

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	NETGEAR, Inc.
Applicant Address	350 East Plumeria Drive, San Jose, California 95134, USA
FCC ID	PY311100157

Product Name	Universal Dual Band WiFi Internet Adapter
Brand Name	NETGEAR
Model No.	WNCE3001
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz
Received Date	Jun. 28, 2011
Final Test Date	Aug. 06, 2015
Submission Type	Class II Change

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart E, KDB789033 D02 v01, KDB662911 D01 v02r01.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. \	/ERIF	ICATION OF COMPLIANCE	1
2. 9	SUMN	MARY OF THE TEST RESULT	2
3. (GENE	RAL INFORMATION	3
;	3.1.	Product Details	3
;	3.2.	Accessories	4
;	3.3.	Table for Filed Antenna	5
;	3.4.	Table for Carrier Frequencies	5
÷	3.5.	Table for Test Modes	6
÷	3.6.	Table for Testing Locations	7
	3.7.	Table for Class II Change	7
	3.8.	Table for Supporting Units	8
	3.9.	Table for Parameters of Test Software Setting	9
;	3.10.	EUT Operation during Test	9
;	3.11.	Duty Cycle	9
;	3.12.	Test Configurations	10
4. 1	est r	RESULT	13
	4.1.	AC Power Line Conducted Emissions Measurement	13
	4.2.	26dB Bandwidth and 99% Occupied Bandwidth Measurement	17
	4.3.	6dB Spectrum Bandwidth Measurement	27
	4.4.	Maximum Conducted Output Power Measurement	32
	4.5.	Power Spectral Density Measurement	36
	4.6.	Radiated Emissions Measurement	43
	4.7.	Band Edge Emissions Measurement	66
	4.8.	Frequency Stability Measurement	74
	4.9.	Antenna Requirements	79
5. l	list C	of measuring equipments	80
6. I	MEAS		81
APF	PEND	IX A. TEST PHOTOS A1 \sim	- A5

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR171807-05AA	Rev. 01	Initial issue of report	Sep. 02, 2015

Project No: CB10408206

1. VERIFICATION OF COMPLIANCE

Product Name	1	Universal Dual Band WiFi Internet Adapter
Brand Name	:	NETGEAR
Model No.	:	WNCE3001
Applicant	:	NETGEAR, Inc.
Test Rule Part(s)	:	47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jun. 28, 2011 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E							
Part	Rule Section	Result	Under Limit					
4.1	15.207	AC Power Line Conducted Emissions	Complies	10.36 dB				
4.2	4.2 15.407(a) 26dB Spectrum Bandwidth and 99% Occupied Bandwidth		Complies	-				
4.3	15.407(e)	6dB Spectrum Bandwidth	Complies	-				
4.4	15.407(a)	Maximum Conducted Output Power	Complies	6.79 dB				
4.5	15.407(a)	Power Spectral Density	Complies	6.97 dB				
4.6	15.407(b)	Radiated Emissions	Complies	0.06 dB				
4.7	15.407(b)	Band Edge Emissions	Complies	0.09 dB				
4.8	15.407(g)	Frequency Stability	Complies	-				
4.9	15.203	Antenna Requirements	Complies	-				

3. GENERAL INFORMATION

3.1. Product Details

Items	Description		
Product Type	IEEE 802.11a: WLAN (1TX, 2RX)		
	IEEE 802.11n: WLAN (2TX, 2RX)		
Radio Type	Intentional Transceiver		
Power Type	From power adapter and host system		
Modulation	IEEE 802.11a: OFDM		
	IEEE 802.11n: see the below table		
Data Modulation	IEEE 802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)		
Data Rate (Mbps)	IEEE 802.11a: OFDM (6/9/12/18/24/36/48/54)		
	IEEE 802.11n: see the below table		
Frequency Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz		
Channel Number	9 for 20MHz bandwidth ; 4 for 40MHz bandwidth		
Channel Band Width (99%)	Band 1:		
	IEEE 802.11a: 25.09 MHz		
	IEEE 802.11n MCS13 (HT20): 18.41 MHz		
	IEEE 802.11n MCS13 (HT40): 36.76 MHz		
	Band 4:		
	IEEE 802.11a: 18.23 MHz		
	IEEE 802.11n MCS13 (HT20): 18.06 MHz		
	IEEE 802.11n MCS13 (HT40): 36.90 MHz		
Maximum Conducted Output Power	Band 1:		
	IEEE 802.11a: 22.62 dBm		
	IEEE 802.11n MCS13 (HT20): 23.21 dBm		
	IEEE 802.11n MCS13 (HT40): 22.44 dBm		
	Band 4:		
	IEEE 802.11a: 20.01 dBm		
	IEEE 802.11n MCS13 (HT20): 21.00 dBm		
	IEEE 802.11n MCS13 (HT40): 20.82 dBm		
Carrier Frequencies	Please refer to section 3.4		
Antenna	Please refer to section 3.3		

Items	Description				
Communication Mode	☐ IP Based (Load Based) ☐ Frame Based				
Beamforming Function	□ With beamforming ⊠ Without beamforming				
Operating Mode	Outdoor access point				
	Indoor access point				
	Fixed point-to-point access points				
	Mobile and portable client devices				

Antenna and Band width

Antenna	Single (TX)		Two	(TX)
Band width Mode	20 MHz	40 MHz	20 MHz	40 MHz
IEEE 802.11a	V	х	х	х
IEEE 802.11n	Х	Х	V	V

IEEE 11n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS		
802.11n (HT20)	2	MC\$13-15		
802.11n (HT40)	2	MC\$13-15		
Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput).				
Then EUT supports HT20 and HT40.				
Note 2: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n				

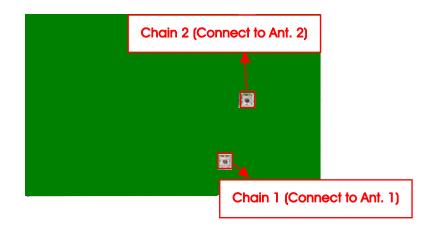
3.2. Accessories

Power	Brand	Model No.	P/N	Rating		
Adaptor	NETGEAR AD63130	332-10391-01	Input: 100-240Vac, 50/60Hz,130mA			
Adapter	NEIGEAK	AD03130	332-10391-01	Output: 5Vdc, 1A		
Others						
Angle bracket	Angle bracket*1					
RJ-45 cable*1: Non-shielded, 0.82m						
USB cable*1: Shielded, 1.1m						

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	Printed Antenna	N/A	2.78
2	N/A	N/A	Printed Antenna	N/A	2.27

Note: There are two sets of antenna provided to this EUT and all of them can be used as transmitting and receiving antenna


For IEEE 802.11a mode (1TX/2RX):

Only Chain 1 can be used as transmitting antenna.

Chain 1 and Chain 2 can both receive simultaneously.

For IEEE 802.11n mode (2TX/2RX)

Chain 1 and Chain 2 could transmit/receive simultaneously.

3.4. Table for Carrier Frequencies

The EUT has two bandwidth system.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48, 149, 153, 157, 161, 165.

For 40MHz bandwidth systems, use Channel 38, 46, 151, 159.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5150~5250 MHz Band 1	38	5190 MHz	46	5230 MHz
Bana I	40	5200 MHz	48	5240 MHz
	149	5745 MHz	159	5795 MHz
5725~5850 MHz	151	5755 MHz	161	5805 MHz
Band 4	153	5765 MHz	165	5825 MHz
	157	5785 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode		Data Rate	Channel	Chain
AC Power Conducted Emission	Normal Link		-	-	-
Max. Conducted Output Power	11a/BPSK	Band 1, 4	6Mbps	36/40/48/149/157/165	1
	11n HT20	Band 1, 4	MCS13	36/40/48/149/157/165	1+2
	11n HT40	Band 1, 4	MCS13	38/46/ 151/159	1+2
Power Spectral Density	11a/BPSK	Band 1, 4	6Mbps	36/40/48/149/157/165	1
	11n HT20	Band 1, 4	MCS13	36/40/48/149/157/165	1+2
	11n HT40	Band 1, 4	MCS13	38/46/151/159	1+2
26dB Spectrum Bandwidth &	11a/BPSK	Band 1, 4	6Mbps	36/40/48/149/157/165	1
99% Occupied Bandwidth	11n HT20	Band 1, 4	MCS13	36/40/48/149/157/165	1+2
Measurement	11n HT40	Band 1, 4	MCS13	38/46/151/159	1+2
6dB Spectrum Bandwidth	11a/BPSK	Band 4	6Mbps	149/157/165	1
Measurement	11n HT20	Band 4	MCS13	149/157/165	1+2
	11n HT40	Band 4	MCS13	151/159	1+2
Radiated Emission Below 1GHz	Normal Link		-	-	-
Radiated Emission Above 1GHz	11a/BPSK	Band 1, 4	6Mbps	36/40/48/149/157/165	1
	11n HT20	Band 1, 4	MCS13	36/40/48/149/157/165	1+2
	11n HT40	Band 1, 4	MCS13	38/46/151/159	1+2
Band Edge Emission	11a/BPSK	Band 1, 4	6Mbps	36/40/48/149/157/165	1
	11n HT20	Band 1, 4	MCS13	36/40/48/149/157/165	1+2
	11n HT40	Band 1, 4	MCS13	38/46/151/159	1+2
Frequency Stability	20 MHz	Band 1, 4	-	40/157	1
	40 MHz	Band 1, 4	-	38/151	1

Note: The EUT can only be used at Y axis position.

The following test modes were performed for all tests:

For AC Power Conducted Emission test:

Mode 1. EUT + USB cable with 2.4GHz WLAN function

Mode 2. EUT + Adapter with 5GHz WLAN function

Mode 1 generated the worst test result, so it was recorded in this report.

For Radiation Emission below 1GHz test:

Mode 1. EUT + USB cable with 2.4GHz WLAN function

Mode 2. EUT + Adapter with 5GHz WLAN function

Mode 1 generated the worst test result, so it was recorded in this report.

3.6. Table for Testing Locations

Test Site Location							
Address:	Address: No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.						
TEL:	886	6-3-656-9065					
FAX:	FAX: 886-3-656-9085						
Test Site N	lo.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No	
03CH01-0	СВ	SAC	Hsin Chu	262045	IC 4086D	-	
CO01-C	CO01-CB Conduction Hsin Chu 262045 IC 4086D -				-		
TH01-CE	B OVEN Room Hsin Chu					-	

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Class II Change

This product is an extension of original one reported under Sporton project number: FR171807 Below is the table for the change of the product with respect to the original one.

