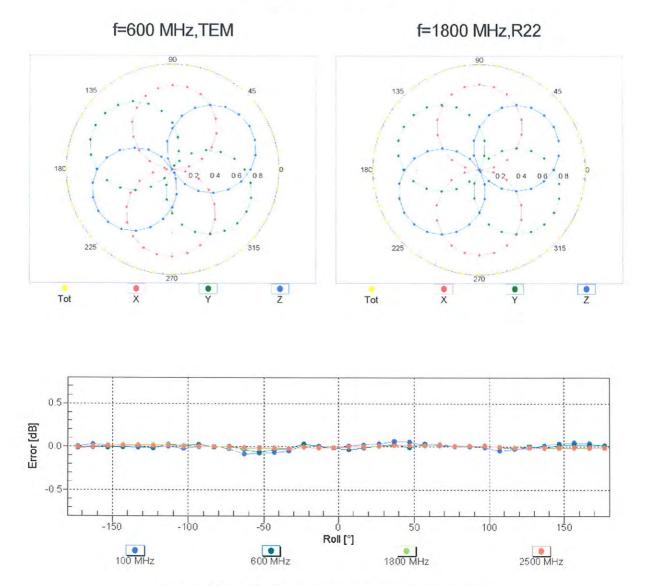
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	55.2	0.97	10.32	10.32	10.32	0.38	0.82	± 12.0 %
1640	53.8	1.40	9.72	9.72	9,72	0.51	0.79	± 12.0 %
1750	53.4	1.49	8.77	8.77	8.77	0.37	0.92	± 12.0 %
1950	53.3	1.52	8.49	8.49	8.49	0.60	0.67	± 12.0 %
2300	52.9	1.81	8.08	8.08	8.08	0.30	1.00	± 12.0 %
2450	52.7	1.95	7.91	7.91	7.91	0.42	0.82	± 12.0 %
2600	52.5	2.16	7.78	7.78	7.78	0.25	1.17	± 12.0 %
3500	51.3	3.31	7.14	7.14	7.14	0.43	0.96	± 13.1 %
5200	49.0	5.30	4.81	4.81	4.81	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.56	4.56	4.56	0.50	1.90	± 13.1 %
5500	48.6	5.65	4.32	4.32	4.32	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.01	4.01	4.01	0.60	1.90	± 13.1 %
5800	48.2	6.00	4.55	4.55	4.55	0.50	1.90	± 13.1 %

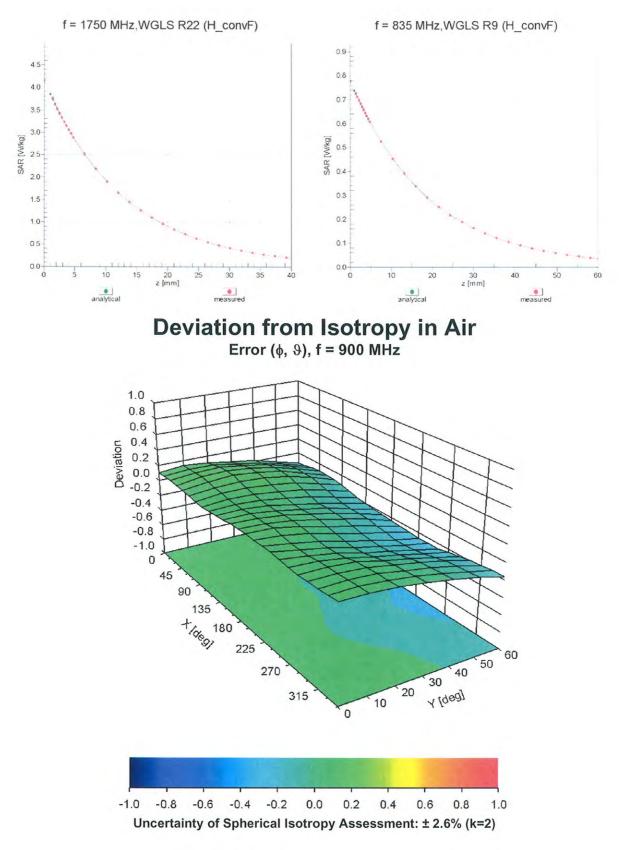
Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to


⁶ At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

February 25, 2011


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

3590

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client B.V. ADT (Auden)

CALIBRATION (CERTIFICATE						
Object	EX3DV4 - SN:3650	<u>O</u>					
Calibration procedure(s)	QA CAL-01.v8, QA Calibration proced	4 CAL-14:v3, QA CAL-23.v4, QA I ure for dosimetric E-field probes	CAL-25.¥4				
Calibration date:	October 26, 2011						
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.							
All calibrations have been conduc	cted in the closed laboratory f	facility: environment temperature (22 \pm 3)°C ar	nd humidity < 70%.				
Calibration Equipment used (M&	TE critical for calibration)						
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration				
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12				
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12				
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12				
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12				
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12				
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11				
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12				
· ·							
Secondary Standards	ID	Check Date (in house)	Scheduled Check				
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13				
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12				
		— — — • • • •	A				
Calibrated by:	Name		Signature				
Calibrated by:	Jeton Kastrati	Laboratory Technician	1 lh				
			$\gamma = \tau$				
Approved by:	Katja Pokovic	Technical Manager	elle-				
			Issued: October 27, 2011				

