

Elliott Laboratories Inc. 684 West Maude Avenue 408-245-7800 Phone www.elliottlabs.com Sunnyvale, CA 94085-3518 408-245-3499 Fax

April 28, 2006

Mark Gandler Netgear 4500 Great America Parkway Santa Clara, CA 95054

Subject: FCC and Industry Canada Report, model WN511B

Dear Mr. Gandler:

A report has been created detailing the results of the FCC and IC electromagnetic emissions testing performed on the WN511B. This has been submitted to a TCB to obtain the appropriate equipment certifications. Please find this report enclosed.

This application has been granted by the FCC and Industry Canada. Attached you will find the grants.

If you have any questions, please don't hesitate to call us at 408-245-7800.

Sincerely,

Juan man-

Juan Martinez Senior EMC Engineer

JM/dmg Enclosure: Copy of Application Package

Elliott Laboratories Inc. 684 West Maude Avenue 408-245-7800 Phone

www.elliottlabs.com Sunnyvale, CA 94085-3518 408-245-3499 Fax

April 28, 2006

Elliott TCB 684 West Maude Avenue Sunnyvale, CA 94085

Gentlemen:

The enclosed documents constitute a formal submittal and application for a Grant of Equipment Authorization pursuant to the following:

Subpart C of Part 15 of FCC Rules (CFR 47) RSS-Gen Issue 1, September 2005, "General Requirements and Information for the Certification of Radiocommunication Equipment" RSS-210, Issue 6, September 2005, "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

Data within this report demonstrates that the equipment tested complies with the relevant limits for unlicensed wireless devices.

Elliott Laboratories, as duly authorized agent prepared this submittal. A copy of the letter of our appointment as agent is enclosed.

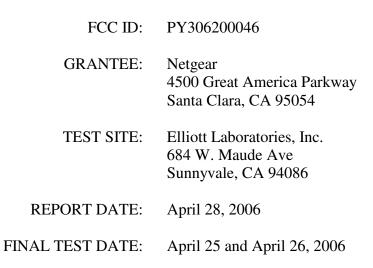
If there are any questions or if further information is needed, please contact Elliott Laboratories for assistance.

Sincerely,

man Juan

Juan Martinez Senior EMC Engineer

JM/dmg Enclosures: Agent Authorization Letter **Emissions Test Report with Exhibits**



Elliott Laboratories Inc. www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 1 / RSS 210 Issue 6 FCC Part 15, Subpart C Section 15.247(DTS) on the Netgear Transmitter Model: WN511B

AUTHORIZED SIGNATORY:

Juan Martinez Senior EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

Equipment Name and Model:

Transceiver, WN511B

Manufacturer:

Netgear 4500 Great America Parkway Santa Clara, CA 95054

Tested to applicable standard:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart C requirements for DTS devices

Test Report Prepared For: Mark Gandler Netgear 4500 Great America Parkway Santa Clara, CA 95054

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC4549-4 Dated March 10, 2009

Declaration of Compliance

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4: 2003 as referenced by FCC Part 15 and by section 1.0 of RSS-212, Issue 1, "Test Facilities and Test Methods for Radio Equipment" / RSS-Gen Issue 1); and that the equipment performed in accordance with the data submitted in this report.

Signature Name

Address

Title

mar um

Juán Martinez Senior EMC Engineer Elliott Laboratories Inc. 684 W. Maude Ave Sunnyvale, CA 94086 USA

Date: April 28, 2006

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	7
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz) GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	9
EQUIPMENT UNDER TEST (EUT) DETAILS	10
GENERAL	10
OTHER EUT DETAILS	10
ANTENNA SYSTEM	10
ENCLOSURE	
MODIFICATIONS	10
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	11
TEST SITE	
GENERAL INFORMATION	12
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	12
MEASUREMENT INSTRUMENTATION	13
RECEIVER SYSTEM	13
INSTRUMENT CONTROL COMPUTER	13
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
POWER METER	
FILTERS/ATTENUATORS	14
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	14
INSTRUMENT CALIBRATION	14
TEST PROCEDURES	15
EUT AND CABLE PLACEMENT	15
CONDUCTED EMISSIONS	15
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	2
EXHIBIT 3: Photographs of Test Configurations	3
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Photographs	
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	7
EXHIBIT 8: Schematic Diagrams	
EXHIBIT 9: Theory of Operation	
EXHIBIT 10: Advertising Literature	
EXHIBIT 11: RF Exposure Information	

SCOPE

An electromagnetic emissions test has been performed on the Netgear model WN511B pursuant to the following rules:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart C requirements for DTS devices

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 RSS-212 Issue 1 Test Facilities and Test Methods for Radio Equipment

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Netgear model WN511B and therefore apply only to the tested sample. The sample was selected and prepared by Mark Gandler of Netgear

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section. Certification of these devices is required as a prerequisite to marketing in the US and Canada.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Netgear model WN511B complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart C requirements for DTS devices

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS	(2400 – 2483.5MHz)
------------------------------	--------------------

FCC Part 15	RSS	Description	Measured Value /	Limit / Requirement	Result
Reference	Reference	I I I	Comments Systems uses MIMO		
15.247(a)	RSS 210 A8.2	Digital Modulation	/ OFDM / DSSS techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	10 MHz Legacy 802.11b	>500kHz	Complies
15.247 (b) (3) Legacy 802.11b	RSS 210 A8.2 (4)	Output Power (multipoint systems)	$ \begin{array}{c} 18.8 \text{ dBm} \\ (0.076 \text{ Watts}) \\ \text{EIRP} = 0.054 \text{ W}^{\text{Note}} \\ _{1} \end{array} $	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d) Legacy 802.11b	RSS 210 A8.2 (2)	Power Spectral Density	-1.2 dBm / 3kHz	8dBm/3kHz	Complies
15.247 (b) (3) Legacy 802.11g	RSS 210 A8.2 (4)	Output Power (multipoint systems)	18.5 dBm (0.07 Watts) EIRP = 0.05 W ^{Note 1}	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d) Legacy 802.11g	RSS 210 A8.2 (2)	Power Spectral Density	-2.4 dBm / 3kHz	8dBm/3kHz	Complies
15.247 (b) (3) MIMO 20MHz	RSS 210 A8.2 (4)	Output Power (multipoint systems)	21.4 dBm (0.137 Watts) EIRP = $0.095 \text{ W}^{\text{Note}}$	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d) MIMO 20MHz	RSS 210 A8.2 (2)	Power Spectral Density	5.0 dBm / 3kHz	8dBm/3kHz	Complies
15.247 (b) (3) MIMO 40MHz	RSS 210 A8.2 (4)	Output Power (multipoint systems)	$ \begin{array}{c} 18.5 \text{ dBm} \\ (0.071 \text{ Watts}) \\ \text{EIRP} = 0.049 \text{ W}^{\text{Note}} \\ _{1} \end{array} $	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d) MIMO 40MHz	RSS 210 A8.2 (2)	Power Spectral Density	-1.2 dBm / 3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	< -30dBc	< -30dBc ^{Note 2}	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	53.94 dBuV/m @ 2388.3 MHz (-0.07 dB)	15.209 in restricted bands, all others <-30dBc ^{Note 2}	Complies

Note 1: EIRP calculated using antenna gain of -1.6 dBi for the highest EIRP multi-point system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst) / RMS averaging over a time interval, as permitted under RSS 210 section A8.4 (4).

FCC Part 15	RSS 210	Description	Measured Value /	Limit /	Result
Section	Section	Description	Comments	Requirement	(margin)
15.203	RSS GEN	RF Connector	Integral antenna		Complies
15.109	RSS GEN	Receiver spurious	N/A for FCC	Note 1	N/A
15.109 K55 GEN	emissions	requirements	Note 1	IN/A	
15.207	RSS GEN	AC Conducted	49.1dBµV @ 0.161MHz	15.207	Complies
15.207	KSS UEN	Emissions	(-6.3dB)	15.207	(- 6.3 dB)
15.247 (b) (5)		RF Exposure		Refer to OET	
15.407 (f)	RSS 102	Requirements	Refer to SAR report	65, FCC Part 1	Complies
13.407 (1)		Requirements		and RSS 102	

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

Note 1: Per Canada receiver emissions is required for certification. This report or application was not submitted to Canada for certification.

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below were calculated using the approach described in CISPR 16-4-2:2003 using a coverage factor of k=2, which gives a level of confidence of approximately 95%. The levels were found to be below levels of *U*cispr and therefore no adjustment of the data for measurement uncertainty is required.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6
Radiated Emissions	1000 to 40000	$\pm \pm 6.0$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Netgear model WN511B is a NETGEAR RangeMax NEXT Wireless Notebook Adapter that is designed to provide high speed wireless internet access. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The EUT receives its power from the host computer. The electrical rating of the EUT is 120 - 240 Volts, 50/60 Hz, 1 Amps.

The sample was received on April 25, 2006 and tested on April 25 and April 26, 2006. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Netgear	WN511B	NETGEAR RangeMax	-	PY306200046
		NEXT Wireless		
		Notebook Adapter		

OTHER EUT DETAILS

List any items from the test log.

ANTENNA SYSTEM

The antenna system used with the Netgear model WN511B consists of two independent PCB traces. The gain of each antenna is -1.6dBi.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Hewlett Packard	zv6000	Laptop	CND52904S1	DoC

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Dort	Connected To	Cable(s)		
Port	Connected 10	Description	Shielded or Unshielded	Length(m)
Laptop Power	AC Adapter	2 wire	Unshielded	2.0

EUT OPERATION

During MIMO testing the EUT was transmitting simultaneously on two RF chains at the low, 2412MHZ, the middle, 2437MHz, or the high, 2462MHz in either the 20MHz or 40MHz signaling mode.

During legacy testing the EUT was transmitting on a single chain at the low, 2412MHZ, the middle, 2437MHz, or the high, 2462MHz in either the 802.11b or 802.11g mode.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on April 25 and April 26, 2006 at the Elliott Laboratories Anechoic Chamber 4 located at 41039 Boyce Road, Fremont, California Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003 and RSS 212.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003 and RSS 212. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003 / RSS 212.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

Power measurements are made using either a power meter (typically with a peak power sensor) or as detailed in FCC KDB558074 using a spectrum analyzer and either the builtin channel power measurement function or software to integrate the power over the displayed spectrum.

When using the integration method the analyzer's internal function or software account for the equivalent noise bandwidth of the resolution bandwidth used when performing the integration. The bandwidths, detector (peak or sample) and trace data (max held or power averaging) are detailed in the test data. When using a power averaging function the device is either in a continuous transmit mode or the analyzer is configured to only sweep when the transmitter is active to ensure that the averaging is performed over a transmit burst and not over quiet periods.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers or incorporated into the test software.

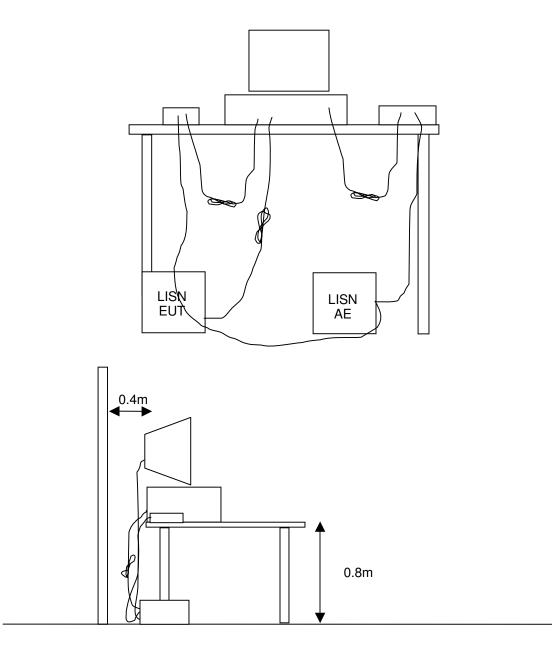
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4:2003 and RSS 212 secify that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

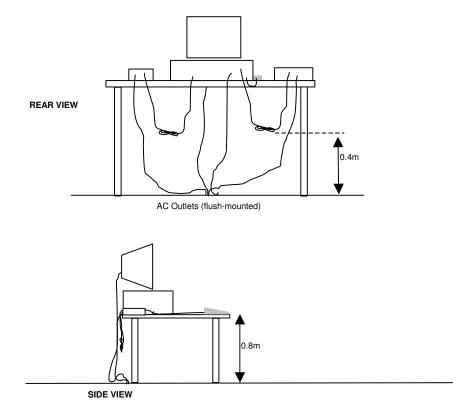

TEST PROCEDURES

EUT AND CABLE PLACEMENT

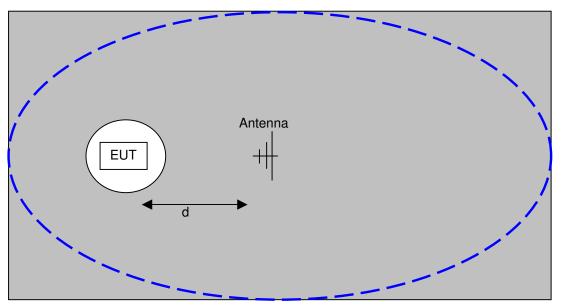
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

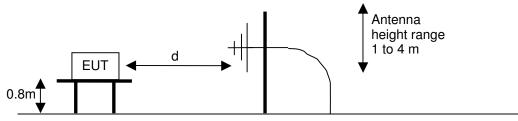
Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

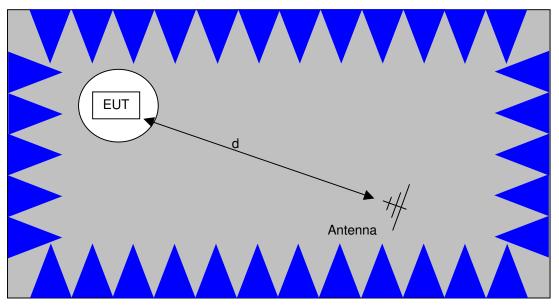


RADIATED EMISSIONS

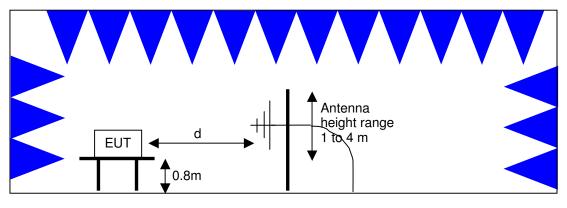

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized vertically while the one or more of these is with the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.


Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions, which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

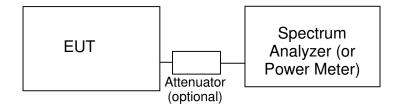

Typical Test Configuration for Radiated Field Strength Measurements

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.



Test Configuration for Radiated Field Strength Measurements OATS- Plan and Side Views

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{3}$ microvolts per meter 3 where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

2 Pages

Radiated Emissions, 1000	- 16,000 MHz, 11-Apr-06 and 12-Apr-06			
Engineer: Juan Martinez	· · · ·			
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263	16-Jan-07
Hewlett Packard	EMC Spectrum Analyzer 9KHz-26.5GHz, non programmable	8563E	284	22-Apr-06
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	868	20-Apr-06
Rohde & Schwarz	EMI Test Receiver, 20Hz-7GHz	ESIB7	1630	28-Dec-06
Micro-Tronics	Band Reject Filter, 2400-2500MHz	BRM50702-02	1731	09-Jun-06
Radiated Emissions, 16,00	00 - 26,500 MHz, 21-Apr-06			
Engineer: Juan Martinez				
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	26-Apr-06
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	786	28-Nov-06
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 40 GHz, Purple (SA40)	8564E (84125C)	1771	02-Aug-06
Hewlett Packard	Microwave EMI test system head lincludes W1 - W4 Purple	84125C	1772	04-Nov-06
EMCO	Horn antenna, 18-26.5 GHz (SA40 9kHz), Purple	3160-09 (84125C	1773	16-Nov-06
Antenna Conducted Emiss	sions, 21-Apr-06			
Engineer: Juan Martinez	Description	M 1 - 1 - 4		
<u>Manufacturer</u>	Description EMC Spectrum Analyzer 30Hz -40GHz, Sunnyvale	<u>Model #</u>	Asset #	<u>Cal Due</u>
Hewlett Packard	(SA40) Red	8564E (84125C)	1148	09-Sep-06
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1534	01-Mar-07
Rohde & Schwarz	Power Sensor 100uW - 10 Watts	NRV-Z53	1796	31-Jan-07
1000 - 26,500 MHz, 28-Apr-	06			
Engineer: Juan Martinez Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263	16-Jan-07
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	487	13-May-06
EMCO/Hewlett Packard/CM	THorn Antenna, 18-26.5GHz (SA40)	84125C80008/R	1387	11-Nov-06
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 40 GHz, Fremont (SA40) Blue	8564E (84125C)	1393	10-Nov-06
Power Measurements, 28-	Apr-06			
Engineer: Juan Martinez	Description	Madal #	A	Oal Dur
<u>Manufacturer</u> Rohde & Schwarz	<u>Description</u> EMI Test Receiver, 20Hz-7GHz	<u>Model #</u> ESIB7	Asset # 1630	<u>Cal Due</u> 28-Dec-06
HUNUE & JUNWAIZ			1030	20-060-00

Radiated Emissions, 30	- 1,000 MHz, 13-Apr-06			
Engineer: Chris Bylecki	e			
Manufacturer	Description	Model #	Asset #	Cal Due
Com-Power Corp.	Pre Amplifier, 30-1000MHz	PA-103	1632	07-Jun-06
Rohde & Schwarz	EMI Test Receiver, 20Hz-7GHz	ESIB7	1630	28-Dec-06
Sunol Sciences	Biconilog, 30-3000MHz	JB3	1549	26-Apr-06
	-			
Conducted Emissions -	AC Power Ports, 21-Apr-06			
Engineer: Juan Martine	Z			
Manufacturer	Description	Model #	Asset #	Cal Due
Elliott Laboratories	FCC / CISPR LISN	LISN-3, OATS	304	08-Jul-06
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372	06-Sep-06
Solar Electronics	LISN	8028-50-TS-24-BNC support	904	08-Jul-06
Hewlett Packard	EMC Spectrum Analyzer, 9KHz - 22GHz	8593EM	1319	17-Apr-07
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	23-May-06

Manufacturer	Description	Wodel #
Elliott Laboratories	FCC / CISPR LISN	LISN-3, OATS
Rohde & Schwarz	Pulse Limiter	ESH3 Z2
Solar Electronics	LISN	8028-50-TS-24-BNC support
Hewlett Packard	EMC Spectrum Analyzer, 9KHz - 22GHz	8593EM
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN

EXHIBIT 2: Test Measurement Data

T63747 107 Pages T63589 8 Pages

Client: Netgear Job Number: J63735 Model: WN511B T-Log Number: T63747 Contact: Mark Gandler Esther Zhu Emissions Spec: FCC 15.247 Class: Radio Immunity Spec:

EMC Test Data

For The

Netgear

Model

WN511B

Date of Last Test:

EMC Test Data

Elliott		EMC Test Data		
Client:	Netgear	Job Number:	J63735	
Model:	WN511B	T-Log Number:		
		Account Manger:	Esther Zhu	
	Mark Gandler			
Emissions Spec:	FCC 15.247	Class:	Radio	
Immunity Spec:	-	Environment:	-	

EUT INFORMATION

General Description

The EUT is a NETGEAR RangeMax NEXT Wireless Notebook Adapter that is designed to provide high speed wireless internet access. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The EUT receives its power from the host computer. The electrical rating of the EUT is 120 - 240 Volts , 50/60 Hz, 1 Amps.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Netgear	WN511B	MIMO cardbus	-	PY306200046

Other EUT Details

EUT Antenna

The EUT has 2Tx/Rx antennas that are automatically selected for use per the MCS index and STF mode selections. Each antenna has a gain of -1.6dBi. The antennas are integral to the device.

EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer.

Modification History

Mod. #	Test	Date	Modification
1	-	-	None
2			
3			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Ellio	t		EM	C Test Data	
Client:	Netgear		Job Number:	J63735	
Model:			T-Log Number:	T63747	
	WN511B		Account Manger:	Esther Zhu	
	Mark Gandler				
Emissions Spec:			Class:	Radio	
Immunity Spec:	-		Environment:	-	
The	following information	t Configuration	ring the test session	s(s).	
Manufacturer	Model	Description	Serial Number	FCC ID	
Hewlett Packard	zv6000	Laptop	CND52904S1	DoC	
Manufacturer None	Ren Model	note Support Equipn Description	nent Serial Number	FCC ID	
Port Laptop Power	Connected To AC Adapter	Description 2 wire	Cable(s) Shielded or Unshield Unshielded	ded Length(m) 2.0	
2437MHz, or the high, 2 During legacy testing the	e EUT was transmitting sir 2462MHz in either the 20M	1Hz or 40MHz signaling month a single chain at either th	nains at either the low, 241		

EMC Test Data

Elliot	t	EM	C Test Data
Client:	Netgear	Job Number:	J63735
Model:	WN511B	T-Log Number:	T63747
	WINJIID	Account Manger:	Esther Zhu
	Mark Gandler		
Emissions Spec:	FCC 15.247	Class:	Radio
Immunity Spec:	-	Environment:	-

Test Configuration #2

The following information was collected during the test sessions(s).

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
Hewlett Packard	zv6000	Laptop	CND52904S1	DoC
Hewlett Packard	Deskjet 3820	Printer	CN2451B1	DoC
Hewlett Packard	F3-0507013399C	AC/DC adaptor	CN2451B1	-

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID					
Netgear	EN104	Hub	ENT4B06271953	-					

Cabling and Ports										
Port	Connected To	Cable(s)								
		Description	Shielded or Unshielded	Length(m)						
Laptop USB	Printer	Multiwire	Shielded	1.5						
Laptop Ethernet	Hub	CAT 5	Unshielded	10.0						
Laptop Power	AC Adapter	2 wire	Unshielded	2.0						
AC adpater	AC Mains	3 wire	Unshielded	1.5						

EUT Operation During Transmitter Tests

During MIMO testing the EUT was transmitting simultaneously on two RF chains at either the low, 2412MHZ, the middle, 2437MHz, or the high, 2462MHz in either the 20MHz or 40MHz signaling mode.

During legacy testing the EUT was transmitting on a single chain at either the low, 2412MHZ, the middle, 2437MHz, or the high, 2462MHz in either the 802.11b or 802.11g mode.

EMC Test Data

E	Elliott	EM	C Test Data
Client:	Netgear	Job Number:	J63735
Madal	WN511B	T-Log Number:	T63747
wouer.	WINGTID	Account Manager:	Esther Zhu
	Mark Gandler		
Spec:	FCC 15.247	Class:	N/A

FCC 15.247 DTS - Antenna Port Power, Bandwidth and Spurious Emissions (802.11g)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 4/21/2006 Test Engineer: Jmartinez Test Location: Chamber #2

Config. Used: 1 Config Change: None EUT Voltage: 120V, 60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. For the spurious emissions all transmit chains were connected simultaneously to the analyzer via a combiner. All other measurements were made on a single chain.

All measurements are corrected to allow for the external attenuators used.