	Modifications	Performance Checking			
		1.	Max. Conducted Output Power.		
		2.	Power Spectral Density.		
1.	Changing applicant address.	3.	26dB Spectrum Bandwidth & 99% Occupied		
2.	Updating 5GHz band 1, band 4 (5150 \sim 5250		Bandwidth Measurement.		
	MHz, 5725 \sim 5850 MHz) test rule to "New Rules"	4.	6dB Spectrum Bandwidth Measurement.		
	from "Old Rules".	5.	Radiated Emission Above 1GHz.		
		6.	Band Edge Emission		
		7.	Frequency Stability.		

Note: Test result of AC Power Line Conducted Emissions and Radiated Emission Below 1GHz test are based on original test report.

3.8. Table for Supporting Units

For Test Site No: CO01-CB

Support Unit	pport Unit Brand Model		FCC ID
Notebook	DELL	D400	E2K24GBRL
Mouse	First Price	FP-M02	DoC
Wireless AP	Planex	GW-AP54SGX	N/A

For Test Site No: 03CH01-CB (Below 1GHz)

Support Unit	port Unit Brand Model		FCC ID
Notebook	Notebook DELL		E2K4965AGNM
Mouse	First Price	FP-M02	DoC
Modem	ACEEX	DM1414	IFAXDM1414
Wireless AP	Planex	GW-AP54SGX	N/A

For Test Site No: 03CH01-CB (Above 1GHz)

Support Unit	Brand	Model	FCC ID	
Notebook	Notebook DELL		E2K4965AGNM	

For Test Site No: TH01-CB

Support Unit	Brand	Model	FCC ID
Notebook DELL		PP25L	E2K4965AGNM

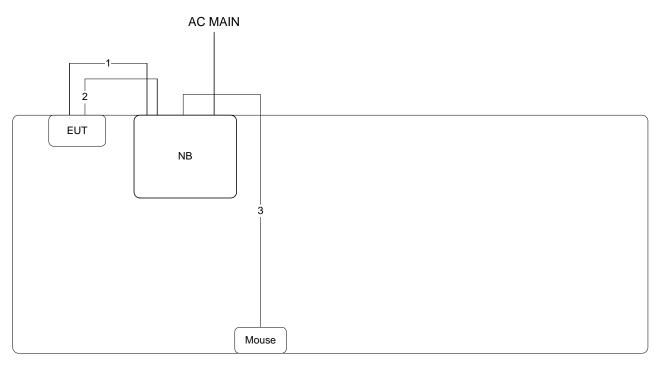
3.9. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Test Software Version	MP_TEST 1.3.8.0								
	Test Frequency (MHz)								
Mode				NCB: 2	20MHz				
	5180 MHz	5200) MHz	5240 MHz	5745 MHz	5785	MHz	5825 MHz	
802.11a	57	63		57	58	6	1	58	
802.11n MCS13 HT20	60/63	60/63		59/63	59/54	63,	/57	63/56	
Mode				NCB: 4	40MHz				
802.11n MCS13 HT40	5190 MH	5190 MHz 5		230 MHz	5755 MHz		5795 MHz		
002.1111 WC313 H140	53/57			59/63	50/45			63/57	

3.10. EUT Operation during Test

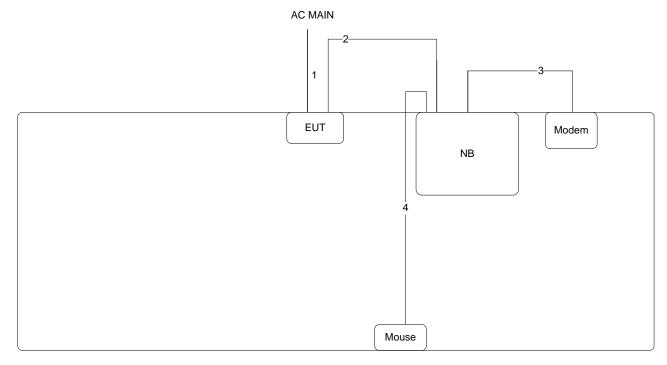
The EUT was programmed to be in continuously transmitting mode.


3.11. Duty Cycle

Mode	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
NICCE	(ms)	(ms)	(%)	(dB)	(kHz)
802.11a	1.000	1.000	100.00	0.00	0.01
802.11n MCS13 HT20	1.000	1.000	100.00	0.00	0.01
802.11n MCS13 HT40	1.000	1.000	100.00	0.00	0.01

3.12. Test Configurations

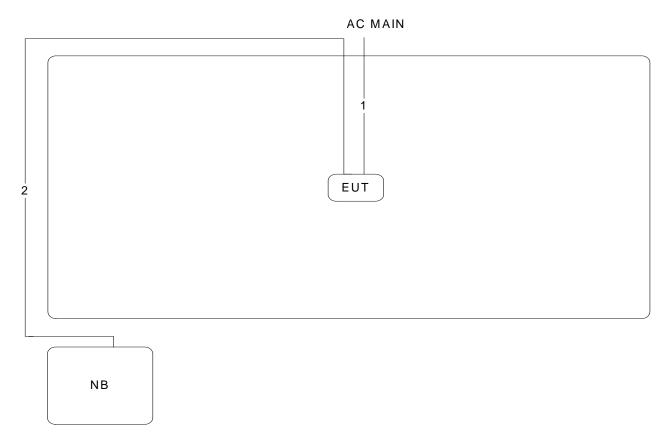
3.12.1. AC Power Line Conduction Emissions Test Configuration


AP

Item	Connection	Shielded	Length
1	USB cable	Yes	1.1m
2	RJ-45 cable	No	0.82m
3	USB cable	Yes	1.8m

3.12.2. Radiation Emissions Test Configuration

Test Configuration: 30MHz~1GHz



AP

Item	Connection	Shielded	Length
1	USB cable	Yes	1.1m
2	RJ-45 cable	No	0.82m
3	Console cable	Yes	1.33m
4	USB cable	Yes	1.8m

Test Configuration: above 1GHz

ltem	Connection	Shielded	Length
1	Power cable	No	0.4
2	RJ-45 cable	No	10

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

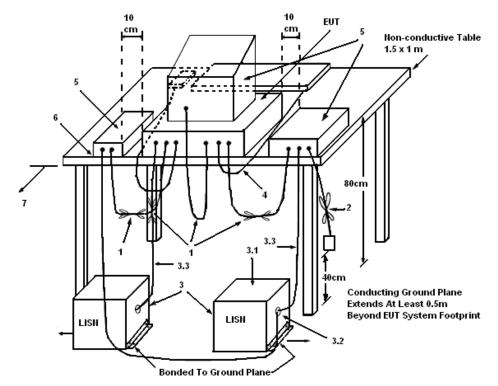
For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

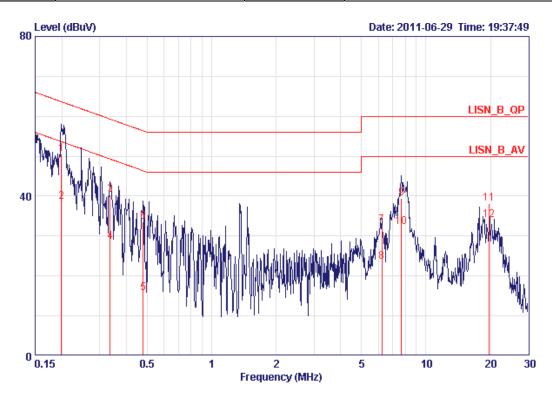
(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.

- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.

(7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

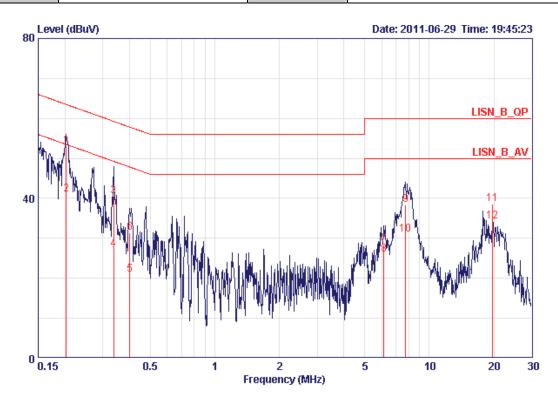
4.1.5. Test Deviation

There is no deviation with the original standard.


4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

4.1.7. Results of AC Power Line Conducted Emissions Measurement


Temperature	23 °C	Humidity	58%
Test Engineer	Sin Chang	Phase	Line
Configuration	Normal Link	Test Mode	Mode 1

		0ver	Limit	Read	LISN	Cable	
_							
Freq	Level	Limit	Line	Level	Factor	Loss	Remark
MHz	dBuV	dB	dBuV	dBuV	dB	dB	
0.19863	50.66	-13.01	63.67	50.41	0.05	0.20	QP
0.19863	38.48	-15.19	53.67	38.23	0.05	0.20	AVERAGE
0.33562	40.26	-19.06	59.31	40.02	0.04	0.20	QP
0.33562	28.66	-20.66	49.31	28.42	0.04	0.20	AVERAGE
0.47865	15.80	-30.56	46.36	15.64	0.03	0.13	AVERAGE
0.47865	33.50	-22.86	56.36	33.34	0.03	0.13	QP
6.219	32.70	-27.30	60.00	32.14	0.22	0.34	QP
6.219	23.64	-26.36	50.00	23.08	0.22	0.34	AVERAGE
7.687	39.41	-20.59	60.00	38.73	0.28	0.40	QP
7.687	32.36	-17.64	50.00	31.68	0.28	0.40	AVERAGE
19.740	38.21	-21.79	60.00	36.90	0.81	0.50	QP
19.740	33.99	-16.01	50.00	32.68	0.81	0.50	AVERAGE

Temperature	23 °C	Humidity	58%
Test Engineer	Sin Chang	Phase	Neutral
Configuration	Normal Link	Test Mode	Mode 1

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.20289	53.13	-10.36	63.49	52.85	0.08	0.20	QP
2	0.20289	40.91	-12.58	53.49	40.63	0.08	0.20	AVERAGE
3	0.33740	40.49	-18.77	59.27	40.22	0.07	0.20	QP
4	0.33740	27.22	-22.04	49.27	26.95	0.07	0.20	AVERAGE
5	0.40187	21.03	-26.78	47.81	20.76	0.07	0.20	AVERAGE
6	0.40187	31.38	-26.43	57.81	31.11	0.07	0.20	QP
7	6.153	28.33	-31.67	60.00	27.74	0.26	0.34	QP
8	6.153	25.95	-24.05	50.00	25.36	0.26	0.34	AVERAGE
9	7.769	38.26	-21.74	60.00	37.54	0.32	0.40	QP
10	7.769	30.98	-19.02	50.00	30.26	0.32	0.40	AVERAGE
11	19.740	38.55	-21.45	60.00	37.26	0.79	0.50	QP
12	19.740	34.31	-15.69	50.00	33.02	0.79	0.50	AVERAGE

Note:

Level = Read Level + LISN Factor + Cable Loss.