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

SWISS

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 Swiss Calibration Service

Accreditation No.: SCS 108

Certificate No: EX3-3650_Oct11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

С

S

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Glossary: TSL NORMx,y,z ConvF DCP CF	tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the RF signal
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY4 version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3650

Manufactured: Calibrated: March 18, 2008 October 26, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.36	0.37	0.46	± 10.1 %
DCP (mV) ^B	98.5	94.0	98.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	94.9	±2.5 %
			Y	0.00	0.00	1.00	90.7	
			Z	0.00	0.00	1.00	114.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

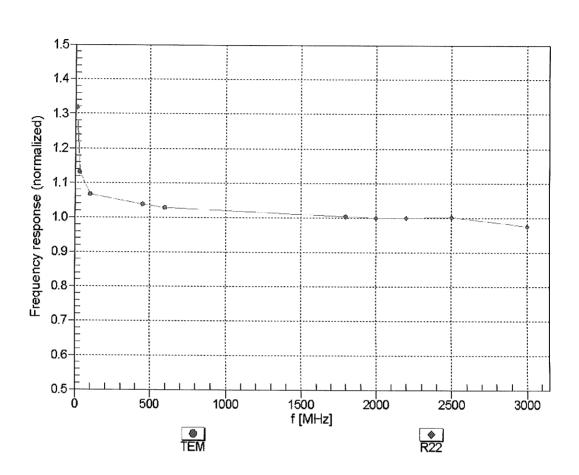
- ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
- ^a Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	9.20	9.20	9.20	0.79	0.69	± 12.0 %
835	41.5	0.90	8.87	8.87	8.87	0.79	0.69	± 12.0 %
1450	40.5	1.20	8.32	8.32	8.32	0.79	0.65	± 12.0 %
1750	40.1	1.37	7.92	7.92	7.92	0.70	0.63	± 12.0 %
1950	40.0	1.40	7.40	7.40	7.40	0.79	0.54	± 12.0 %
2450	39.2	1.80	6.80	6.80	6.80	0.59	0.62	± 12.0 %
2600	39.0	1.96	6.68	6.68	6.68	0.50	0.74	± 12.0 %
5200	36.0	4.66	5.05	5.05	5.05	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.71	4.71	4.71	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.56	4.56	4.56	0.45	1.80	± 13.1 %
5600	35.5	5.07	4.42	4.42	4.42	0.45	1.80	± 13.1 %
5800	35.3	5.27	4.30	4.30	4.30	0.50	1.80	± 13.1 %

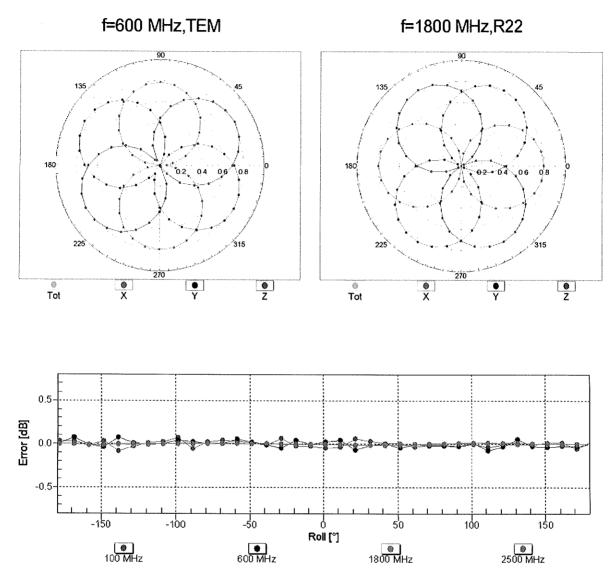
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

