SAR Evaluation Report for FCC OET Bulletin 65 Supplement C

Report No.: 09-03-MAS-153-02

Client:	Netgear Inc.	
Product:	RangeMax Dual Band Wireless-N	N USB Adapter
Model:	WNDA3100v2	
FCC ID:	PY308300091	
Manufacturer/supplier:	Netgear Inc	
Date test item received:	2009/03/20	
Date test campaign completed	1: 2009/06/02	
Date of issue:	2009/06/02	
Test Result:	Compliance	□ Not Compliance

Statement of Compliance:

The SAR values measured for the test sample are below the maximum recommended level of 1.6 W/kg averaged over any 1g tissue according to FCC OET Bulletin 65 Supplement C (Edition 01-01).

The test result only corresponds to the tested sample. It is not permitted to copy this report, in part or in full, without the permission of the test laboratory.

Total number of pages of this test report: 65 pages

Test Engineer	Checked by	Approved by
Erie Lin	Joe Hich	Arson Chou
Eric Lin	Joe Hsieh	Anson Chou

The testing described in this report has been carried out to the best of our knowledge and ability, and our responsibility is limited to the exercise of reasonable care. This certification is not intended to believe the sellers from their legal and/or contractual obligations.

Applicant Information

Client	:	Netgear Inc.
Address	:	350 East Plumeria Drive, San Jose, CA 95134, USA
Manufacturer	:	Netgear Inc.
Address	:	350 East Plumeria Drive, San Jose, CA 95134, USA
EUT	:	RangeMax Dual Band Wireless-N USB Adapter
Trade name		Netgear
Model No.	:	WNDA3100v2
Standard Applied	:	FCC OET 65 Supplement C (Edition 01-01, June 2001) IEEE Standard 1528-2003
Laboratory	:	CERPASS TECHNOLOGY CORP. 4F-2, No. 28, Lane 78, Xing-Ai Rd. Nei-hu, Taipei City 114 Taiwan, R.O.C.
Test Location	:	No.8, Lane 29, Wenming RD., LeShan Tsuen, GuiShan Shiang, Taoyuan County 33383, Taiwan, R.O.C.
Test Result	:	Maximum SAR Measurement 802.11a: 1.19 W/kg(1g) 802.11an HT20: 1.07 W/kg(1g) 802.11an HT40: 0.257 W/kg(1g) 802.11b: 0.858 W/kg(1g) 802.11g: 0.123 W/kg(1g) 802.11gn HT20: 0.060 W/kg(1g) 802.11gn HT40: 0.066 W/kg(1g)

The RangeMax Dual Band Wireless-N USB Adapter is in compliance with the FCC Report and Order 93-326 and Health Canada Safety Code 6, and the tests were performed according to the FCC OET65c for uncontrolled exposure.

Table of Contents

Execu	UTIVE SUMMARY	,)
1 G	GENERAL INFORMATION)
1.1	Description of Equipment Under Test	;
1.2	Photograph of EUT	;)
1.3	Characteristics of Device	/
1.4	Description of support units	,
1.5	Environment Conditions	,
1.6	FCC Requirements for SAR Compliance Testing	;
1.6.1	RF Exposure Limits	;
1.7	The SAR Measurement Procudure)
1.7.1	General Requirements)
1.7.2	2 Phantom Requirements)
1.7.3	3 Test Positions)
1.7.4	4 Test Procedures)
2 D	DESCRIPTION OF THE TEST EQUIPMENT10)
2.1	Test Equipment List)
2.2	DASY4 Measurement System Diagram11	
2.3	DASY4 Measurement Server	
2.4	DAE (Data Acquisition Electronics)	;
2.5	Phantom15	i
2.6	Device Holder	
2.7	Specifications of Probes	;
2.8	SAR Measurement Procedures in DASY4	'
2.9	Simulating Liquids 1	
2.10	System Performance Check	
2.10	.1 Purpose	
2.10	.2 System Performance Check Procedure	2
2.10	.3 System Performance Check Setup	;
2.10	.4 Result of System Performance Check: Valid Result	
3 R	esults2	
3.1	Summary of Test Results	ļ
3.2	Description for EUT testing position2	

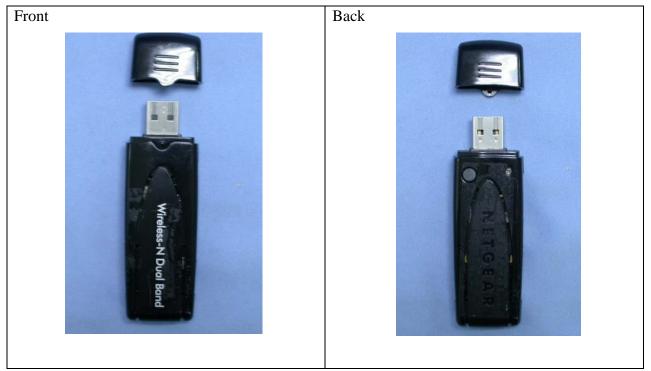
7	ANNEX:TEST RESULTS OF DASY4 (REFER TO ANNEX)	17
6 1	REFERENCES	17
5.2	Measurement Uncertainty II (According to IEC 62209)	16
5.1	Measurement Uncertainty I (According to IEEE 1528)	15
5 I	Measurement Uncertainty	15
4.5	Spatial Peak SAR Evaluation	14
4.4	Data Evaluation	
4.3	Data Storage	11
4.2	SAR Averaging Methods	
4.1	Scan Procedure	11
4	THE DESCRIPTION OF TEST PROCEDURE FOR FCC	11
3.7	.4 USB Orientation D of EUT Position	
3.7	.3 USB Orientation C of EUT Position	
3.7	.2 USB Orientation B of EUT Position	9
3.7	.1 USB Orientation A of EUT Position	9
3.7	Measurement Position	9
3.6	Increments distance check	7
3.5	Double check the other mode result	6
3.4	Check the position for worst result	
3.3	Check the conducted output power of worst mode	2

Executive Summary

The RangeMax Dual Band Wireless-N USB Adapter is a usb dongle from Netgear Inc. products operating in the 2.4GHz and 5GHz frequency ranges. This device contains wireless functions that are -operational in IEEE 802.11a/an HT20/an HT40, 802.11b and 802.11g/gn HT20/gn HT40 modes. The measurements was conducted by CERPASS and carried out with the dosimetric assessment system – DASY4.

The measurements were conducted according to FCC OET 65 Supplement C [Reference 5] for evaluating compliance with requirements of FCC Report and Order 96-326 [Reference 3].

The frequency range of the device: 2.4GHz: 2400 ~ 2483.5MHz 5.0GHz: 5150 ~ 5250MHz & 5725 ~ 5850MHz



1 General Information

1.1 Description of Equipment Under Test

EUT Type	RangeMax Dual Band Wireless-N USB Adapter
Trade Name	EchoStar
Model Name	WNDA3100v2
Hardware version	N/A
Software version	N/A
Tx Frequency	2400 ~ 2483.5 MHz;5150 ~ 5250MHz & 5725 ~ 5850MHz
Rx Frequency	2400 ~ 2483.5 MHz ; 5150 ~ 5250MHz & 5725 ~ 5850MHz
Antenna Type	Internal Type
Device Category	Portable Part
RF Exposure Environment	General Population / Uncontrolled
Crest Factor	1

1.2 Photograph of EUT

1.3 Characteristics of Device

The EUT is a 2.4 GHz and 5GHz RangeMax Dual Band Wireless-N USB Adapter. It conforms to the IEEE 802.11a/b/g/n protocal and operates in the unlicensed ISM and UNII Band of 2.4 GHz and 5GHz.

RF chain	2T2R			
Frequency Range	IEEE 802.11b/g/n: 2412MHz~2462MHz			
	IEEE 802.11a/n: 5180MHz~5240MHz, 5260 MHz~5320 MHz ,			
	5500 MHz~5700 MHz 5745 MHz~5825 MHz			
Channel Spacing	5MHz			

1.4 Description of support units

The SAR evaluation was performed on the following hosts:

Host #	Description	Manufacturer	Model	Overall Dimension
1	Laptop Computer	HP	NX6320	32.8cm x 26.7cm x 3.1cm
2	Laptop Computer	ACER	TravelMate 550	31.5cm x 27.5cm x 4.3cm

Laptop computers are not available for testing the Horizontal-UP of the EUT and the remaining Vertical-Front orientation, a short and high quality USB connector cable is used for testing these other orientations.

Cable #	Description	Manufacturer	Туре	Length
1	USB cable	N/A	Female to male	25cm

Item	Target	Measured
Ambient Temperature (°C)	18 ~ 25	22 ± 1
Temperature of Simulant (°C)	20 ~ 24	22 ± 1
Relative Humidity (% RH)	30 ~ 70	60 ~ 70

1.5 Environment Conditions

1.6 FCC Requirements for SAR Compliance Testing

According to the FCC order "Guidelines for Evaluating the Environmental Effects of RF Radiation", for consumer products, the SAR limit is **1.6** W/kg for an uncontrolled environment and **8.0** W/kg for an occupational/controlled environment. Pursuant to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on June 29, 2001 by FCC, the equipment under test should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for intended or normal operation, incorporating normal antenna operating positions, equipment undet test peak performance frequencies and positions for maximum RF power coupling.

1.6.1 RF Exposure Limits

	Whole-Body	Partial-Body	Arms and Legs
Population/Uncontrolled Environments (W/kg)	0.08	1.6	4.0
Occupational/Controlled Environments (W/kg)	0.4	8.0	20.0

Notes:

- 1. Population/Uncontrolled Environments: Locations where there is the exposure of individuals who have no sense or control of their exposure.
- 2. Occupational/Controlled Environments: Locations where there is exposure that may be incurred by people who have knowledge of the potential for exposure.
- 3. Whole-Body: SAR is averaged over the entire body.
- 4. Partial-Body: SAR is averaged over any 1g of tissue volume as defined in specification.
- 5. Arms and Legs: SAR is averaged over 10g of tissue volume as defined in specification.

1.7 The SAR Measurement Procudure

1.7.1 General Requirements

The test should be performance in a laboratory without influence on SAR measurements by ambient RF sources and any reflection from the environment inside. The ambient temperature should be kept in the range of 18°C to 25°C with a maximum variation within \pm 2°C during the test.