4.2. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

4.2.1. Limit

No restriction limits.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

26dB B0	26dB Bandwidth							
Spectrum Parameters	Setting							
Attenuation	Auto							
Span Frequency	> 26dB Bandwidth							
RBW	Approximately 1% of the emission bandwidth							
VBW	VBW > RBW							
Detector	Peak							
Trace	Max Hold							
Sweep Time	Auto							
99% Оссирі	ed Bandwidth							
Spectrum Parameters	Setting							
Span	1.5 times to 5.0 times the OBW							
RBW	1 % to 5 % of the OBW							
VBW	≥ 3 x RBW							
Detector	Peak							
Trace	Max Hold							

4.2.3. Test Procedures

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.2.4. Test Setup Layout

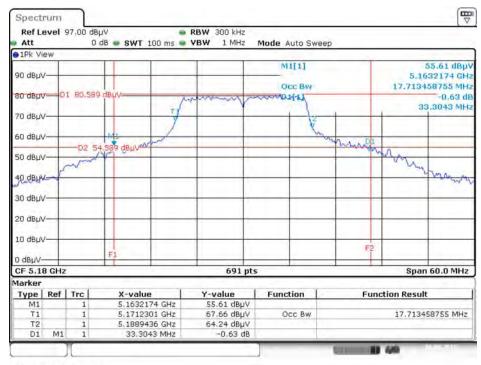
For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.6.4.

4.2.5. Test Deviation

There is no deviation with the original standard.

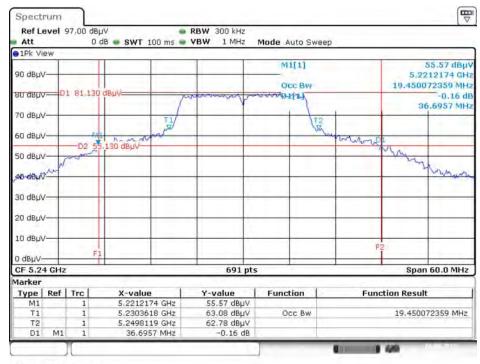
4.2.6. EUT Operation during Test


The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth

Temperature	25 ℃	Humidity	56%						
Test Engineer	Serway Li								
Mode	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)						
	5180 MHz	33.30	17.71						
	5200 MHz	38.87	25.09						
802.11g	5240 MHz	36.70	19.45						
002.110	5745 MHz	35.91	18.23						
	5785 MHz	35.22	17.80						
	5825 MHz	23.65	17.19						
	5180 MHz	30.61	18.23						
	5200 MHz	26.17	18.41						
802.11n MCS13	5240 MHz	25.91	18.06						
HT20	5745 MHz	23.39	17.97						
	5785 MHz	23.74	17.97						
	5825 MHz	23.39	18.06						
	5190 MHz	42.03	36.61						
802.11n MCS13	5230 MHz	54.78	36.76						
HT40	5755 MHz	41.88	36.61						
	5795 MHz	49.57	36.90						

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5180 MHz

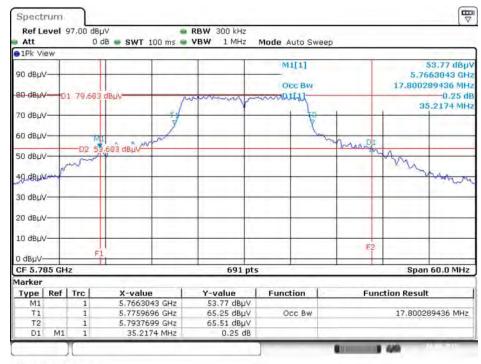

Date: 6.AUG.2015 21:49:59

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5200 MHz

Ref Lo	evel !	97,00 0	D dB . SWT		RBW 300 kHz VBW 1 MHz	Mode Auto Sv	veep		
1Pk Vi	ew								
90 dBµ\ 80 dBµ\	- D	1 82.7	49 dBµV	1	Amaran	1		25.09	57.26 dBµ 1804348 GH 4066570 MH -0.08 dl 38.8696 MH
70 dBµ\		N	11 months	innt			miten		1
60 dBhV	/	-D2	56.749 dBµV-		-			a start	_
50 dBuy	A	and a			-		-	4	ming .
mbr	14								man
40 dBh	/				1				
30 dBµ\		_						-	-
20 dBµA		-						-	
10 dBuy	-								
		F	T					F2	
0 dBµV- CF 5.2	_		The statement		691 pt			0.0	an 60.0 MHz
Aarker	GHZ	-			091 pt	5		sp	an 60.0 MHz
Type	Ref	Trc	X-value		Y-value	Function	E Fu	nction Res	ult
M1		1	5.1804348 GHz		57.26 dBµV				
T1		1	5.1874964 GHz		62.80 dBµV	Occ Bw		25.09406657 M	
T2 D1	M1	1	5.21259	96 MHz	62.92 dBµV -0.08 dB				
01	IMIT	4	38,80	50 MIN2	-0.08 UB				

Date: 6.AUG.2015 21:51:56

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5240 MHz

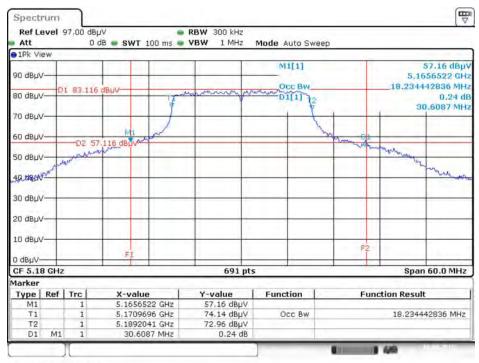

Date: 6.AUG.2015 21:55:44

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5745 MHz

	evel	97,00			RBW 300 kHz		50 k			
Att 1Pk Vi	0.14/	-	0 dB 🖷 SWT	100 ms 🖷	VBW 1 MHz	Mode Auto Sw	eep			
90 dBµ\ 80 dBµ\		1 80.1	00 dBµV	1	manuf	M1[1] OCC BW	-	54,43 dBµV 5,7262174 GHz 18,234442836 MHz -0,24 dB 35,9130 MHz		
70 dBµ\		-		TJ/	1	t ²				
60 dBµA		- 0.7	54.100 dBµV	w		1	mun pi			
50 dBµV		-D2	54.100 dBµV-					Ann		
49-dBLA	140							hours		
30 dBµ\			-		-		-			
20 dBµA		_					-			
10 dBµ\	-	-		-			F2			
0 dBµV-	-	-	F1							
CF 5.7	15 GH	Iz	200		691 pts	5		Span 60.0 MHz		
Marker										
Туре	Ref	Trc	X-value		Y-value	Function	Fund	ction Result		
M1 T1	_	1	5.7262174 GHz 5.7357091 GHz		54,43 dBµV	Occ Bw		18.234442836 MHz		
T2		1	5.7357091 GHz 5.7539436 GHz		63.38 dBµV 64.44 dBµV	OCC BW		10.234442830 MHZ		
D1	M1	1		13 MHz	-0.24 dB	1				

Date: 6.AUG.2015 21:59:52

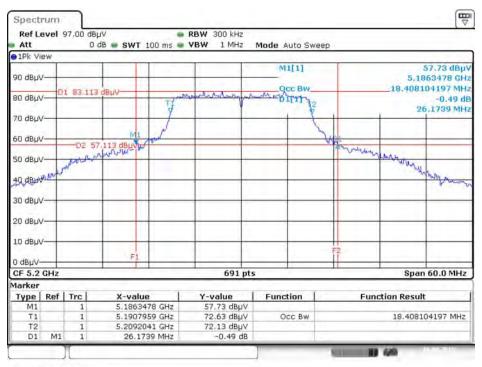
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5785 MHz


Date: 6.AUG.2015 22:02:08

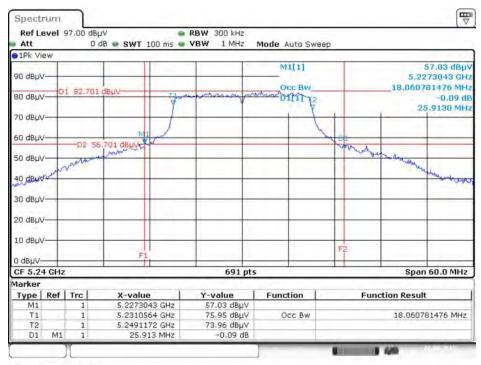
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5825 MHz

Ref Level			RBW 300 kHz	The second second		
Att	0 0	dB 🖷 SWT 100 ms 🖷	VBW 1 MHz	Mode Auto Swi	eep	
1Pk View					1	
90 dBµV			-	M1[1]	51.73 5.812826	1 GH
80 dBµV	1 77,404	dBul	manner -	Occ Bw D1[1]		05 di
70 dBµV	e a lag	1	manager	the second	23,652	2 MH
60 dBµV	_	ME	-	-		_
50 dBµV	D2 51	HD4 dBy			de man and and a series	
40 dBuV	mm	10.00				
30 dBµV					They are a second	Murri
20 dBµV			-			
10 dBµV	_		-		F2	
0 dBµV		F1				
CF 5.825 GH	Iz	20	691 pts		Span 60.0	MHz
larker				1997 B. 1996		
	Trc	X-value	Y-value	Function	Function Result	_
M1	1	5,8128261 GHz	51.73 dBµV			
T1 T2	1	5.8162301 GHz 5.8334226 GHz	66.12 dBµV	Occ Bw	17.192474674	MHZ
D1 M1	1	23.6522 MHz	68.81 dBµV 0.05 dB			