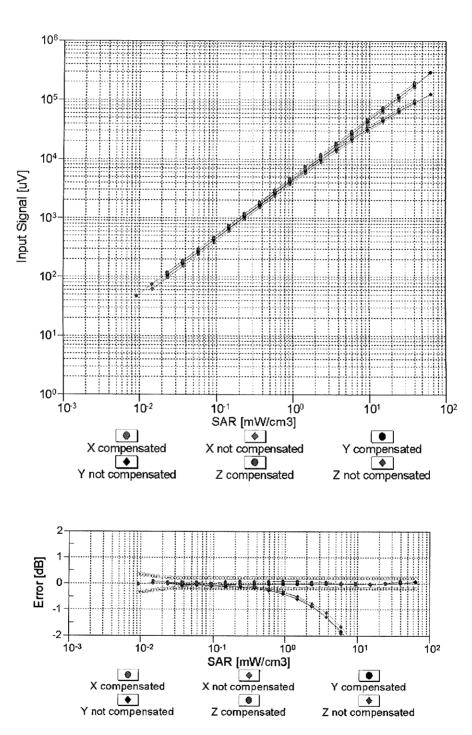

^r At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	9.21	9.21	9.21	0.78	0.69	± 12.0 %
835	55.2	0.97	9.12	9.12	9.12	0.79	0.67	± 12.0 %
1450	54.0	1.30	8.09	8.09	8.09	0.79	0.63	± 12.0 %
1750	53.4	1.49	7.49	7.49	7.49	0.79	0.64	± 12.0 %
1950	53.3	1.52	7.46	7.46	7.46	0.79	0.65	± 12.0 %
2450	52.7	1.95	6.89	6.89	6.89	0.79	0.60	± 12.0 %
2600	52.5	2.16	6.79	6.79	6.79	0.72	0.58	± 12.0 %
5200	49.0	5.30	4.28	4.28	4.28	0.50	1.95	± 13.1 %
5300	48.9	5.42	4.11	4.11	4.11	0.50	1.95	± 13.1 %
5500	48.6	5.65	3.73	3.73	3.73	0.60	1.95	± 13.1 %
5600	48.5	5.77	3.57	3.57	3.57	0.60	1.95	± 13.1 %
5800	48.2	6.00	3.81	3.81	3.81	0.60	1.95	± 13.1 %

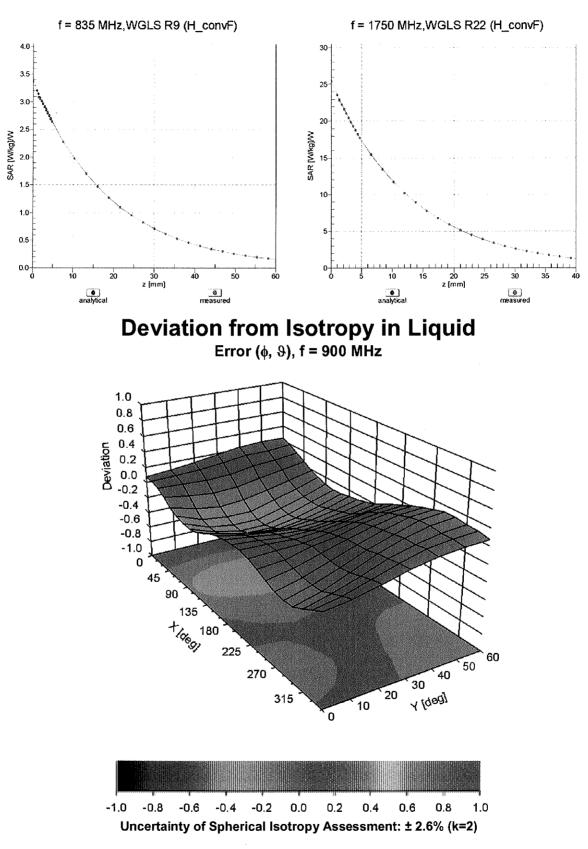
Calibration Parameter Determined in Body Tissue Simulating Media


^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Certificate No: EX3-3661 Jan12

S

Client Auden

CALIBRATION CERTIFICATE Object EX3DV4 - SN:3661 QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure(s) Calibration procedure for dosimetric E-field probes Calibration date: January 27, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 31-Mar-11 (No. 217-01372) Apr-12 Power sensor E4412A MY41498087 31-Mar-11 (No. 217-01372) Apr-12 Reference 3 dB Attenuator SN: S5054 (3c) 29-Mar-11 (No. 217-01369) Apr-12 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Reference 30 dB Attenuator SN: S5129 (30b) 29-Mar-11 (No. 217-01370) Apr-12 Reference Probe ES3DV2 SN: 3013 29-Dec-11 (No. ES3-3013_Dec11) Dec-12 DAE4 SN: 654 3-May-11 (No. DAE4-654_May11) May-12 Secondary Standards ID Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Apr-11) In house check: Apr-13 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-11) In house check: Oct-12

Name	Function	Signature
Katja Pokovic	Technical Manager	sof the
Niels Kuster	Quality Manager	N.Com
shall not be reproduced except in full		Issued: January 27, 2012
	Katja Pokovic	Katja Pokovic Technical Manager

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

S

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters Polarization () o rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9 i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3661

Calibrated:

Manufactured: October 20, 2008 January 27, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.50	0.50	0.47	± 10.1 %
DCP (mV) ^B	96.9	96.3	98.0	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	109.1	±2.5 %
			Y	0.00	0.00	1.00	117.7	
			Z	0.00	0.00	1.00	109.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