1.7.2 Phantom Requirements

The phantoms used in test are simplified representations of the human head and body as a specific shaped container for the head or body simulating liquids. The physical characteristics of the phantom models should resemble the head and the body of a mobile user sice the shape is a dominant parameter for exposure. The shell of the phantom should be made of low loss and low permittivity material and the thickness tolerance should be less than 0.2 mm. In addition, the phantoms should provide simulations of both right and left hand operations.

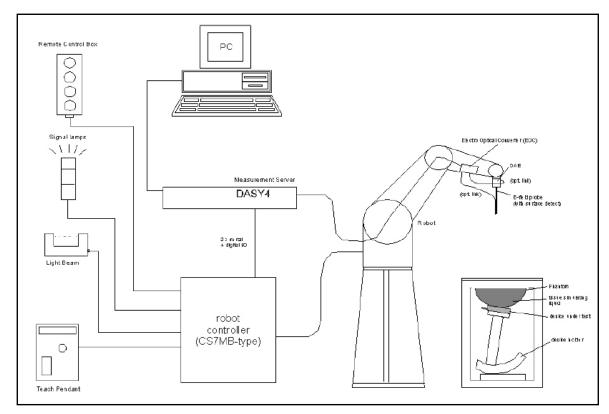
1.7.3 Test Positions

- 1. The horizontal-down and horizontal-up of EUT contact to the flat phantom. (Test with Notebook Model: HP NX6320) The transmitted antenna of the EUT located under the reference point of the flat phantom. The separation distance is 5mm between the top of the EUT and the bottom of the flat phantom. The area scan size is 41 x 61 points.
- 2. The vertical-back and vertical-front of EUT contact to the flat phantom. (Test with Notebook Model: ACER TravelMate550) The transmitted antenna of the EUT located under the reference point of the flat phantom. The separation distance is 5mm between the top of the EUT and the bottom of the flat phantom. The area scan size is 31 x 61 points.

1.7.4 Test Procedures

The EUT (WIRELESS USB DONGLE) plugged into the notebook. Use the software to control the EUT channel and transmission power. Then record the conducted power before the testing. Place the EUT to the specific test location. After the testing, must writing down the conducted power of the EUT into the report. The SAR value was calculated via the 3D spline interpolation algorithm that has been implemented in the software of DASY4 SAR measurement system manufactured and calibrated by SPEAG.

2 Description of the Test Equipment


The measurements were performed using an automated near-field scanning system, DASY4 software, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements on the test device was the 'worstcase extrapolation' algorithm.

2.1 Test Equipment List

Equipment	Manufacturer	Туре	S/N	Calibration Expiry
Robot	Staubli	RX90B L	F03/5W16A1/A/01	(not necessary)
Robot Controller	Staubli	CS7MB	F03/5W16A1/C/01	(not necessary)
Teach Pendant	Staubli		D221340061	(not necessary)
DAE4	Schmid & Partner Engineering AG		629	2009-09-22
E-field Probe	Schmid & Partner Engineering AG	EX3DV4	3555	2009-09-18
Dipole Validation Kit	Schmid & Partner Engineering AG	D2450V2	764	2009-09-23
Dipole Validation Kit	Schmid & Partner Engineering AG	D5GHzV2	1030	2009-09-18
Digital Thermometer	DER EE	K-TYPE	DE-3003	2010-01-12
Directional Coupler	Amplifier Research	DC7420	310569	2009-08-13
DASY4 Software	Schmid & Partner Engineering AG		Version 4.6B23	To automatically control the robot and perform the SAR measurement
SEMCAD Software	Schmid & Partner Engineering AG		Version 1.8B160	Post-processing and report management
Signal Generator	Agilent	83640B	3844A01143	2009-09-18
Amplifier	Mini-Circuits	ZHL-42W	D111704-01-02	2010-01-12
Power Meter	BOONTON	4532-0102	136601	2010-05-13
Power Sensor	BOONTON	51011- EMC	32861	2010-05-13
Power Sensor	BOONTON	56518	3233	2010-05-13
S-Parameter Network Analyzer	Agilent	8753ES	MY40001340	2009-12-01
Calibration Kit	Agilent	85033C	2920A03287	(not necessary)
Dielectric Probe Kit	Agilent	85070E	MY44300101	(not necessary)

Cerpass Technology Corp.

2.2 DASY4 Measurement System Diagram

Fig. 1 The DASY4 Measurement System

Fig. 2 The DASY4 System Photo

The DASY4 system consists of the following items:

- A fixed-on-ground high precision 6-axis robot with controller and software and an arm extension for moving the Data Acquisition Electronics (DAE) and Probe.
- A dosimetric probe, an isotropic E-field probe optimized and calibrated for usage in head or body tissue simulating liquids. Some of the probes are equipped with an optical surface detector system.
- A Data Acquisition Electronic (DAE) performing the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. DAE is powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to Electro-Optical Coupler (EOC).
- The EOC performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server performing all real-time data evaluation for field measurements and surface detection, controling robot movements and handling safety operation. A computer with operating Windows 2000 is used for server.
- DASY4 software and SEMCAD data evaluation software are installed in PC.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed well according to the given recipes.
- System validation dipoles is used to validate the proper functioning of the system

2.3 DASY4 Measurement Server

Fig. 3 DASY4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power pentium, 32MB chipdisk and 64MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server.

2.4 DAE (Data Acquisition Electronics)

Fig. 4 DAE Photo

Some probes are equipped with an optical multifiber line, ending at the front of the probe tip. This line is connected to the EOC box on the robot arm and provides automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. If the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases during the approach, reaches a maximum and then decreases. If the probe perpendicularly touches the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped upon reaching the maximum.

The optical surface detection works in transparent liquids and on di_use reflecting surfaces with a repeatability of better than ± 0.1 mm. The distance of the maximum depends on the fiber and the surrounding media. It is typically 1.0mm to 2.0mm in tissue simulating mixtures. The distance can be measured with the surface check job (described in the reference guide).

2.5 Phantom

The phantom used for all tests i.e. for both system performance checking and device testing, was the twinheaded "SAM Twin Phantom V4.0", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

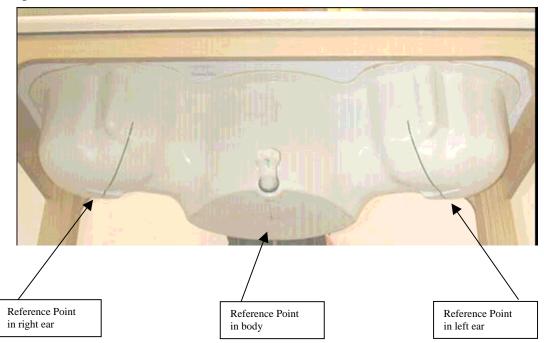


Fig. 5 SAM Twin Phantom and the definition points

2.6 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integrated part of the Dasy system.

Fig. 6 Device holder supplied by SPEAG

2.7 Specifications of Probes

The E-Field Probes ET3DV6 or EX3DV4, manufactured and calibrated annually by Schmid & Partner Engineering AG with following specification are used for the dosimetric measurements. **ET3DV6:**

- Dynamic range: $5 \mu W/g \sim 100 \text{ mW/g}$
- Tip diameter: 6.8 mm
- Probe linearity: $\pm 0.2 \text{ dB}$ (30MHz to 3 GHz)
- Axial isotropy: $\pm 0.2 \text{ dB}$
- Spherical isotropy: $\pm 0.4 \text{ dB}$
- Distance from probe tip to dipole centers: 2.7 mm
- Calibration range: 900MHz/1750MHz/1900MHz/ /2450MHz for head and body simulating liquids.

EX3DV4:

- Dynamic range: $10 \,\mu \,\text{W/g} \sim 100 \,\text{mW/g}$
- Tip diameter: 2.5 mm
- Probe linearity: $\pm 0.2 \text{ dB}$ (30MHz to 3 GHz)
- Axial isotropy: $\pm 0.2 \text{ dB}$
- Spherical isotropy: $\pm 0.4 \text{ dB}$
- Distance from probe tip to dipole centers: 1.0 mm
- Calibration range: 900MHz/1810MHz for head simulating liquid and

2.8 SAR Measurement Procedures in DASY4

Step 1 Setup a Call Connection

Establish a call in handset at the maximum power level with a base station simulator via air interface.

Step 2 Power Reference Measurement

To measure the local E-field value at a fixed location which value will be taken as a reference value for calculating a possible power drift.

Step 3 Area Scan

To measure the SAR distribution with a grid with spacing of 15 mm x 15 mm and kept with a constant distance to the inner surface of the phantom. Additional all peaks within 3 dB of the maximum SAR are searched.

Step 4 Zoom Scan

At these points (maximum number of SAR peaks is two), a cube of 32 mm x 32 mm x 30 mm is applied to and measured with $5 \times 5 \times 7$ points. With these measured data, a peak spatial-average SAR value can be calculated by SEMCAD software.

Step 5 Power Drift Measurement

Repetition of the E-field measurement at the fixed location mentioned in Step 1 to make sure the two results differ by less than ± 0.2 dB.

2.9 Simulating Liquids

Liquid Recipes for this test report are as following:

BSL 2450MHz band (Body)

Ingredient	% by weight
Water	68.12
DGBE	31.72
Salt	0.16

BSL 5GHz band (Body)

Ingredient	% by weight
Water	72
Mineral Oil	17
Emulsifiers	11

2.10 System Performance Check

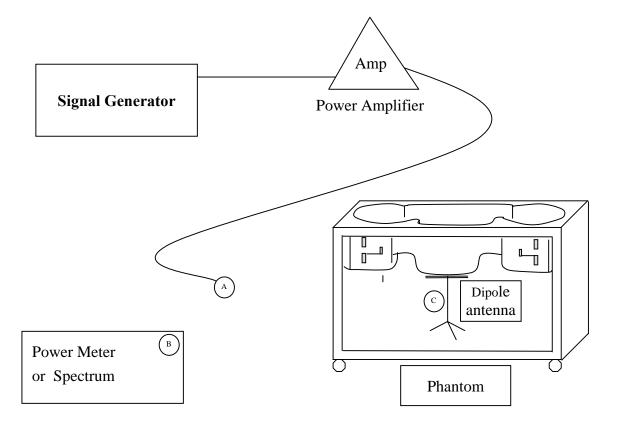
2.10.1 Purpose

- 1. To verify the simulating liquids are valid for testing.
- 2. To verify the performance of testing system is valid for testing.