Date: 6.AUG.2015 22:04:48



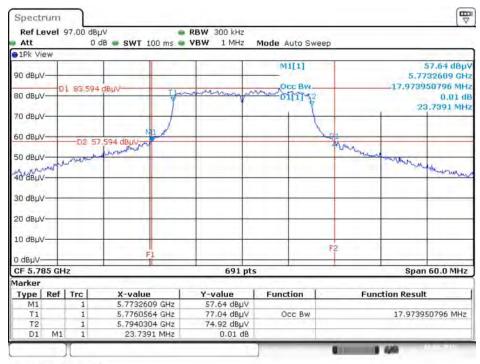
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS13 HT20 / Chain 1 + Chain 2 / 5180 MHz


Date 6.AUG.2015 22:07:28

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS13 HT20 / Chain 1 + Chain 2 / 5200 MHz

Date: 6.AUG.2015 22:08:51

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS13 HT20 / Chain 1 + Chain 2 / 5240 MHz


Date: 6.AUG.2015 22:10:22

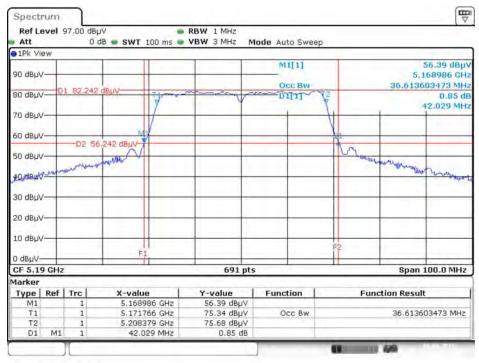
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS13 HT20 / Chain 1 + Chain 2 / 5745 MHz

Ref Le	evel	97,00 de	3µV dB — SWT 100 ms —	RBW 300 kHz VBW 1 MHz	Mode Auto Sw	000		
1Pk Vi	ew	0	00 - 3W1 100 ms	YOW I MINZ	Mode Auto Sw	eeb		
90 dBµV 80 dBµV	/D	1 83.05	9 dBµV	-	M1[1]		57.40 dBµ 5.7333478 GH 17.973950796 MH 27 d 23.3913 MH	
70 dBµV 60 dBµV		-02.5	N1		1	10		
50 dBµv	-	mm	57.059 dBµV	-		anne	- two where where we wanted	
40 dBu							Marman	
30 dBµV	11				1.1.1			
20 dBµV								
10 dBµV-			EL			F2		
CF 5.74		z	1 1	691 pts		1	Span 60.0 MHz	
Marker								
Type	Ref		X-value	Y-value	Function	F	unction Result	
M1	_	1	5.7333478 GHz	57,40 dBµV				
T1 T2		1	5.7360564 GHz 5.7540304 GHz	76.49 dBµV 74.45 dBµV	Occ Bw		17.973950796 MHz	
D1	M1	1	23.3913 MHz	-0.27 dB				

Date: 6.AUG.2015 22:12:04

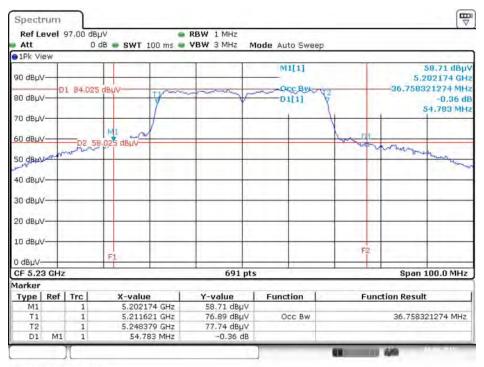


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS13 HT20 / Chain 1 + Chain 2 / 5785 MHz

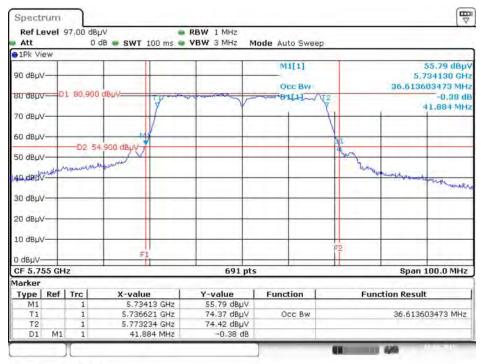

Date 6.AUG.2015 22:13:52

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS13 HT20 / Chain 1 + Chain 2 / 5825 MHz

Date: 6.AUG.2015 22:15:39

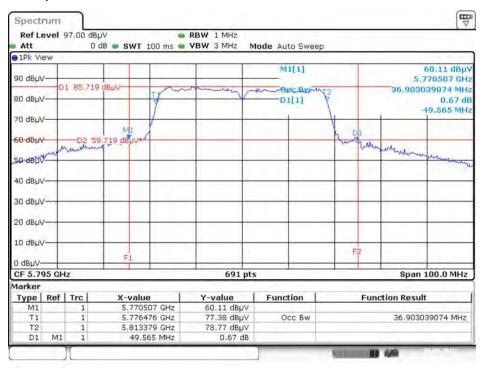


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS13 HT40 / Chain 1 + Chain 2 / 5190 MHz


Date 6.AUG.2015 22:17:38

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS13 HT40 / Chain 1 + Chain 2 / 5230 MHz

Date: 6.AUG.2015 22:21:30



26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS13 HT40 / Chain 1 + Chain 2 / 5755 MHz

Date 6.AUG.2015 22:23:32

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS13 HT40 / Chain 1 + Chain 2 / 5795 MHz

Date: 6.AUG.2015 22:24:47

4.3. 6dB Spectrum Bandwidth Measurement

4.3.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

6dB Spectrum Bandwidth		
Spectrum Parameters	Setting	
Attenuation	Auto	
Span Frequency	> 6dB Bandwidth	
RBW	100kHz	
VBW	≥ 3 x RBW	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

4.3.3. Test Procedures

For Radiated 6dB Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- 2. Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices section (C) Emission Bandwidth.
- 3. Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

4.3.4. Test Setup Layout

For Radiated 6dB Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.6.4.

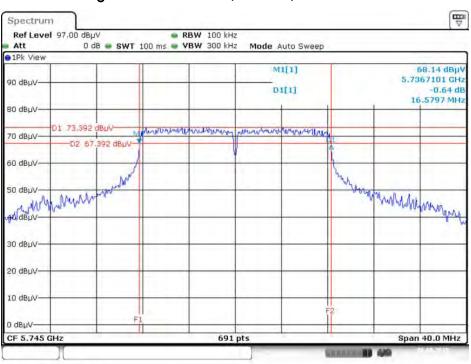
4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

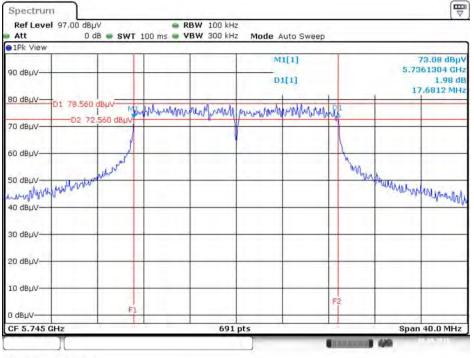
4.3.7. Test Result of 6dB Spectrum Bandwidth


Temperature	25 °C	Humidity	56%		
Test Engineer	Serway Li				

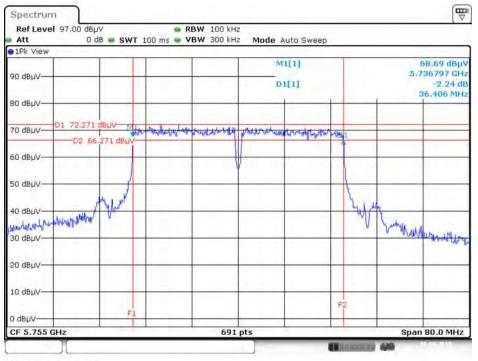
Mode	Frequency	6dB Bandwidth (MHz)	Min. Limit (kHz)	Test Result
	5745 MHz	16.58	500	Complies
802.11a	5785 MHz	16.58	500	Complies
	5825 MHz	16.58	500	Complies
802.11n MCS13	5745 MHz	17.68	500	Complies
HT20	5785 MHz	17.74	500	Complies
HI20	5825 MHz	17.74	500	Complies
802.11n MC\$13	5755 MHz	36.41	500	Complies
HT40	5795 MHz	36.41	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.



6 dB Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5745 MHz


Date: 6.AUG.2015 22:36:22

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS13 HT20 / Chain 1 + Chain 2 / 5745 MHz

Date: 6.AUG.2015 22:32:35

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS13 HT40 / Chain 1 + Chain 2 / 5755MHz

Date: 6.AUG.2015 22:29:30

4.4. Maximum Conducted Output Power Measurement

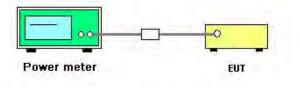
4.4.1. Limit

		Frequency Band	Limit
5.15~5.25 GHz			
	Ope	erating Mode	
		Outdoor access point	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
	\boxtimes	Indoor access point	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
		Fixed point-to-point access points	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm). Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
		Mobile and portable client devices	The maximum conducted output power over the frequency band of operation shall not exceed 250 mW (24dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.725~5.85 GHz	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm). If transmitting antennas of directional gain
	greater than 6 dBi are used, both the maximum conducted output power and the maximum power
	spectral density shall be reduced by the amount in dB
	that the directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in
	this band may employ transmitting antennas with
	directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted
	power.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.


Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	AVERAGE

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).
- 3. Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Maximum Conducted Output Power

Temperature	25℃	Humidity	56%
Test Engineer	Serway Li	Test Date	Aug. 06, 2015

Mada	Fraguenov	Conducted Power (dBm)		Desult
Mode	Frequency	Chain 1	(dBm)	Result
	5180 MHz	20.98	30.00	Complies
	5200 MHz	22.62	30.00	Complies
000.11.	5240 MHz	21.11	30.00	Complies
802.11a	5745 MHz	19.81	30.00	Complies
	5785 MHz	20.01	30.00	Complies
	5825 MHz	17.71	30.00	Complies

Mode	Fraguanay	Conducted Power (dBm)			Max. Limit	Result
	Frequency	Chain 1	Chain 2	Total	(dBm)	Result
	5180 MHz	20.24	20.15	23.21	30.00	Complies
000 11.	5200 MHz	19.85	19.92	22.90	30.00	Complies
802.11n MCS13	5240 MHz	19.93	20.04	23.00	30.00	Complies
HT20	5745 MHz	17.75	17.62	20.70	30.00	Complies
ni20	5785 MHz	18.03	17.95	21.00	30.00	Complies
	5825 MHz	16.81	16.95	19.89	30.00	Complies
000 11-	5190 MHz	17.35	16.62	20.01	30.00	Complies
802.11n	5230 MHz	19.49	19.37	22.44	30.00	Complies
MCS13 HT40	5755 MHz	13.95	13.54	16.76	30.00	Complies
пі40	5795 MHz	17.73	17.89	20.82	30.00	Complies

4.5. Power Spectral Density Measurement

4.5.1. Limit

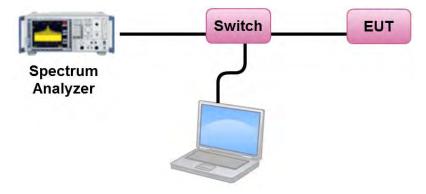
The following table is power spectral density limits and decrease power density limit rule refer to section

4.4.1.

		Frequency Band	Limit
\square	5.18	5~5.25 GHz	
	Ope	erating Mode	
		Outdoor access point	17 dBm/MHz
	\boxtimes	Indoor access point	17 dBm/MHz
		Fixed point-to-point access points	17 dBm/MHz
		Mobile and portable client devices	11 dBm/MHz
\square	5.72	25~5.85 GHz	30 dBm/500kHz

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.


Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal		
RBW	1000 kHz		
VBW	3000 kHz		
Detector	RMS		
Trace	AVERAGE		
Sweep Time	Auto		
Trace Average	100 times		
Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.			

4.5.3. Test Procedures

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- 2. Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD).
- 3. Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.
- 5. For $5.725 \sim 5.85$ GHz, the measured result of PSD level must add $10\log(500 \text{kHz/RBW})$ and the final result should ≤ 30 dBm.

4.5.4. Test Setup Layout

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.5.7. Test Result of Power Spectral Density

Temperature	25℃	Humidity	56%
Test Engineer	Serway Li	Test Date	Aug. 06, 2015

Configuration IEEE 802.11a / Chain 1

Channel	Frequency Power Density (dBm/MHz		Max. Limit (dBm/MHz)	Result
36	5180 MHz	7.85	17.00	Complies
40	5200 MHz	9.44	17.00	Complies
48	5240 MHz	7.88	17.00	Complies

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
149	5745 MHz	6.62	-3.01	3.61	30.00	Complies
157	5785 MHz	6.76	-3.01	3.75	30.00	Complies
165	5825 MHz	4.43	-3.01	1.42	30.00	Complies

Configuration IEEE 802.11n MCS13 HT20 / Chain 1 + Chain 2

Channel	Frequency Power Density (dBm/MHz)		Max. Limit (dBm/MHz)	Result
36	5180 MHz	10.03	17.00	Complies
40	5200 MHz	9.78	17.00	Complies
48	5240 MHz	9.90	17.00	Complies

 $= 10 \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{K=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 5.54 \text{dBi, so the limit doesn't reduce.}$

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
149	5745 MHz	7.53	-3.01	4.52	30.00	Complies
157	5785 MHz	7.79	-3.01	4.78	30.00	Complies
165	5825 MHz	6.74	-3.01	3.73	30.00	Complies

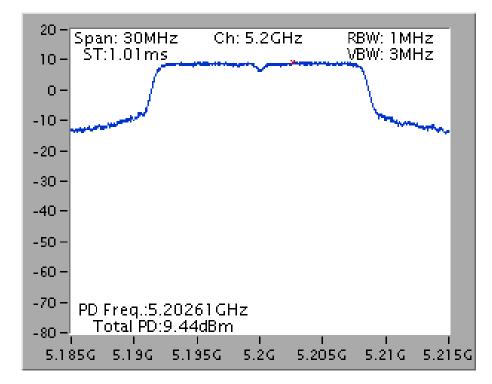
Note: $_{Directional \, Gain = 10 \log} \left[\frac{\sum_{j=1}^{N_{ss}} \left\{ \sum_{K=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 5.54 \text{dBi, so the limit doesn't reduce.}$

Configuration IEEE 802.11n MCS13 HT40 / Chain 1 + Chain 2

Channel	Frequency	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	3.92	17.00	Complies
46	5230 MHz	6.29	17.00	Complies

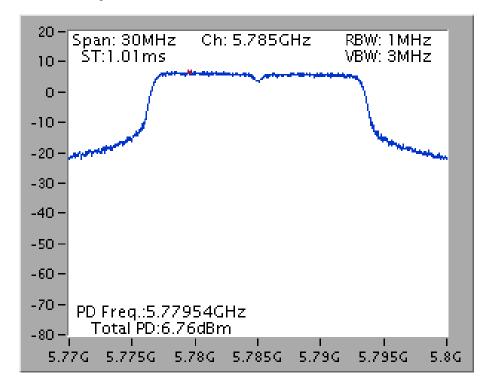
Note: Directional Gain = 10 log
$$\frac{\sum_{j=1}^{N_{ANT}} S_{K=1}^{N_{ANT}} g_{j}}{N_{ANT}}$$

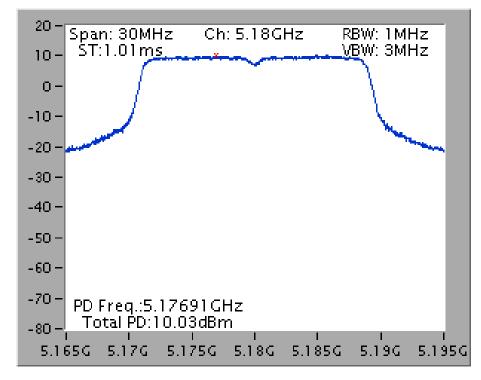
 $g\left[\frac{\sum_{j=1}^{N_{SS}} \left\{\sum_{K=1}^{N_{ANT}} g_{j,k}\right\}^{2}}{N_{ANT}}\right] = 5.54 \text{dBi, so the limit doesn't reduce.}$


Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
151	5755 MHz	0.64	-3.01	-2.37	30.00	Complies
159	5795 MHz	4.69	-3.01	1.68	30.00	Complies

Note: $Directional Gain = 10 \log \left[\frac{\sum_{j=1}^{N_{ss}} \left\{ \sum_{K=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 5.54 \text{dBi, so the limit doesn't reduce.}$

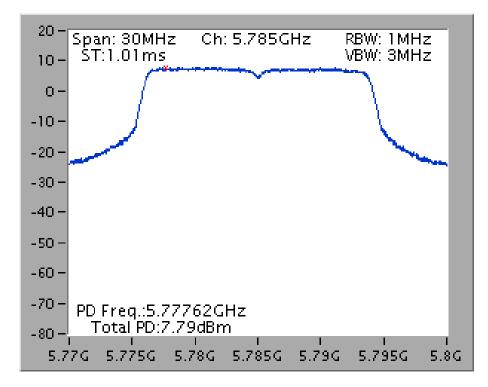
Note: All the test values were listed in the report.

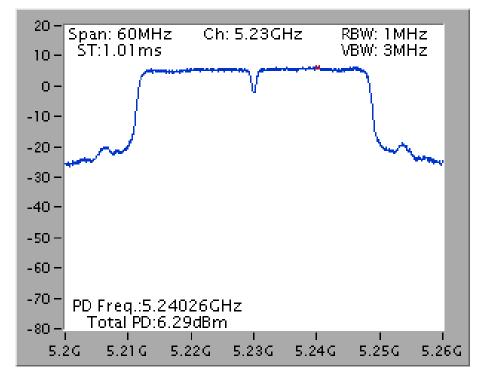

For plots, only the channel with worse result was shown.



Power Density Plot on Configuration IEEE 802.11a / Chain 1 / 5200 MHz

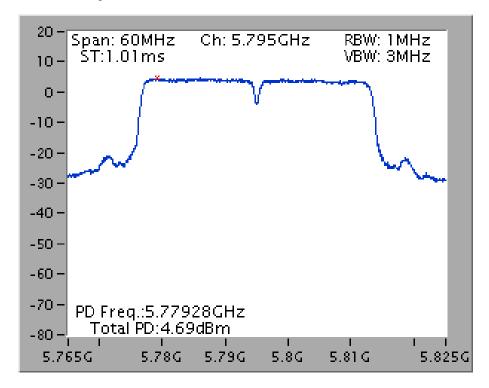
Power Density Plot on Configuration IEEE 802.11a / Chain 1 / 5785 MHz





Power Density Plot on Configuration IEEE 802.11n MCS13 HT20 / Chain 1 + Chain 2 / 5180 MHz

Power Density Plot on Configuration IEEE 802.11n MCS13 HT20 / Chain 1 + Chain 2 / 5785 MHz



Power Density Plot on Configuration IEEE 802.11n MCS13 HT40 / Chain 1 + Chain 2 / 5230 MHz

Power Density Plot on Configuration IEEE 802.11n MCS13 HT40 / Chain 1 + Chain 2 / 5795 MHz

4.6. Radiated Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

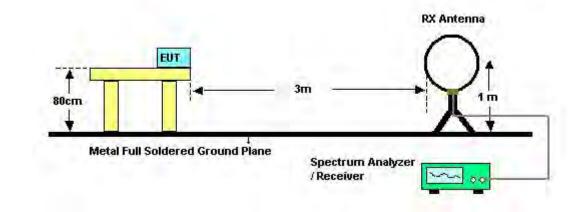
Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(kHz)	300		
0.490~1.705	24000/F(kHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

4.6.2. Measuring Instruments and Setting

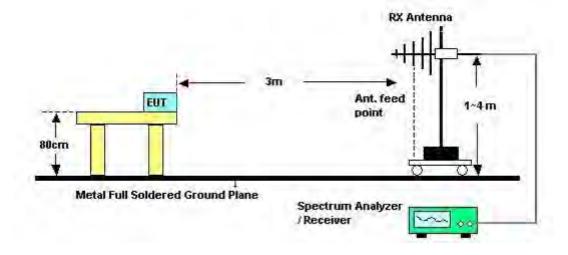
Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for peak