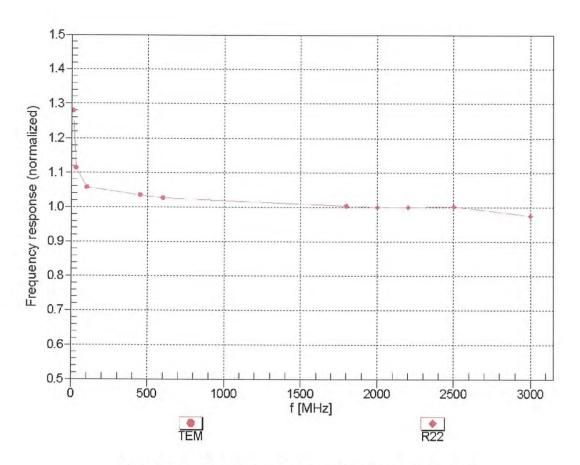
- ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
- ^BNumerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	9.92	9.92	9.92	0.50	0.73	± 12.0 %
835	41.5	0.90	9.46	9.46	9.46	0.23	1.18	± 12.0 %
1750	40.1	1.37	8.64	8.64	8.64	0.80	0.57	± 12.0 %
1900	40.0	1.40	8.33	8.33	8.33	0.49	0.72	± 12.0 %
2450	39.2	1.80	7.48	7.48	7.48	0.27	0.97	± 12.0 %
5200	36.0	4.66	5.11	5.11	5.11	0.32	1.80	± 13.1 %
5300	35.9	4.76	4.83	4.83	4.83	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.77	4.77	4.77	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.27	4.27	4.27	0.46	1.80	± 13.1 %
5800	35.3	5.27	4.41	4.41	4.41	0.45	1.80	± 13.1 %

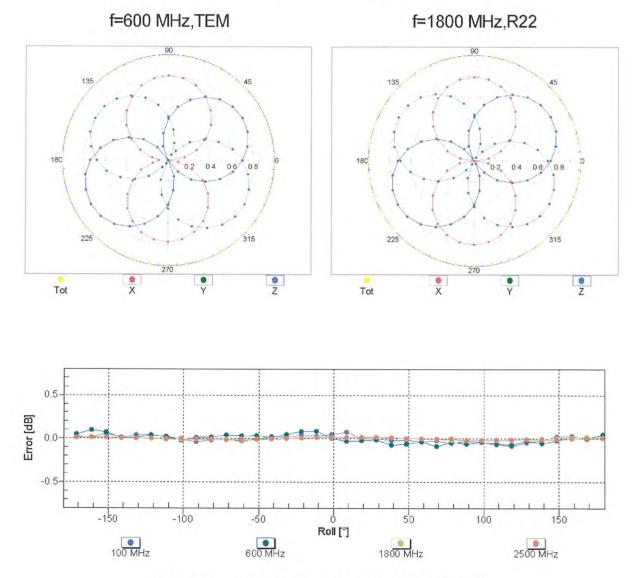
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS

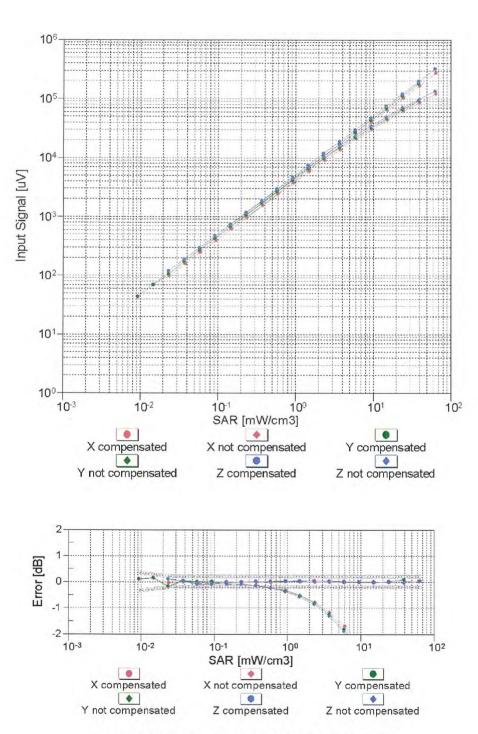

For the convF uncertainty of \pm 100 kHz only applies for DAS 1 v4.4 and highler (see Page 2), else it is restricted to \pm 50 kHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	9.82	9.82	9.82	0.46	0.79	± 12.0 %
835	55.2	0.97	9.64	9.64	9.64	0.20	1.41	± 12.0 %
1750	53.4	1.49	8.39	8.39	8.39	0.63	0.72	± 12.0 %
1900	53.3	1.52	7.89	7.89	7.89	0.31	0.99	± 12.0 %
2450	52.7	1.95	7.50	7.50	7.50	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.62	4.62	4.62	0.48	1.90	± 13.1 %
5300	48.9	5.42	4.24	4.24	4.24	0.55	1.90	± 13.1 %
5500	48.6	5.65	4.01	4.01	4.01	0.55	1.90	± 13.1 %
5600	48.5	5.77	3.73	3.73	3.73	0.60	1.90	± 13.1 %
5800	48.2	6.00	4.02	4.02	4.02	0.60	1.90	± 13.1 %