2.10.2 System Performance Check Procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and the system performance check. They are read-only document files and destined as fully defined but unmeasured masks, so the finished system performance check must be saved under a different name. The system performance check document requires the SAM Twin Phantom, so this phantom must be properly installed in your system. (User defined measurement procedures can be created by opening a new document or editing an existing document file). Before you start the system performance check, you need only to tell the system with which components (probe, medium, and device) you are performing the system performance check; the system will take care of all parameters.

• The Power Reference Measurement and Power Drift Measurement jobs are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the amplifier output power. If it is too high (above ± 0.1 dB), the system performance check should be repeated; some amplifiers have very high drift during warm-up. A stable amplifier gives drift results in the DASY system below ± 0.02 dB.


• The Surface Check job tests the optical surface detection system of the DASY system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). In that case it is better to abort the system performance check and stir the liquid.

• The Area Scan job measures the SAR above the dipole on a plane parallel to the surface. It is used to locate the approximate location of the peak SAR. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field, the peak detection is reliable. Schmid & Partner Engineering AG, DASY4 Manual, February 2005 16-2 System Performance Check Application Notes If a finer graphic is desired, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result.

• The Zoom Scan job measures the field in a volume around the peak SAR value assessed in the previous Area Scan job (for more information see the application note on SAR evaluation). If the system performance check gives reasonable results, the SAR peak, 1 g and 10 g spatial average SAR values normalized to 1W dipole input power give reference data for comparisons. The next sections analyze the expected uncertainties of these values, as well as additional checks for further information or troubleshooting.

2.10.3 System Performance Check Setup

Note :

- 1. A connected to B is used to make sure whether the input power is 250mW for target frequency..
- 2. A connected to C is used to input the measured power to dipole antenna

2.10.4 Result of System Performance Check: Valid Result

2450MHz band - Diepole Antenna: D2450V2 (S/N: 764)

Date of Measurement	SAR@1g	Dielectric Parameters		Temperature
And Reference Value	[W/kg]	Er	σ [S/m]	[°C]
Body 2450MHz Recommended Value	12.7 ±10% [11.43 ~ 13.97]	52.7 ±10% [47.43 ~ 57.97]	1.95 ± 5% [1.8525 ~ 2.0475]	22.0 ± 2 [20 ~ 24]
2009-04-08	13.7	50.8	1.98	22.0
2009-04-28	13.9	50.8	1.98	21.0

5GHz band - Diepole Antenna: D5GHzV2 (S/N: 1030)

Date of Measurement	SAR@1g	Dielectric Parameters		Temperature
And Reference Value	[W/kg]	εr	σ [S/m]	[°C]
Body 5200MHz Recommended Value	7.47 ±10% [6.723~8.217]	47.6 ±10% [42.8~52.36]	5.43 ± 5% [5.159~5.702]	22.0 ± 2 [20 ~ 24]
2009-04-13	7.42	48.8	5.388	21.5
2009-04-14	7.46	48.8	5.388	21.5
2009-05-23	7.44	48.8	5.388	22.5
2009-05-24	7.63	48.8	5.388	22.3

Date of Measurement	SAR@1g	Dielectric Parameters		Temperature
And Reference Value	[W/kg]	E r	σ [S/m]	[°C]
Body 5500MHz Recommended Value	7.8 ±10% [7.02 ~ 8.58]	46.9 ±10% [42.21~51.59]	5.78 ± 5% [5.491~6.069]	22.0 ± 2 [20 ~ 24]
2009-04-13	7.83	48.24	5.832	21.5
2009-04-14	7.76	48.24	5.832	21.5
2009-05-23	7.66	48.24	5.832	22.5
2009-05-24	7.94	48.24	5.832	22.3

Date of Measurement	SAR@1g	Dielectric Parameters		Temperature
And Reference Value	[W/kg]	E r	σ [S/m]	[°C]
Body 5800MHz Recommended Value	6.87 ±10% [6.183~7.557]	46.1 ±10% [41.49~50.71]	6.2 ± 5% [5.89~6.51]	22.0 ± 2 [20 ~ 24]
2009-04-13	6.65	47.49	6.264	21.5
2009-04-14	6.62	47.49	6.264	21.5
2009-05-23	6.98	47.49	6.264	22.5
2009-05-24	7.03	47.49	6.264	22.3

3 Results

3.1 Summary of Test Results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.	
The deviations as specified in this chapter were ascertained in the course of the tests Performed.	

3.2 Description for EUT testing position

EUT position	Horizontal-Down	Horizontal-Up	Vertical-Back	Vertical-Front
Description	Orientation A	Orientation B	Orientation C	Orientation D

3.3 Check the conducted output power of worst mode

3.3.1 2.4GHz Band

802.11b

Frequency \ Power(dBm)	Ant0	Ant1
2412MHz	13.57	13.51
2437MHz	13.58	13.71
2462MHz	13.84	13.47

802.11g

Frequency \ Power(dBm)	Ant0	Ant1
2412MHz	12.98	13.26
2437MHz	13.04	12.36
2462MHz	13.12	12.38

802.11gn HT20

Frequency \ Power(dBm)	Ant0	Ant1	Total
2412MHz	10.05	10.03	13.05
2437MHz	9.32	9.33	12.36
2462MHz	9.80	9.86	12.84

802.11gn HT40

Frequency \ Power(dBm)	Ant0	Ant1	Total
2422MHz	10.27	10.22	13.26
2437MHz	9.88	9.84	12.87
2452MHz	10.16	10.11	13.15

3.3.2 5GHz Band

802.11a

Frequency \ Power(dBm)	Ant0	Ant1
5180MHz	15.62	13.32
5200MHz	15.63	14.28
5220MHz	15.83	14.82
5240MHz	15.75	14.52
5745MHz	15.18	15.24
5765MHz	14.57	13.15
5785MHz	14.96	16.08
5805MHz	14.03	15.13
5825MHz	13.65	15.08

802.11an HT20

Frequency \ Power(dBm)	Ant0	Ant1	Total
5180MHz	15.03	15.42	18.24
5200MHz	15.84	16.31	19.09
5220MHz	15.91	16.24	19.09
5240MHz	15.64	16.11	18.89
5745MHz	15.13	15.63	18.40
5765MHz	15.02	15.68	18.37
5785MHz	15.21	15.72	18.48
5805MHz	15.12	15.57	18.36
5825MHz	14.86	15.24	18.06

3.4 Check the position for worst result

3.4.1 2.4GHz Band

Ant 0

Fre	quenc	У	USB orientation		Conducted Power (dBm)			Power Drift	Note
Mode	СН	MHz	orientation	Before	After	Drift	[W/kg]	(dB)	
b	6	2437	А	13.5	13.6	-0.1	0.802	-0.133	
b	6	2437	В	13.6	13.7	-0.1	0.833	-0.200	
b	6	2437	С	13.5	13.6	-0.1	0.500	0.014	
b	6	2437	D	13.5	13.7	0.2	0.222	-0.171	

Ant 1

Fre	quenc	У	USB orientation	Conducted Power (dBm)			SAR@1g [W/kg]	Power Drift	Note
Mode	CH	MHz	orientation	Before	After	Drift	[wv/kg]	(dB)	
b	6	2437	А	13.6	13.5	-0.1	0.684	0.041	
b	6	2437	В	13.5	13.7	0.2	0.434	0.002	
b	6	2437	С	13.6	13.5	-0.1	0.162	0.081	
b	6	2437	D	13.5	13.6	-0.1	0.506	0.058	

Ant 0+1

Fre	Frequency		USB	USB Conducted Power orientation (dBm)				Power Drift	Note
Mode	CH	MHz	orientation	Before	After	Drift	[W/kg]	(dB)	
gn40	6	2437	А	12.8	12.7	-0.1	0.053	0.079	
gn40	6	2437	В	12.9	12.8	-0.1	0.016	0.177	
gn40	6	2437	С	12.9	12.8	-0.1	0.027	0.185	
gn40	6	2437	D	12.8	12.9	0.1	0.026	0.076	

3.4.2 5GHz Band

Ant 0

Fre	quenc	у	USB orientation	Conducted Power (dBm)			SAR@1g	Power Drift	Note
Mode	CH	MHz	orientation	Before	After	Drift	[W/kg]	(dB)	
а	40	5200	А	15.8	15.7	-0.1	0.458	-0.170	
a	40	5200	В	15.7	15.8	0.1	0.386	0.184	
a	40	5200	С	15.8	15.6	-0.2	0.448	0.168	
a	40	5200	D	15.7	15.8	0.1	0.407	0.030	
a	44	5220	А	15.9	16.0	0.1	0.443	-0.130	
a	44	5220	В	15.9	15.8	-0.1	0.394	-0.189	
a	44	5220	С	16.0	15.8	-0.2	0.342	-0.099	
a	44	5220	D	15.9	16.0	0.1	0.157	-0.047	
a	149	5745	А	15.1	15.2	0.1	0.792	0.101	
a	149	5745	В	15.2	15.1	-0.1	0.386	0.193	
a	149	5745	С	15.1	15.2	0.1	1.020	-0.120	
а	149	5745	D	15.1	15.2	0.1	0.191	0.191	

Cerpass Technology Corp.