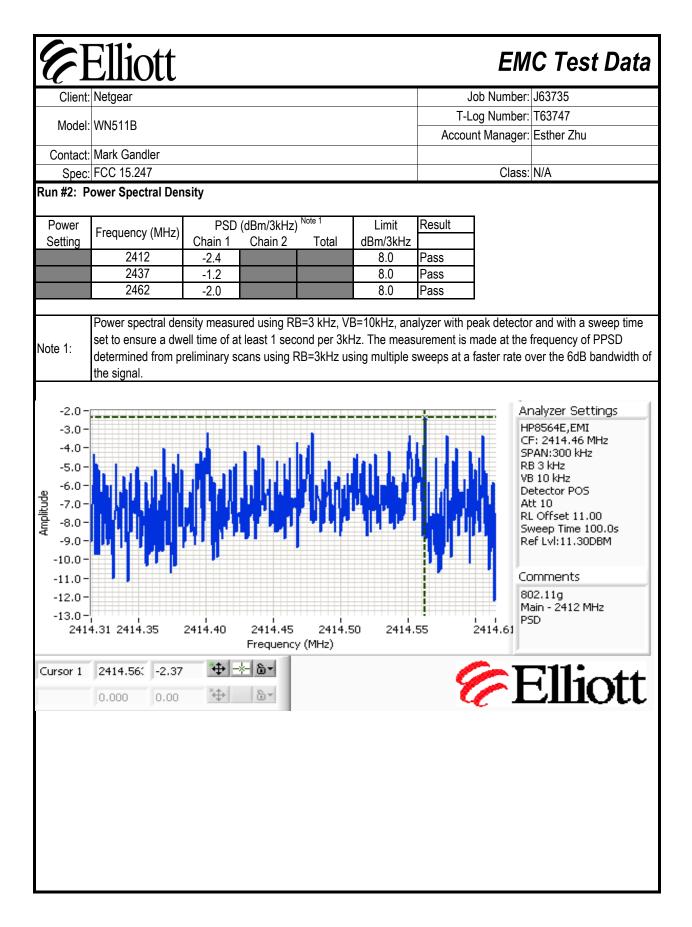
Ambient Conditions:	Temperature:	17 °C
	Rel. Humidity:	57 %

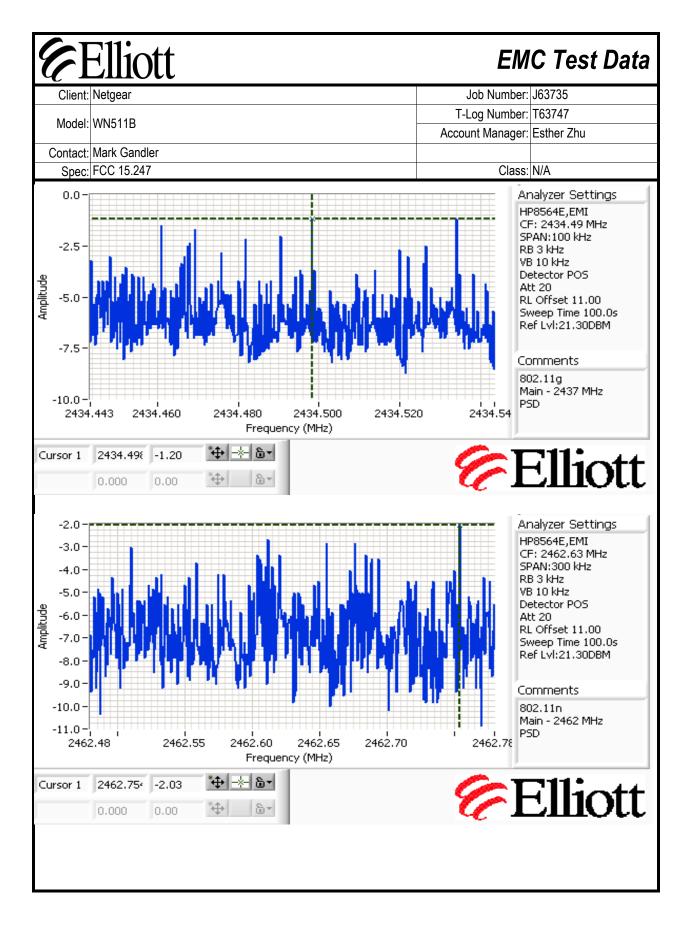
Summary of Results

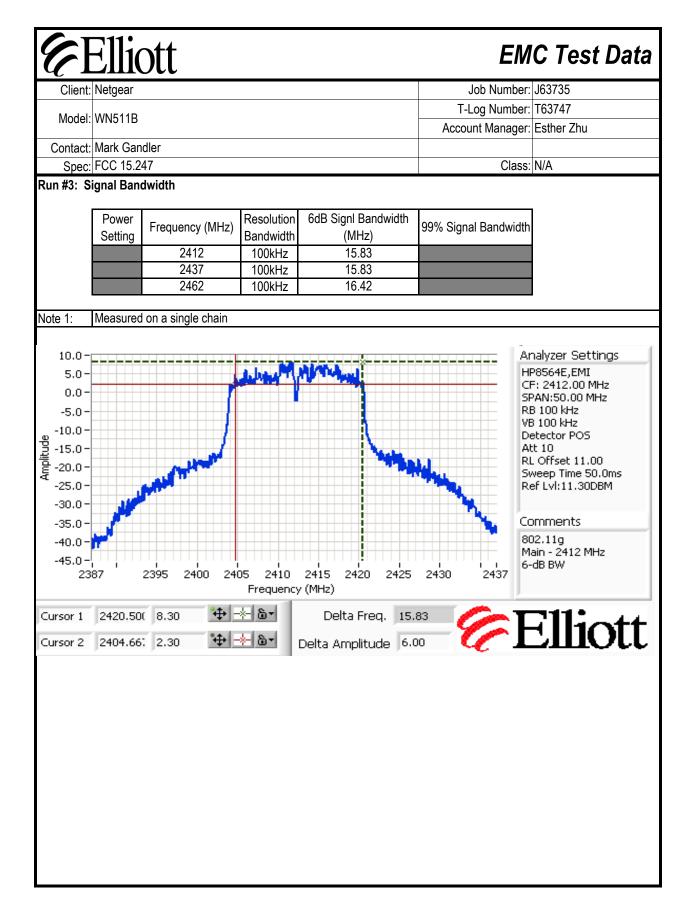
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	Refer to run
2	Power Spectral Density (PSD)	15.247(d)	Pass	Refer to run
3	6dB Bandwidth	15.247(a)	Pass	Refer to run
4	Spurious emissions	15.247(b)	Pass	Refer to run

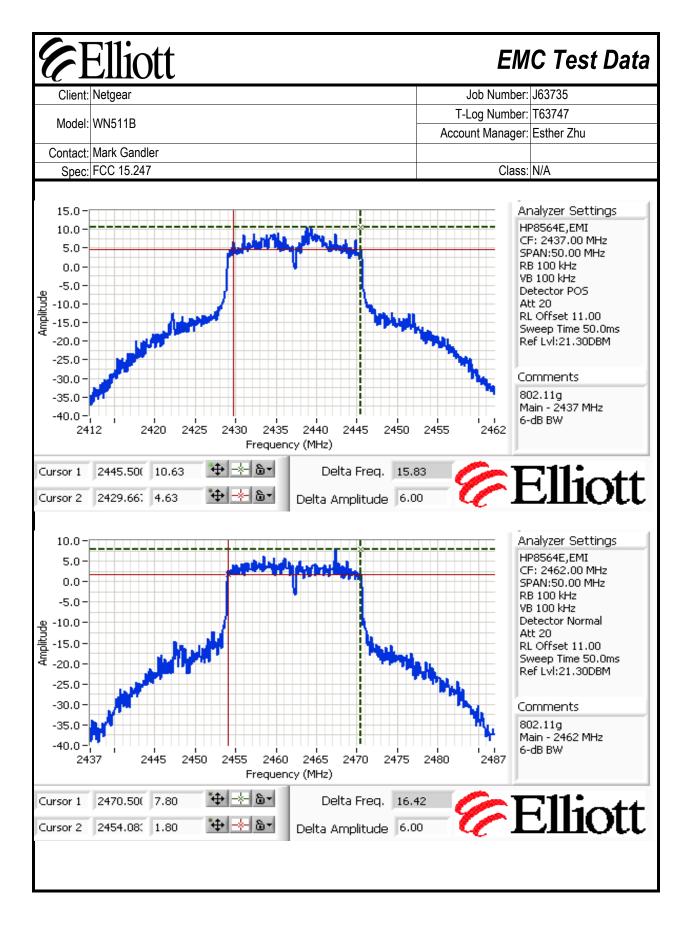
Modifications Made During Testing:

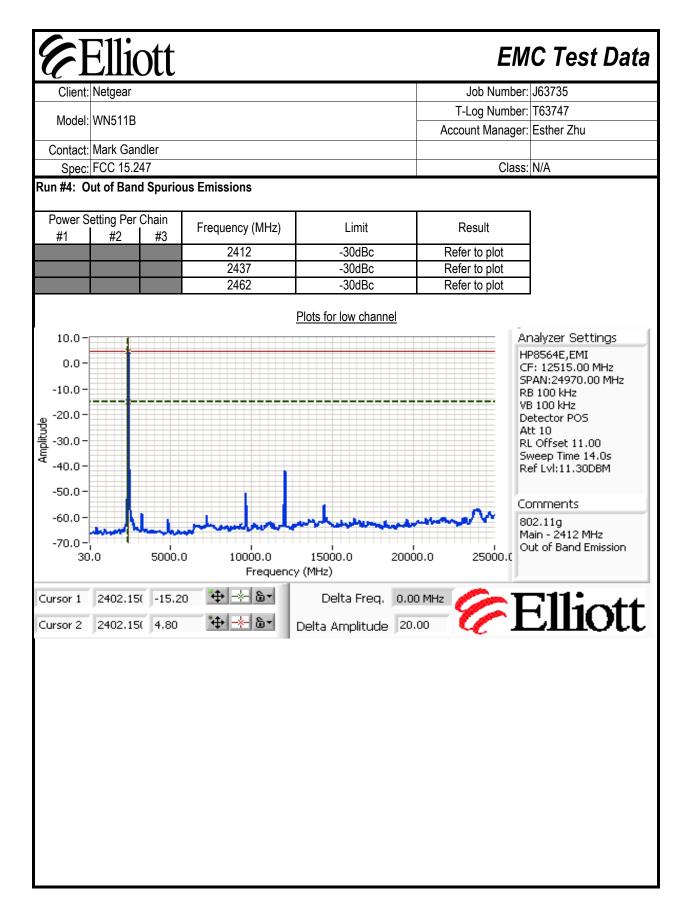
No modifications were made to the EUT during testing

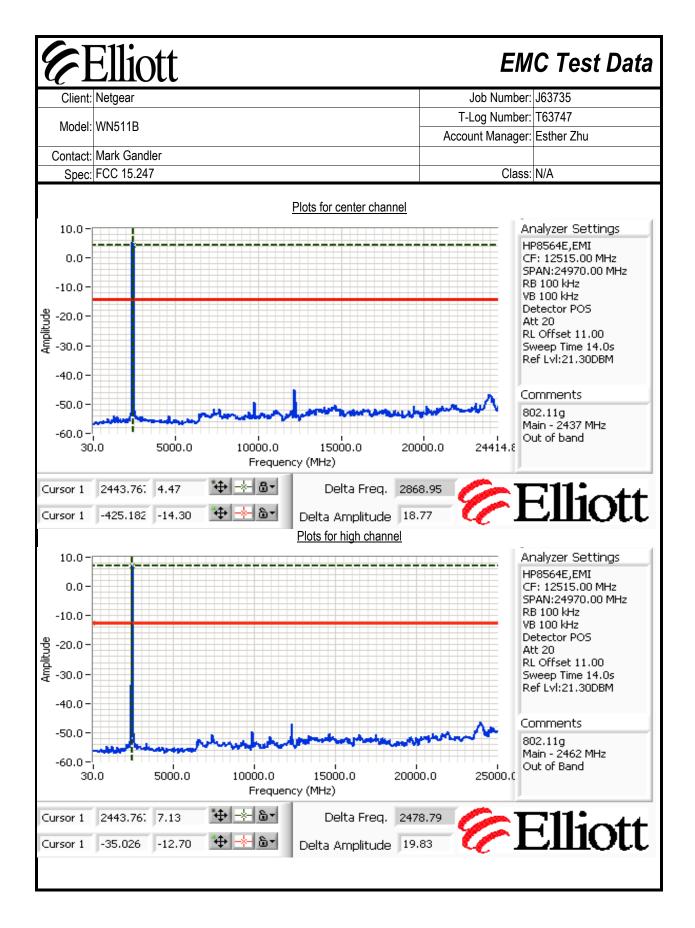

Deviations From The Standard

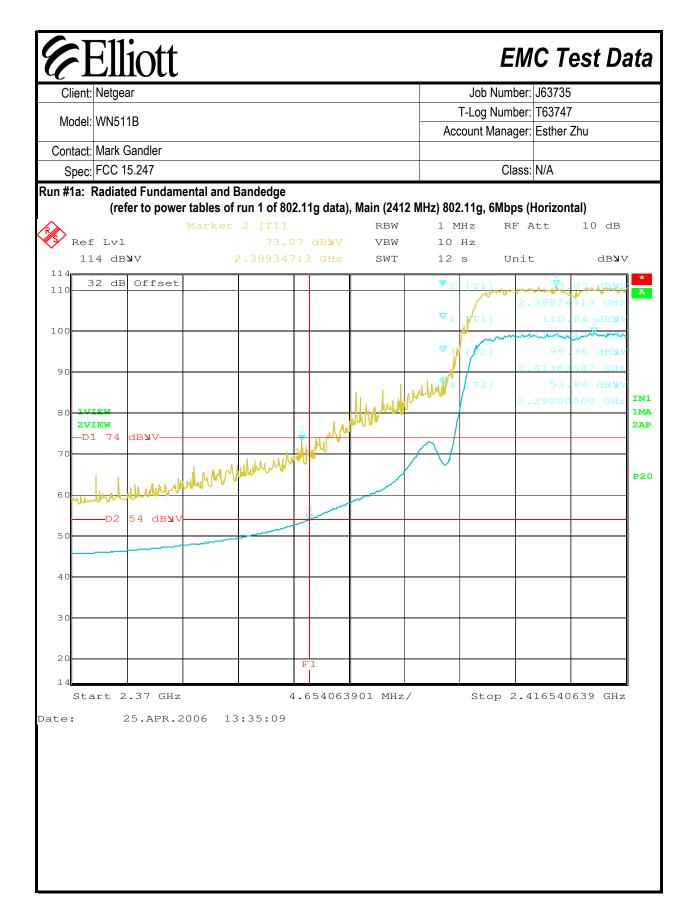

F	Elliott						EM	C Test	Data
_	Netgear					Jo	b Number:	J63735	
	1005440						T-Log Number: T63747		
Model:	WN511B			Accoun	t Manager:	Esther Zhu			
Contact:	Mark Gandler								
	FCC 15.247						Class:	N/A	
	utput Power								
Transmitted	d signal on chain is Power Measurem	ents:							
Power	Frequency (MHz)	Output	Power (dBr	n) ^{Note 1}	Antenr	na Gain (dBi)	Note 3	EIRP	Note 2
-		Main	-	Total	Chain 1	Chain 2	Total	dBm	W
	2412	17.4		17.4	-1.6		-	15.9	0.039
	2437	18.5		18.5	-1.6		-	17.0	0.050
	2462	17.1		17.1	-1.6		-	15.6	0.037
	analyzer was config tranmsitting) and po EIRP - if transmit cl	ower integra	ation over 30 oherent ther) MHz the EIRP is	s calculated f	rom the sum	of the anter	nna gains plus	the total
Note 2:	power (i.e. beam-fo then the EIRP is ca	rming is as	sumed beca	use of cohe	erency on the	chains). If th	ne individua		
	If the transmit chair			•	-			-	
Note 3:	antenna. If the tran	smit chains	s are incohe	rent then the	e system ante	enna gain is r	not applicat	ole as each tra	insmit cha
	can be treated inde	pendently.							

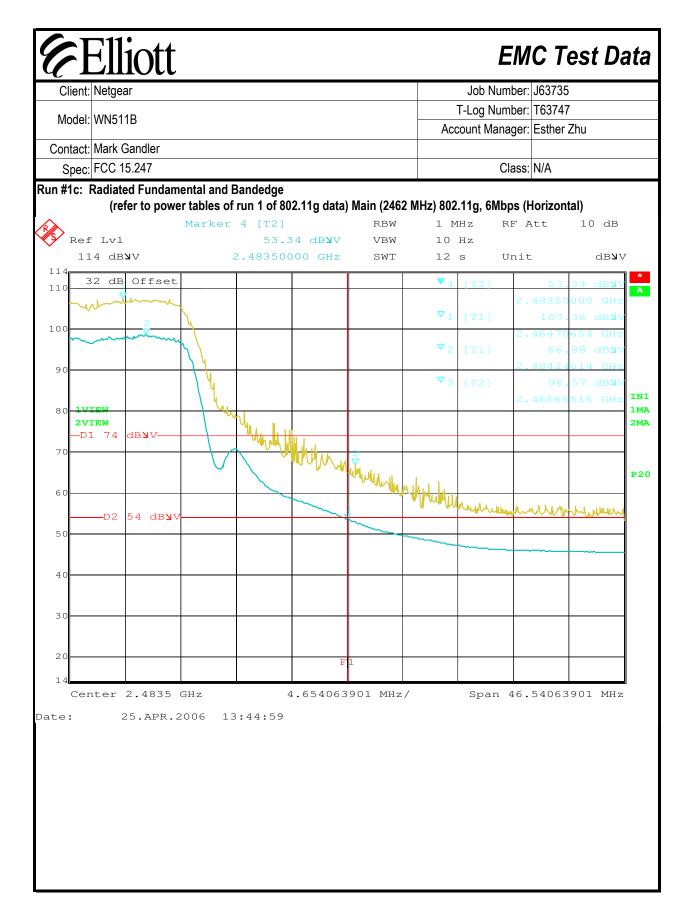

					Number: J6373		
Model: WN511B					Number: T6374 /anager: Esther		
ontact: Mark Ganc					_		
Spec: FCC 15.24		- 1 [T1]	RBW	1 MHz	Class: N/A	30 dB	
Ref Lvl 10 dBm	fiat i.e.	-41.15 2.43700000	dBm VBW	3 MHz 5 ms	Unit	dBr	n
1.3 dB C	ffset	M	many	▼1 [T1]	2.4370	1.15 dBm 0000 GHz	
0				CH PWR CH BW	1	7.46 dBm 0000 MHz	
. 0							
1 AVG							1
3 0		M		- My			
10	a mall manufactor				munus		-
50 mmmmmmm							
50							-
70							-
3 0		C0		C0			-
0			10 MHz/			100 MHz	

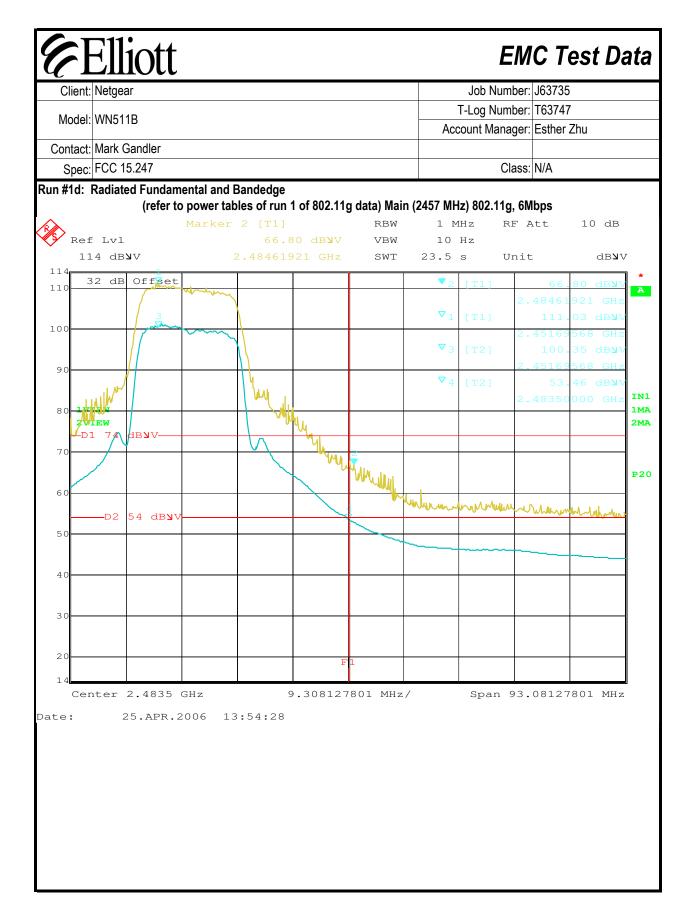

Client: Netgear			Job Numbe T-Log Numbe	
Model: WN511B			Account Manage	
ontact: Mark Gandler Spec: FCC 15.247			Clas	ss: N/A
Spec. 1 00 13.247	Marker 1 [T1]	RBW		Att 30 dB
Ref Lvl 10 dBm	6.4 2.4370000	44 dBm VBW 00 GHz SWT	3 MHz 5 ms Un:	it dBm
1.3 dB Off	set	manun	▼1 [T1]	6.44 dBm 2.43700000 GHz
0			CH PWR CH BW 30	18.47 dBm).00000000 MHz G
2.0	J. J.	un l	\.	
1AVG	Max Marker		- Area	1
	Mander		L'un	
10 50 mmmmmmmm	1 March 1992			my werker
50				
70				
3 0	C0		C0	
	GHz	10 MHz/		Span 100 MHz

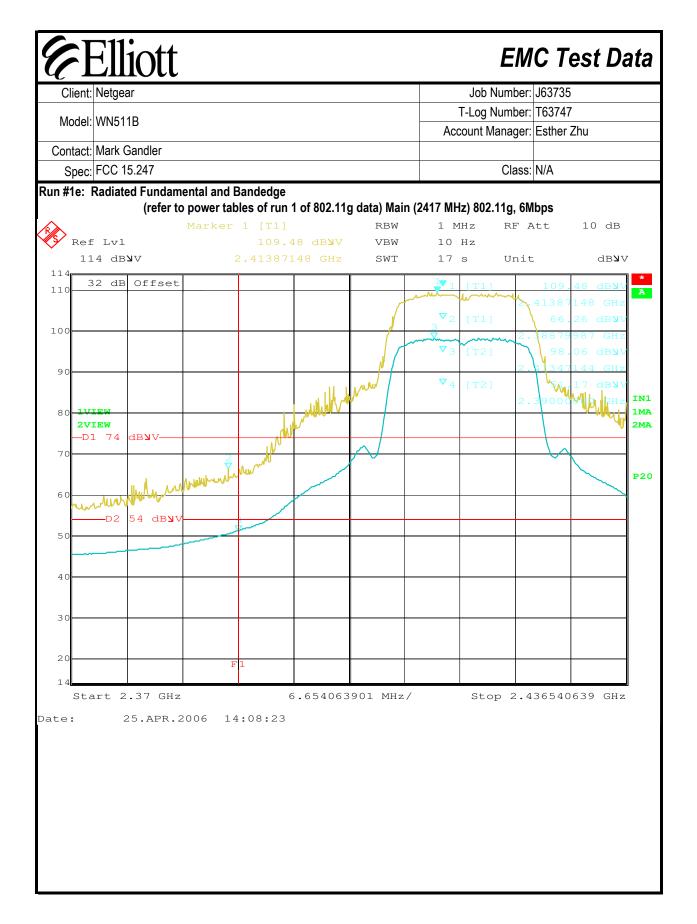

Model: WN511B ontact: Mark Gan Spec: FCC 15.2	dler							umber: J63		
	dler	Model: WN511B						umber: T63 inager: Esth		
Spec: FCC 15.2								_		
		r 1 [T1]		RBW		1 M	Hz	Class: N/A		dB
Ref Lvl 10 dBm			07 dBm 00 GHz	VBW SWT		3 M 5 m	Hz	Unit		dBm
1.3 dB	Offset		men	many		v 1	[T1]	- 2.437	-41.07 00000	dBm GHz
0						СН СН	PWR BW	30.000	17.15	
. 0										
1AVG					M					
30	1.2	No and				J. A.	Y,			
10	man and market we							namen		
										m
50										
7 0										
30		C0			С	0				
Center 2.	462 GHz		10 M	Hz/				Spa	in 100	MHz



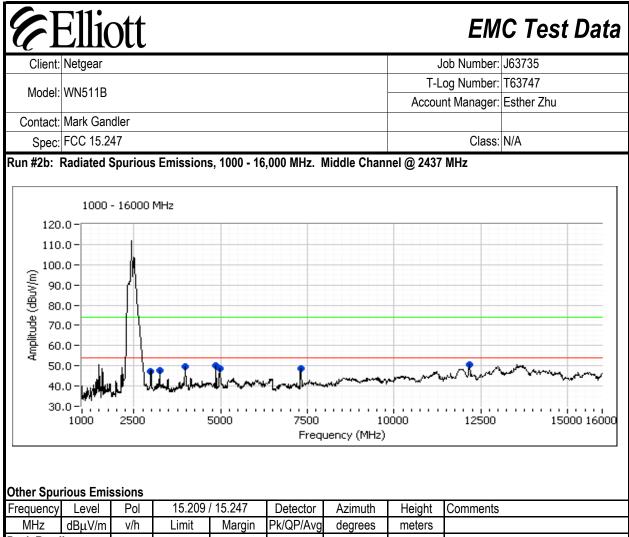


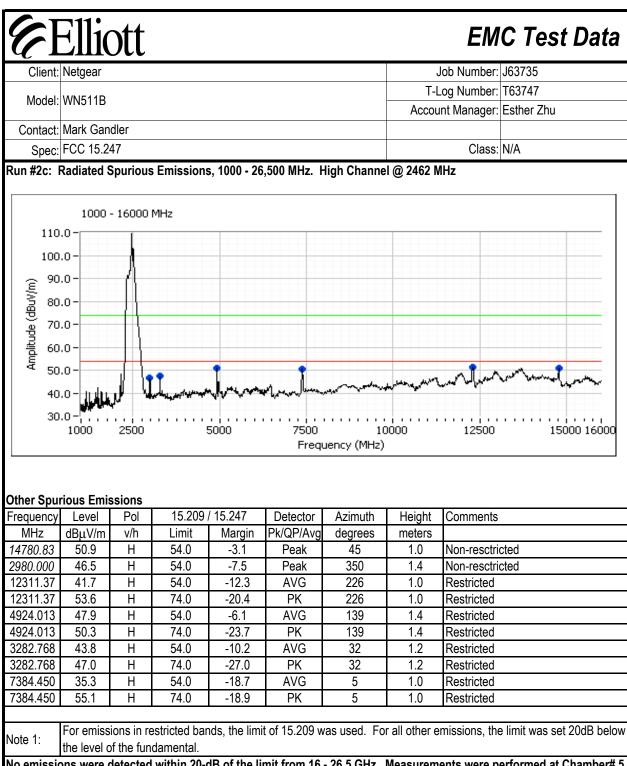

Elliott EMC Test Data Job Number: J63735 Client: Netgear T-Log Number: T63747 Model: WN511B Account Manager: Esther Zhu Contact: Mark Gandler Spec: FCC 15.247 Class: N/A FCC 15.247 DTS - Power, Fundamental, and Spurious Emissions (802.11g)**Test Specifics** The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above. Date of Test: 4/12/2006 Config. Used: 2 Config Change: None Test Engineer: Juan Martinez Test Location: Fremont Chamber #4 EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. Remote equipment was located underneat the table. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 19.5 °C Rel. Humidity: 50 % Summary of Results Run # Test Performed Limit Pass / Fail Result / Margin FCC Part 15.209 / 1 Power & Bandedges Pass Refer to run 15.247(c) **Radiated Spurious Emissions** FCC Part 15.209 / 2 Refer to run Pass 1,000-26,500MHz 15.247(c)