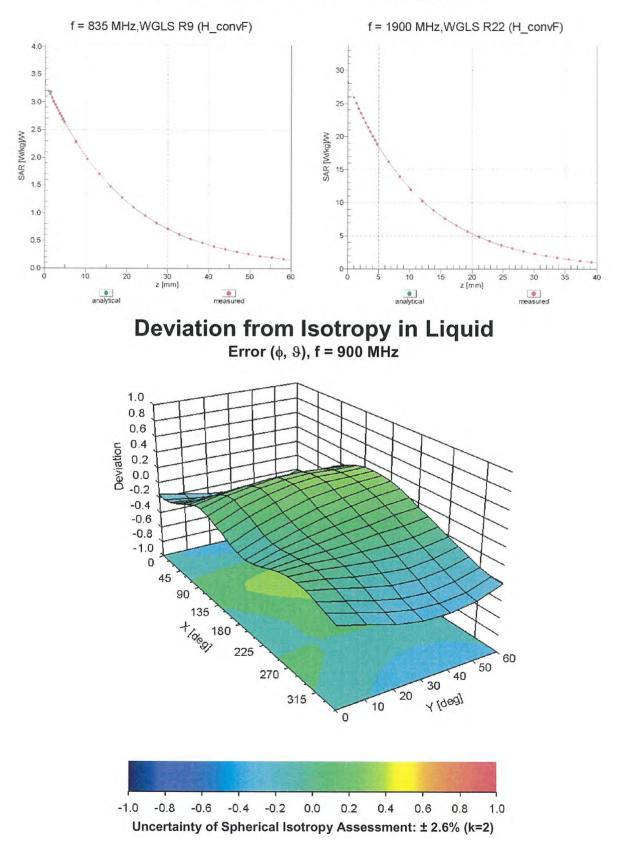
Calibration Parameter Determined in Body Tissue Simulating Media


^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

D2: DAE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: DAE3-579_Sep11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

B. V. ADT (Auden)

Client

Object	DAE3 - SD 000 D	03 AA - SN: 579	
Calibration procedure(s)	QA CAL-06.v23 Calibration procee	lure for the data acquisition	electronics (DAE)
Calibration date:	September 23, 20	11	
		nal standards, which realize the physic bbability are given on the following pag	그 이는 것은 한 것이 같은 것이 같은 것이 많이 많이 많이 많이 많이 많이 없다.
All calibrations have been conduct	ed in the closed laboratory	facility: environment temperature (22	± 3)°C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-10 (No:10376)	Sep-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	08-Jun-11 (in house check)	In house check: Jun-12
	Name	Function	Signature
Calibrated by:	Andrea Guntli	Technician	A BALLUN
Approved by:	Fin Bomholt	R&D Director	1.V.Blunu
This calibration certificate shall no	t be reproduced except in 1	ull without written approval of the labo	Issued: September 23, 2011

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a . result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on . the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance:* Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB ==	61nV,	full range =	-1+3mV
DASY measurement	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	x	Υ	Z
High Range	405.340 ± 0.1% (k=2)	405.407 ± 0.1% (k=2)	405.182 ± 0.1% (k=2)
Low Range	3.99997 ± 0.7% (k=2)	4.00116 ± 0.7% (k=2)	3.98395 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	359.0°±1°

Appendix

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	199993.5	0.05	0.00
Channel X	+ Input	19997.71	-1.59	-0.01
Channel X	- Input	-19997.66	2.24	-0.01
Channel Y	+ Input	200000.7	-1.65	-0.00
Channel Y	+ Input	19998.78	-1.02	-0.01
Channel Y	- Input	-20000.21	-0.41	0.00
Channel Z	+ Input	199995.6	-5.82	-0.00
Channel Z	+ Input	19998.55	-1.05	-0.01
Channel Z	- Input	-20000.24	-0.64	0.00

Low Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	2000.1	0.17	0.01
Channel X	+ Input	200.26	0.16	0.08
Channel X	- Input	-200.90	-0.90	0.45
Channel Y	+ Input	2000.7	0.55	0.03
Channel Y	+ Input	199.52	-0.58	-0.29
Channel Y	- Input	-200.64	-0.54	0.27
Channel Z	+ Input	2000.0	-0.02	-0.00
Channel Z	+ input	199.31	-0.79	-0.40
Channel Z	- Input	-201.59	-1.59	0.80

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	6.83	5.48
	- 200	-4.31	-5.97
Channel Y	200	10.84	10.96
	- 200	-12.08	-12.35
Channel Z	200	8.52	8.04
	- 200	-10.05	-9.83

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	· · ·	Channel Z (μV)
Channel X	200		3.12	0.56
Channel Y	200	1.62	-	5.35
Channel Z	200	2.03	0.22	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16263	16179
Channel Y	16117	15795
Channel Z	15728	15454

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	~0.86	-2.16	0.37	0.49
Channel Y	-1.64	-2.92	0.96	0.46
Channel Z	-0.01	-1.39	0.93	0.46

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of GNIS Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage С **Engineering AG** Servizio svizzero di taratura Zeughausstrasse 43, 8004 Zurich, Switzerland S ΈR Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates B.V. ADT (Auden) Certificate No: DAE4-861_Aug11 Client CALIBRATION CEPTIE CATE