Tel:886-2-2792-3366 Fax:886-2-2792-1100

а	157	5785	А	15.0	15.1	0.1	0.528	0.167	
а	157	5785	В	15.1	15.2	0.1	0.471	-0.157	
а	157	5785	С	15.0	15.1	0.1	0.392	0.022	
а	157	5785	D	15.0	14.9	-0.1	0.212	-0.038	

Ant 1

0

Fre	quenc	у	USB orientation		ucted Po (dBm)	ower	SAR@1g [W/kg]	Power Drift	Note
Mode	CH	MHz	orientation	Before	After	Drift	[W/Kg]	(dB)	
а	40	5200	А	14.2	14.3	0.1	1.16	0.099	
а	40	5200	В	14.3	14.1	-0.2	1.19	0.166	
а	40	5200	С	14.3	14.2	0.1	0.25	0.125	
а	40	5200	D	14.3	14.2	-0.1	0.832	0.010	
a	44	5220	А	14.8	15.0	0.2	0.607	-0.136	
а	44	5220	В	14.9	15.0	0.1	0.632	-0.187	
а	44	5220	С	14.8	14.9	0.1	0.100	-0.052	
а	44	5220	D	14.8	14.7	-0.1	1.080	0.021	
а	149	5745	А	15.2	15.4	0.2	1.020	-0.001	
а	149	5745	В	15.3	15.2	-0.1	0.462	0.189	
а	149	5745	С	15.2	15.3	0.1	0.239	0.180	
а	149	5745	D	15.2	15.4	0.2	0.844	0.123	
а	157	5785	А	16.0	16.1	0.1	0.665	0.137	
а	157	5785	В	16.1	16.0	-0.1	0.821	0.157	
а	157	5785	С	16.0	16.1	0.1	0.115	0.061	

Cerpass Technology Corp.

Tel:886-2-2792-3366 Fax:886-2-2792-1100

a 157 5785 D	16.0 16.1	0.1 1.150	0.024
--------------	-----------	-----------	-------

Ant 0+1

0

Fre	quenc	у	USB orientation		ucted Po (dBm)	ower	SAR@1g [W/kg]	Power Drift	Note
Mode	CH	MHz	orientation	Before	After	Drift	[W/ Kg]	(dB)	
an20	40	5200	А	19.0	19.1	0.1	0.54	0.112	
an20	40	5200	В	19.1	19.0	-0.1	0.525	-0.191	
an20	40	5200	С	19.0	19.2	0.2	0.779	0.061	
an20	40	5200	D	19.2	19.1	-0.1	0.414	0.179	
an20	44	5220	А	19.1	19.2	0.1	0.735	0.033	
an20	44	5220	В	19.2	19.0	-0.2	0.840	0.055	
an20	44	5220	С	19.2	19.1	-0.1	0.177	0.145	
an20	44	5220	D	19.1	19.0	-0.1	0.717	0.032	
an20	149	5745	А	18.4	18.3	-0.1	0.988	0.123	
an20	149	5745	В	18.4	18.2	-0.2	0.398	0.184	
an20	149	5745	С	18.3	18.4	0.1	1.070	-0.130	
an20	149	5745	D	18.2	18.3	0.1	0.185	0.031	
an40	38	5190	А	13.2	13.1	-0.1	0.212	0.061	
an40	38	5190	В	13.1	13.2	0.1	0.101	0.022	
an40	38	5190	С	13.3	13.2	-0.1	0.157	0.035	

Cerpass Technology Corp.

Issued Date : Jun.. 02, 2009 Page No. : 5 of 28

Tel:886-2-2792-3366 Fax:886-2-2792-1100

an40	38	5190	D	13.1	13.3	0.2	0.144	0.043	
an40	159	5795	А	13.2	13.4	0.2	0.257	0.020	
an40	159	5795	В	13.2	13.3	0.1	0.123	0.069	
an40	159	5795	С	13.3	13.4	0.1	0.194	0.026	
an40	159	5795	D	13.4	13.3	-0.1	0.183	0.037	

3.5 Double check the other mode result

3.5.1 2.4GHz Ban	ıd
------------------	----

Ant 0

Fre	Frequency		USB orientation	Conducted Power (dBm)			SAR@1g [W/kg]	Power Drift	Note
Mode	CH	MHz	orientation	Before	After	Drift	[wv/kg]	(dB)	
g	6	2437	В	13.0	13.1	0.1	0.123	0.046	
b	11	2462	А	13.9	13.8	-0.1	0.679	-0.188	
b	1	2412	А	13.5	13.6	0.1	0.858	0.098	Worse
b	11	2462	В	13.8	13.9	0.1	0.775	-0.064	
b	1	2412	В	13.4	13.6	0.2	0.666	0.002	

Ant 1

Fre	quenc	cy USB orientation		Conducted Power (dBm)			SAR@1g [W/kg]	Power Drift	Note
Mode	СН	MHz	orientation	Before	After	Drift	[w/ĸg]	(dB)	
g	6	2437	А	12.4	12.3	-0.1	0.073	0.053	

Ant 0+1

Frequency USB orientation		Conducted Power (dBm)			SAR@1g [W/kg]	Power Drift	Note		
Mode	СН	MHz	orientation	Before	After	Drift	[w/kg]	(dB)	
gn20	6	2437	А	13.1	13.0	-0.1	0.060	0.093	
gn40	9	2452	А	13.1	13.3	0.2	0.035	0.018	
gn40	3	2422	А	13.0	13.26	0.2	0.066	0.116	

3.6 Increments distance check

Ant 0										
Fre	Frequency		USB orientation	Conducted Power (dBm)		(dBm) SAI		SAR@1g	Power Drift	Note
Mode	СН	MHz	orientation	Before	After	Drift	[W/kg]	(dB)		
b	1	2412	А	13.5	13.7	0.2	0.858	0.098	Worst	
b	1	2412	A (5mm increments)	13.6	13.7	0.1	0.299	-0.056		

The Max Body SAR@2450MHz@1g was 0.858 W/kg, less than limitation of 1.6 W/kg.

3.6.2 5GHz Band

Ant 1

Fre	quenc	у	USB orientation	Conducted Power (dBm)				SAR@1g [W/kg]	Power Drift	Note
Mode	СН	MHz	orientation	Before	After	Drift	[w/kg]	(dB)		
а	40	5200	В	14.3	14.1	-0.2	1.19	0.166	Worst	

Cerpass Technology Corp. Tel:886-2-2792-3366 Fax:886-2-2792-1100

a 40 5200	B (5mm increments)	14.2	14.3	0.1	0.312	0.155	
-----------	--------------------	------	------	-----	-------	-------	--

The Max Body SAR@5GHz@1g was 1.19 W/kg, less than limitation of 1.6 W/kg.

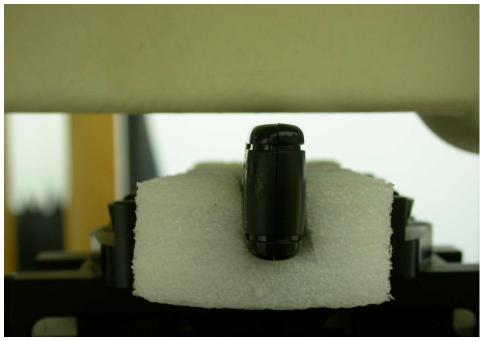
3.7 Measurement Position

3.7.1 USB Orientation A of EUT Position

The horizontal-down of the EUT to the flat phantom distance 5 mm

3.7.2 USB Orientation B of EUT Position

The horizontal-up of the EUT to the flat phantom distance 5 mm


Cerpass Technology Corp. Tel:886-2-2792-3366 Fax:886-2-2792-1100 Issued Date : Jun.. 02, 2009 Page No. : 9 of 32

3.7.3 USB Orientation C of EUT Position

The vertical-back of the EUT to the flat phantom distance 5 mm

3.7.4 USB Orientation D of EUT Position

The vertical-front of the EUT to the flat phantom distance 5 mm

4 The Description of Test Procedure for FCC

4.1 Scan Procedure

First coarse scans were used for determination of the field distribution. Next a cube scan, 5x5x7 points covering a volume of 32x32x30mm was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the coarse scan and again at the end of the cube scan.

4.2 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation. The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Lagre Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the cube scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics. In the cube scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

4.3 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The postprocessing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m] or [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

4.4 Data Evaluation

The DASY4 postprocessing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity - Conversion factor - Diode compression point	$Norm_i, a_{i0}, a_{i1}, a_{i2}$ $ConvF_i$ dcp_i
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with	V_i	= compensated signal of channel i	(i = x, y, z)
	U_i	= input signal of channel i	(i = x, y, z)
	cf	= crest factor of exciting field	(DASY parameter)
	dcp_i	= diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$\begin{split} \mathbf{E} - \text{fieldprobes}: \qquad & E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}} \\ \mathbf{H} - \text{fieldprobes}: \qquad & H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f} \end{split}$$

with	V_i	= compensated signal of channel i	(i = x, y, z)
	$Norm_i$	= sensor sensitivity of channel i	(i = x, y, z)
		$\mu V/(V/m)^2$ for E-field Probes	
	ConvF	= sensitivity enhancement in solution	
	a_{ij}	= sensor sensitivity factors for H-field probes	
	f	= carrier frequency [GHz]	
	E_i	= electric field strength of channel i in V/m	
	H_i	= magnetic field strength of channel i in A/m	

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with	SAR	= local specific absorption rate in mW/g
	E_{tot}	= total field strength in V/m
	σ	= conductivity in [mho/m] or [Siemens/m]
	ρ	= equivalent tissue density in g/cm^3

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

4.5 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1529 standard. It can be conducted for 1 g and 10 g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- boundary correction

- extrapolation
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor o_set. Several measurements at di_erent distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 5x5x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1 g and 10 g cubes.

Boundary effect

For measurements in the immediate vicinity of a phantom surface, the field coupling e_ects between the probe and the boundary influence the probe characteristics. Boundary effect errors of different dosimetric probe types have been analyzed by measurements and using a numerical probe model. As expected, both methods showed an enhanced sensitivity in the immediate vicinity of the boundary. The effect strongly depends on the probe dimensions and disappears with increasing distance from the boundary. The sensitivity can be approximately given as:

$$S \approx S_o + S_b exp(-\frac{z}{a})cos(\pi \frac{z}{\lambda})$$

Since the decay of the boundary e_ect dominates for small probes (a <<_), the cos-term can be omitted. Factors Sb (parameter Alpha in the DASY4 software) and a (parameter Delta in the DASY4 software) are assessed during probe calibration and used for numerical compensation of the boundary effect. Several simulations and measurements have confirmed that the compensation is valid for different field and boundary configurations.