Modifications Made During Testing:


No modifications were made to the EUT during testing

Deviations From The Standard





Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Peak Read	lings.							
2980.000	47.1	V	54.0	-6.9	Peak	320	1.2	Non-restricted
3245.833	47.9	Н	54.0	-6.1	Peak	56	2.0	Non-restricted
3981.017	32.8	V	54.0	-21.2	AVG	10	1.0	Restricted
3981.017	49.0	V	74.0	-25.1	PK	10	1.0	Restricted
7314.534	35.0	Н	54.0	-19.1	AVG	15	1.2	Restricted
7314.534	53.6	Н	74.0	-20.4	PK	15	1.2	Restricted
4874.028	47.9	Н	54.0	-6.1	AVG	81	1.4	Restricted
4874.028	49.9	Н	74.0	-24.1	PK	81	1.4	Restricted
12183.74	41.1	Н	54.0	-12.9	AVG	235	1.4	Restricted
12183.74	53.7	Н	74.0	-20.3	PK	235	1.4	Restricted
4979.038	34.8	V	54.0	-19.2	AVG	357	1.2	Restricted
4979.038	49.7	V	74.0	-24.3	PK	357	1.2	Restricted
Note 1:	For emiss	ions in re	estricted bar	ids, the limi	t of 15.209 w	as used. Fo	r all other ei	missions, the limit was set 20dB below
NOLE I.	the level o	of the fun	damental.					
No emissi	ons were d	detected	within 20-c	B of the li	mit from 16	- 26.5 GHz.	Measureme	ents were performed at Chamber# 5
on April 25	5, 2006 by	Juan Ma	artinez					

No emissions were detected within 20-dB of the limit from 16 - 26.5 GHz. Measurements were performed at Chamber# 5 on April 25, 2006 by Juan Martinez

EMC Test Data

E	Elliott	EM	C Test Data
Client:	Netgear	Job Number:	J63735
Model	WN511B	T-Log Number:	T63747
wouer.	WNSTIB	Account Manager:	Esther Zhu
	Mark Gandler		
Spec:	FCC 15.247	Class:	N/A

FCC 15.247 DTS - Antenna Port Power, Bandwidth and Spurious Emissions (802.11b)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 4/21/2006 Test Engineer: Jmartinez Test Location: Chamber #2

Config. Used: 1 Config Change: None EUT Voltage: 120V, 60Hz

General Test Configuration

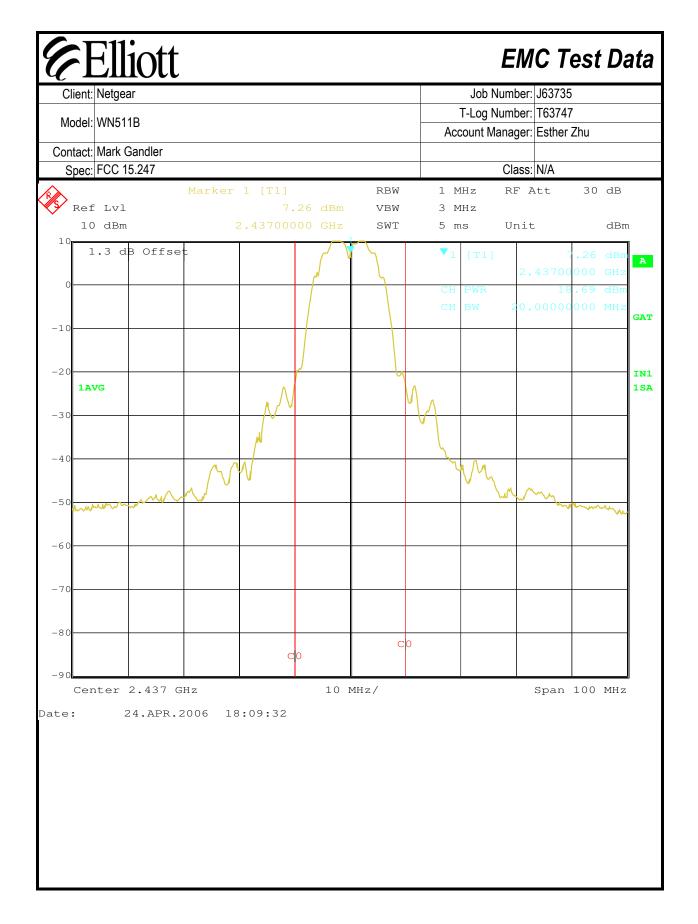
The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. For the spurious emissions all transmit chains were connected simultaneously to the analyzer via a combiner. All other measurements were made on a single chain.

All measurements are corrected to allow for the external attenuators used.

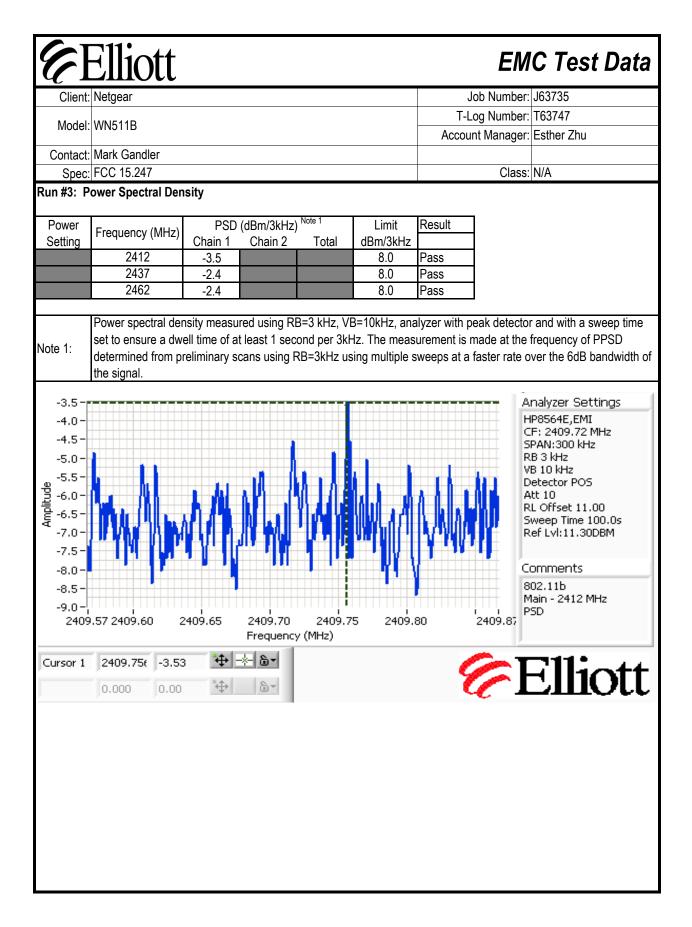
Ambient Conditions:	Temperature:	17 °C
	Rel. Humidity:	57 %

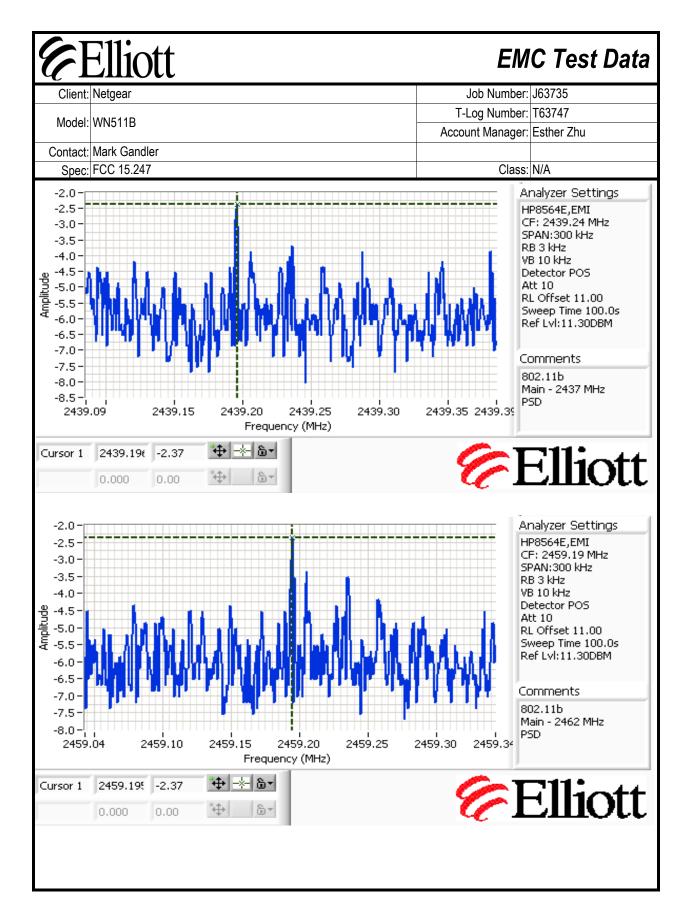
Summary of Results

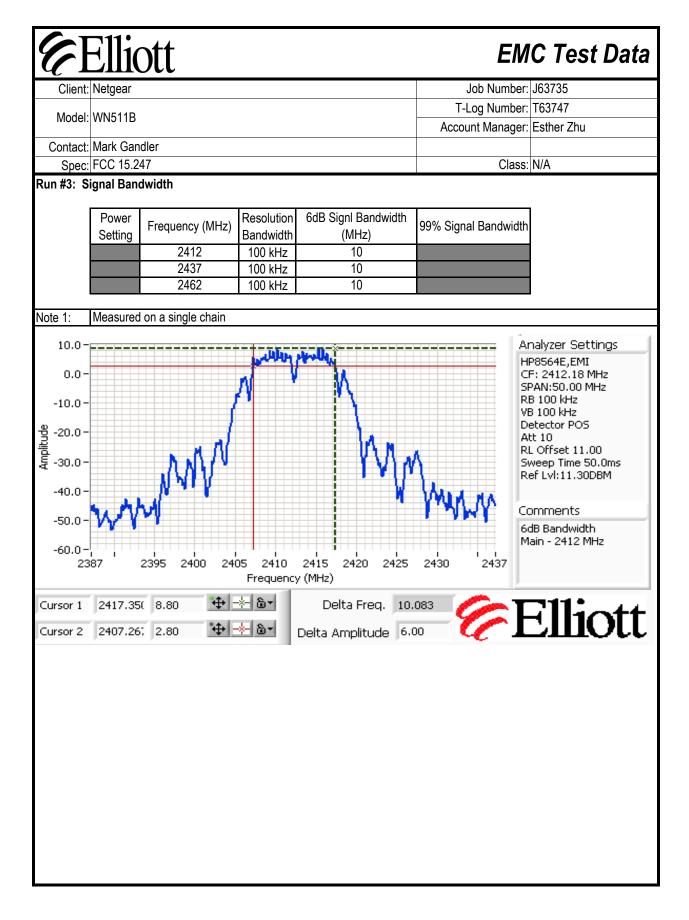
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	Refer to run
2	Power Spectral Density (PSD)	15.247(d)	Pass	Refer to run
3	6dB Bandwidth	15.247(a)	Pass	Refer to run
4	Spurious emissions	15.247(b)	Pass	Refer to run

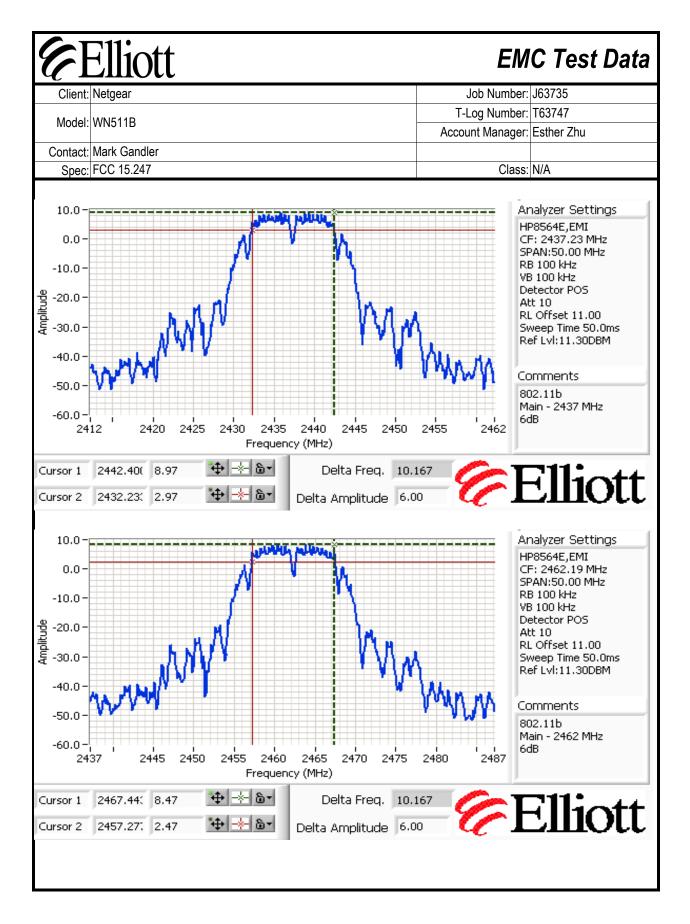

Modifications Made During Testing:

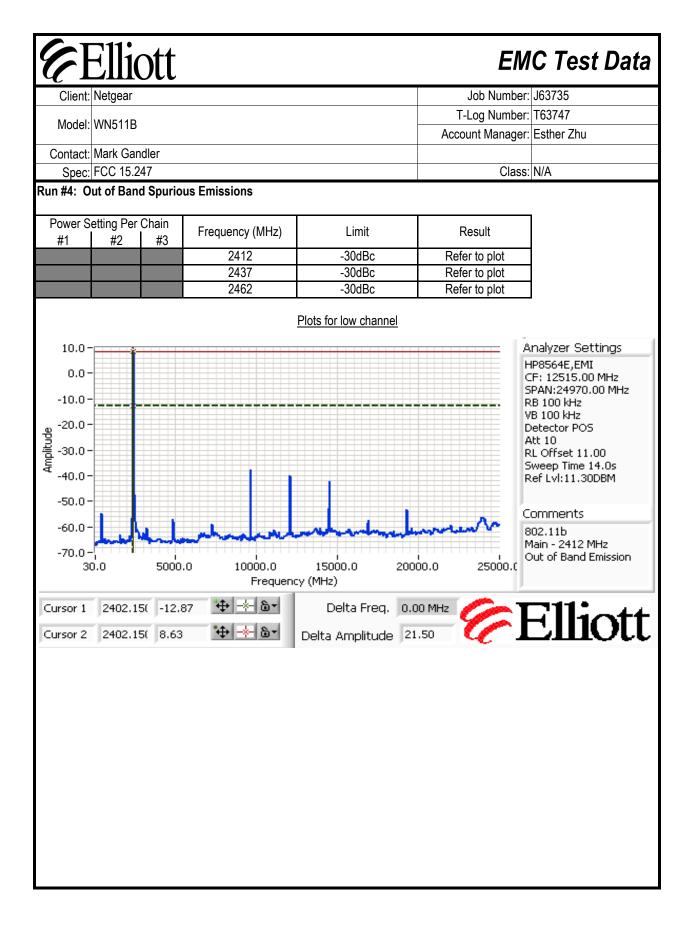
No modifications were made to the EUT during testing

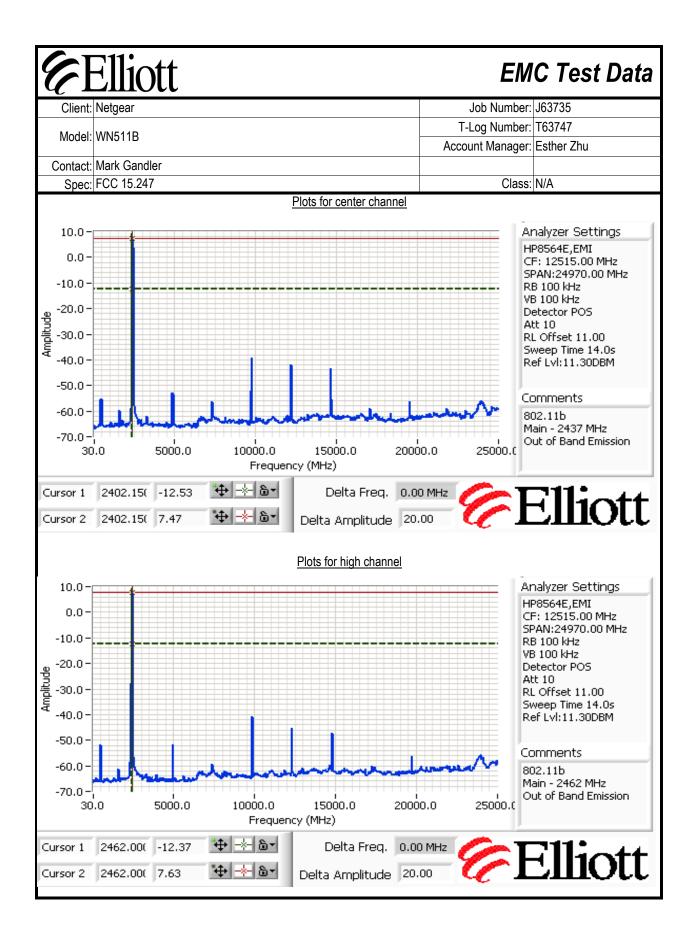

Deviations From The Standard

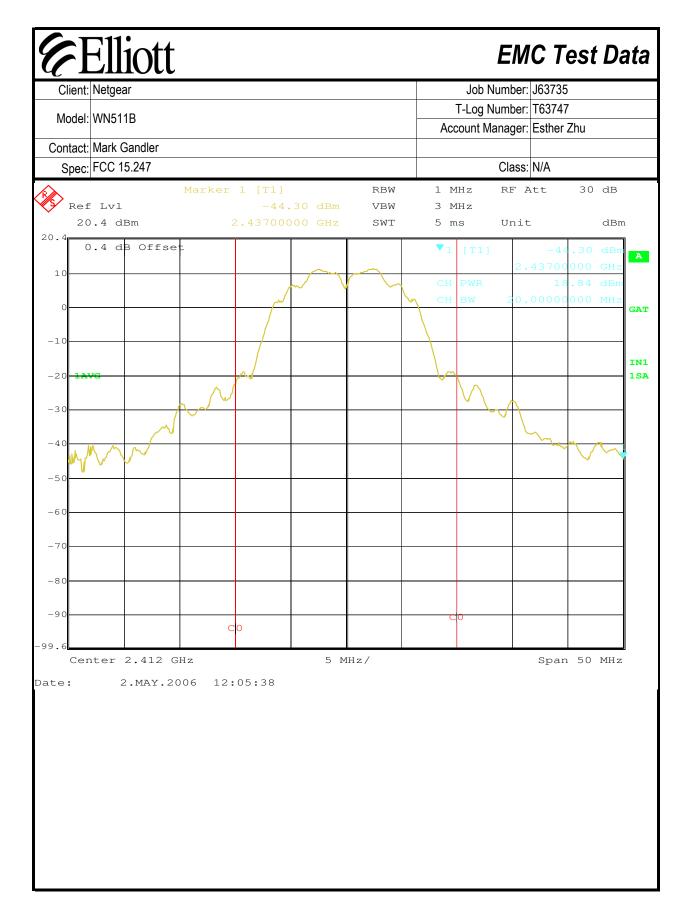

6	Elliott						EM	C Test	t Data
Client:	Netgear					Jo	b Number:	J63735	
Model	WN511B					T-Lo	g Number:	T63747	
Model.	WINDTID					Accoun	t Manager:	Esther Zhu	
Contact:	Mark Gandler								
Spec:	FCC 15.247						Class:	N/A	
Transmitted	utput Power d signal on chain is v Power Measurem		No						
Power	Frequency (MHz)	Output	Power (dBr	n) ^{Note 1}	Antenr	na Gain (dBi)	Note 3	EIRP	Note 2
-		Chain 1	Chain 2	Total	Chain 1	Chain 2	Total	dBm	W
	2412	18.8		18.8	-1.6		-	17.3	0.054
	2437	18.7		18.7	-1.6		-	17.1	0.051
	2462	18.2		18.2	-1.6		-	16.7	0.046
	analyzer was confi tranmsitting) and p EIRP - if transmit c	ower integra hains are co	ation over 20 oherent ther	0 MHz the EIRP is	s calculated f	rom the sum	of the ante	nna gains plu	s the total
	power (i.e. beam-for then the EIRP is can If the transmit chain	alculated fro	m the sum o	of the individ	dual EIRPs fo	r each chain.	1		
Note 3:	antenna. If the trai	nsmit chains							

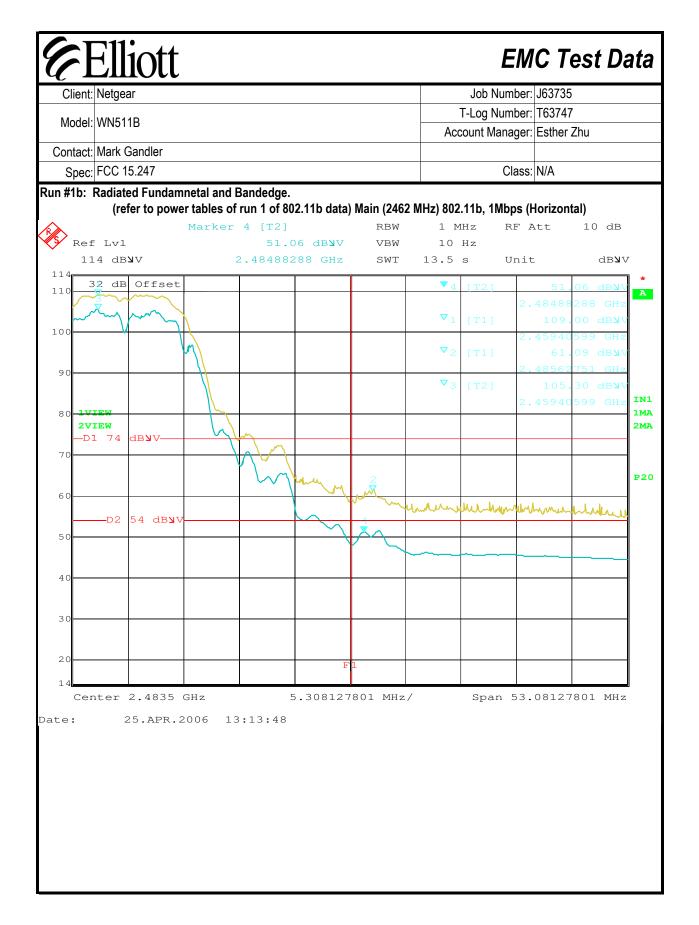

Client: Netgea	r						nber: J6373		
Model: WN511	В						nber: T6374 ager: Esther		
ontact: Mark G									
Spec: FCC 15		1 1 5			1 10		lass: N/A	2.0	15
Ref Lvl 20.4 dB		tker 1 [T1] -44. 2.437000	.30 dBm)00 GHz	RBW VBW SWT	1 M 3 M 5 m	Hz	nit	30	dB dBm
.4 0.4 d	0ffset				v 1	[T1]	-4	4.30	dBm
10				\sim	CU		2.4370	0000 8.84	GHz
0		لىس	~ 1	\sim		PWR BW	20.0000		
0									•
10									
20 1 AVC									1
3 0		\mathcal{M}				\sim			
	\sim					00			
40 M /	\sim								$\overline{\mathbf{v}}$
50	, 								
5 0									
70									
30									
90		C0			C	0			
II 1								n 50	