Object	DAE4 - SD 000 D	04 BJ - SN: 861	
Calibration procedure(s)	QA CAL-06.v23 Calibration procec	lure for the data acquisition electron	ics (DAE)
Calibration date:	August 29, 2011		
The measurements and the uncerta	ainties with confidence pro	nal standards, which realize the physical units of bbability are given on the following pages and are facility: environment temperature (22 ± 3)°C and	part of the certificate.
Calibration Equipment used (M&TE			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-10 (No:10376)	Sep-11
Secondary Standards Calibrator Box V1.1	ID # SE UMS 006 AB 1004	Check Date (in house) 08-Jun-11 (in house check)	Scheduled Check In house check: Jun-12
			· · · · · · · · · · · · · · · · · · ·
	Name	Function	Signature
Calibrated by:	Dominique Steffen	Têchnician	W.
Approved by:	Fin Bomholt	R&D Director	1. Blumer
This calibration certificate shall not	be reproduced except in f	ull without written approval of the laboratory.	Issued: August 29, 2011

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance:* Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption:* Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement A/D - Converter Resolution nominal

High Range: Low Range:	1LSB = 1LSB =	6.1μV ,	•	-100+300 mV
U		61nV,		-1+3mV
DASY measurement par	ameters: Auto 2	Zero Time: 3 se	ec; Measuring f	time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.369 ± 0.1% (k=2)	404.758 ± 0.1% (k=2)	405.720 ± 0.1% (k=2)
Low Range	4.01191 ± 0.7% (k=2)	4.00807 ± 0.7% (k=2)	4.02061 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	126.0 ° ± 1 °

Appendix

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ input	200003.7	2.18	0.00
Channel X	+ Input	19998.70	-2.10	-0.01
Channel X	- Input	-20000.72	-0.82	0.00
Channel Y	+ Input	200003.3	3.09	0.00
Channel Y	+ input	19997.06	-2.54	-0.01
Channel Y	- Input	-20001.61	-1.81	0.01
Channel Z	+ input	200001.0	1.32	0.00
Channel Z	+ Input	19998.31	-1.39	-0.01
Channel Z	- Input	-20000.55	-0.75	0.00

Low Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	2000.2	0.12	0.01
Channel X	+ Input	200.25	0.05	0.02
Channel X	- Input	-198.30	1.80	-0.90
Channel Y	+ Input	2000.4	0.44	0.02
Channel Y	+ Input	198.69	-1.21	-0.60
Channel Y	- Input	-200.48	-0.48	0.24
Channel Z	+ Input	2000.1	0.13	0.01
Channel Z	+ Input	199.88	-0.22	-0.11
Channel Z	- Input	-201.71	-1.81	0.91

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	5.00	3.52
	- 200	-2.54	-4.10
Channel Y	200	0.95	1.43
	- 200	-2.77	-2.63
Channel Z	200	-9.47	-9.71
	- 200	7.61	7.59

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	4.12	-0.79
Channel Y	200	2.04	_	4.95
Channel Z	200	1.95	-0.33	

Certificate No: DAE4-861_Aug11

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15976	16003
Channel Y	16064	16134
Channel Z	16042	16211

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.28	-2.06	1.31	0.64
Channel Y	-0.44	-1.89	2.45	0.60
Channel Z	-1.18	-2.63	1.47	0.74

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. **Power Consumption** (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	0.01	-8	-9

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: DAE4-1277_Jul11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

B.V. ADT (Auden)

Client

Object	DAE4 - SD 000 D	04 BJ - SN: 1277	
Calibration procedure(s)	QA CAL-06.v23 Calibration proced	lure for the data acquisition	electronics (DAE)
Calibration date:	July 29, 2011		
The measurements and the uncert	ainties with confidence pro	nal standards, which realize the phys obability are given on the following pa facility: environment temperature (22	ges and are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-10 (No:10376)	Sep-11
Secondary Standards	ID #	Charle Data (in house)	School and Choole
Calibrator Box V1.1	SE UMS 006 AB 1004	Check Date (in house) 08-Jun-11 (in house check)	Scheduled Check In house check: Jun-12
	Name	Function	Signature
Calibrated by:	Andrea Guntli	Technician	signature AUUUU i .V. R. WWW
Approved by:	Fin Bomholt	R&D Director	i.V. Bunu
This calibration certificate shall not	be reproduced except in f	ull without written approval of the lab	Issued: July 29, 2011

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity:* Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current:* Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance:* Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption:* Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV ,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	full range =	-1+3mV
DASY measurement p	arameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	X	Y	Z
High Range	405.508 ± 0.1% (k=2)	404.400 ± 0.1% (k=2)	405.608 ± 0.1% (k=2)
Low Range	4.01150 ± 0.7% (k=2)	3.99808 ± 0.7% (k=2)	3.94735 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	330.0 ° ± 1 °
---	---------------

Appendix

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	200012.2	2.59	0.00
Channel X	+ Input	20000.02	0.32	0.00
Channel X	- Input	-19998.75	1.75	-0.01
Channel Y	+ Input	200009.4	0.74	0.00
Channel Y	+ Input	19995.02	-4.58	-0.02
Channel Y	- Input	-19999.88	-0.28	0.00
Channel Z	+ Input	200008.7	0.85	0.00
Channel Z	+ Input	19996.89	-2.51	-0.01
Channel Z	- Input	-20000.25	-0.85	0.00