This simple compensation procedure can largely reduce the probe uncertainty near boundaries. It works well as long as:

- the boundary curvature is small
- the probe axis is angled less than 30_ to the boundary normal
- the distance between probe and boundary is larger than 25% of the probe diameter
- the probe is symmetric (all sensors have the same offset from the probe tip)

Since all of these requirements are fulfilled in a DASY4 system, the correction of the probe boundary effect in the vicinity of the phantom surface is performed in a fully automated manner via the measurement data extraction during postprocessing.

Cerpass Technology Corp.

5 Measurement Uncertainty

5.1 Measurement Uncertainty I (According to IEEE 1528)

DASY4 Uncertainty Budget According to IEEE 1528 [2]								
	Uncertainty	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}
Measurement System								
Probe Calibration	±5.9 %	N	1	1	1	$\pm 5.9 \%$	$\pm 5.9\%$	∞
Axial Isotropy	±4.7 %	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9 \%$	$\pm 1.9\%$	∞
Hemispherical Isotropy	$\pm 9.6 \%$	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9 \%$	$\pm 3.9\%$	∞
Boundary Effects	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	$\pm 0.6\%$	∞
Linearity	$\pm 4.7 \%$	R	$\sqrt{3}$	1	1	$\pm 2.7 \%$	$\pm 2.7\%$	∞
System Detection Limits	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	$\pm 0.6 \%$	∞
Readout Electronics	$\pm 0.3 \%$	Ν	1	1	1	$\pm 0.3 \%$	$\pm 0.3\%$	∞
Response Time	$\pm 0.8 \%$	R	$\sqrt{3}$	1	1	$\pm 0.5 \%$	$\pm 0.5 \%$	∞
Integration Time	$\pm 2.6 \%$	R	$\sqrt{3}$	1	1	$\pm 1.5 \%$	$\pm 1.5 \%$	∞
RF Ambient Conditions	$\pm 3.0 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	±1.7%	∞
Probe Positioner	$\pm 0.4 \%$	R	$\sqrt{3}$	1	1	$\pm 0.2 \%$	$\pm 0.2\%$	∞
Probe Positioning	$\pm 2.9 \%$	R	$\sqrt{3}$	1	1	±1.7 %	±1.7%	∞
Max. SAR Eval.	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	$\pm 0.6\%$	∞
Test Sample Related								
Device Positioning	$\pm 2.9 \%$	N	1	1	1	$\pm 2.9 \%$	$\pm 2.9\%$	145
Device Holder	$\pm 3.6 \%$	N	1	1	1	$\pm 3.6 \%$	$\pm 3.6\%$	5
Power Drift	$\pm 5.0 \%$	R	$\sqrt{3}$	1	1	$\pm 2.9 \%$	$\pm 2.9\%$	∞
Phantom and Setup								
Phantom Uncertainty	$\pm 4.0 \%$	R	$\sqrt{3}$	1	1	$\pm 2.3 \%$	$\pm 2.3\%$	∞
Liquid Conductivity (target)	$\pm 5.0 \%$	R	$\sqrt{3}$	0.64	0.43	±1.8 %	$\pm 1.2\%$	∞
Liquid Conductivity (meas.)	$\pm 2.5 \%$	N	1	0.64	0.43	$\pm 1.6~\%$	$\pm 1.1\%$	∞
Liquid Permittivity (target)	$\pm 5.0 \%$	R	$\sqrt{3}$	0.6	0.49	$\pm 1.7 \%$	$\pm 1.4\%$	∞
Liquid Permittivity (meas.)	$\pm 2.5 \%$	Ν	1	0.6	0.49	$\pm 1.5 \%$	$\pm 1.2\%$	∞
Combined Std. Uncertainty						$\pm 10.8 \%$	$\pm 10.6 \%$	330
Expanded STD Uncertainty						$\pm 21.6\%$	$\pm 21.1~\%$	

5.2 Measurement Uncertainty II (According to IEC 62209)

DASY4 Uncertainty Budget According to IEC 62209 [3]								
	Uncertainty	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}
Measurement System								
Probe Calibration	$\pm 5.9\%$	Ν	1	1	1	$\pm 5.9\%$	$\pm 5.9\%$	∞
Axial Isotropy	$\pm 4.7\%$	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9\%$	± 1.9 %	∞
Spherical Isotropy	$\pm 9.6\%$	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9\%$	$\pm 3.9~\%$	∞
Boundary Effects	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	$\pm 0.6~\%$	$\pm 0.6~\%$	∞
Linearity	$\pm 4.7\%$	R	$\sqrt{3}$	1	1	$\pm 2.7 \%$	$\pm 2.7 \%$	∞
Detection Limits	$\pm 1.0\%$	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	$\pm 0.6 \%$	∞
Readout Electronics	$\pm 0.3\%$	Ν	1	1	1	$\pm 0.3 \%$	$\pm 0.3 \%$	∞
Response Time	$\pm 0.8 \%$	R	$\sqrt{3}$	1	1	$\pm 0.5 \%$	$\pm 0.5 \%$	∞
Integration Time	$\pm 2.6\%$	R	$\sqrt{3}$	1	1	$\pm 1.5 \%$	$\pm 1.5 \%$	∞
Perturbation of the Environment	$\pm 3.0\%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞
Probe Positioner Mech. Restr.	$\pm 0.4\%$	R	$\sqrt{3}$	1	1	$\pm 0.2 \%$	$\pm 0.2 \%$	∞
Probe Positioning	$\pm 2.9\%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞
Post-Processing	$\pm 1.0\%$	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	$\pm 0.6 \%$	∞
Test Sample Related								
Test Sample Positioning	$\pm 2.9\%$	Ν	1	1	1	$\pm 2.9\%$	$\pm 2.9,\%$	145
Device Holder Uncertainty	$\pm 3.6 \%$	N	1	1	1	$\pm 3.6 \%$	$\pm 3.6 \%$	5
Drift of Output Power	$\pm 5.0\%$	R	$\sqrt{3}$	1	1	$\pm 2.9 \%$	$\pm 2.9 \%$	∞
Phantom and Setup								
Phantom Uncertainty	$\pm 4.0\%$	R	$\sqrt{3}$	1	1	$\pm 2.3 \%$	$\pm 2.3 \%$	∞
Liquid Conductivity (target)	$\pm 5.0\%$	R	$\sqrt{3}$	0.7	0.5	$\pm 2.0 \%$	$\pm 1.4 \%$	∞
Liquid Conductivity (meas.)	$\pm 4.3\%$	R	$\sqrt{3}$	0.7	0.5	$\pm 1.7,\%$	$\pm 1.2~\%$	∞
Liquid Permittivity (target)	$\pm 5.0\%$	R	$\sqrt{3}$	0.6	0.5	$\pm 1.7 \%$	$\pm 1.4 \%$	∞
Liquid Permittivity (meas.)	$\pm4.3\%$	R	$\sqrt{3}$	0.6	0.5	$\pm 1.5\%$	$\pm 1.2~\%$	∞
Combined Std. Uncertainty						$\pm 10.5\%$	$\pm 10.2\%$	330
Expanded Uncertainty						$\pm 21.0\%$	$\pm 20.5\%$	

6 References

1. [ANSI/IEEE C95.1-1992]

Safety Levels with Respect to Human Exposure to Radio Frrequency Electromagnetic Fields, 3 kHz to 300 GHz. The Institute of Electrical and Electronics Engineers, Inc. (IEEE), 1992.

2. [ANSI/IEEE C95.3-1992]

Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave". The Institute of Electrical and Electronics Engineers, Inc. (IEEE), 1992.

3. [FCC Report and Order 96-326]

Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, 1996.

4. [FCC OET Bulletin 65]

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. OET Bulletin 65 Edition 97-01, August 1997. Federal Communications Commission (FCC), Office of Engineering & Technology. (OET)

5. [FCC OET Bulletin 65 Supplement C]

Additional Information for Evaluating Compliance of Mobile and Portable Device with FCC Limits for Human Exposure to Radiofrequency Emissions. Supplement C (Edition 01-01) to OET Bulletin 65, June 2001. Federal Communications Commission (FCC), Office of Engineering & Technology. (OET)

6. [DASY 4]

Schmid & Partner Engineering AG: DASY 4 Manual, September 2005.

7. [IEEE 1528-2003]

IEEE Std 1528-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wirless Communications Devices: Measurement Techniques. 1528-2003, 19th December, 2003, The Institute of Electrical and Electronics Engineers, Inc. (IEEE).

8. [RSS-102, Issue 2]

Radio Standards Specification 102, Radio Frequency Exposure Compliance of

Radiocommunication Apparatus (All Frequency Bands) sets out the requirements and measurement techniques used to evaluate radio frequency (RF) exposure compliance of radiocommunication apparatus designed to be used within the vicinity of the human body. November, 2005. Industry Canada.