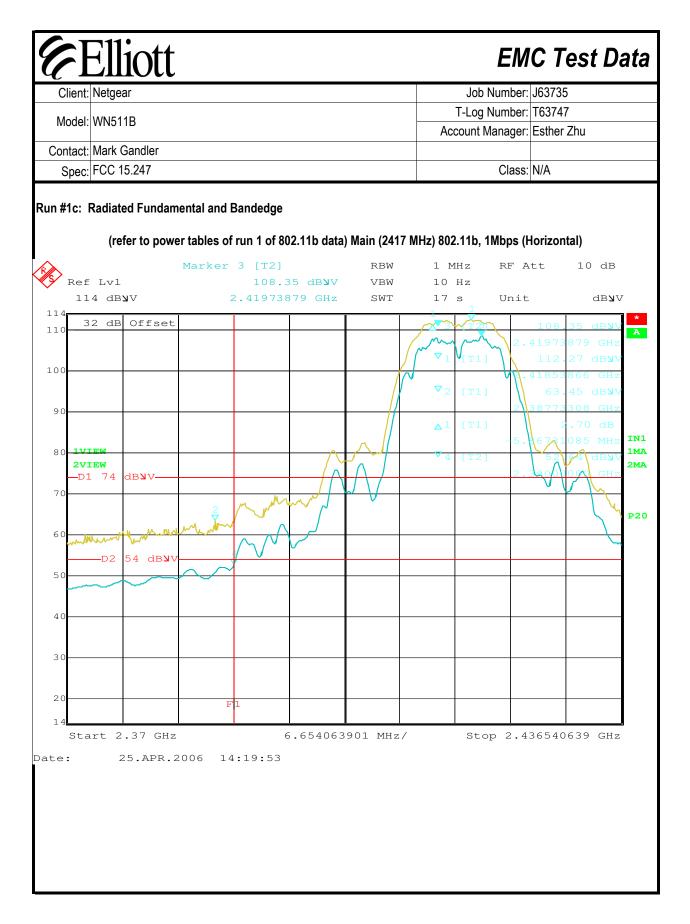



Mark Gandler Class: NA Spec: FCC 15.247 Class: NA Ref Lv1 -43.54 dBm VEW 3 MHz 10 dBm 2.43700000 GHz SWT 5 ms Unit dBm 11.3 dB Offset Imarker Imarker<	Client: Model:	Netgea								T-Log N	lumbei	r: J6373 r: T6374 r: Esther	7		
Marker 1 [T1] RBW 1 MHz RF Att 30 dB Ref Lv1 -43.54 dBm VBW 3 MHz 10 dBm 2.43700000 GHz SWT 5 ms Unit dBm 10 1.3 dB Offset -43.54 dBm VBW 3 MHz 10 1.3 dB Offset -43.54 dBm VBW 3 MHz 10 1.3 dB Offset -43.54 dBm VBW 3 MHz 10 -43.54 dBm VBW 3 MHz 5 ms Unit dBm 10 -43.54 dBm VBW 3 MHz 5 ms Unit dBm 11 -43.54 dBm VBW 3 MHz 5 ms Unit dBm 10 -43.54 dBm VBW 3 MHz 5 ms Unit dBm 10 -43.54 dBm VBW 3 MHz 5 ms Unit Gm 10 -43.54 dBm -43.54 dBm VBW 3 MHz 5 ms Unit Gm 10 -43.54 dBm 10 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>															
Ref Lv1 -43.54 dBm VBW 3 MHz 10 dBm 2.43700000 GHz SWT 5 ms Unit dBm 10 dBm 1.3 dB Offset -43.54 dBm VBW 3 MHz 10 dBm 2.43700000 GHz SWT 5 ms Unit dBm 11 dBm 2.43700000 GHz SWT 5 ms Unit dBm 10 dBm 2.43700000 GHz SWT 5 ms Unit dBm 10 dBm 1.3 dB Offset -43.54 dBm VBW 3 MHz 10 dBm 1.3 dB Offset -43.54 dBm VBW 3 MHz 10 dBm 1.43700000 GHz SWT 5 ms Unit dBm 10 dBm 1.437000000 GHz GWT -43.54 dBm GWT GWT GWT 10 MHZ MAG -43.54 dBm -43.54 dBm GWT -43.54 dBm GWT 10 MHZ -43.54 dBm -43.54 dBm -43.54 dBm -43.54 dBm GWT -43.54 dBm 10 MHZ -43.54 dBm -43.54 dBm -43.54 dBm -43.54 dBm -43.54 dBm -43.54 dBm	Spec:	FCC 1	5.247	Markor	1 [77]]		DDM		1 N				20	dP	
1.3 dB Offset 1.3 dB Offset 1.4 dB	10				-43.		VBW		З М	1H z			30		n
CH PWR 16.20 clss CH BW 20.00000000 MH3 CH BW 20.000000000 MH3 CH BW 20.000000000 MH3 CH BW 20.00000000 MH3 CH BW 20.00000000 MH3 CH BW 20.000000000 MH3 CH BW 20.00000000 MH3 CH BW 20.000000000 MH3 CH BW 20.0000000000 MH3 CH BW 20.000000000 MH3 CH BW 20.000000000000 MH3 CH BW 20.00000000000000000000000000000000000	1	.3 di	B Offse	t					v 1	[T1]	2	-4 .4370			
20 1 AVG 40 40 40 40 40 40 40 40 40 40											20	1: .0000			Gi
1AVG 1 30 1 40 <															
40 0	1 A V	G			Ň			Λ	Δ						1:
00 00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>								~							-
50 70 80 80 80 Conter 2.462 GHz 10 MHz/ Span 100 MHz				m)	\mathcal{N}				ω (M	<u> </u>	~~~			-
30 C0 C0 C0 00 C0 C0 C0 <td>50</td> <td>с (, .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~~</td> <td></td> <td>Meny</td> <td>•</td>	50	с (, .										~~		Meny	•
Co Co Co Center 2.462 GHz 10 MHz/ Span 100 MHz	70														-
Conter 2.462 GHz Conter 2.462 GHz<	3 0														-
Center 2.462 GHz 10 MHz/ Span 100 MHz					C	0	CC)							
	Cen e:				:12:08	10	MHz/					Span	100	MHz	

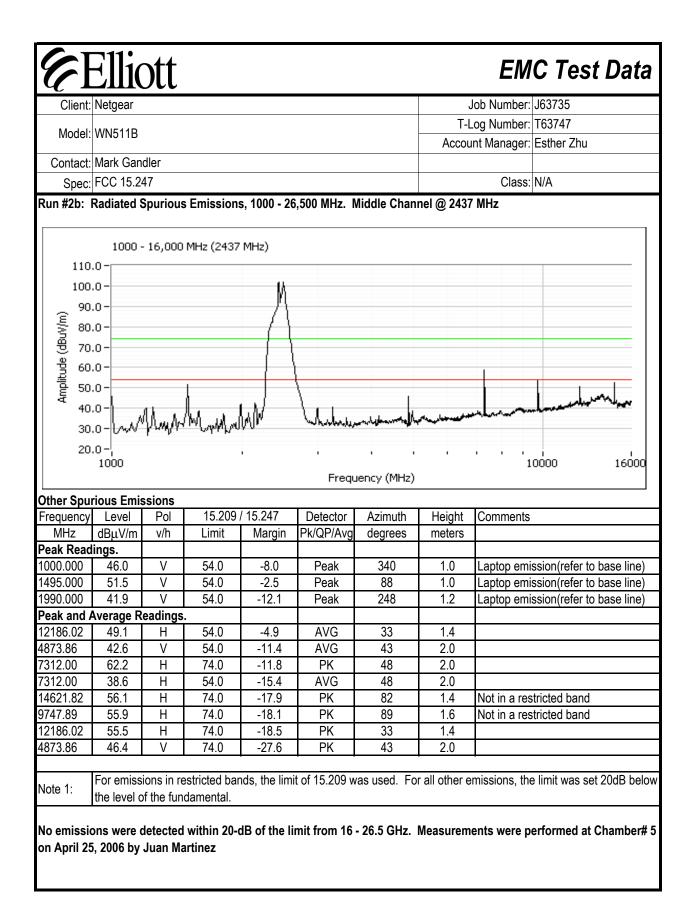







Ellio	IT			ЕM	C Test	D	
Client: Netgear			Jo	b Number:	J63735		
Model: WN511B				g Number:			
			Account	t Manager:	Esther Zhu		
Contact: Mark Gandl			-	Class:	N1/A		
Spec: FCC 15.247	·			Uiass.	N/A		
FCC 15.24	7 DTS - Power, F	Fundamental, (802.11b)	and Sp	urious	; Emissio	on	
Test Specifics							
Objective: T	he objective of this test sessior pecification listed above.	າ is to perform final qualif	ication testing	g of the EU	T with respect to	o th	
Date of Test: 4	/12/2006	Config. Used:	2				
Test Engineer: Juan Martinez Config Change: None							
Test Location: F	remont Chamber #4	Host Unit Voltage	120V/60Hz				
equipment was located	upport equipment were located				testing. Remo	ote	
Ambient Condition	ns: Temperature:	19 °C					
	Rel. Humidity:	-					
		00 /0					
Summary of Resu	lts						
Run #	Test Performed	Limit	Pass / Fail	Result	/ Margin		
	Power & Bandedges	FCC Part 15.209 / 15.247(c)	Pass	Refe	r to run		
1	J. J						
	Radiated Spurious Emissions 1,000-26,500MHz	FCC Part 15.209 / 15.247(c)	Pass	Refe	r to run		

U I	Elliott						EM	C Test	Data
_	Netgear					Jol	o Number:	J63735	
Medel		T-Lo	g Number:	T63747					
wodel:	WN511B					Account	Manager:	Esther Zhu	
Contact:	Mark Gandler								
Spec:	FCC 15.247						Class:	N/A	
ransmitte Regulatory	utput Power d signal on chain is / Power Measuren d 3dB attenuator	nents:							
Power	Frequency (MHz)		Power (dBm		Antenr	a Gain (dBi)		EIRP	
Setting	2412	Chain 1	Chain 2	Total	Chain 1	Chain 2	Total	dBm	W
	2412	18.8		18.8	-1.6		-	17.3	0.054
Note 1: Note 2:	analyzer was confi tranmsitting) and p EIRP - if transmit c power (i.e. beam-fi	ower integra	ation over 20 oherent then	MHz the EIRP is	s calculated f	rom the sum of	of the anter	nna gains plus	the total
Note 3:	antenna. If the tra can be treated ind		s are incohere	ent then the	e system ante	enna gain is n	ot applicab	ole as each tra	nsmit cha



Elliott			EM	C Test Data
Client: Netgear			Job Number:	J63735
			T-Log Number:	
Model: WN511B			Account Manager:	
Contact: Mark Gandler				
Spec: FCC 15.247			Class:	N/A
Run #1a: Radiated Funadm	ental and Band edge.			
(refer to power	r tables of run 1 of 802.11b	o data) Main, Cha	nnel 1 (2412 MHz), 802.11	b (Vertical)
6	Marker 4 [T2]	RBW	1 MHz RF A	tt 10 dB
Ref Lvl	48.41 c	IBNA ABM	1 MHz	
113 dB V V	2.38747495	GHz SWT	5 ms Unit	db y v
113 110 <u>32 dB Offset</u>			▼ 4 [T2]	48.41 dD37
				8747495 GHz
100				104.45 dBNV
				58.54 dB y V
90			2.3	38740 p3 GHz
			▽ ₃ [T2]	100.77 dbyv
80 IVIEW			2.4	10942886 GHz IN1 1MA
2VTRW D1 74 dbV				2MA
70				
60		2		P20
	1 man farmerly	Mun alm	•	
50		4		
		$\sim \sim$		
40				
30				
50				
20				
20				
13 Center 2.39 GH		7 MHz/		Spap 70 MHz
		/ 11112/		Span 70 MHz
Date: 1.MAY.20	006 16:44:34			

E	Ellic	ott						EM	C Test Data	
Client:	Netgear							Job Number:	J63735	
							T-Log Number: T63747			
Model:	WN511B						Account Manager: Esther Zhu			
Contact:	Mark Gan	dler								
	FCC 15.2							Class:	N/A	
			Emission	s. 1000 - 26	,500 MHz. L	ow Channe	@ 2412 M	Hz		
ittaii #24i i		opunou		, 1000 20	,000 111121 2					
Other Spu	rious Emis	ssions								
Frequency		Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
4824.010	49.4	V	54.0	-4.6	AVG	72	1.4			
9647.917	48.3	V	54.0	-5.7	AVG	134	1.4	Not restrict	ed (with restricted limit)	
7238.300	47.1	V	54.0	-6.9	AVG	44	1.6			
4823.917	45.5	Н	54.0	-8.5	AVG	17	1.5			
7238.333	42.9	Н	54.0	-11.1	AVG	136	1.4			
7238.333	61.2	Н	74.0	-12.8	PK	136	1.4			
7238.300	59.3	V	74.0	-14.7	PK	44	1.6			
4824.010	53.3	V	74.0	-20.7	PK	72	1.4			
9647.917	53.2	V	74.0	-20.8	PK	134	1.4	Not restrict	ed (with restricted limit)	
4823.917	50.5	Н	74.0	-23.5	PK	17	1.5			
					1 1					
	For emiss	ions in re	estricted bar	nds, the limi	t of 15.209 w	as used. Fo	r all other e	missions, the	e limit was set 20dB below	
Note 1:	the level of			,				,-		
No emissio	ons were o	detected	within 20-o	dB of the li	mit from 16	- 26.5 GHz.	Measurem	ents were p	erformed at Chamber# 5	
on April 25										
	,,									
1										

Client: Netgear Job Number: J63735 Model: WN511B T-Log Number: T63747 Contact: Mark Gandler Spec: FCC 15.247 Class: N/A Contact: Mark Gandler Class: N/A Spec: FCC 15.247 Class: N/A Radiated Spurious Emissions, 1000 - 26,5600 MHz. High Channel @ 2462 MHz Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 9847.887 51.3 V 54.0 -2.7 AVG 80 1.7 Not restricted (with restricted limit 4924.050 49.2 H 54.0 -3.0 AVG 15 1.4		Ellic	<u>) </u>					1		C Test Data
Model: WNS11B Account Manager: Esther Zhu Contact: Mark Gandler Class: N/A Spec: FCC 15.247 Class: N/A Run #2c: Radiated Spurious Emissions, 1000 - 26,5600 MHz. High Channel @ 2462 MHz Class: N/A Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9847.887 51.3 V 54.0 -2.7 AVG 80 1.7 Not restricted (with restricted limit 4924.050 49.2 H 54.0 -4.8 AVG 15 1.4 4923.830 49.1 V 54.0 -5.0 AVG 14 1.0 7384.066 63.9 H 74.0 -10.1 PK 40 1.4 7386.833 63.6 V 74.0 -10.2 AVG 137 1.6 7386.833 63.6 V 74.0 -11.2 AVG <td>Client:</td> <td>Netgear</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td colspan="3"></td>	Client:	Netgear								
Contact: Mark Gandler Spec: Class: N/A Run #2c: Radiated Spurious Emissions, 1000 - 26,5600 MHz. High Channel @ 2462 MHz Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9847.887 51.3 V 54.0 -2.7 AVG 80 1.7 Not restricted (with restricted limit 4924.050 49.2 H 54.0 -4.8 AVG 15 1.4 4923.830 49.1 V 54.0 -5.0 AVG 14 1.0 7384.066 63.9 H 74.0 -10.1 PK 40 1.4 7386.833 63.6 V 74.0 -10.2 AVG 137 1.6 7384.066 42.8 H 54.0 -11.2 AVG 40 1.4 4924.050 54.6 H 74.0 -18.9 PK 80 1.7 Not restricted (with restricted lim	Model:	WN511B								
Spec: FCC 15.247 Class: N/A Run #2c: Radiated Spurious Emissions, 1000 - 26,5600 MHz. High Channel @ 2462 MHz Chass: N/A Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9847.887 51.3 V 54.0 -2.7 AVG 80 1.7 Not restricted (with restricted limit 4924.050 49.2 H 54.0 -4.8 AVG 15 1.4 4923.830 49.1 V 54.0 -5.0 AVG 14 1.0 7384.066 63.9 H 74.0 -10.1 PK 40 1.4 7386.833 63.6 V 74.0 -11.2 AVG 40 1.4 4924.050 54.6 H 74.0 -11.2 AVG 40 1.4 4924.050 54.6 H 74.0 -11.2 AVG 40 1.4 4	Contonti	Mark Can	dlor					ACCOL	Int Manager:	Esther Zhu
Run #2c: Radiated Spurious Emissions, 1000 - 26,5600 MHz. High Channel @ 2462 MHz Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees meters 9847.887 51.3 V 54.0 -2.7 AVG 80 1.7 Not restricted (with restricted limit 4924.050 49.2 H 54.0 -4.8 AVG 15 1.4 4923.830 49.1 V 54.0 -5.0 AVG 14 1.0 7384.066 63.9 H 74.0 -10.1 PK 400 1.4 4923.833 63.6 V 74.0 -10.2 AVG 137 1.6 7386.833 63.6 V 74.0 -11.2 AVG 40 1.4 4924.050 54.6 H 74.0 -18.9 PK 80 1.7 Not restricted (with restricted limit 4924.050 54.6 H 74.0 -21.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Class</td> <td>Ν/Λ</td>									Class	Ν/Λ
Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9847.887 51.3 V 54.0 -2.7 AVG 80 1.7 Not restricted (with restricted limit 4924.050 49.2 H 54.0 -4.8 AVG 15 1.4 10 10.1 PK 40 1.4 1.0 10.1 10.1 PK 40 1.4 1.0 1.4 1.0 1.4 1.4 1.0 1.4 1.0 1.3 1.6 1.4 1.0 1.4 1.4 1.0 1.4 1.4 1.0 1.3 1.6 1.3 1.6 1.7 Not restricted (with restricted limit 4924.050 54.0 -11.2 AVG 40 1.4 1.4 1.0 1.4 1.4 1.4 1.0 1.4 1.4 1.0 1.4 1.4 1.0 <td< td=""><td></td><td></td><td></td><td>Emission</td><td>c 1000 26</td><td>5600 MH-</td><td>High Chann</td><td>al @ 2462</td><td></td><td></td></td<>				Emission	c 1000 26	5600 MH-	High Chann	al @ 2462		
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9847.887 51.3 V 54.0 -2.7 AVG 80 1.7 Not restricted (with restricted limit 4924.050 49.2 H 54.0 -4.8 AVG 15 1.4 4923.830 49.1 V 54.0 -5.0 AVG 14 1.0 7384.066 63.9 H 74.0 -10.1 PK 400 1.4 7386.833 43.8 V 54.0 -10.2 AVG 137 1.6 7386.833 63.6 V 74.0 -10.4 PK 137 1.6 7384.066 42.8 H 54.0 -11.2 AVG 40 1.4 9847.887 55.1 V 74.0 -19.4 PK 15 1.4			-	LIIISSIOII	5, 1000 - 20	,, 0000 WITTZ . 1	ngn chann	ei (# 2402	1411 12	
9847.887 51.3 V 54.0 -2.7 AVG 80 1.7 Not restricted (with restricted limit 4924.050 49.2 H 54.0 -4.8 AVG 15 1.4 4923.830 49.1 V 54.0 -5.0 AVG 14 1.0 7384.066 63.9 H 74.0 -10.1 PK 40 1.4 7386.833 43.8 V 54.0 -10.2 AVG 137 1.6 7386.833 63.6 V 74.0 -10.4 PK 137 1.6 7384.066 42.8 H 54.0 -11.2 AVG 40 1.4 9847.887 55.1 V 74.0 -18.9 PK 80 1.7 Not restricted (with restricted limit 4924.050 54.6 H 74.0 -19.4 PK 15 1.4 4923.830 52.9 V 74.0 -21.1 PK 14 1.0				15.209	/ 15.247	Detector	Azimuth	Height	Comments	
9847.887 51.3 V 54.0 -2.7 AVG 80 1.7 Not restricted (with restricted limit 4924.050 49.2 H 54.0 -4.8 AVG 15 1.4 4923.830 49.1 V 54.0 -5.0 AVG 14 1.0 7384.066 63.9 H 74.0 -10.1 PK 40 1.4 7386.833 43.8 V 54.0 -10.2 AVG 137 1.6 7386.833 63.6 V 74.0 -10.4 PK 137 1.6 7384.066 42.8 H 54.0 -11.2 AVG 40 1.4 9847.887 55.1 V 74.0 -18.9 PK 80 1.7 Not restricted (with restricted limit 4924.050 54.6 H 74.0 -19.4 PK 15 1.4 4923.830 52.9 V 74.0 -21.1 PK 14 1.0			v/h	Limit	Margin	Pk/QP/Avg	degrees			
4923.830 49.1 V 54.0 -5.0 AVG 14 1.0 7384.066 63.9 H 74.0 -10.1 PK 40 1.4 7386.833 43.8 V 54.0 -10.2 AVG 137 1.6 7386.833 63.6 V 74.0 -10.4 PK 137 1.6 7384.066 42.8 H 54.0 -11.2 AVG 40 1.4 9847.887 55.1 V 74.0 -18.9 PK 80 1.7 Not restricted (with restricted limit 4924.050 9847.887 55.1 V 74.0 -19.4 PK 15 1.4 4923.830 52.9 V 74.0 -21.1 PK 14 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB be the level of the fundamental.	9847.887		V	54.0		AVG	80	1.7	Not restrict	ed (with restricted limit)
7384.066 63.9 H 74.0 -10.1 PK 40 1.4 7386.833 43.8 V 54.0 -10.2 AVG 137 1.6 7386.833 63.6 V 74.0 -10.4 PK 137 1.6 7384.066 42.8 H 54.0 -11.2 AVG 40 1.4 9847.887 55.1 V 74.0 -18.9 PK 80 1.7 Not restricted (with restricted limit 4924.050 9847.887 55.1 V 74.0 -19.4 PK 15 1.4 4923.830 52.9 V 74.0 -21.1 PK 14 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB be the level of the fundamental.	4924.050	49.2	Н	54.0	-4.8	AVG	15	1.4		, , , , ,
7386.833 43.8 V 54.0 -10.2 AVG 137 1.6 7386.833 63.6 V 74.0 -10.4 PK 137 1.6 7386.833 63.6 V 74.0 -10.4 PK 137 1.6 7384.066 42.8 H 54.0 -11.2 AVG 40 1.4 9847.887 55.1 V 74.0 -18.9 PK 80 1.7 Not restricted (with restricted limit 4924.050 4924.050 54.6 H 74.0 -19.4 PK 15 1.4 4923.830 52.9 V 74.0 -21.1 PK 14 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB be the level of the fundamental.	4923.830	49.1	V	54.0	-5.0	AVG	14	1.0		
7386.833 63.6 V 74.0 -10.4 PK 137 1.6 7386.833 63.6 V 74.0 -10.4 PK 137 1.6 7384.066 42.8 H 54.0 -11.2 AVG 40 1.4 9847.887 55.1 V 74.0 -18.9 PK 80 1.7 Not restricted (with restricted limit 4924.050 4924.050 54.6 H 74.0 -19.4 PK 15 1.4 4923.830 52.9 V 74.0 -21.1 PK 14 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB be the level of the fundamental.	7384.066	63.9	Н	74.0	-10.1	PK	40	1.4		
7384.066 42.8 H 54.0 -11.2 AVG 40 1.4 9847.887 55.1 V 74.0 -18.9 PK 80 1.7 Not restricted (with restricted limit 4924.050 4924.050 54.6 H 74.0 -19.4 PK 15 1.4 4923.830 52.9 V 74.0 -21.1 PK 14 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB be the level of the fundamental. Not emissions were detected within 20-dB of the limit from 16 - 26.5 GHz. Measurements were performed at Chambe	7386.833	43.8	V	54.0	-10.2	AVG	137	1.6		
9847.887 55.1 V 74.0 -18.9 PK 80 1.7 Not restricted (with restricted limit 4924.050 4924.050 54.6 H 74.0 -19.4 PK 15 1.4 4923.830 52.9 V 74.0 -21.1 PK 14 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB be the level of the fundamental. Not emissions were detected within 20-dB of the limit from 16 - 26.5 GHz. Measurements were performed at Chambe	7386.833	63.6		74.0		PK	137	1.6		
4924.050 54.6 H 74.0 -19.4 PK 15 1.4 4923.830 52.9 V 74.0 -21.1 PK 14 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB be the level of the fundamental. Note 1: Ho emissions were detected within 20-dB of the limit from 16 - 26.5 GHz. Measurements were performed at Chambe	7384.066	42.8	Н	54.0	-11.2	AVG	40	1.4		
4923.830 52.9 V 74.0 -21.1 PK 14 1.0 Iote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB be the level of the fundamental. Io emissions were detected within 20-dB of the limit from 16 - 26.5 GHz. Measurements were performed at Chambe	9847.887	55.1	V	74.0	-18.9	PK	80	1.7	Not restrict	ed (with restricted limit)
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB be the level of the fundamental.		54 6	Н	74 0	-19.4	PK	15	14		
Note 1: the level of the fundamental. No emissions were detected within 20-dB of the limit from 16 - 26.5 GHz. Measurements were performed at Chambe	4924.050	04.0		14.0	10.4		10	1.7		
	4923.830	52.9 For emissi	V ons in re	74.0 estricted bar	-21.1	PK	14	1.0	emissions, the	e limit was set 20dB belo