Low Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	1999.6	-0.36	-0.02
Channel X	+ Input	199.94	-0.06	-0.03
Channel X	- Input	-199.60	0.40	-0.20
Channel Y	+ Input	1999.8	-0.36	-0.02
Channel Y	+ Input	199.31	-0.49	-0.25
Channel Y	- Input	-200.76	-0.76	0.38
Channel Z	+ Input	2000.3	0.49	0.02
Channel Z	+ Input	198.51	-1.49	-0.74
Channel Z	- Input	-201.32	-1.42	0.71

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-20.60	-22.40
	- 200	24.24	22.26
Channel Y	200	-12.18	-11.78
	- 200	10.76	10.25
Channel Z	200	1.85	2.01
	- 200	-4.45	-4.31

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Υ (μV)	Channel Z (µV)
Channel X	200	-	2.54	-1.13
Channel Y	200	2.90	-	5.32
Channel Z	200	1.19	-0.48	-

Certificate No: DAE4-1277_Jul11

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15917	15565
Channel Y	16322	15815
Channel Z	16119	16292

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-1.37	-2.71	0.38	0.58
Channel Y	-2.06	-3.89	-0.52	0.56
Channel Z	-2.20	-3.36	-0.62	0.50

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

D3: SYSTEM VALIDATION DIPOLE

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Accreditation No.: SCS 108

Certificate No: D2450V2-716_Jan11

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura S

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

B.V. ADT (Auden) Client

CALIBRATION CERTIFICATE

Object	D2450V2 - SN: 716
Calibration procedure(s)	QA CAL-05.v8 Calibration procedure for dipole validation kits
Calibration date:	January 26, 2011
This calibration certificate do	cuments the traceability to national standards, which realize the physical units of measurements (SI). uncertainties with confidence probability are given on the following pages and are part of the certificate.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	D. Riev
Approved by:	Katja Pokovic	Technical Manager	SG las

Certificate No: D2450V2-716_Jan11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed ٠ point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Accreditation No.: SCS 108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V 52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.74 mho/m ± 6 %
Head TSL temperature during test	(20.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 mW / g
SAR normalized	normalized to 1W	54.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	54.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.37 mW / g
SAR normalized	normalized to 1W	25.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.5 mW /g ± 16.5 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.96 mho/m ± 6 %
Body TSL temperature during test	(20.8 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.4 mW / g
SAR normalized	normalized to 1W	53.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	53.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.22 mW / g
SAR normalized	normalized to 1W	24.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.8 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.0 Ω + 2.1 jΩ
Return Loss	- 25.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.1 Ω + 4.4 jΩ
Return Loss	- 27.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 142 pp
	1,140118

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 10, 2002

DASY5 Validation Report for Head TSL

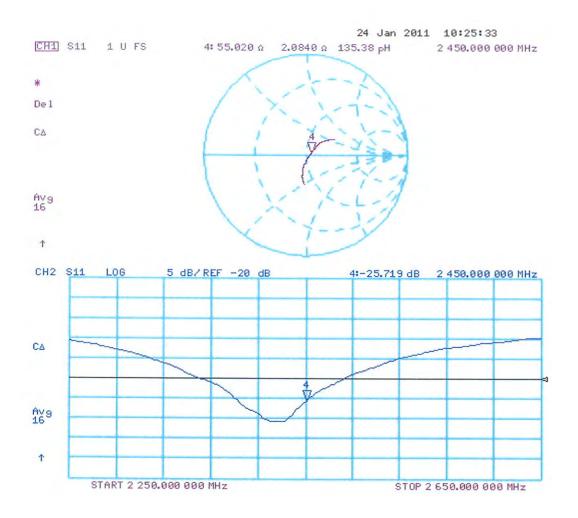
Date/Time: 24.01.2011 13:05:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:716

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 2450 MHz; σ = 1.75 mho/m; ϵ_r = 38.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.2 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 27.976 W/kg SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.37 mW/g Maximum value of SAR (measured) = 17.366 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

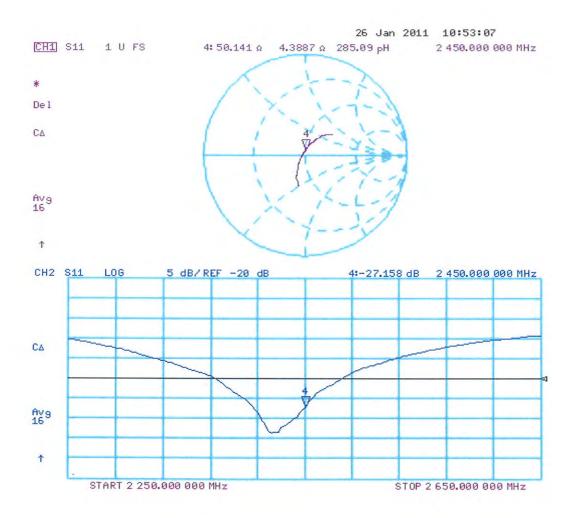
Date/Time: 26.01.2011 13:56:41

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:716

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U12 BB Medium parameters used: f = 2450 MHz; σ = 1.97 mho/m; ϵ_r = 52.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