9. [Health Canada Safety Code 6]

Canada's Safety Code 6: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz (99-EHD-237)

7 Annex : Test Results of DASY4 (Refer to ANNEX)

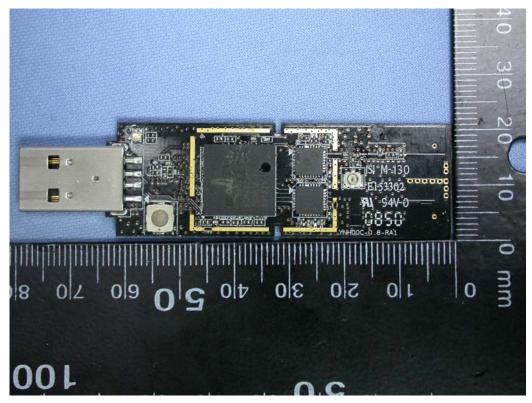
ANNEX Index of Annex

ANNEX A: CONSTRUCTION PHOTOS OF EUT	32
ANNEX B: SAR RESULTS	. 35
ANNEX C: DIPOLE CERTIFICATE	. 48
ANNEX D: PROBE CERTIFICATE	. 57

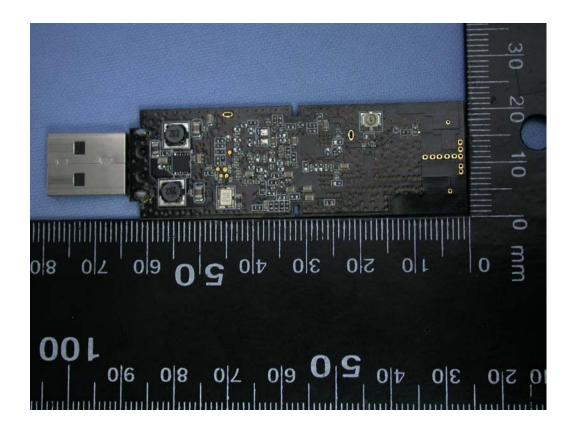
ANNEX A: CONSTRUCTION PHOTOS OF EUT

1. Outside view 1 of EUT

2. Outside view 2 of EUT

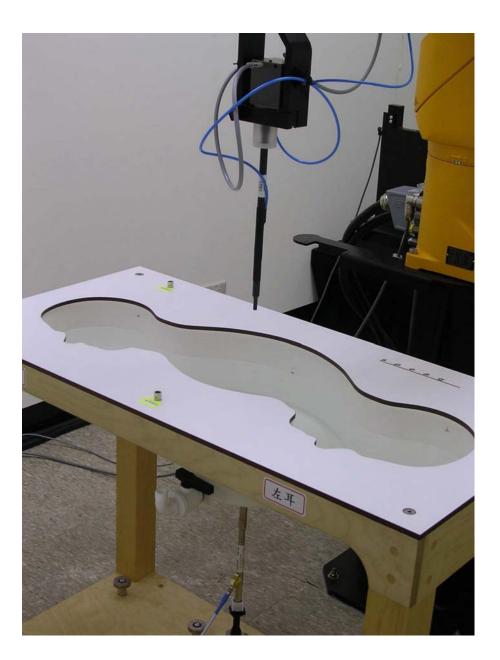


3. Inside View 1 of EUT



4. Front view of PCB

5. Back view of PCB



ANNEX B: SAR RESULTS

System Performance Check

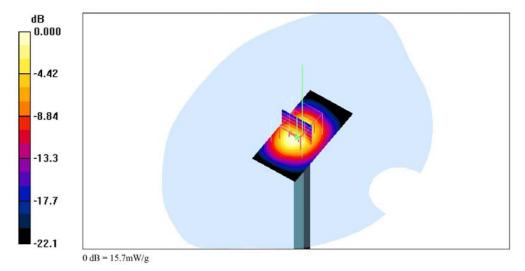
Body

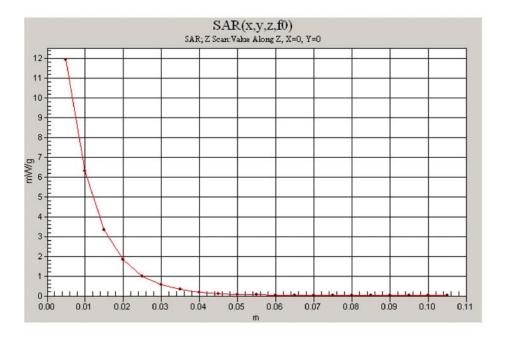
Date/Time: 4/8/2009 9:04:49 AM

Test Laboratory: Electronics Testing Center, Taiwan

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:764

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.98 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³ Air temperature:21 degC; Liquid temperature:22 degC; Phantom section: Flat Section


DASY4 Configuration: - Probe: EX3DV4 - SN3555; ConvF(6.17, 6.17, 6.17); Calibrated: 9/19/2008


- Flobe, EX3DV4 \$185353, Conv(0,17, 0,1

SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 85.3 V/m; Power Drift = -0.028 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.33 mW/g Maximum value of SAR (measured) = 15.7 mW/g

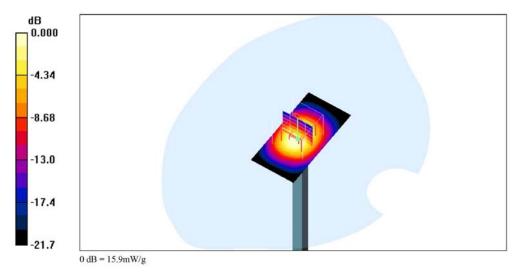
SPC/Area Scan (31x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 17.4 mW/g

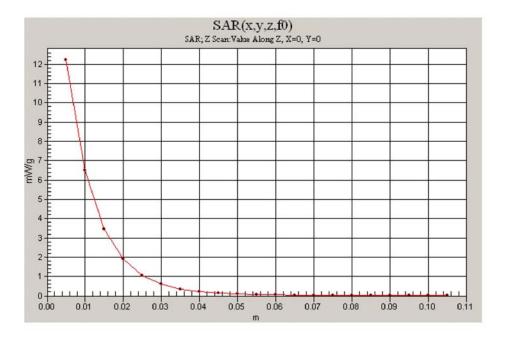
SPC/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 11.9 mW/g

Date/Time: 4/28/2009 9:17:21 AM

Test Laboratory: Electronics Testing Center, Taiwan

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:764


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.98 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³ Air temperature:23 degC; Liquid temperature:21 degC; Phantom section: Flat Section


- DASY4 Configuration: Probe: EX3DV4 SN3555; ConvF(6.17, 6.17, 6.17); Calibrated: 9/19/2008

- Flobe, EX3DV4 \$185353, Convr(0,17, 0,

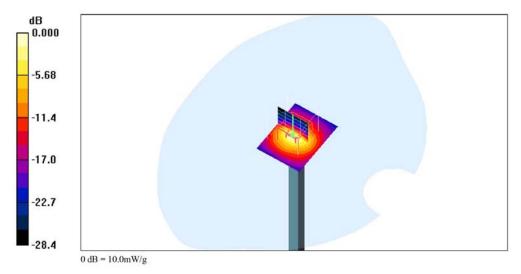
SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 89.0 V/m; Power Drift = -0.052 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.5 mW/g Maximum value of SAR (measured) = 15.9 mW/g

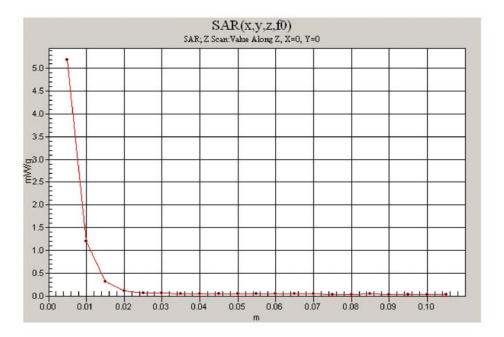
SPC/Area Scan (31x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 18.3 mW/g

Date/Time: 4/13/2009 8:38:14 AM

Test Laboratory: Electronics Testing Center, Taiwan

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1030


Communication System: CW; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.39 mho/m; ϵ_r = 48.8; ρ = 1000 kg/m³ Air temperature:20 degC; Liquid temperature:21.5 degC; Phantom section: Flat Section


- DASY4 Configuration: Probe: EX3DV4 SN3555; ConvF(4.08, 4.08, 4.08); Calibrated: 9/19/2008

- Flobe, EX3DV4 \$185353, Conv(4, 50, 4, 56, 4, 56), Calibrated, 9/19/2008
 Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE4 \$n629; Calibrated: 9/23/2008
 Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
 Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

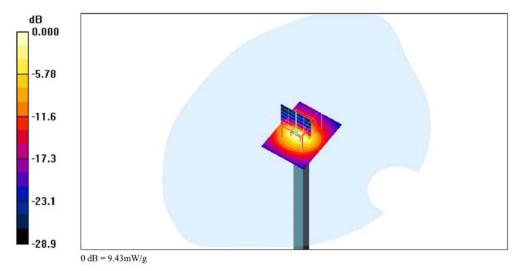
5200MHz-SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 44.8 V/m; Power Drift = -0.077 dB Peak SAR (extrapolated) = 20.4 W/kg SAR(1 g) = 7.42 mW/g; SAR(10 g) = 2.32 mW/g Maximum value of SAR (measured) = 10.0 mW/g

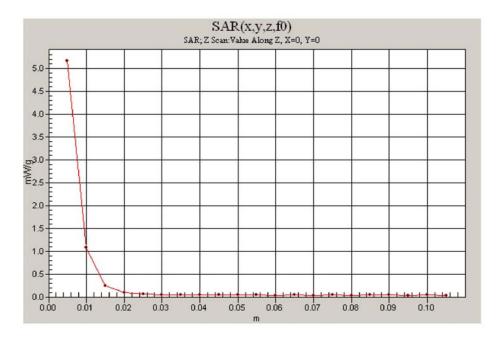
5200MHz-SPC/Area Scan (31x41x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 8.22 mW/g

Date/Time: 4/13/2009 8:48:57 AM

Test Laboratory: Electronics Testing Center, Taiwan

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1030


Communication System: CW; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.83 mho/m; ϵ_r = 48.2; ρ = 1000 kg/m³ Air temperature:20 degC; Liquid temperature:21.5 degC; Phantom section: Flat Section


- DASY4 Configuration: Probe: EX3DV4 SN3555; ConvF(3.86, 3.86, 3.86); Calibrated: 9/19/2008

- Flobe, EX3DV4 SIS353, Conv(5380, 5380, 5380, 5380, 5380, 5380, 5380, 52800, 5280, 5280, 5280, 52800, 5280, 5280, 5280, 5280, 5280, 52

5500MHz-SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 44.4 V/m; Power Drift = -0.064 dB Peak SAR (extrapolated) = 22.3 W/kg SAR(1 g) = 7.83 mW/g; SAR(10 g) = 2.43 mW/g Maximum value of SAR (measured) = 9.43 mW/g

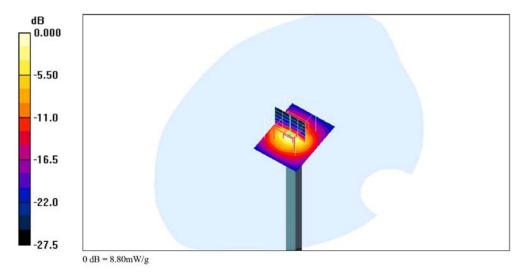
5500MHz-SPC/Area Scan (31x41x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 8.54 mW/g