EMC Test Data

E	Elliott	ЕМ	C Test Data
Client:	Netgear	Job Number:	J63735
Madal	WN511B	T-Log Number:	T63747
Model.	WNSTID	Account Manager:	Esther Zhu
	Mark Gandler		
Spec:	FCC 15.247	Class:	N/A

FCC 15.247 DTS - Antenna Port Bandwidth and Spurious Emissions (802.11n, 20 MHz)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 4/21/2006 Test Engineer: Jmartinez Test Location: Chamber #2

Config. Used: 1 Config Change: None EUT Voltage: 120V, 60Hz

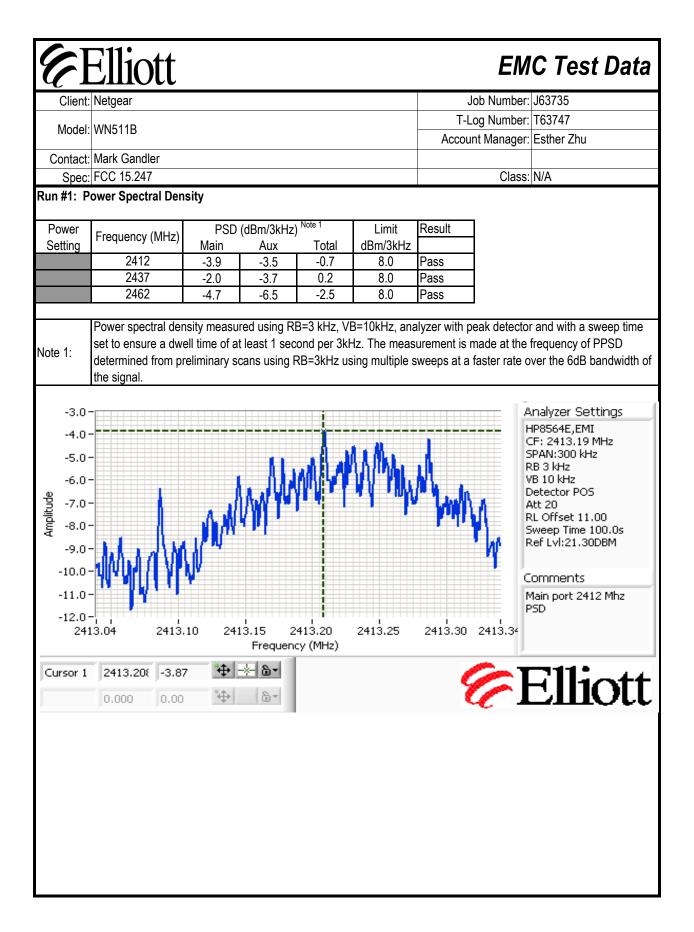
General Test Configuration

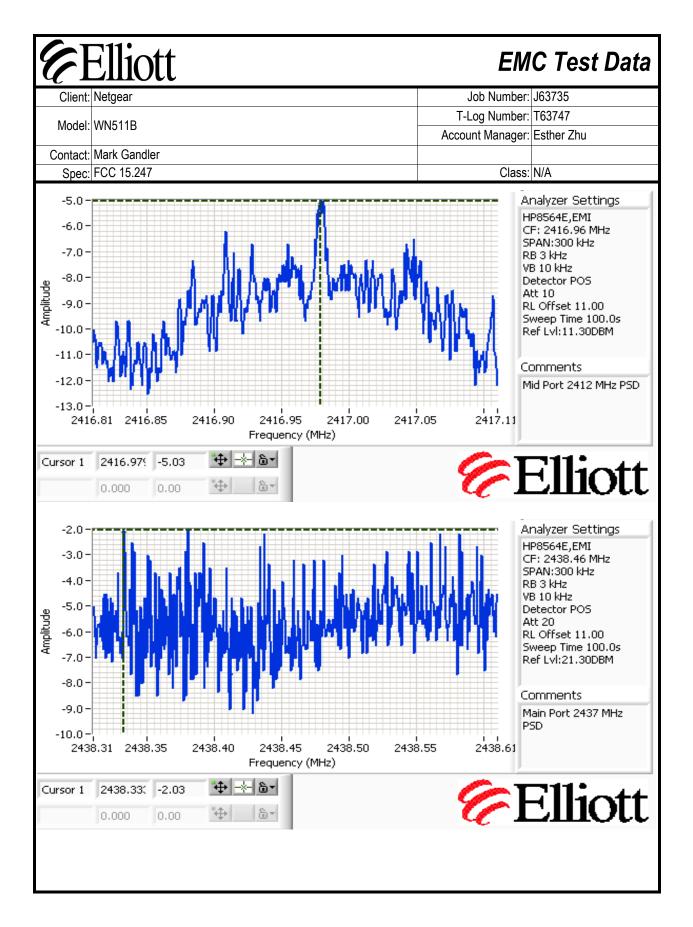
The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. For the spurious emissions all transmit chains were connected simultaneously to the analyzer via a combiner. All other measurements were made on a single chain.

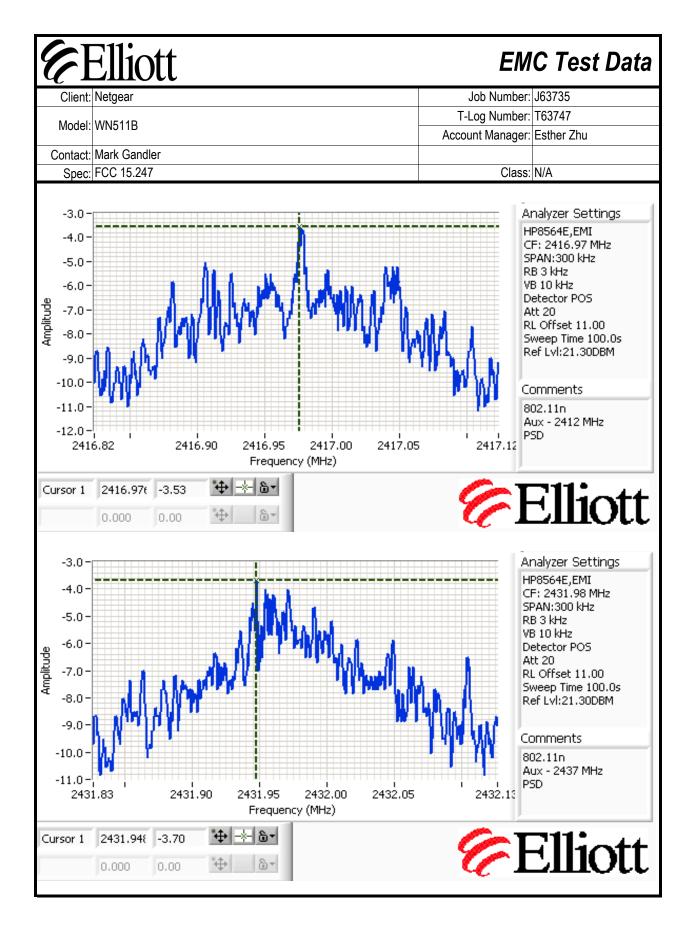
All measurements are corrected to allow for the external attenuators used.

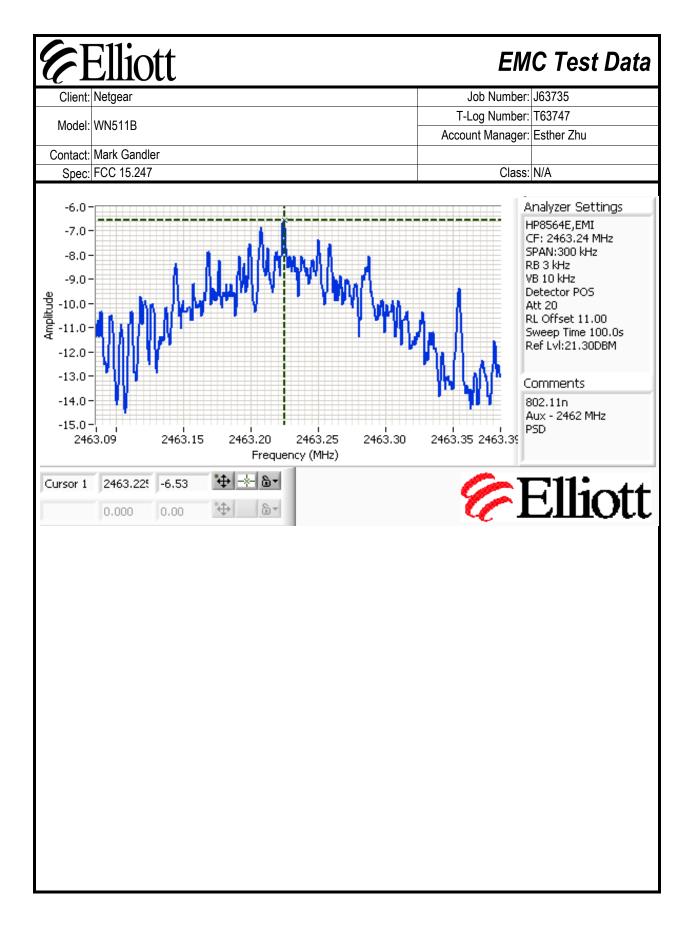
Ambient Conditions:	Temperature:	17 °C
	Rel. Humidity:	57 %

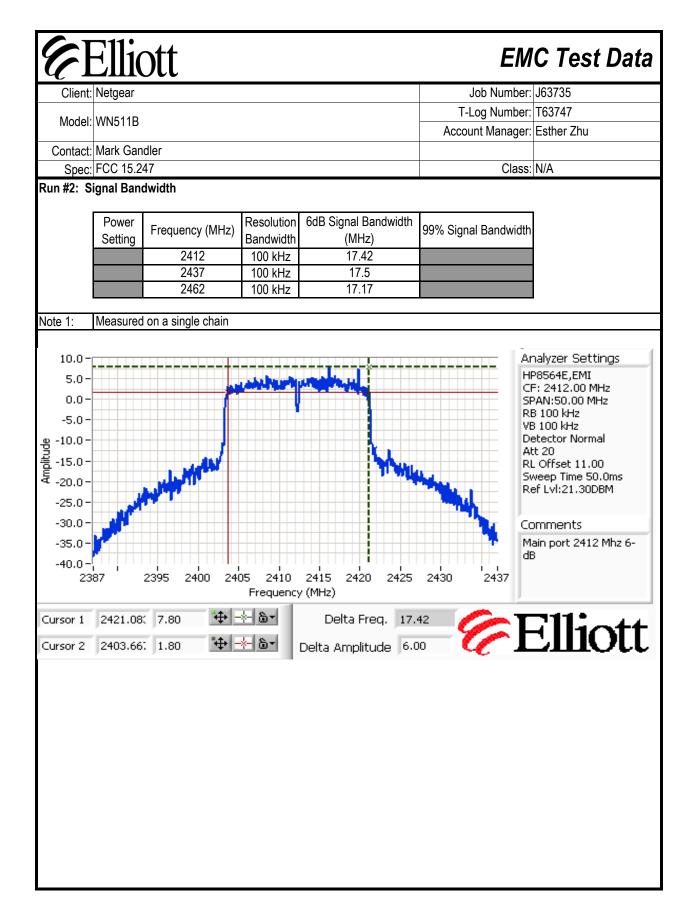
Summary of Results

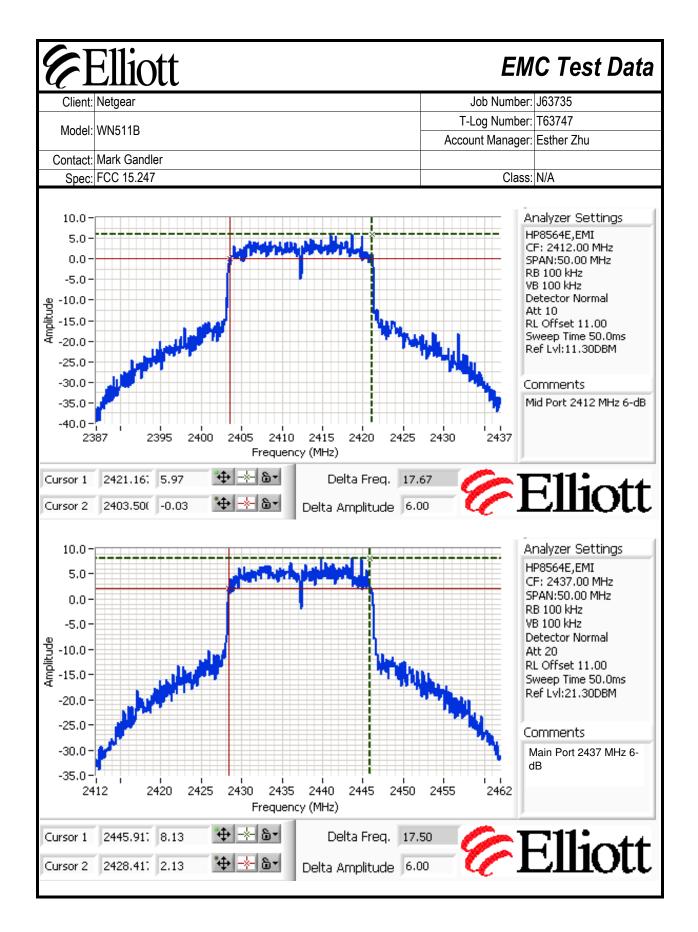

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power Spectral Density (PSD)	15.247(d)	Pass	Refer to run
2	6dB Bandwidth	15.247(a)	Pass	Refer to run
3	Spurious emissions	15.247(b)	Pass	Refer to run

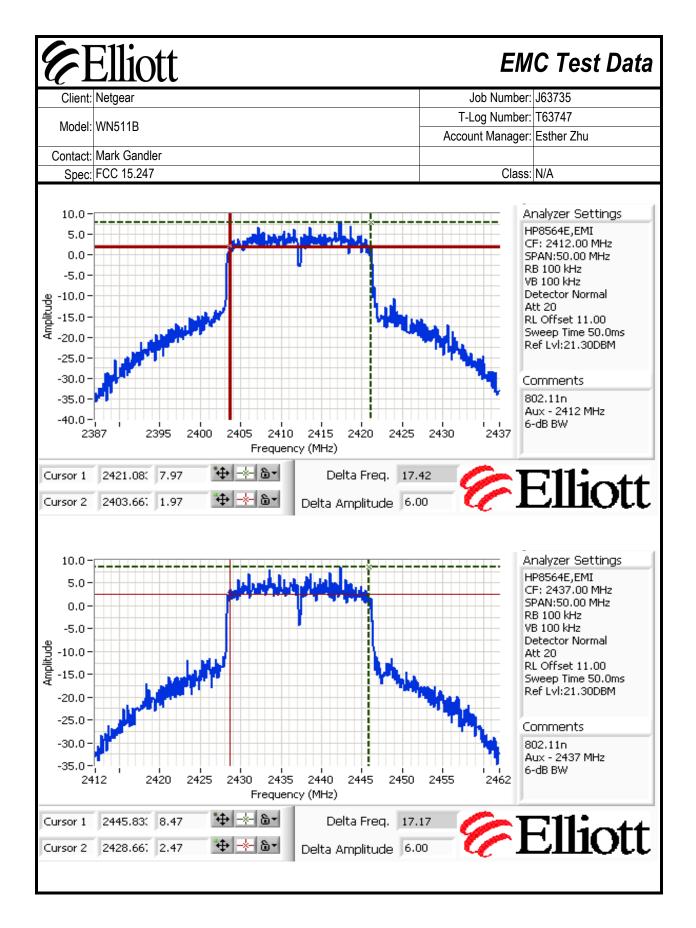

Modifications Made During Testing:

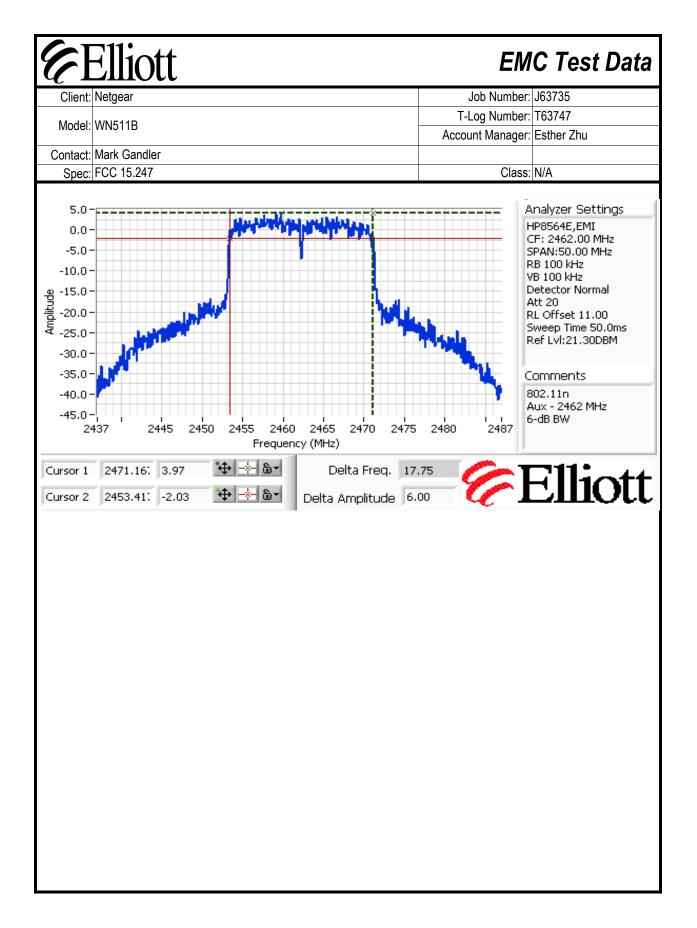

No modifications were made to the EUT during testing

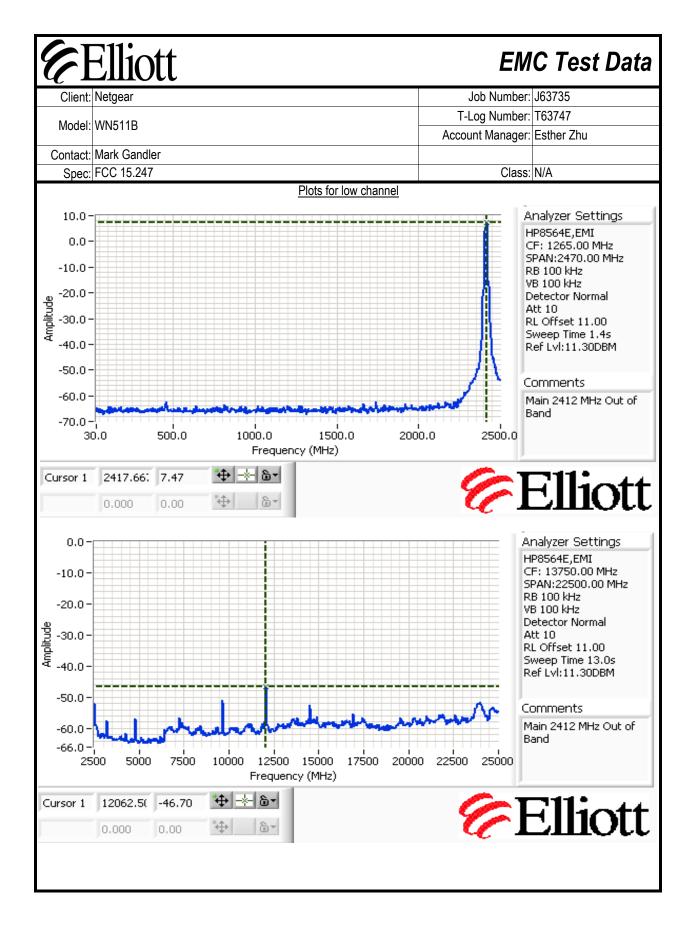

Deviations From The Standard

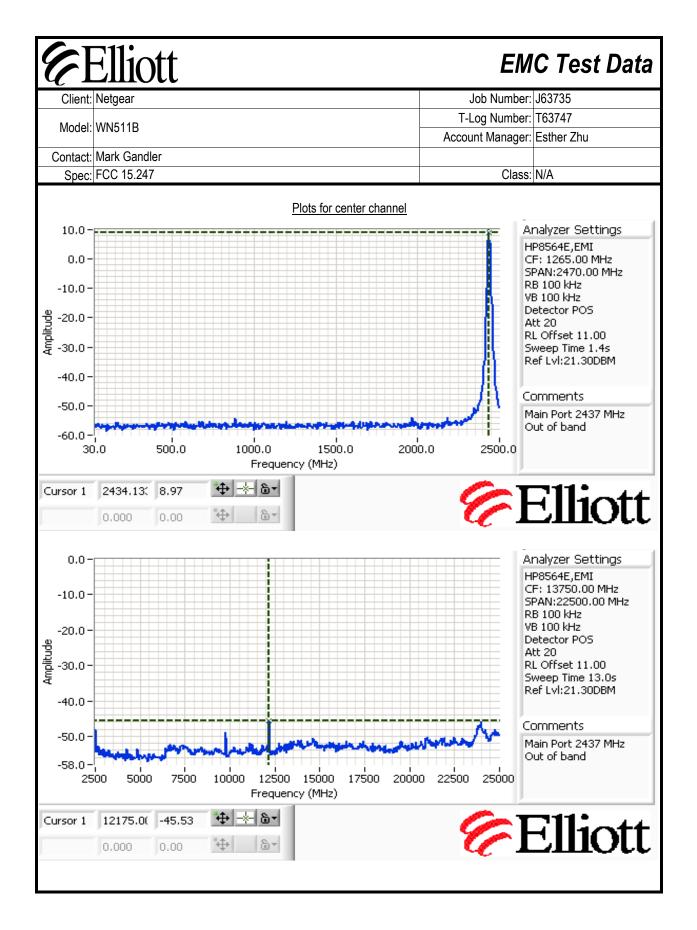

No deviations were made from the requirements of the standard.