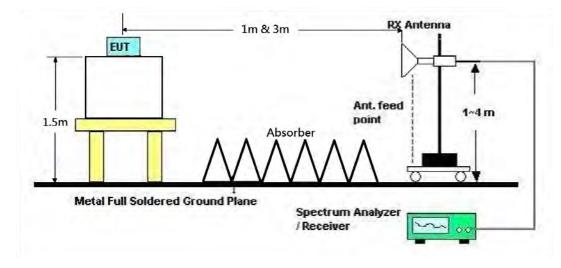
Receiver Parameter	Setting
Attenuation	Auto
Start \sim Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start \sim Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP


4.6.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 1m & 3m far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



4.6.4. Test Setup Layout


For Radiated Emissions: $9kHz \sim 30MHz$

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.6.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	20 °C	Humidity	65%
Test Engineer	Serway	Configurations	Normal Link
Test Date	Jul. 07, 2011	Test Mode	Mode 1

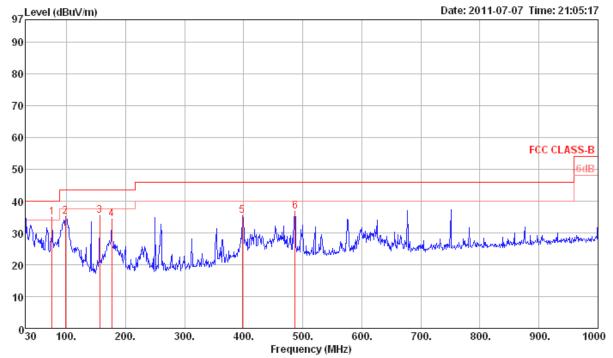
Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


4.6.8. Results of Radiated Emissions (30MHz~1GHz)

emperature	20°C	Humidity	65% Normal Link			
est Engineer	Serway	Configurations				
est Mode	Mode 1					
orizontal						
97 Level (dBuV/m)			Date: 2011-07-07 Time: 21:09:41			
90						
80						
70						
60						
50			F¢C CLASS-B 6dB-			
40	-2 3 4	5	6			
30	My de la caladaria	Made a charmont	At a third the balance and a balance to man			
20 00 00 000	and the work of the second sec	and the second	an Nellen wit bit i sterr in terr			
10						
030 100.	200. 300. 400.	500. 600. 3	700. 800. 900. 100			

lest Engineer	Serway	Configuration
Test Mode	Mode 1	
Horizontal		

	Freq	Level	Limit Line		Read Level					Pol/Phase
	MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		
1	101.78	33.65	43.50	-9.85	48.90	1.20	11.14	27.59	Peak	HORIZONTAL
2	199.75	34.58	43.50	-8.92	50.93	1.70	9.05	27.10	Peak	HORIZONTAL
3	250.19	34.79	46.00	-11.21	47.12	1.90	12.77	27.00	Peak	HORIZONTAL
4	398.60	35.08	46.00	-10.92	44.34	2.30	16.03	27.59	Peak	HORIZONTAL
5	500.45	34.43	46.00	-11.57	42.20	2.70	17.63	28.10	Peak	HORIZONTAL
6	750.71	37.08	46.00	-8.92	41.95	3.50	19.43	27.80	Peak	HORIZONTAL

	Freq	Level	Limit Line		Read Level				Remark	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		
1	75.59	34.87	40.00	-5.13	54.71	0.93		27.70		VERTICAL
2	97.90	35.14	43.50	-8.36	51.00	1.16	10.59	27.61	Peak	VERTICAL
3	156.10	35.35	43.50	-8.15	49.23	1.48	11.96	27.32	Peak	VERTICAL
4	176.47	34.39	43.50	-9.11	46.90	1.58	13.13	27.22	Peak	VERTICAL
5	397.63	35.35	46.00	-10.65	44.62	2.30	16.01	27.58	Peak	VERTICAL
6	486.87	36.71	46.00	-9.29	44.65	2.67	17.42	28.03	Peak	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6.9. Results for Radiated Emissions (1GHz~40GHz)

Temperature			23°C			Humidity			71%			
Test	Test Engineer Andy Tsai Configurations							IEEE 8	IEEE 802.11a CH 36 / Chain 1			
Test	Date	Ju	ıl. 01, 20	015								
Horiz	Horizontal											
	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	15532.80 15537.20	56.24 44.80	74.00 54.00	-17.76 -9.20	45.14 33.70	7.56 7.56	38.16 38.16		252 252		Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	Over Limit					T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	15532.80 15540.80								107 107		Peak Average	VERTICAL VERTICAL

Terr	nperature	2	3℃		Hu	Humidity			71%			
Test Engineer A			ndy Tsai		Co	Configurations			ons IEEE 802.11a CH 40 / Chain 1			
Test	Date	Ju	ul. 01, 20	015								
Horizontal												
	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
$^{1}_{2}$	15529.60 15599.20	56.76 45.13		-17.24 -8.87	45.66 33.95	7.56 7.58	38.16 38.29		192 192		Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	Over Limit					T/Po\$	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	15601.80 15603.40								287 287		Average Peak	VERTICAL VERTICAL

Tem	perature	2				Humidity						
Test	Engineer	A	ndy Tsai		Co	onfigura	tions	IEEE 8	802.11a	CH 48	/ Chain 1	
Test	Date	J	ul. 01, 20	015								
Horizontal												
	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	15721.80 15724.40	60.01 47.73		-13.99 -6.27	48.67 36.39	7.62 7.62	38.50 38.50	34.78 34.78	182 182		Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	T/Po\$	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	15722.40 15723.20								288 288		Average Peak	VERTICAL VERTICAL

Temperature	23	3°C		Hu	midity	71%				
Test Engineer	Ar	ndy Tsai		Co	onfigurations	IEEE 8	302.11a	CH 14	9 / Chain 1	
Test Date	Jul. 01, 2015									
Horizontal										
Freq	Level	Limit Line	Over Limit	Read Level	CableAntenna Loss Factor		T/Pos	A/Pos	Rema rk	Pol/Phase

	MHz	dBuV/m	dBuV/m	₫B	dBuV	dB	dB/m	dB	deg	Cm	
1	11490.00	53.94	54.00	-0.06	43.33	6.53	38.70	34.62	215	160 Average	HORIZONTAL
2	11490.60	67.05	74.00	-6.95	56.44	6.53	38.70	34.62	215	160 Peak	HORIZONTAL

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	11488.44 11490.48								61 61		Average Peak	VERTICAL VERTICAL

Tem	nperature	23	23°C			Humidity						
Test	Engineer	Ar	ndy Tsai		Co	onfigura	tions	IEEE 8	802.11a	CH 15	7 / Chain [°]	1
Test	Date	Ju	ıl. 01, 20	015								
Horiz	ontal											
	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/\mathfrak{m}}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	11570.12 11570.84	53.93 67.19	54.00 74.00	-0.07 -6.81	43.32 56.58	6.55 6.55	38.71 38.71	34.65 34.65	210 210		Average Peak	HORIZONTAL HORIZONTAL

Freq	Level	Limit Line						T/Pos	A/Pos	Rema rk	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
11570.72 11572.16								53 53		Peak Average	VERTICAL VERTICAL

Ten	nperature	2	3℃		Hu	Humidity						
Test	t Engineer	A	ndy Tsai		Co	onfigura	tions	IEEE 8	302.11a	CH 16	5 / Chain	1
Test	t Date	J	ul. 01, 20	015								
Horiz	zontal											
	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/π	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	11646.48 11650.16	67.26 53.72		-6.74 -0.28	56.65 43.11	6.56 6.56		34.68 34.68	210 210		Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
$^{1}_{2}$	11646.24 11650.08								102 102		Peak Average	VERTICAL VERTICAL

Temperature	23°C	Humidity	71%				
Test Engineer	Andy Tsai	Configurations	IEEE 802.11n MCS13 HT20 CH 36 /				
	Andy Isa	Conliguiations	Chain 1 + Chain 2				
Test Date	Jun. 30, 2015						
Horizontal							

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	15541.60 15547.52	48.27 60.38	54.00 74.00	-5.73 -13.62	37.17 49.25	7.56 7.56	38.16 38.19	34.62 34.62	134 134	173 173	Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	T/Po\$	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
$^{1}_{2}$	15542.08 15543.04								19 19		Average Peak	VERTICAL VERTICAL

Temperature	23°C	Humidity	71%
Test Engineer	Andy Tagi	Configurations	IEEE 802.11n MCS13 HT20 CH 40 /
Test Engineer	Andy Tsai	Comguations	Chain 1 + Chain 2
Test Date	Jun. 30, 2015		
Horizontal			

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	15596.48 15597.44								294 294		Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	T/Po\$	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	15598.40 15602.40	48.38 60.31	54.00 74.00	-5.62 -13.69	37.18 49.13	7.58 7.58	38.29 38.29	34.67 34.69	18 18		Average Peak	VERTICAL VERTICAL

Temperature	23°C	Humidity	71%
Test Engineer	Andy Tagi	Configurations	IEEE 802.11n MCS13 HT20 CH 48 /
Test Engineer	Andy Tsai	Configurations	Chain 1 + Chain 2
Test Date	Jun. 30, 2015		
Horizontal			

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
$^{1}_{2}$	15722.70 15722.90	53.09 66.24	54.00 74.00	-0.91 -7.76	41.75 54.90	7.62 7.62	38.50 38.50	34.78 34.78	332 332		Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	15718.60 15723.10								7 7	212 212	Average Peak	VERTICAL VERTICAL

Temperature	23°C	Humidity	71%				
Tost Engineer	Andy Tagi	Configurations	IEEE 802.11n MCS13 HT20 CH 149 /				
Test Engineer	Andy Tsai	Configurations	Chain 1 + Chain 2				
Test Date	Jul. 31, 2015						
Horizontal							
	Liwit Over F	Pood CohleAntenno B	Preswo T/Pos A/Pos				

	Freq	Level	Limit					Freamp Factor		A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	11489.32 11490.28	47.81 61.11	54.00 74.00	-6.19 -12.89	37.20 50.50	6.53 6.53	38.70 38.70	34.62 34.62	238 238	199 199	Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line						T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	11489.60 11490.24	48.78 60.54	54.00 74.00	-5.22 -13.46	38.17 49.93	6.53 6.53	38.70 38.70	34.62 34.62	160 160		Average Peak	VERTICAL VERTICAL