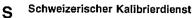

- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.445 V/m; Power Drift = -0.06 dBPeak SAR (extrapolated) = 28.276 W/kg SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.22 mW/g Maximum value of SAR (measured) = 17.680 mW/g

 $0 \, dB = 17.680 \, mW/g$

Calibration Laboratory of SING Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage С Engineering AG Servizio svizzero di taratura S Zeughausstrasse 43, 8004 Zurich, Switzerland Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Auden Certificate No: D2450V2-735 Jun11 Client CALIBRATION CERTIFICATE D2450V2 - SN: 735 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz June 22, 2011 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** (D # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 8-Jun-11 (No. DAE4-601_Jun11) Jun-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Calibrated by: **Claudio Leubler** Laboratory Technician Approved by: Katia Pokovic Technical Manager Issued: June 22, 2011


This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

NI.S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions". Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Accreditation No.: SCS 108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	·

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.72 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.3 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.16 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.7 ± 6 %	1.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.2 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.96 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.8 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.3 Ω + 2.8 jΩ
Return Loss	- 26.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.0 Ω + 5.2 jΩ
Return Loss	- 25.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the

feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 07, 2003

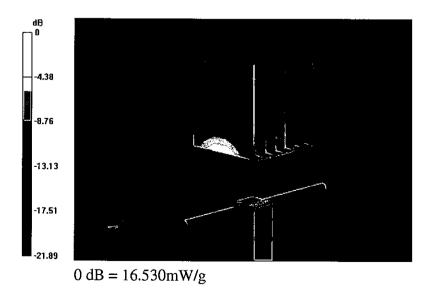
DASY5 Validation Report for Head TSL

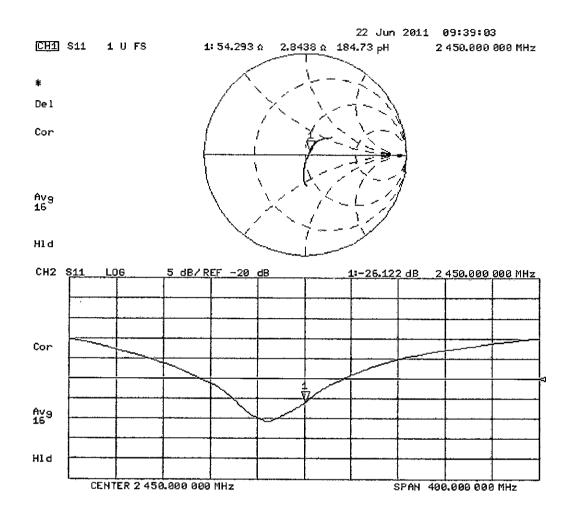
Date: 22.06.2011

Test Laboratory: SPEAG, Zurich, Switzerland

D2450_735_H_110622_CL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 735


Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.72$ mho/m; $\epsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 08.06.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 101.6 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 26.579 W/kg SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.16 mW/g Maximum value of SAR (measured) = 16.533 mW/g

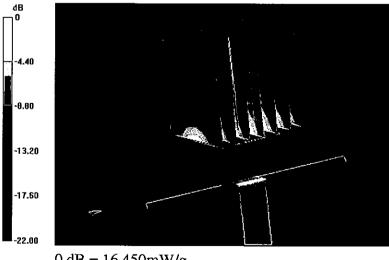
DASY5 Validation Report for Body TSL

Date: 22.06.2011

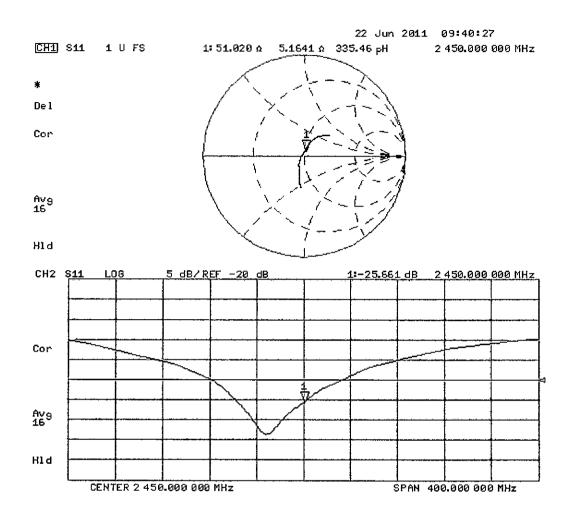
Test Laboratory: SPEAG, Zurich, Switzerland

D2450_735_M_110622_CL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 735


Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.93$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 08.06.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.438 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 26.018 W/kg SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.96 mW/g Maximum value of SAR (measured) = 16.446 mW/g

0 dB = 16.450 mW/g