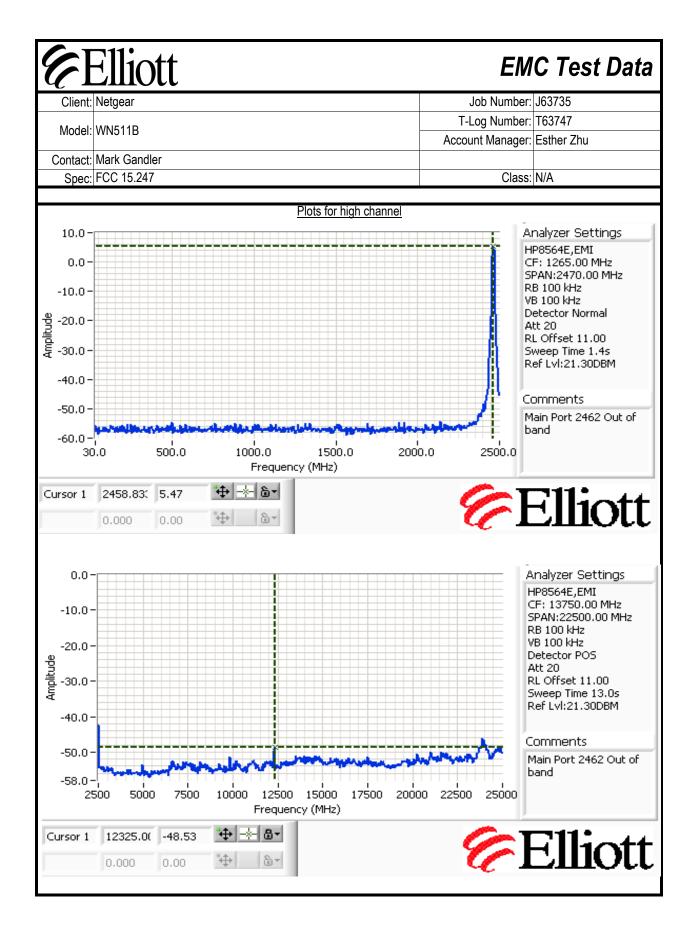


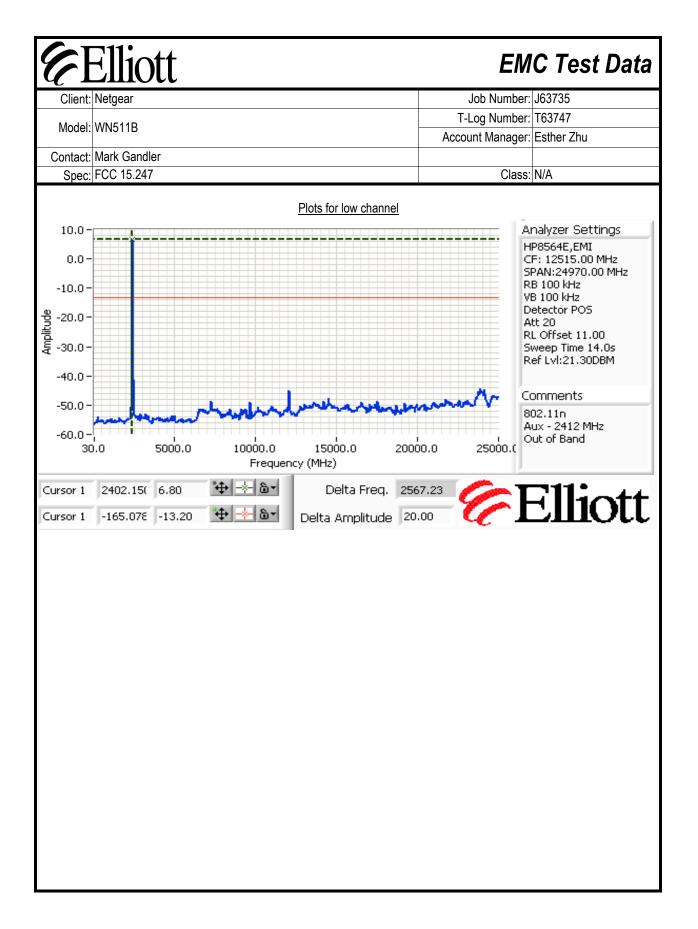


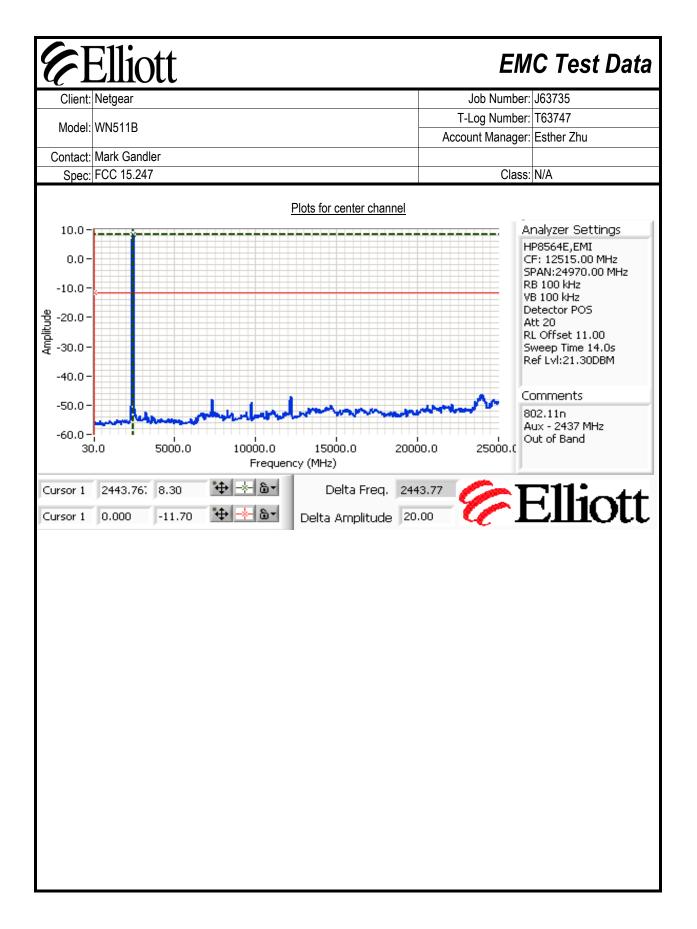


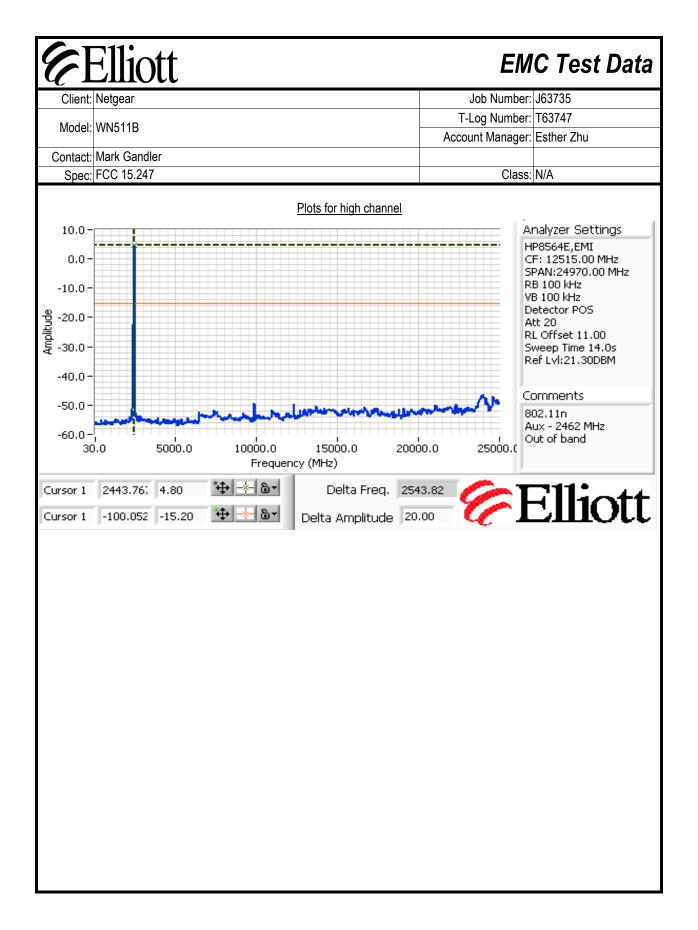









E	Elliott			EM	C Test Data
Client:	Netgear			Job Number:	J63735
				T-Log Number:	T63747
MOUEI.	WN511B			Account Manager:	Esther Zhu
	Mark Gandler				
	FCC 15.247			Class:	N/A
Run #3: O	ut of Band Spurio	us Emissions			
Power S	etting Per Chain	Frequency (MHz)	Limit	Result	
#1	#2 #3				
		2412	-30dBc	Refer to plot	
		2437 2462	-30dBc -30dBc	Refer to plot Refer to plot	
		2402	-30000		l
		chains connected together	⁻ through a combiner,	unused ports on the com	biner terminated in
	50ohms.				
1					
1					
1					



Client:NetgearJob Number:J63735Model:WN511BT-Log Number:T63747Contact:Mark GandlerEsther ZhuSpec:FCC 15.247Class:N/A

FCC 15.247 DTS - Power, Fundamental, and Spurious Emissions (802.11n, 20MHz)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 4/11/2006 Test Engineer: Juan Martinez Test Location: Fremont Chamber #4 Config. Used: 2 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. Remote equipment was located underneat the table.

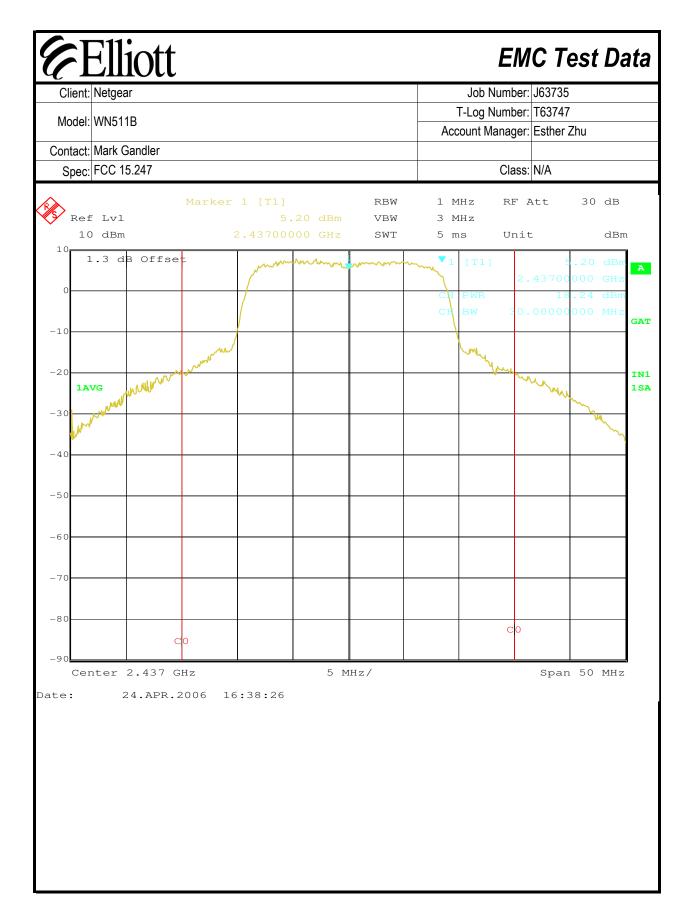
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	20.2 °C
	Rel. Humidity:	53 %

Summary of Results

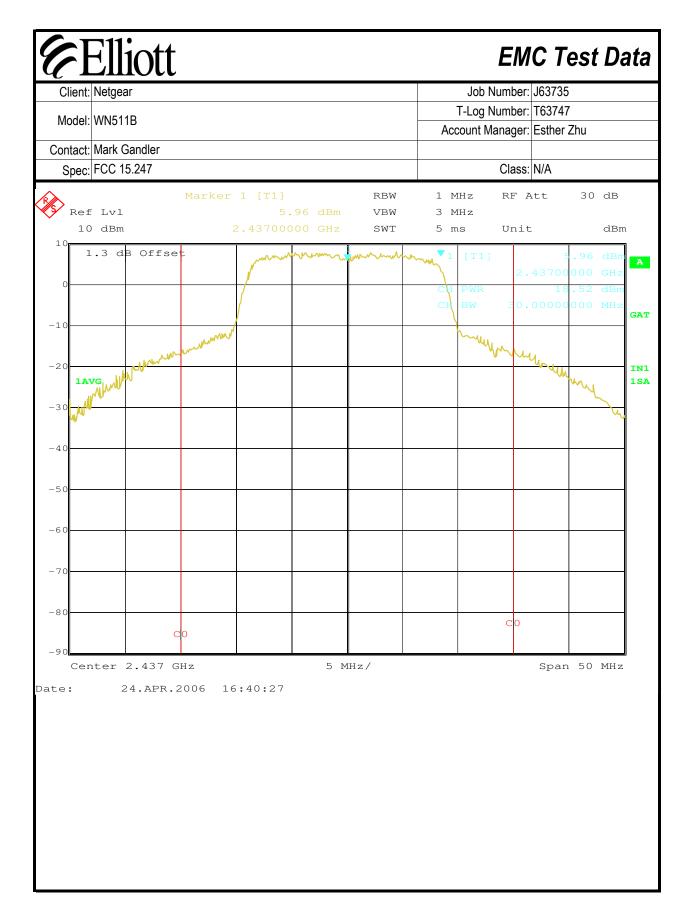
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power & Bandedges	FCC Part 15.209 / 15.247(c)	Pass	Refer to run
2	Radiated Spurious Emissions 1,000-26,500MHz	FCC Part 15.209 / 15.247(c)	Pass	Refer to run

Modifications Made During Testing:

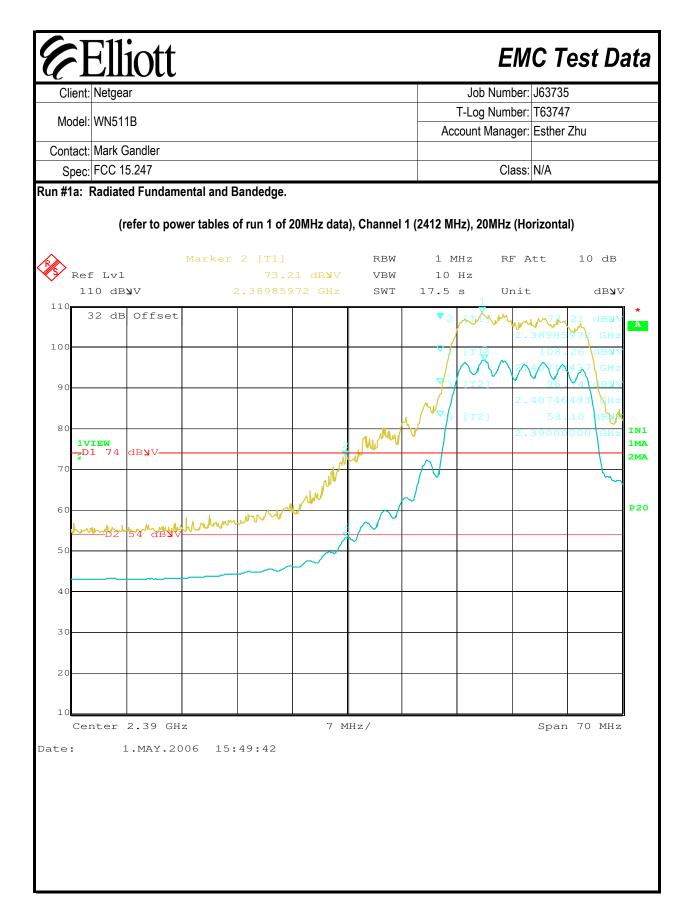

No modifications were made to the EUT during testing

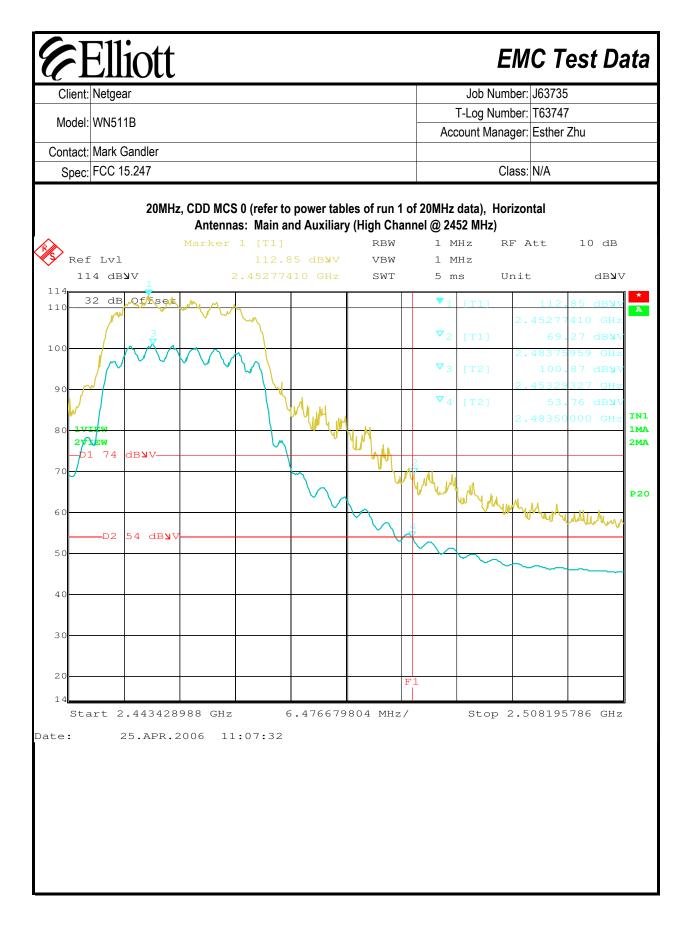
Deviations From The Standard

No deviations were made from the requirements of the standard.

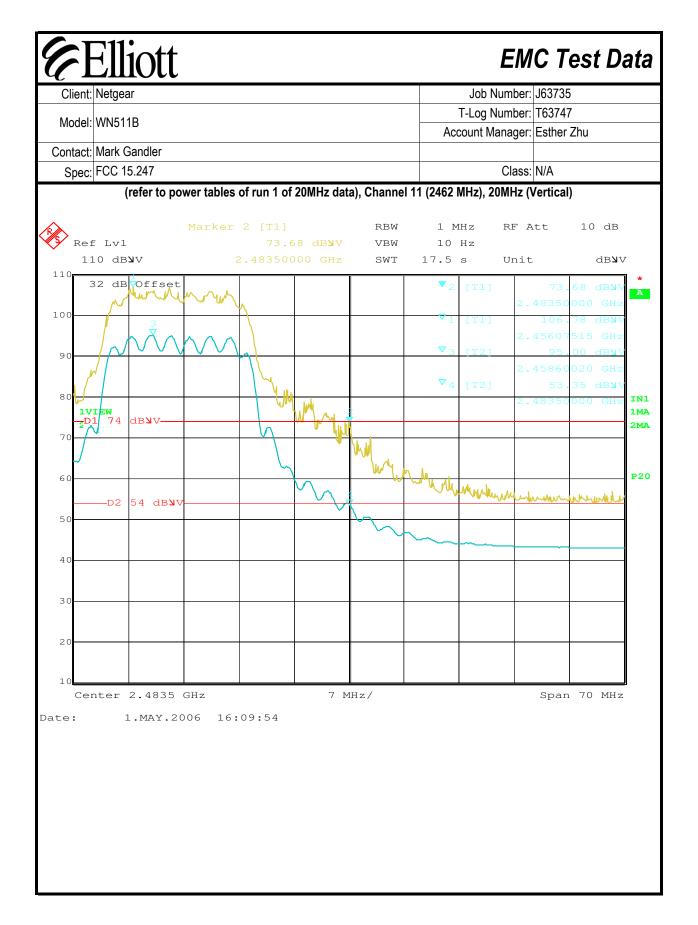

E	Elliott						EM	C Test	: Data		
Client:	Netgear					J	ob Number:	J63735			
						T-L	og Number:	T63747			
Model:	WN511B					Accour	nt Manager:	Esther Zhu			
Contact:	Mark Gandler										
	FCC 15.247						Class:	N/A			
			MΔ	IN & AII	X PORTS	3					
Bun #1: 0	utput Power (MCS					,					
	d signal on chain is		Yes								
	/ Power Measurem		100								
Power			Power (dBr	n) ^{Note 1}	Antenn	a Gain (dBi) Note 3	EIRP	Note 2		
Setting	Frequency (MHz)	Main	Aux	, Total	Main	Aux	, Total	dBm	W		
	2412	16.7	16.5	19.6	-1.6	-1.6	1.4	18.0	0.063		
	2437	18.5	18.2	21.4	-1.6	-1.6	1.4	19.8	0.095		
	2462	16.2	16.0	19.1	-1.6	-1.6	1.4	17.5	0.056		
	Output power meas	-	•	• •	•	,					
Note 1:	RBW=1MHz, VB=3										
	analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was tranmsitting) and power integration over 30 MHz										
					a coloulated fr	om the cum	of the anter	ana gaine nlug	s the total		
Note 2:	EIRP - if transmit chains are coherent then the EIRP is calculated from the sum of the antenna gains plus the total power (i.e. beam-forming is assumed because of coherency on the chains). If the individual chains are incoherent										
NOLE Z.	then the EIRP is calculated from the sum of the individual EIRPs for each chain.										
Note 3:	If the transmit chains are coherent then the total system antenna gain is the sum of the numeric gains for each antenna. If the transmit chains are incoherent then the system antenna gain is not applicable as each transmit chain										
NOIC O.	can be treated inde				o oyotom unite	inia gannio					
		pondonay.									

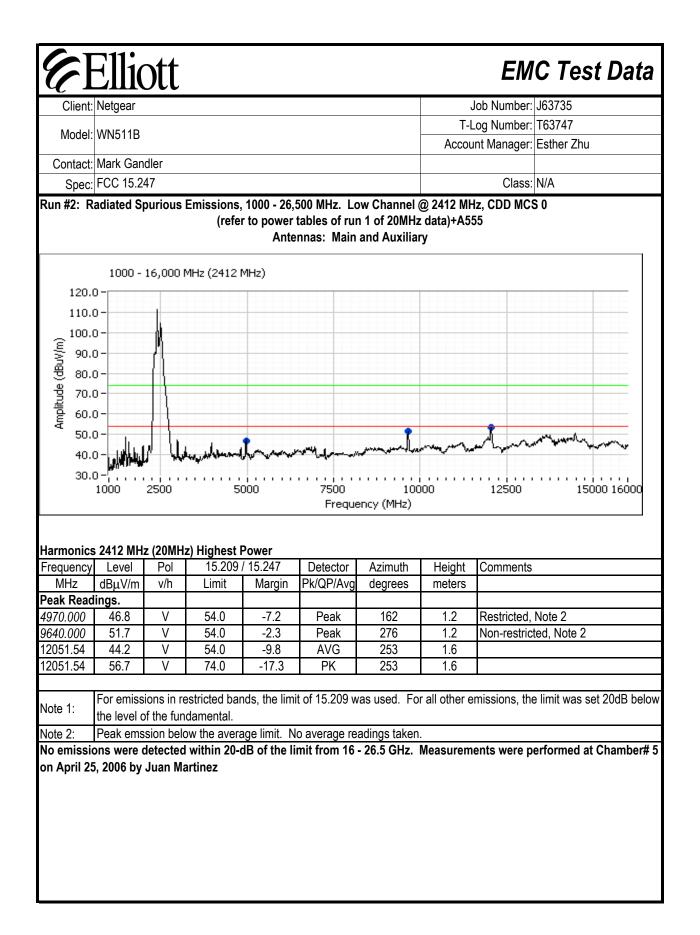
Model: WN511B				Job Number: J63735 T-Log Number: T63747 Account Manager: Esther Zhu			
ontact: Mark Gandle	er			Account Man	ager: Esther Zhu		
Spec: FCC 15.247				C	Class: N/A		
		AU	X PORT				
Ref Lvl	Marke	r 1 [T1] -39.13 dBn	RBW N VBW	1 MHz H 3 MHz	RF Att 30 dB		
20.4 dBm		2.43700000 GHz			Jnit dBm		
0.4 dB Of	ffset			▼1 [T1]	-39.13 dBm		
_ 0					2.43700000 GHz		
		press manual and	mann	CH PWR	16.46 dBm 30.0000000 MHz		
0		1			G		
.0		_					
					I		
0 1AVG		v ⁽⁻		V low	1		
.o	un mart			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	une m		
www.wy					manue		
: O							
0							
0							
0							
0							
0					co		
6	C0						

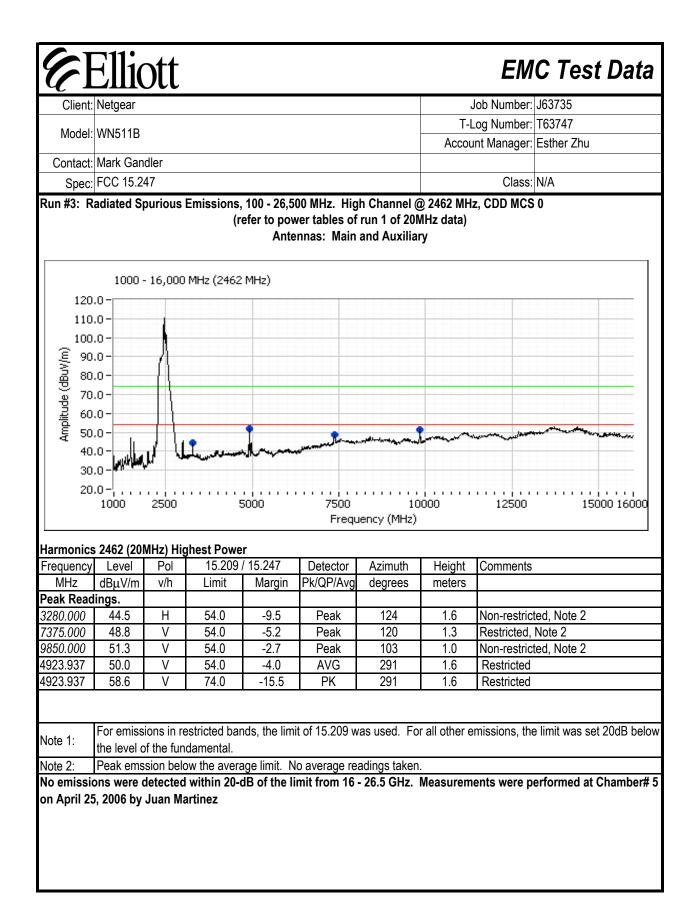


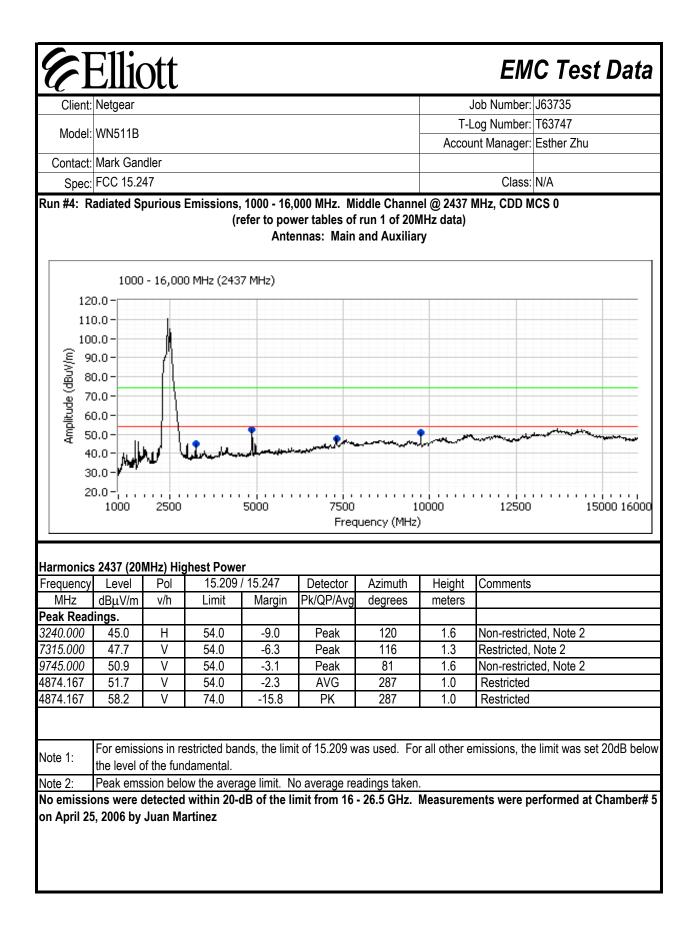

Cli	ent: Netge del: WN51				Job Number: J63735 T-Log Number: T63747 Account Manager: Esther Zhu						
	act: Mark										
Sp	ec: FCC 1	5.247						С	lass: N/A		
	Ref Lvl 20.4 d		Marker		.54 dBm 000 GHz	RBW VBW SWT	1 M 3 M 5 m	1H z	F Att Init	30	dB dBm
• 4 1 0	0.4 d	B Offse [.]	-				▼ 1	[T1]	-42 2.43700	000	dBm GHz
0-				mmen	mundel	mann	CH CH CH	PWR BW	10 30.00000		dBm MHz
10-			m (
20- 30-	LVIEW	in mallertal	Murrr					ware he had	-		1
40	when	Wernwooded								Why	un
50-											
60- 70-											
80-											
90-		С	0					(20		
. 6	Center	2.462 G	Hz	1	5 M	Hz/			Spar	n 50 i	MHz
e:	:	2.MAY.20	006 11:	33 : 15							

	tgear	,						nber: J63735 nber: T6374		
Model: WN								iger: Esther		
	rk Gandler						0	NI/A		
Spec: FC	C 15.247			MAIN			C	lass: N/A		
		Marker	1 [T1]	WAIN	RBW	1 M	IHz R	F Att	30 dB	
Ref L				.39 dBm	VBW	З М				
4	dBm		2.437000	000 GHz	SWT	5 m	is U	nit	dB	m
0.4	dB Offse	÷t				V 1	[T1]	-39	3.39 dB	
L 0		-				СН	PWR	2.43700		-
0			mm	mon	warder	M GH	BW		000 MH:	z
0										G
. 0										_
		med	/				m			I
20 1AVG		- M								1
: 0	Marth	And the second s					4	4 million		_
a de la companya	nymurhour							wou	unen	
									- \a_	<u>,</u>
0										
50										_
0										
-										
3 0										-
0										
.0	C	C 0					(0		
6										