Temperature	23°C	Humidity	71%
Tost Engineer	Andy Tagi	Configurations	IEEE 802.11n MCS13 HT20 CH 157 /
Test Engineer	Andy Tsai	Configurations	Chain 1 + Chain 2
Test Date	Jul. 01, 2015		
Horizontal			

Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
11569.36 11574.64								300 300		Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	11569.36 11569.52								177 177		Average Peak	VERTICAL VERTICAL

Temperature	23° C	Humidity	71%
Tost Engineer	Andy Tagi	Configurations	IEEE 802.11n MCS13 HT20 CH 165 /
Test Engineer	Andy Tsai	Configurations	Chain 1 + Chain 2
Test Date	Jul. 01, 2015		
Horizontal			

Freq	Level	Limit Line					Preamp Factor	T/Po\$	A/Pos	Rema rk	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
11650.32 11654.96								300 300		Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	T/Po\$	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
$^{1}_{2}$	11649.36 11650.00								184 184		Average Peak	VERTICAL VERTICAL

Temperature	23°C	Humidity	71%
Text Engineer	Andy Tagi	Configurations	IEEE 802.11n MCS13 HT40 CH 38 /
Test Engineer	Andy Tsai	Configurations	Chain 1 + Chain 2
Test Date	Jul. 01, 2015		
Horizontal	•		

	Fréq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	15580.20 15584.20								332 332		Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	T/Po\$	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	15570.00 15591.40	45.49 58.85	54.00 74.00	-8.51 -15.15	34.34 47.69	7.57 7.57	38.22 38.26	34.64 34.67	15 15		Average Peak	VERTICAL VERTICAL

Temperature	23 ℃	Humidity	71%
Test Engineer	Andy Tagi	Configurations	IEEE 802.11n MCS13 HT40 CH 46 /
Test Engineer	Andy Tsai	Configurations	Chain 1 + Chain 2
Test Date	Jul. 01, 2015		
Horizontal			

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	15690.00 15704.16								299 299		Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	T/Po\$	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	15690.24 15702.72	49.16 60.90	54.00 74.00	-4.84 -13.10	37.86 49.59	7.61 7.62	38.44 38.47	34.75 34.78	20 20		Average Peak	VERTICAL VERTICAL

HORIZONTAL HORIZONTAL

Temperature	23 ℃	Humidity	71%					
Test Engineer	Andy Tsai	Configurations	IEEE 802.11n MCS13 HT40 CH 151 /					
	Andy Tsai Configurations Chain 1 + Chain 2							
Test Date	te Jul. 01, 2015							
Horizontal								
Freq L	Limit Over evel Line Limit	Read CableAntenna Level Loss Factor	Preamp T/Pos A/Pos Factor Remark Pol/Phas					
MHz dB	uV/m dBuV/m dB	dBuV dB dB/m	dB deg Cm					

1 11507.60 55.30 74.00 -18.70 44.68 6.54 38.70 34.62 299 153 Peak 2 11509.28 43.05 54.00 -10.95 32.43 6.54 38.70 34.62 299 153 Average

Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
11510.00 11515.28								0 0		Peak Average	VERTICAL VERTICAL

Temperature	23°C	Humidity	71%
Test Engineer	Andy Tsai	Configurations	IEEE 802.11n MCS13 HT40 CH 159 /
Test Date	Jul. 01, 2015		Chain 1 + Chain 2
	341. 01, 2010		

Horizontal

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
$^{1}_{2}$	11589.28 11589.76	50.23 62.55	54.00 74.00	-3.77 -11.45	39.61 51.93	6.55 6.55	38.72 38.72	34.65 34.65	302 302		Average Peak	HORIZONTAL HORIZONTAL

Vertical

Freq	Level	Limit Line					Preamp Factor		A/Pos	Rema rk	Pol/Phase
MHz	dBuV/m	$\overline{dBu \mathbb{V}/\mathfrak{m}}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
11586.64 11589.76										Peak Average	VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.7. Band Edge Emissions Measurement

4.7.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for Peak

4.7.3. Test Procedures

1. The test procedure is the same as section 4.6.3.

4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.7.7. Test Result of Band Edge and Fundamental Emissions

Temperature	23 °C	Humidity	71%
Test Engineer	Andy Tsai	Configurations	IEEE 802.11a CH 36, 40, 48 / Chain 1
Test Date	Jul. 01, 2015		
-			

Channel 36

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4	5146.80 5150.00 5182.00 5183.60	101.22	74.00 54.00		65.89 49.92 98.09 107.91	4.27		34.47	279 279 279 279 279	186 186	Peak Average Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line	Over Limit			ntenna Factor		T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	5148.40 5150.00 5203.60 5203.60 5437.60 5440.00	49.22 114.31 104.10 61.10		-12.90	46.16 111.14 100.93	4.26 4.28 4.28 4.39 4.39	33.27 33.27 33.36 33.36 33.78 33.78	34.47 34.47	90 90 90 90 90	174 174 174 174	Peak Average Peak Average Peak Average	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

	Freq	Level	Limit Line	Over Limit			intenna Factor	Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	5099.60 5117.00 5233.40 5245.40 5367.20 5369.60	111.79	54.00	-9.14 -16.35 -7.81 -14.80	54.67 108.54 98.89 42.64	4.23 4.24 4.30 4.30 4.36 4.36	33.18 33.21 33.42 33.45 33.66 33.66	34.47 34.47 34.47 34.47 34.47 34.47	284 284 284 284 284 284	179 179 179 179	Average Peak Peak Average Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Temperature	2	3℃		Hu	midity		71%					
Test Engineer	A	ndy Tsai		Co	onfigura	tions	IEEE 802.11a CH 149, 157, 165 / Chain 1					
Test Date	Ju	ul. 01, 2015										
Channel 149												
Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase	
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm			
1 5711.80		68.20	-0.09	63.61	4.49	34.52	34.51	289		Peak	HORIZONTA	

34

34.62

181 Peak

181 Peak

181 Average

HORIZONTAL

HORIZONTAL

HORIZONTAL

5725.00 77.91 5738.60 109.48 5742.20 99.57 73.35 104.88 94.97 4.50 4.50 4.50 34.51 34.52 34.52 34.62

-0.29

Item 3, 4 are the fundamental frequency at 5745 MHz.

78.20

Channel 157

234

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	5708.20 5725.00 5778.60 5780.20 5850.00 5874.20	110.21		-8.84 -18.72 -19.90 -8.90	54.92 105.49 95.53	4.49 4.50 4.52 4.52 4.54 4.55		34.51 34.51 34.53 34.53 34.54 34.54	287 287 287 287 287 287 287	172 172 172 173	Peak Peak Peak Average Peak Peak	HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL

Item 3, 4 are the fundamental frequency at 5785 MHz.

Channel 165

	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/\mathfrak{m}}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4	5827.00 5828.40 5850.00 5862.00	108.65 69.79	78.20 68.20		94.06 103.77 64.86 59.77	4.53	34.88 34.93		286 286 286 286	162 162	Average Peak Peak Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 1, 2 are the fundamental frequency at 5825 MHz.

Temperature	23 °C	Humidity	71%
Test Engineer	Andy Tsai	Configurations	IEEE 802.11n MCS13 HT20 CH 36, 40, 48 / Chain 1 + Chain 2
Test Date	Jun. 30, 2015		

	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Rema rk	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4	5148.80 5150.00 5184.80 5184.80	51.81 110.39	54.00		64.97 48.75 107.26 97.19	4.26 4.27	33.27 33.33		189 189 189 189	183 183	Peak Average Peak Average	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	4963.60 4965.35 5203.60 5204.80 5441.20 5446.00	59.81 112.35 100.64 61.62	74.00	-8.12 -14.19 -12.38 -5.02	57.18 109.18 97.47 57.92	4.17 4.28 4.28 4.39 4.40	32.94	34.49 34.48 34.47 34.47 34.47 34.47	10 10 10 10 10	199 199 199 199	Average Peak Peak Average Peak Average	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

	Freq	Level	Limit Line		Read Level			Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	5234.00 5243.60	100.57 111.63 59.45	54.00	-7.59	55.46 43.66 97.32 108.35 55.83 44.02	4.19 4.30 4.30 4.37	33.00 33.03 33.42 33.45 33.72 33.72	34.47 34.47	15 15 15 15 15	190 190 190 190	Peak Average Average Peak Peak Average	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Temperature	23°C	Humidity	71%					
Test Engineer	Andy Tsai	Configurations	IEEE 802.11n MCS13 HT20 CH 149, 157, 165 / Chain 1 + Chain 2					
Test Date	CH 149: Jul. 31, 201	H 149: Jul. 31, 2015 / CH 157, 165: Jun. 30, 2015						

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5	5715.00 5715.00 5725.00 5741.00 5750.00	53.68 75.47 98.06	74.00 54.00 78.20	-2.86 -0.32 -2.73	66.64 49.18 70.91 93.46 103.82	4.49 4.49 4.50 4.50 4.50	34.52 34.52 34.57 34.62 34.62	34.51 34.51 34.52	22 22 22 22 22 22	171 171 171	Peak Average Peak Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Item 4, 5 are the fundamental frequency at 5745 MHz.

Channel 157

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	5547.40 5725.00 5781.40 5782.60 5857.20 5884.60	63.52 58.41 99.46 110.69 58.79 58.96		-19.79	94.74 105.97	4.50 4.52 4.52 4.55	34.00 34.57 34.73 34.73 34.99 35.04		13 13 13 13 13 13	191 191 191 191	Peak Peak Average Peak Peak Peak	HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL

Item 3, 4 are the fundamental frequency at 5785 MHz.

Channel 165

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4	5821.40 5831.00 5853.80 5860.00	110.35 68.81	78.20		63.81	4.53 4.55	34.88 34.99	34.54	16 16 16	183 183	Average Peak Peak Peak Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 1, 2 are the fundamental frequency at 5825 MHz.