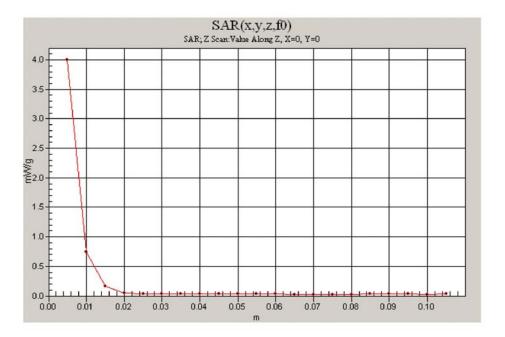
Date/Time: 4/13/2009 9:01:13 AM

Test Laboratory: Electronics Testing Center, Taiwan

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1030

Communication System: CW; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 6.26 mho/m; ϵ_r = 47.5; ρ = 1000 kg/m³ Air temperature:20 degC; Liquid temperature:21.5 degC; Phantom section: Flat Section


DASY4 Configuration: - Probe: EX3DV4 - SN3555; ConvF(3.82, 3.82, 3.82); Calibrated: 9/19/2008


- Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn629; Calibrated: 9/23/2008
Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

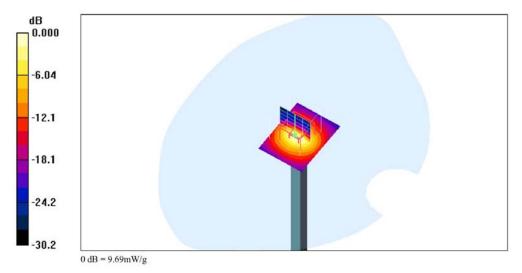
5800MHz-SPC/Area Scan (31x41x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 7.44 mW/g

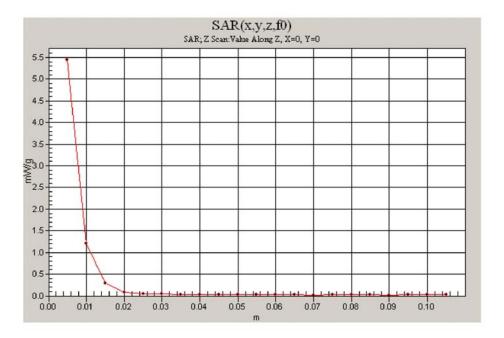
5800MHz-SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 38.8 V/m; Power Driff = -0.024 dBPeak SAR (extrapolated) = 19.9 W/kgSAR(1 g) = 6.65 mW/g; SAR(10 g) = 2.06 mW/gMaximum value of SAR (measured) = 8.80 mW/g

Date/Time: 4/14/2009 8:39:08 AM

Test Laboratory: Electronics Testing Center, Taiwan

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1030


Communication System: CW; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.39 mho/m; ϵ_r = 48.8; ρ = 1000 kg/m³ Air temperature:20 degC; Liquid temperature:21.5 degC; Phantom section: Flat Section


- DASY4 Configuration: Probe: EX3DV4 SN3555; ConvF(4.08, 4.08, 4.08); Calibrated: 9/19/2008

- Flobe, EX3DV4 \$185353, Conv(4, 50, 4, 56, 4, 56), Calibrated, 9/19/2008
 Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE4 \$n629; Calibrated: 9/23/2008
 Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
 Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

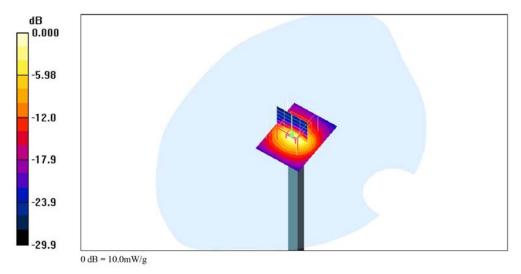
5200MHz-SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 45.6 V/m; Power Drift = -0.001 dB Peak SAR (extrapolated) = 20.4 W/kg SAR(1 g) = 7.46 mW/g; SAR(10 g) = 2.34 mW/g Maximum value of SAR (measured) = 9.69 mW/g

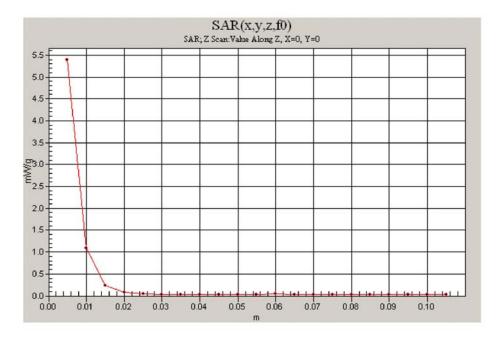
5200MHz-SPC/Area Scan (31x41x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 8.06 mW/g

Date/Time: 4/14/2009 8:49:15 AM

Test Laboratory: Electronics Testing Center, Taiwan

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1030


Communication System: CW; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.83 mho/m; ϵ_r = 48.2; ρ = 1000 kg/m³ Air temperature:20 degC; Liquid temperature:21.5 degC; Phantom section: Flat Section


- DASY4 Configuration: Probe: EX3DV4 SN3555; ConvF(3.86, 3.86, 3.86); Calibrated: 9/19/2008

- Flobe, EX3DV4 SIS353, Conv(5380, 5380, 5380, 5380, 5380, 5380, 5380, 52800, 5280, 5280, 5280, 52800, 5280, 5280, 5280, 5280, 5280, 52

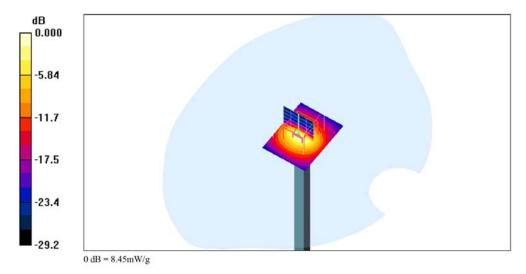
5500MHz-SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 44.8 V/m; Power Drift = -0.008 dB Peak SAR (extrapolated) = 22.1 W/kg SAR(1 g) = 7.76 mW/g; SAR(10 g) = 2.38 mW/g Maximum value of SAR (measured) = 10.0 mW/g

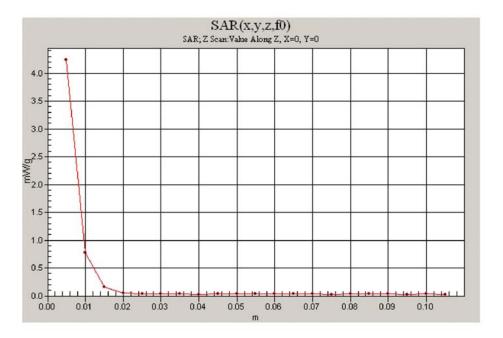
5500MHz-SPC/Area Scan (31x41x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 7.98 mW/g

Date/Time: 4/14/2009 8:57:47 AM

Test Laboratory: Electronics Testing Center, Taiwan

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1030


Communication System: CW; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 6.26 mho/m; ϵ_r = 47.5; ρ = 1000 kg/m³ Air temperature:20 degC; Liquid temperature:21.5 degC; Phantom section: Flat Section


DASY4 Configuration: - Probe: EX3DV4 - SN3555; ConvF(3.82, 3.82, 3.82); Calibrated: 9/19/2008

- Flobe, EX3DV4 SIS353, Conv(5,82, 5.22, 5.22), Calibrated: 9/19/2008
 Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn629; Calibrated: 9/23/2008
 Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
 Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

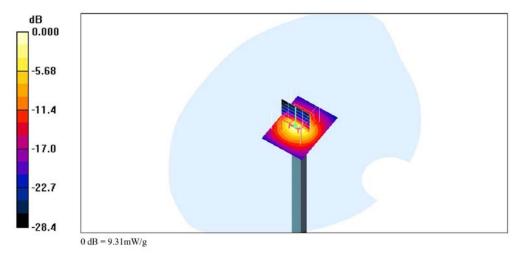
5800MHz-SPC/Area Scan (31x41x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 6.93 mW/g

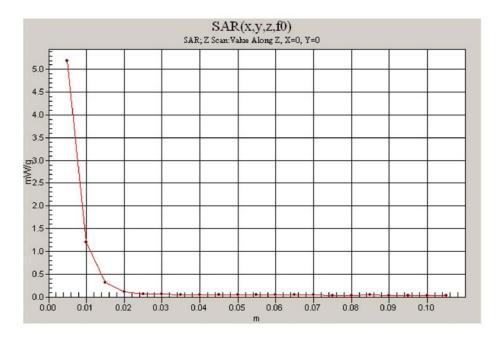
5800MHz-SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 39.6 V/m; Power Driff = -0.018 dBPeak SAR (extrapolated) = 19.6 W/kgSAR(1 g) = 6.62 mW/g; SAR(10 g) = 2.05 mW/gMaximum value of SAR (measured) = 8.45 mW/g

Date/Time: 5/23/2009 8:13:26 AM

Test Laboratory: Electronics Testing Center, Taiwan

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1030


Communication System: CW; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.39 mho/m; ϵ_r = 48.8; ρ = 1000 kg/m³ Air temperature:22 degC; Liquid temperature:22.5 degC; Phantom section: Flat Section


- DASY4 Configuration: Probe: EX3DV4 SN3555; ConvF(4.08, 4.08, 4.08); Calibrated: 9/19/2008

- Flobe, EX3DV4 \$185353, Conv(4, 50, 4, 56, 4, 56), Calibrated, 9/19/2008
 Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE4 \$n629; Calibrated: 9/23/2008
 Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
 Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

5200MHz-SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 45.9V/m; Power Drift = -0.063 dB Peak SAR (extrapolated) = 22.3 W/kg SAR(1 g) = 7.44 mW/g; SAR(10 g) = 2.33mW/g Maximum value of SAR (measured) = 9.31 mW/g

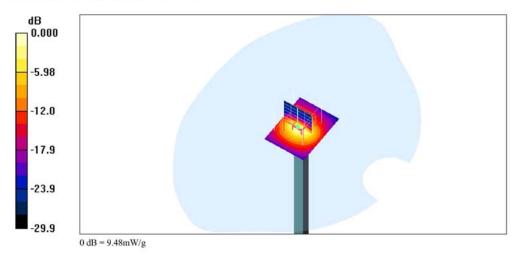
5200MHz-SPC/Area Scan (31x41x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 8.28 mW/g