	Client: Netgear						Job Number: J63735			
Model: WN511B					T-Log Number: T63747 Account Manager: Esther Zhu					
Contact: Mark Gandler										
Spec:	FCC 15.247	20.0	1 [m1]			1 1		lass: N/A	2.0	15
	Lvl).4 dBm	Marke	r 1 [T1] -41. 2.437000	.83 dBm)00 GHz	RBW VBW SWT	1 M 3 M 5 m	Hz	RF Att Unit	30 0	iBm
· 4	.4 dB Of	fset				v 1	[T1]	-4	1.83 c	lBm
10						СН	PWR	2.4370		Hz
0			mo	www.	www.ubu	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	BW	30.0000		
Ű										G
10										
20 1V	IEW									1 1
		and the					- Y			
30	Mrvuum	however					1	minun	and the second	
4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	Mrv [m	den V
50										
60										
70										
в 0										
50										
э о —							(c <mark>o</mark>		
. 6		CU								





EMC Test Data

Elliott EMC Tes			
Client:	Netgear	Job Number:	J63735
Madal	WN511B	T-Log Number:	T63747
woder.		Account Manager:	Esther Zhu
Contact:	Mark Gandler		
Spec:	FCC 15.247	Class	N/A

FCC 15.247 DTS - Antenna Port Bandwidth and Spurious Emissions (802.11n, 40 MHz)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 4/21/2006 Test Engineer: Jmartinez Test Location: Chamber #2

Config. Used: 1 Config Change: None EUT Voltage: 120V, 60Hz

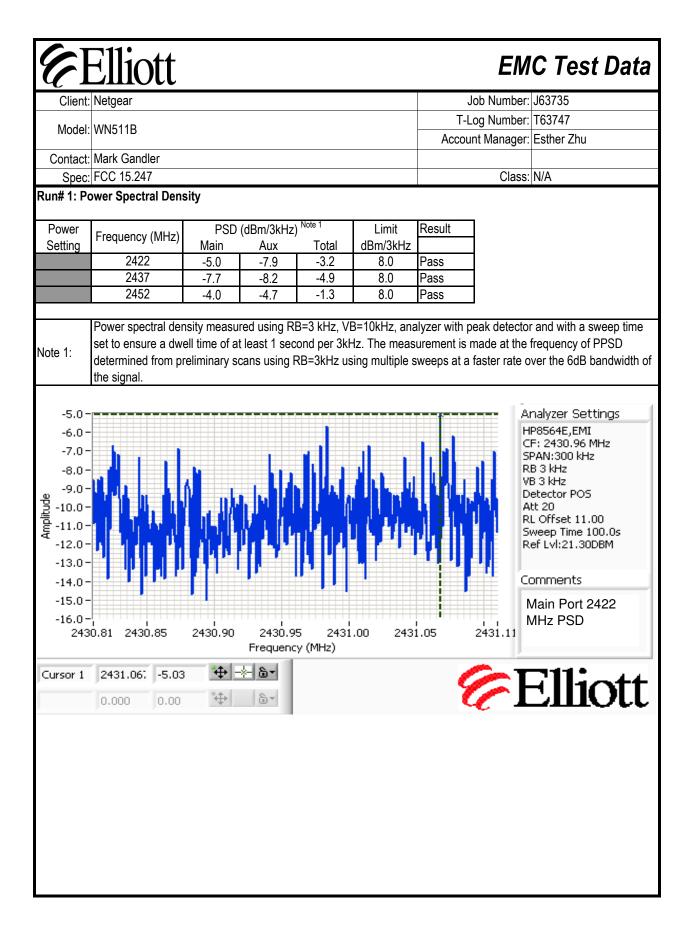
General Test Configuration

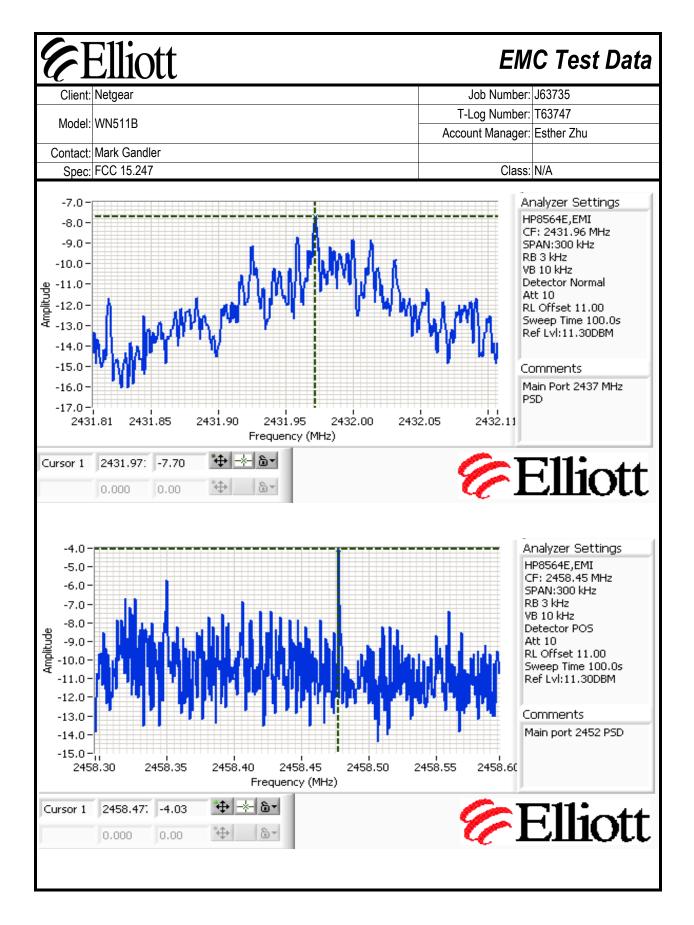
The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. For the spurious emissions all transmit chains were connected simultaneously to the analyzer via a combiner. All other measurements were made on a single chain.

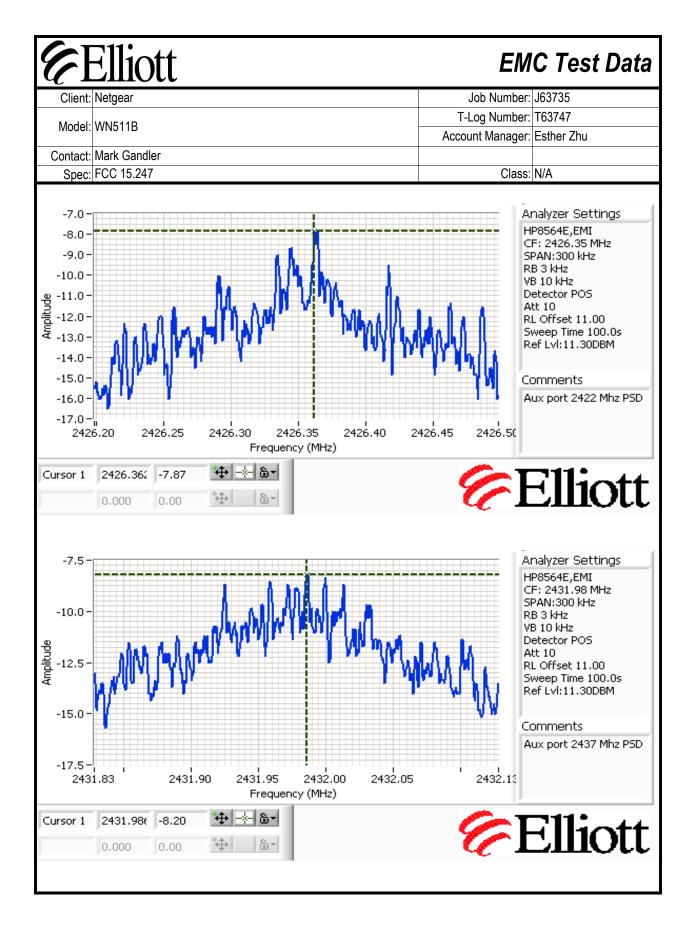
All measurements are corrected to allow for the external attenuators used.

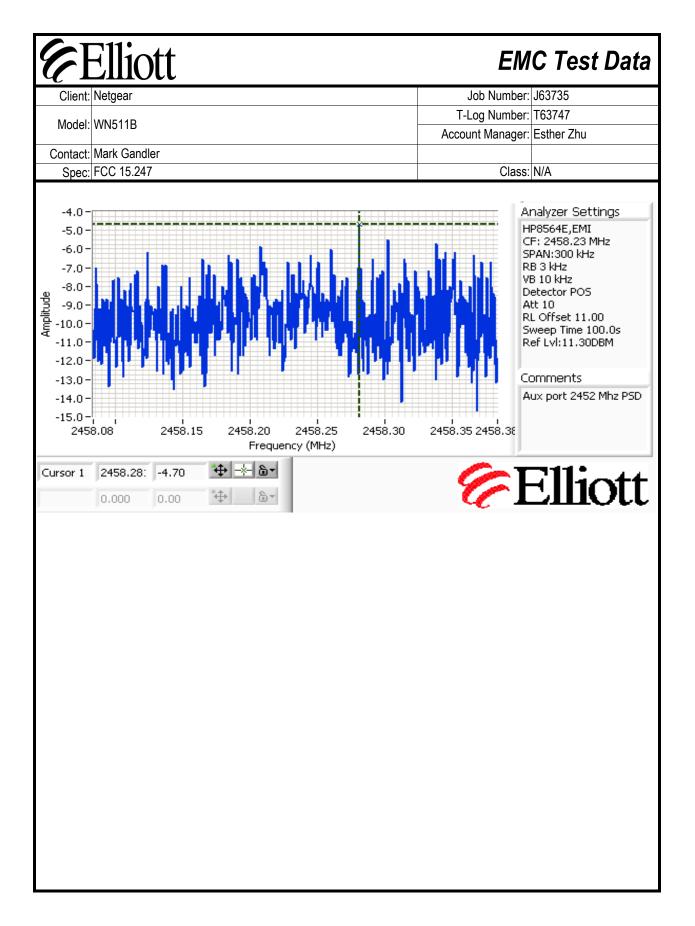
Ambient Conditions:	Temperature:	17 °C	
	Rel. Humidity:	57 %	

Summary of Results

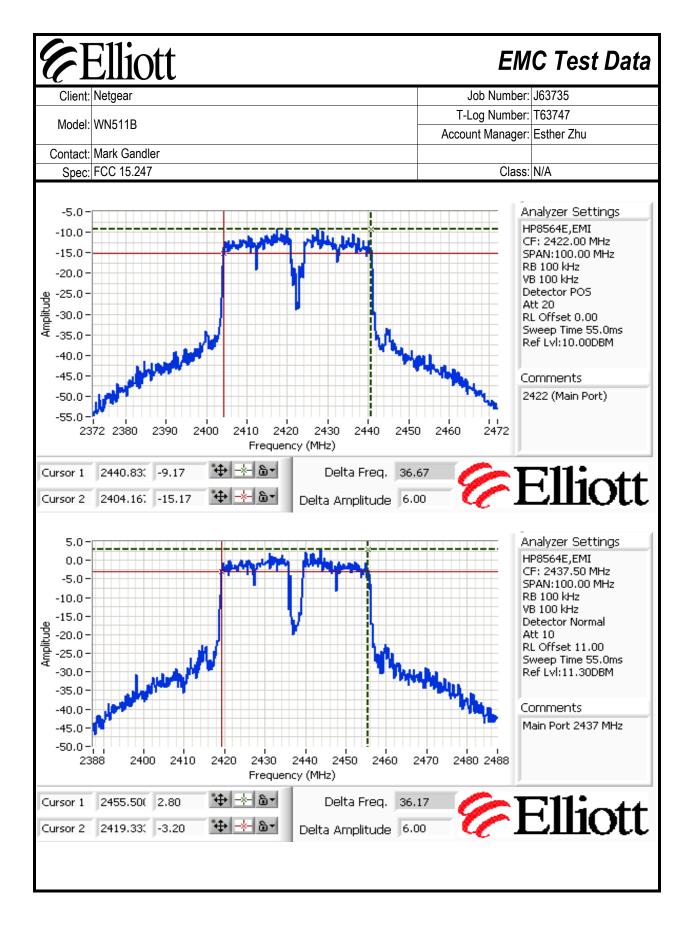

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power Spectral Density (PSD)	15.247(d)	Pass	Refer to run
2	6dB Bandwidth	15.247(a)	Pass	Refer to run
3	Spurious emissions	15.247(b)	Pass	Refer to run

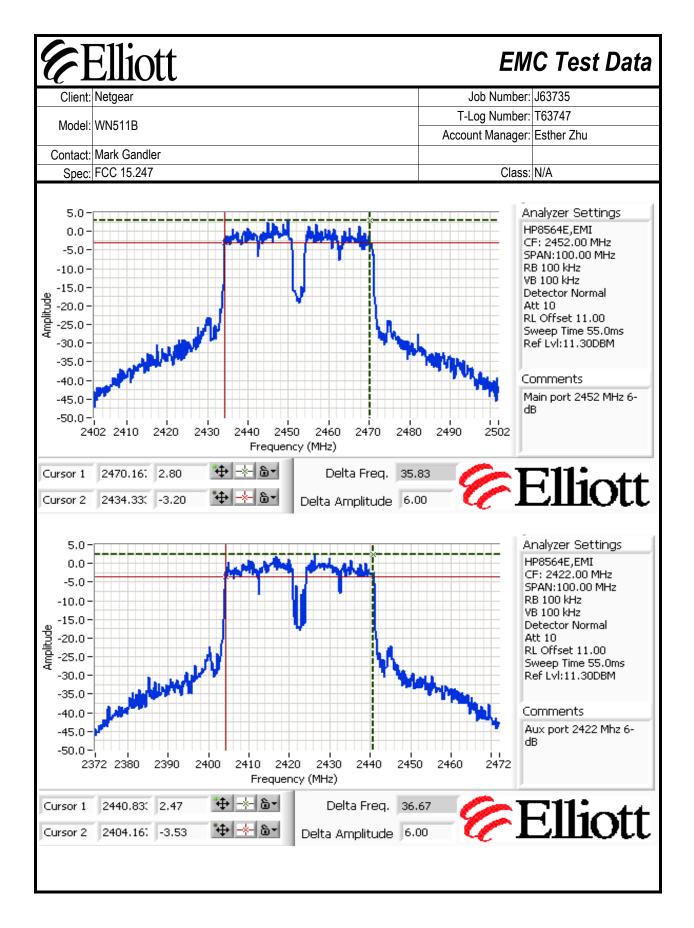

Modifications Made During Testing:

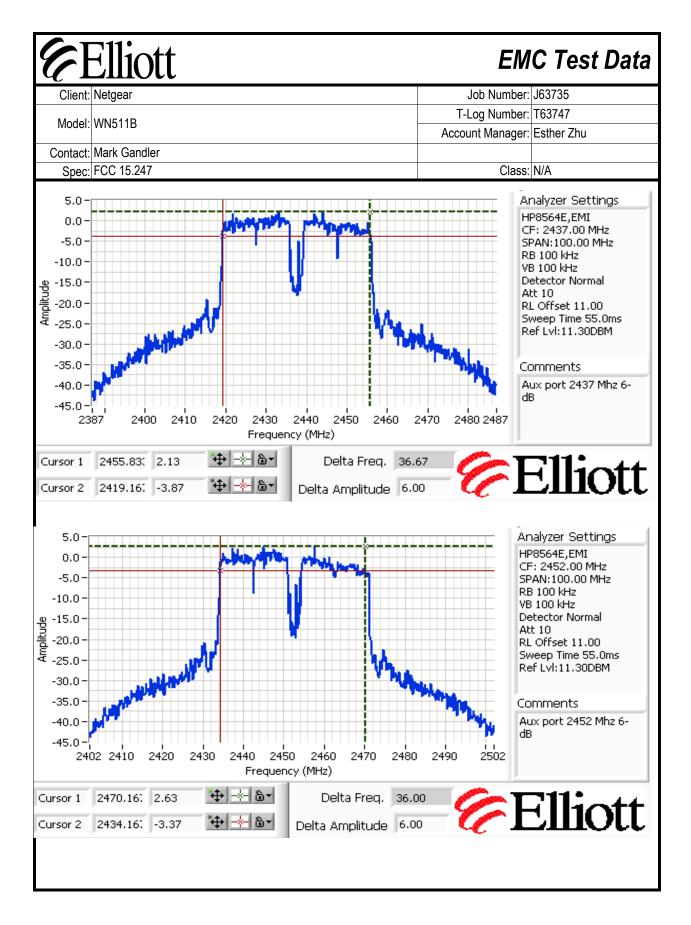

No modifications were made to the EUT during testing

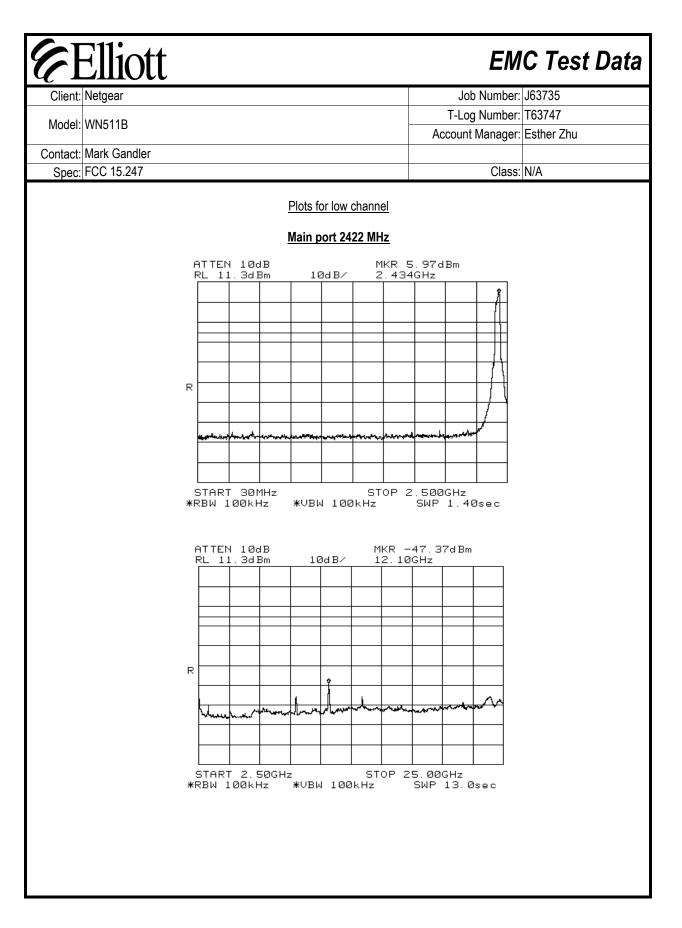

Deviations From The Standard

No deviations were made from the requirements of the standard.