Temperature	23°C	Humidity	71%
Test Engineer	Andy Tsai	Configurations	IEEE 802.11n MCS13 HT40 CH 38, 46 /
		Configurations	Chain 1 + Chain 2
Test Date	Jun. 30, 2015		

	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4	5150.00 5150.00 5198.40 5200.80	53.84 96.06			63.51 50.78 92.89 102.91	4.26 4.28	33.27 33.36	34.47 34.47 34.47 34.47	354 354 354 354	201 201	Peak Average Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5190 MHz.

Channel 46

	Freq	Level	Limit Line		Read Level			Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	5053.60 5082.40 5238.40 5239.60 5404.00 5406.40	57.88 108.49 97.82 60.98	74.00	-13.02	54.97 105.24 94.57	4.23 4.30 4.30 4.37	33.42 33.42 33.72	34.47 34.47 34.47	9 9 9 9 9	209 209 209 209	Average Peak Peak Average Peak Average	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5230 MHz.

Temperature	23 °C	Humidity	71%
Test Engineer	Andy Tsai	Configurations	IEEE 802.11n MCS13 HT40 CH 151, 159 / Chain 1 + Chain 2
Test Date	Jun. 30, 2015		

	Freq	Level			Read Level					A/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4	5715.00 5722.60 5744.20 5745.40	68.93 105.30	78.20		63.42 64.37 100.70 89.62	4.50 4.50	34.57 34.62		14 14 14 14	183 183	Peak Peak Peak Average	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5755 MHz.

Channel 159

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Rema rk	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	5624.60 5725.00 5779.40 5784.20 5850.00 5860.00	65.89 98.65	68.20 78.20 78.20 68.20	-4.23 -12.31 -9.43 -0.44	59.75 61.33 93.93 104.79 63.84 62.76	4.46 4.50 4.52 4.52 4.54 4.55	34.57 34.73 34.73 34.93	34.50 34.51 34.53 34.53 34.54 34.54	14 14 14 14 14	186 186 186 186	Peak Peak Average Peak Peak Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5795 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4.8. Frequency Stability Measurement

4.8.1. Limit

In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

4.8.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RBW	10 kHz
VBW	10 kHz
Sweep Time	Auto

4.8.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 7. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 8. Extreme temperature is $-30^{\circ}C \sim 50^{\circ}C$.

4.8.4. Test Setup Layout

4.8.5. Test Deviation

There is no deviation with the original standard.

4.8.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.8.7. Test Result of Frequency Stability

Temperature	25℃	Humidity	56%
Test Engineer	Serway Li	Test Date	Aug. 06, 2015

Mode: 20 MHz / Chain 1

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)						
0.0		5200	MHz				
(^)	0 Minute	2 Minute	5 Minute	10 Minute			
126.50	5199.9968	5199.9970	5199.9972	5199.9970			
110.00	5200.0052	5200.0056	5200.0058	5200.0058			
93.50	5199.9976	5199.9978	5199.9980	5199.9980			
Max. Deviation (MHz)	0.0052	0.0056	0.0058	0.0058			
Max. Deviation (ppm)	1.00	1.08	1.12	1.12			
Result	Result Complies						

Temperature	Measurement Frequency (MHz)						
(%C)	5200 MHz						
(°C)	0 Minute	2 Minute	5 Minute	10 Minute			
-30	5200.0102	5200.0102	5200.0102	5200.0102			
-20	5200.0093	5200.0095	5200.0097	5200.0099			
-10	5200.0085	5200.0085	5200.0087	5200.0087			
0	5200.0074	5200.0078	5200.0078	5200.0082			
10	5200.0058	5200.0060	5200.0060	5200.0058			
20	5200.0052	5200.0058	5200.0060	5200.0060			
30	5200.0023	5200.0031	5200.0031	5200.0027			
40	5199.9981	5199.9985	5199.9987	5199.9989			
50	5199.9876	5199.9882	5199.9886	5199.9886			
Max. Deviation (MHz)	0.0124	0.0118	0.0114	0.0114			
Max. Deviation (ppm)	2.38	2.27	2.19	2.19			
Result	Complies						

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)						
0.0		5785	5 MHz				
(^)	0 Minute	2 Minute	5 Minute	10 Minute			
126.50	5784.9968	5784.9972	5784.9972	5784.9974			
110.00	5785.0052	5785.0056	5785.0058	5785.0058			
93.50	5784.9976	5784.9982	5784.9984	5784.9984			
Max. Deviation (MHz)	0.0052	0.0056	0.0058	0.0058			
Max. Deviation (ppm)	0.90	0.97	1.00	1.00			
Result	Complies						

Temperature	Measurement Frequency (MHz)						
(°C)	5785 MHz						
(°C)	0 Minute	2 Minute	5 Minute	10 Minute			
-30	5785.0098	5785.0098	5785.0098	5785.0098			
-20	5785.0093	5785.0093	5785.0095	5785.0097			
-10	5785.0085	5785.0087	5785.0085	5785.0085			
0	5785.0074	5785.0080	5785.0084	5785.0082			
10	5785.0058	5785.0062	5785.0068	5785.0068			
20	5785.0052	5785.0054	5785.0052	5785.0056			
30	5785.0023	5785.0021	5785.0021	5785.0019			
40	5784.9981	5784.9981	5784.9977	5784.9977			
50	5784.9876	5784.9874	5784.9876	5784.9878			
Max. Deviation (MHz)	0.0124	0.0126	0.0124	0.0122			
Max. Deviation (ppm)	2.14	2.18	2.14	2.11			
Result	Complies						

Mode: 40 MHz / Chain 1

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)						
00		5190) MHz				
(M)	0 Minute	2 Minute	5 Minute	10 Minute			
126.50	5189.9968	5189.9970	5189.9970	5189.9972			
110.00	5190.0052	5190.0052	5190.0054	5190.0056			
93.50	5189.9976	5189.9978	5189.9978	5189.9982			
Max. Deviation (MHz)	0.0052	0.0052	0.0054	0.0056			
Max. Deviation (ppm)	1.00	1.00	1.04	1.08			
Result		Com	plies				

Temperature	Measurement Frequency (MHz)						
(°C)	5190 MHz						
(°C)	0 Minute	2 Minute	5 Minute	10 Minute			
-30	5190.0099	5190.0099	5190.0099	5190.0099			
-20	5190.0093	5190.0095	5190.0095	5190.0097			
-10	5190.0085	5190.0089	5190.0087	5190.0085			
0	5190.0074	5190.0072	5190.0074	5190.0074			
10	5190.0058	5190.0058	5190.0060	5190.0060			
20	5190.0052	5190.0054	5190.0052	5190.0054			
30	5190.0023	5190.0021	5190.0019	5190.0017			
40	5189.9981	5189.9983	5189.9983	5189.9985			
50	5189.9876	5189.9874	5189.9876	5189.9874			
Max. Deviation (MHz)	0.0124	0.0126	0.0124	0.0126			
Max. Deviation (ppm)	2.39	2.43	2.39	2.43			
Result	Complies						

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)						
0.0		5755	5 MHz				
(^)	0 Minute	2 Minute	5 Minute	10 Minute			
126.50	5754.9968	5754.9968	5754.9966	5754.9968			
110.00	5755.0052	5755.0056	5755.0056	5755.0058			
93.50	5754.9976	5754.9978	5754.9980	5754.9976			
Max. Deviation (MHz)	0.0052	0.0056	0.0056	0.0058			
Max. Deviation (ppm)	0.90	0.97	0.97	1.01			
Result	Complies						

Temperature	Measurement Frequency (MHz)						
(%)	5755 MHz						
(°C)	0 Minute	2 Minute	5 Minute	10 Minute			
-30	5755.0098	5755.0098	5755.0098	5755.0098			
-20	5755.0093	5755.0093	5755.0097	5755.0097			
-10	5755.0085	5755.0087	5755.0089	5755.0087			
0	5755.0074	5755.0072	5755.0070	5755.0072			
10	5755.0058	5755.0062	5755.0062	5755.0066			
20	5755.0052	5755.0058	5755.0054	5755.0054			
30	5755.0023	5755.0019	5755.0017	5755.0015			
40	5754.9981	5754.9985	5754.9987	5754.9993			
50	5754.9876	5754.9874	5754.9874	5754.9876			
Max. Deviation (MHz)	0.0124	0.0126	0.0126	0.0124			
Max. Deviation (ppm)	2.15	2.19	2.19	2.15			
Result	Complies						

4.9. Antenna Requirements

4.9.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.9.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100377	9kHz ~ 2.75GHz	Sep. 01,2010	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Oct. 28,2011	Conduction (CO01-CB)
V- LISN	Schwarzbeck	NSLK 8127	8127-478	$9k\sim 30MHz$	Nov. 16, 2010	Conduction (CO01-CB)
Capacitive Voltage Probe	SCHAFFNER	CVP2200A	18697	$150k \sim 30MHz$	Sep. 28, 2010	Conduction (CO01-CB)
RF Current Probe	SOLAR.	ESH2-Z1	041039	9k \sim 30MHz	Sep. 28, 2010	Conduction (CO01-CB)
PULSE LIMITER	R&S	ESH3-Z2	100430	9k~30MHz	Jan. 04, 2011	Conduction (CO01-CB)
COND Cable		Cable		0.15MHz~30MHz	Dec.04, 2010	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Oct. 17, 2010	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Oct. 28, 2014	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Aug. 22, 2014	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	$0.1 \text{MHz} \sim 1.3 \text{GHz}$	Nov. 17, 2010	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 12, 2015	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	$26 ext{GHz} \sim 40 ext{GHz}$	Nov. 25, 2014	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP	100304	9kHz \sim 40GHz	Nov. 22, 2010	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz \sim 40GHz	Nov. 06, 2014	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9KHz ~ 2.75GHz	Mar. 22, 2011	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Sep. 09, 2010*	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N/A	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N/A	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2010	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-1	N/A	1 GHz ~ 40 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-2	N/A	1 GHz ~ 40 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100979	9kHz~40GHz	Dec. 12, 2014	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-7	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-8	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-9	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-6	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
Power Sensor	Agilent	U2021XA	MY53410001	50MHz~18GHz	Nov. 03, 2014	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

* Calibration Interval of instruments listed above is two years.

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark	
Conducted Emission (150kHz \sim 30MHz)	2.4 dB	Confidence levels of 95%	
Radiated Emission (30MHz \sim 1,000MHz)	3.6 dB	Confidence levels of 95%	
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%	
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%	
Conducted Emission	1.7 dB	Confidence levels of 95%	