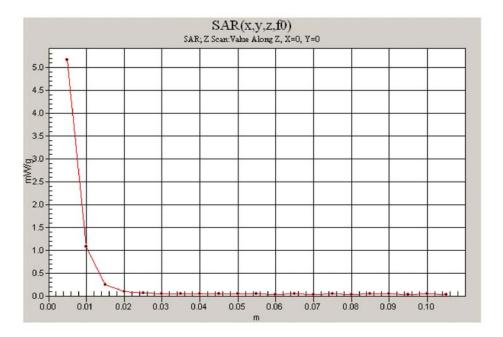
Date/Time: 5/23/2009 8:58:17 AM

Test Laboratory: Electronics Testing Center, Taiwan

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1030 Program Name: Unnamed Program

Communication System: CW; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.83 mho/m; ϵ_r = 48.2; ρ = 1000 kg/m³ Air temperature:22 degC; Liquid temperature:22.5 degC; Phantom section: Flat Section


DASY4 Configuration:


- Probe: EX3DV4 SN3555; ConvF(3.86, 3.86, 3.86); Calibrated: 9/19/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn629; Calibrated: 9/23/2008
 Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
 Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

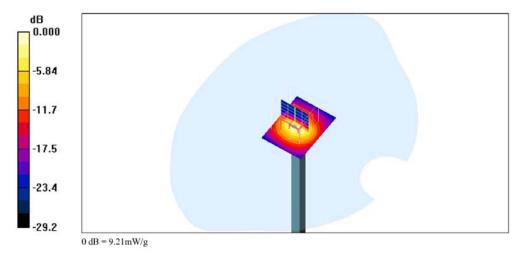
5500MHz-SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 45.3 V/m; Power Drift = -0.016 dB Peak SAR (extrapolated) = 23.5 W/kg SAR(1g) = 7.66 mW/g; SAR(10 g) = 2.14 mW/g Maximum value of SAR (measured) = 9.48 mW/g

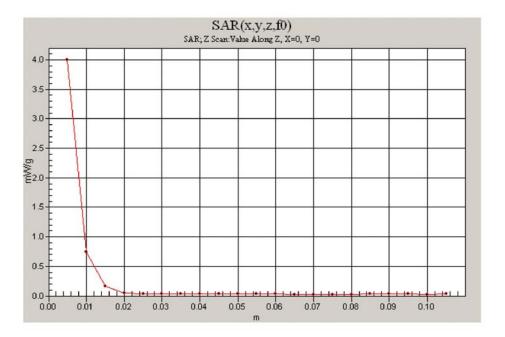
5500MHz-SPC/Area Scan (31x41x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 7.85 mW/g

Date/Time: 5/23/2009 9:03:08 AM

Test Laboratory: Electronics Testing Center, Taiwan

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1030


Communication System: CW; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 6.26 mho/m; ϵ_r = 47.5; ρ = 1000 kg/m³ Air temperature:22 degC; Liquid temperature:22.5 degC; Phantom section: Flat Section


- DASY4 Configuration: Probe: EX3DV4 SN3555; ConvF(3.82, 3.82, 3.82); Calibrated: 9/19/2008

- Flobe, EX3DV4 SIS353, Conv(5,82, 5.22, 5.22), Calibrated: 9/19/2008
 Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn629; Calibrated: 9/23/2008
 Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
 Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

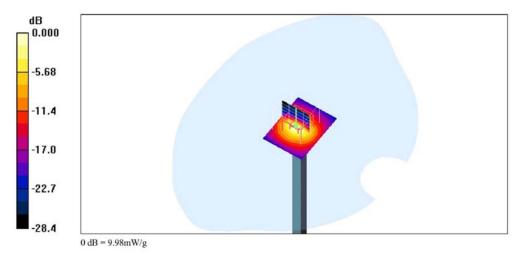
5800MHz-SPC/Area Scan (31x41x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 7.03 mW/g

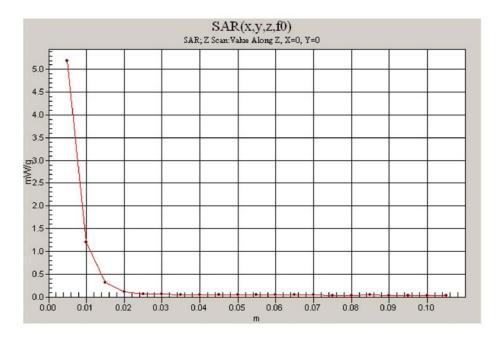
5800MHz-SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 39.6 V/m; Power Drift = 0.036 dBPeak SAR (extrapolated) = 19.6 W/kgSAR(1 g) = 6.98 mW/g; SAR(10 g) = 2.13 mW/gMaximum value of SAR (measured) = 9.21 mW/g

Date/Time: 5/24/2009 8:42:15 AM

Test Laboratory: Electronics Testing Center, Taiwan

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1030


Communication System: CW; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.39 mho/m; ϵ_r = 48.8; ρ = 1000 kg/m³ Air temperature:21 degC; Liquid temperature:22.3 degC; Phantom section: Flat Section


- DASY4 Configuration: Probe: EX3DV4 SN3555; ConvF(4.08, 4.08, 4.08); Calibrated: 9/19/2008

- Flobe, EX3DV4 \$185353, Conv(4, 50, 4, 56, 4, 56), Calibrated, 9(19/2008)
 Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE4 \$n629; Calibrated: 9/23/2008
 Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
 Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

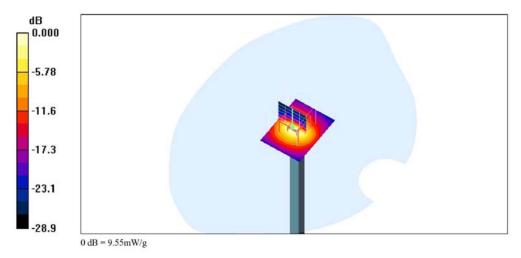
5200MHz-SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 47.8 V/m; Power Drift = -0.089 dB Peak SAR (extrapolated) = 20.4 W/kg SAR(1 g) = 7.63 mW/g; SAR(10 g) = 2.37 mW/g Maximum value of SAR (measured) = 9.98 mW/g

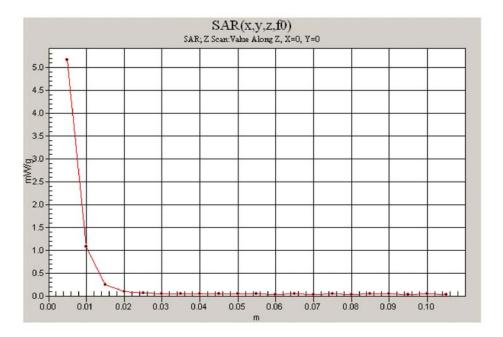
5200MHz-SPC/Area Scan (31x41x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 8.25 mW/g

Date/Time: 5/24/2009 8:58:50 AM

Test Laboratory: Electronics Testing Center, Taiwan

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1030


Communication System: CW; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.83 mho/m; ϵ_r = 48.2; ρ = 1000 kg/m³ Air temperature:21 degC; Liquid temperature:22.3 degC; Phantom section: Flat Section


- DASY4 Configuration: Probe: EX3DV4 SN3555; ConvF(3.86, 3.86, 3.86); Calibrated: 9/19/2008

- Flobe, EX3DV4 SR5353, Conv(5380, 5380, 5380, 5380, 5380, 5380, 5380, 52800, 5280, 5280, 5280, 52800, 5280, 5280, 5280, 5280, 5280, 52

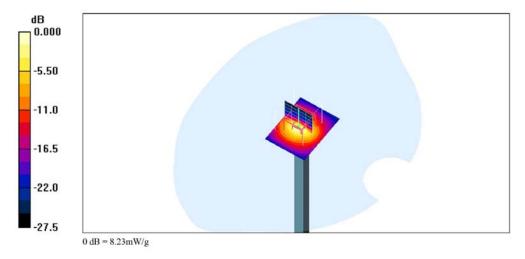
5500MHz-SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 44.4 V/m; Power Drift = -0.021 dB Peak SAR (extrapolated) = 24.1 W/kg SAR(1 g) = 7.94 mW/g; SAR(10 g) = 2.51 mW/g Maximum value of SAR (measured) = 9.55 mW/g

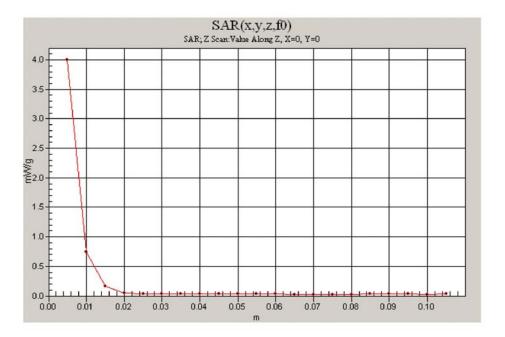
5500MHz-SPC/Area Scan (31x41x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 8.57 mW/g

Date/Time: 5/24/2009 9:08:21 AM

Test Laboratory: Electronics Testing Center, Taiwan

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1030


Communication System: CW; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 6.26 mho/m; ϵ_r = 47.5; ρ = 1000 kg/m³ Air temperature:21 degC; Liquid temperature:22.3 degC; Phantom section: Flat Section


DASY4 Configuration: - Probe: EX3DV4 - SN3555; ConvF(3.82, 3.82, 3.82); Calibrated: 9/19/2008

- Flobe, EX3DV4 SIS353, Conv(5,82, 5.22, 5.22), Calibrated: 9/19/2008
 Sensor-Surface: 4mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn629; Calibrated: 9/23/2008
 Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
 Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

5800MHz-SPC/Area Scan (31x41x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 7.51 mW/g

5800MHz-SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 38.8 V/m; Power Driff = -0.018 dB Peak SAR (extrapolated) = 19.8 W/kg SAR(1 g) = 7.03mW/g; SAR(10 g) = 2.01 mW/g Maximum value of SAR (measured) = 8.23 mW/g