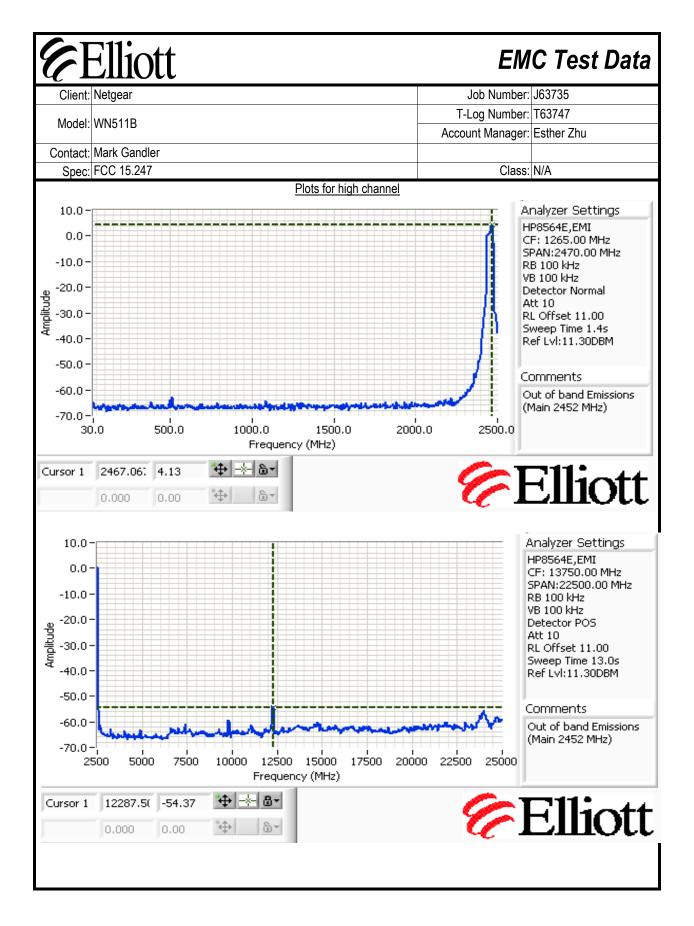


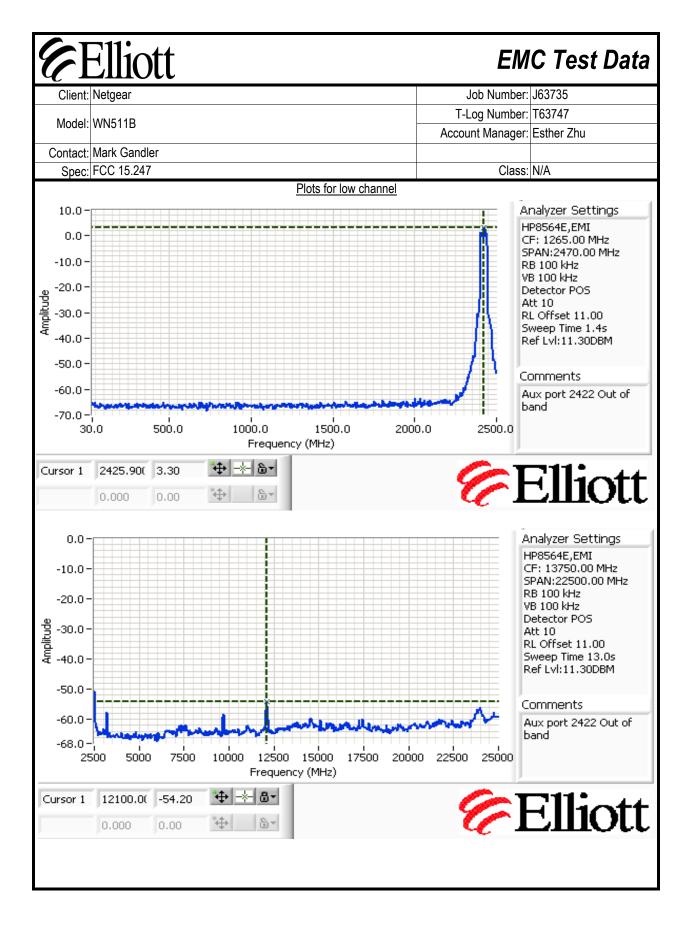


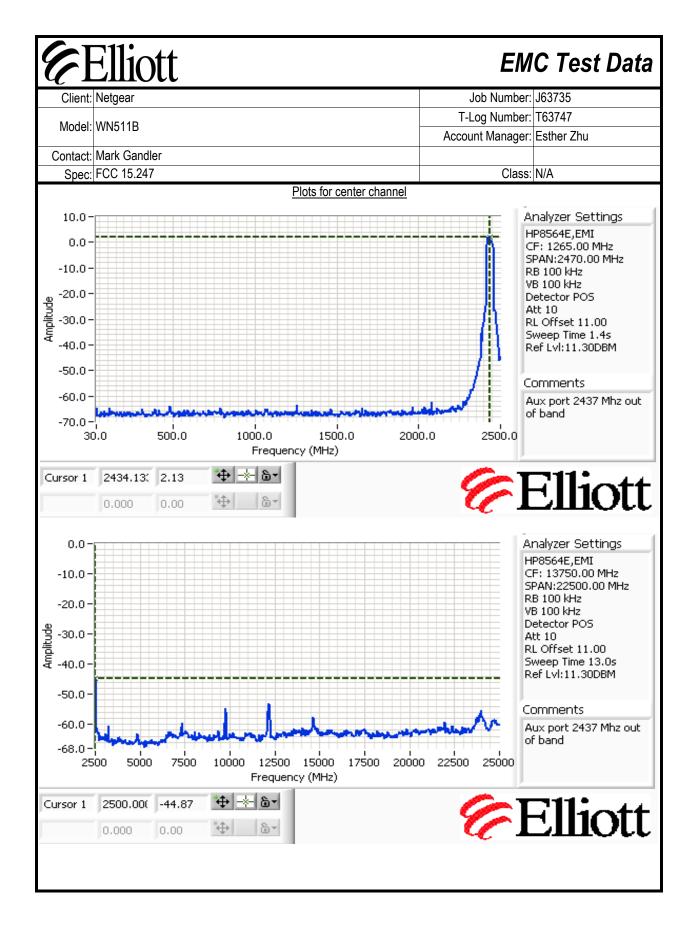


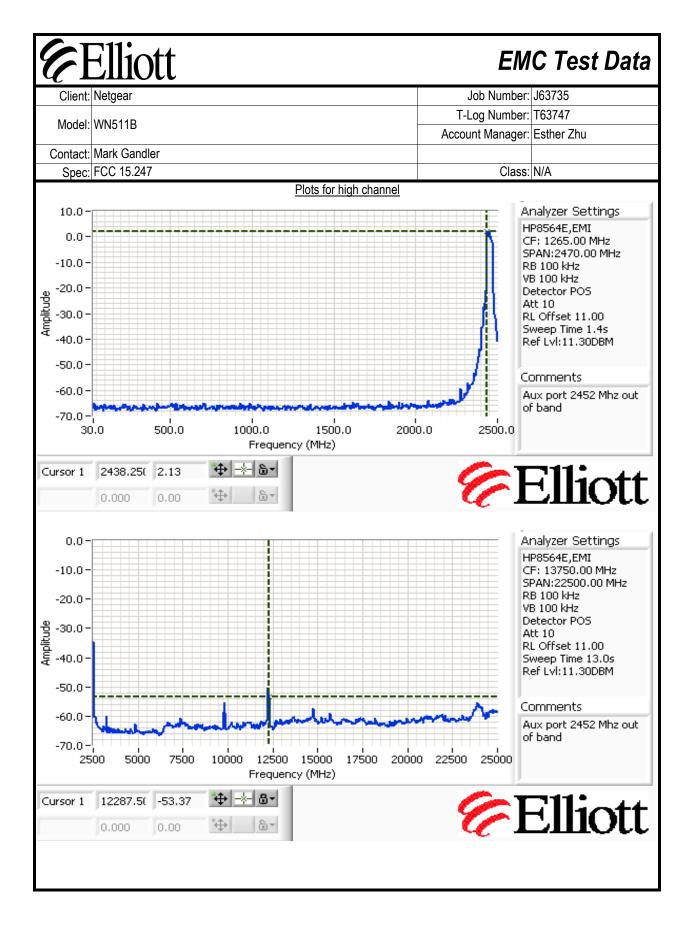

Islent, Netgear Job Number: J63735 iodel: WNS11B tact: Mark Gandler Spec: FCC 15.247 Class: N/A 2: Signal Bandwidth Setting Frequency (MHz) Resolution 6dB Signal Bandwidth 99% Signal Bandwidth 2422 100 kHz 36.617 100 kHz 2452 100 kHz 36.83 100 kHz 35.83 100 kHz 36.71 100 kHz 36.83 100 kHz 100 kHz 36.83	ent: Netgear	ott				C Test D
Model: WNSTTB Account Manager: Esther Zhu Intact: Mark Gandler Image: Esther Zhu Spec: FCC 15.247 Class: N/A 22: Signal Bandwidth Image: Mark Gandler Power Frequency (MHz) Resolution 6dB Signal Bandwidth 99% Signal Bandwidth 2422 100 kHz 36.67 Image: Image: 1mage: 2437 100 kHz 36.17 Image: Image: 1mage: 2452 100 kHz 35.83 Image: Image:						
Mark Gandler Class: N/A Spec: FCC 15.247 Class: N/A #2: Signal Bandwidth Power Setting Frequency (MHz) Resolution Bandwidth 6dB Signal Bandwidth (MHz) 99% Signal Bandwidth 2422 100 kHz 36.67 100 kHz 36.17 2452 100 kHz 35.83 100 kHz 35.83	del: WN511B					
Power Setting Frequency (MHz) Resolution Bandwidth 6dB Signal Bandwidth (MHz) 99% Signal Bandwidth 2422 100 kHz 36.67 2437 100 kHz 36.17 2452 100 kHz 35.83	haati Mark Can	dlar			Account Manager:	Estner Znu
Power Setting Frequency (MHz) Resolution Bandwidth 6dB Signal Bandwidth (MHz) 99% Signal Bandwidth 2422 100 kHz 36.67 100 kHz 36.17 2452 100 kHz 35.83 100 kHz 35.83					Class:	Ν/Δ
Power SettingFrequency (MHz)Resolution Bandwidth6dB Signal Bandwidth (MHz)99% Signal Bandwidth2422100 kHz36.672437100 kHz36.172452100 kHz35.83			<u>I</u>		01835.	N/A
Setting Prequency (MHz) Bandwidth (MHz) 99% Signal Bandwidth 2422 100 kHz 36.67 2437 100 kHz 36.17 2452 100 kHz 35.83 35.83 35.83						
Setting Bandwidth (MH2) 2422 100 kHz 36.67 2437 100 kHz 36.17 2452 100 kHz 35.83				-	99% Signal Bandwidth	
2437 100 kHz 36.17 2452 100 kHz 35.83	Setting	E			oo /o olghar Banawiaan	
2452 100 kHz 35.83						
Measured on a single chain						
	Measured	on a single chain				








El Contraction	liott			EM	C Test Data
Client: Netg	jear			Job Number:	J63735
				T-Log Number:	T63747
Model: WN5	DIIR			Account Manager:	Esther Zhu
Contact: Mark					
Spec: FCC				Class:	N/A
Run #3: Out of	Band Spuriou	s Emissions			
Power Setting	Per Chain	- (111)		D 14	1
	‡2 #3	Frequency (MHz)	Limit	Result	
		2422	-30dBc	Refer to plots	
		2437	-30dBc	Refer to plots	
		2452	-30dBc	Refer to plots	J
Note 1: Mea 50or		hains connected together	through a combiner,	unused ports on the com	biner terminated in



EMC Test Data

E	Elliott	EMC Test Data		
Client:	Netgear	Job Number:	J63735	
Madal	WN511B	T-Log Number:	T63747	
wouer.	WN511B	Account Manager:	Esther Zhu	
Contact:	Mark Gandler			
Spec:	FCC 15.247	Class:	N/A	

FCC 15.247 DTS - Power, Fundamental, and Spurious Emissions (802.11n, 40MHz)

Test Specifics

The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above.

Date of Test: 4/11/2006 Test Engineer: Juan Martinez Test Location: Fremont Chamber #4

Config. Used: 2 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

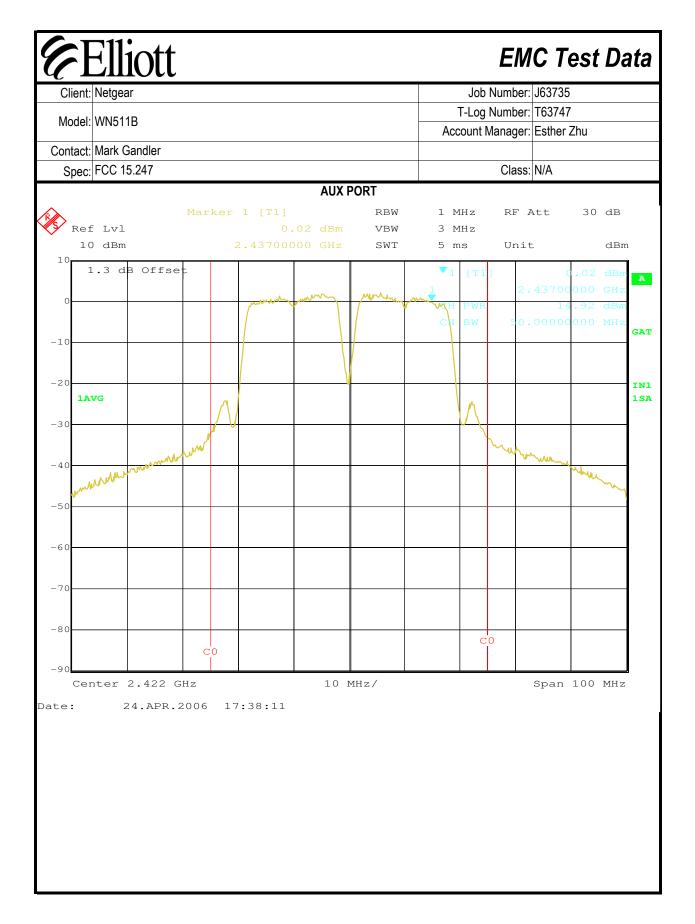
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. Remote equipment was located underneat the table.

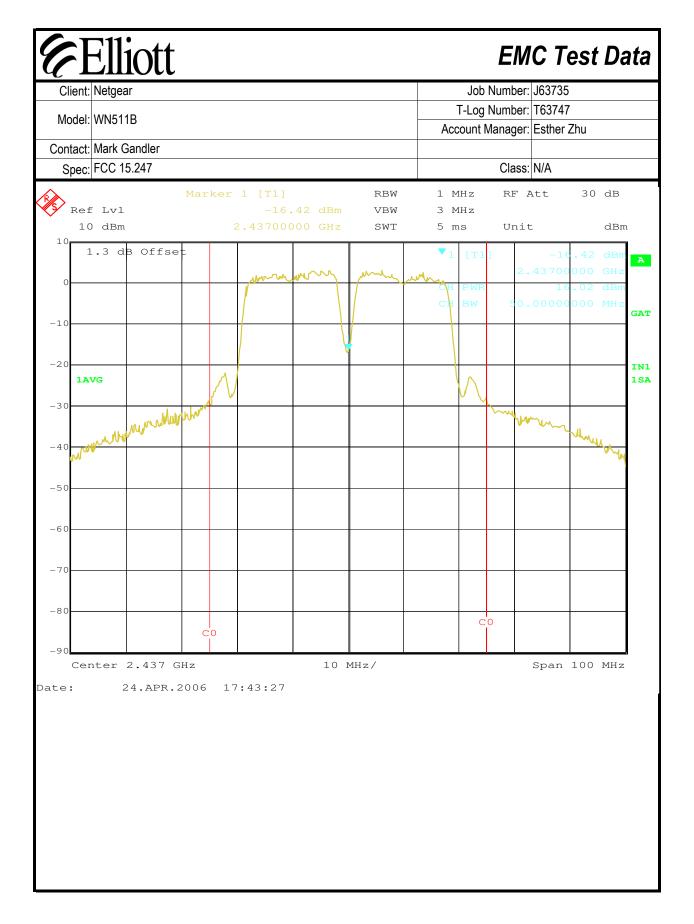
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

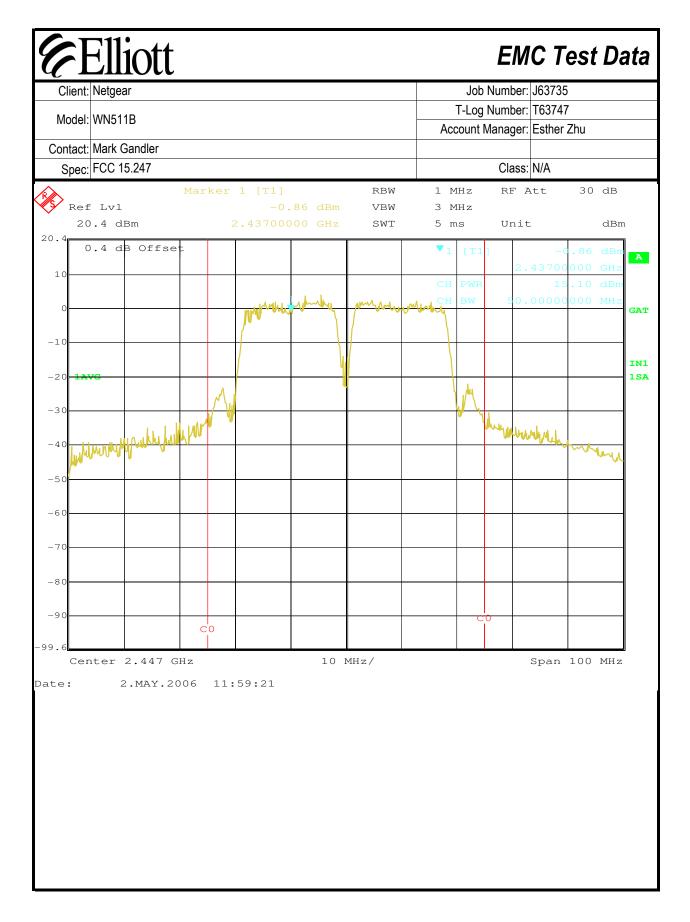
Ambient Conditions:	Temperature:	20.5 53
	Rel. Humidity:	53 %

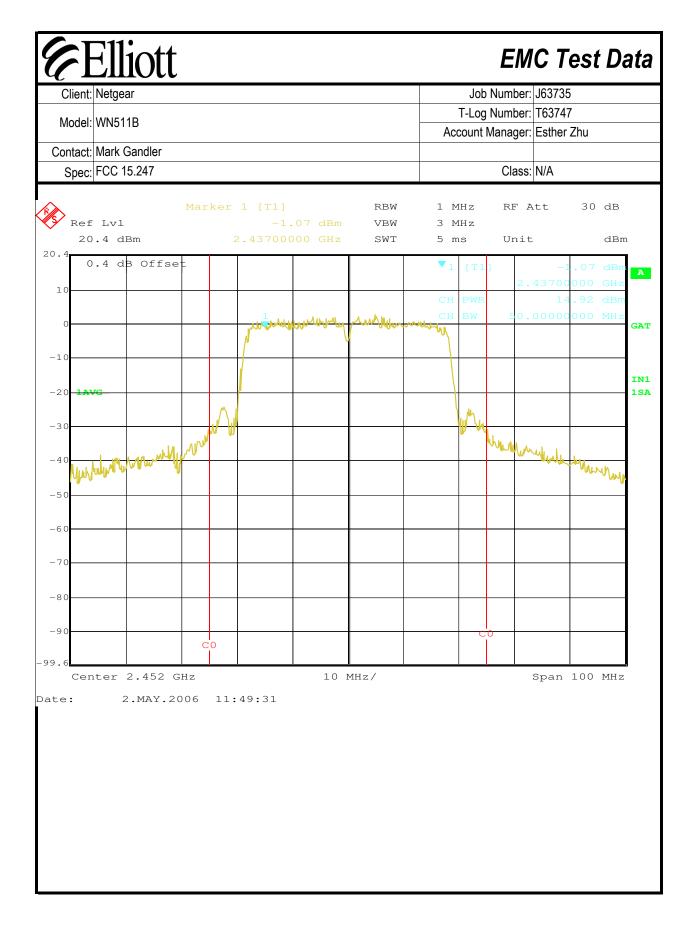
Summary of Results

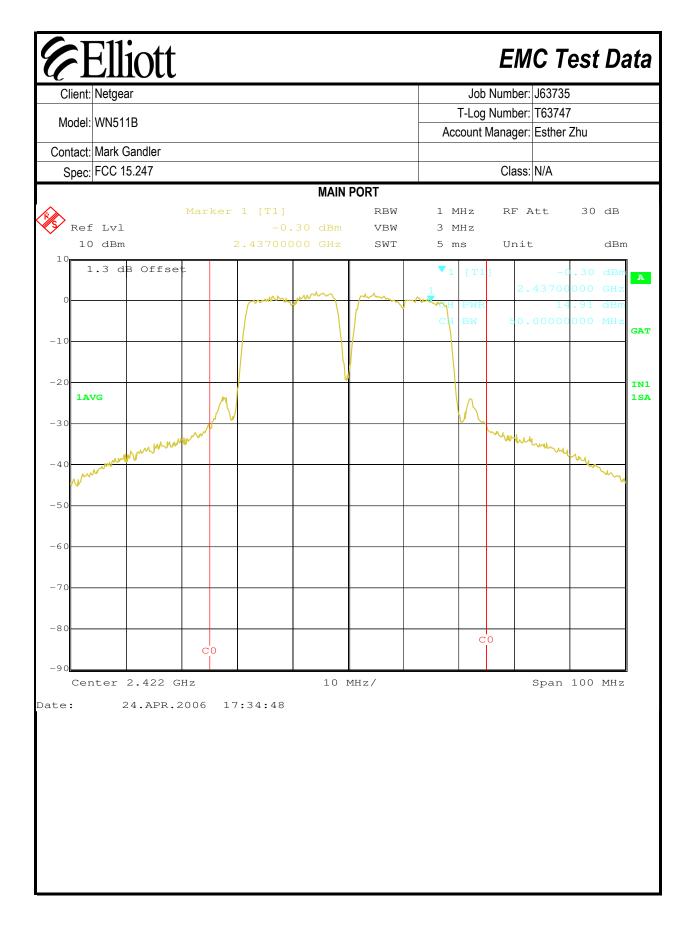
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power & Bandedges	FCC Part 15.209 / 15.247(c)	Pass	Refer to run
2	Radiated Spurious Emissions 1,000-26,500MHz	FCC Part 15.209 / 15.247(c)	Pass	Refer to run

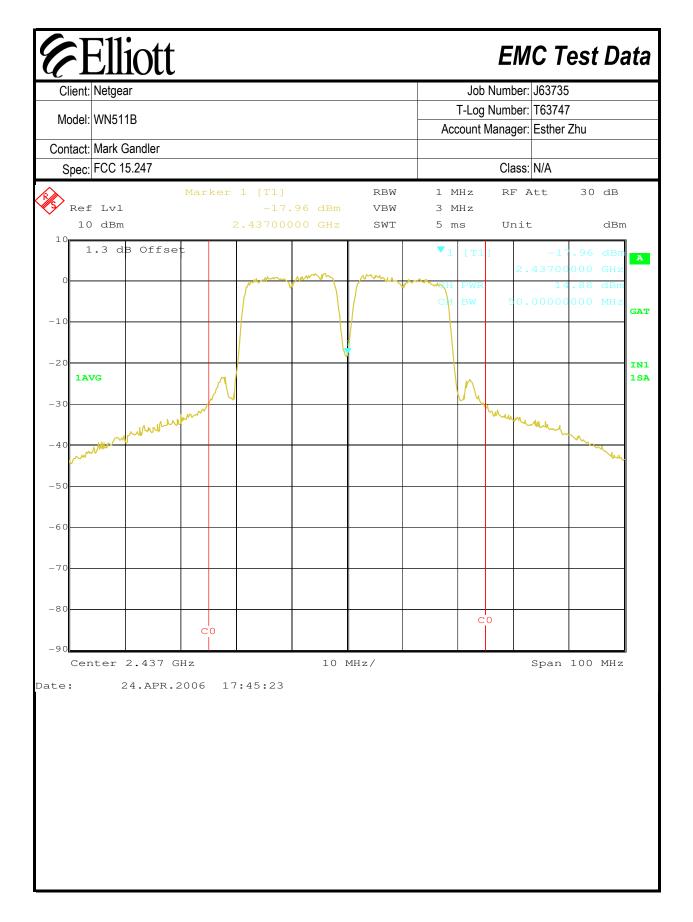

Modifications Made During Testing:

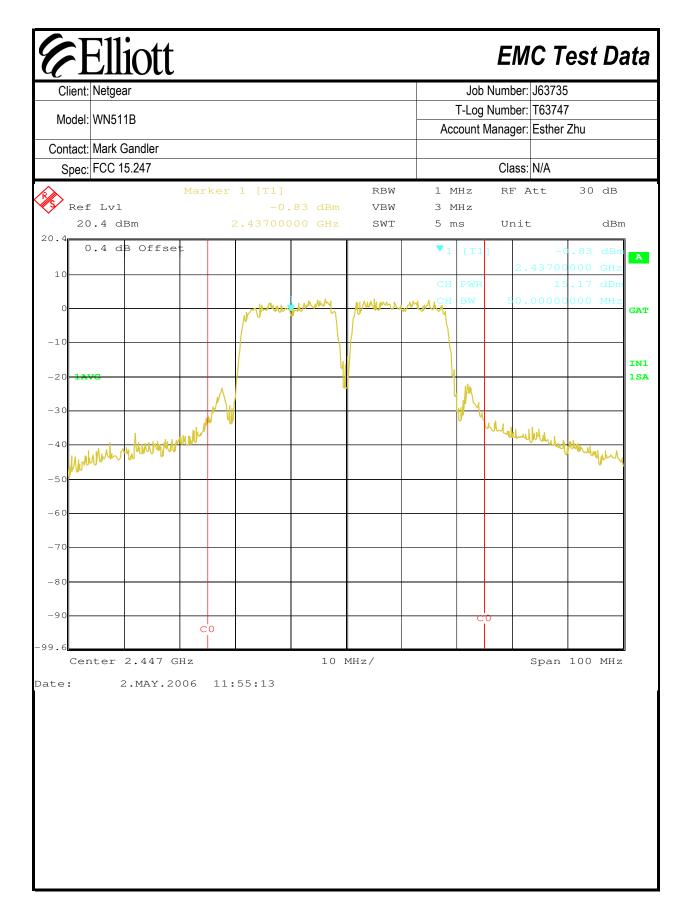

No modifications were made to the EUT during testing

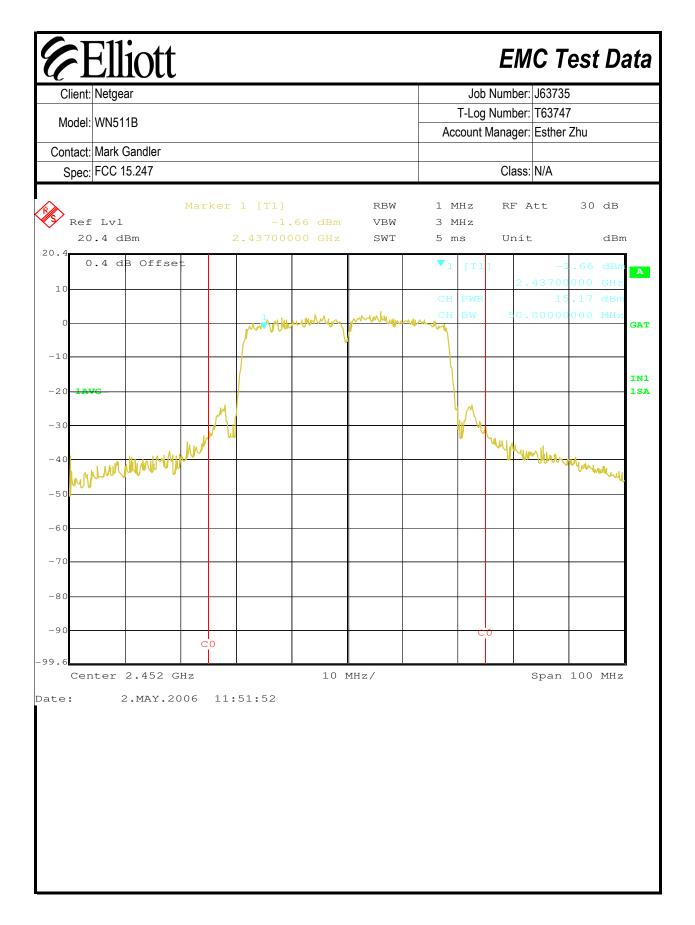

Deviations From The Standard

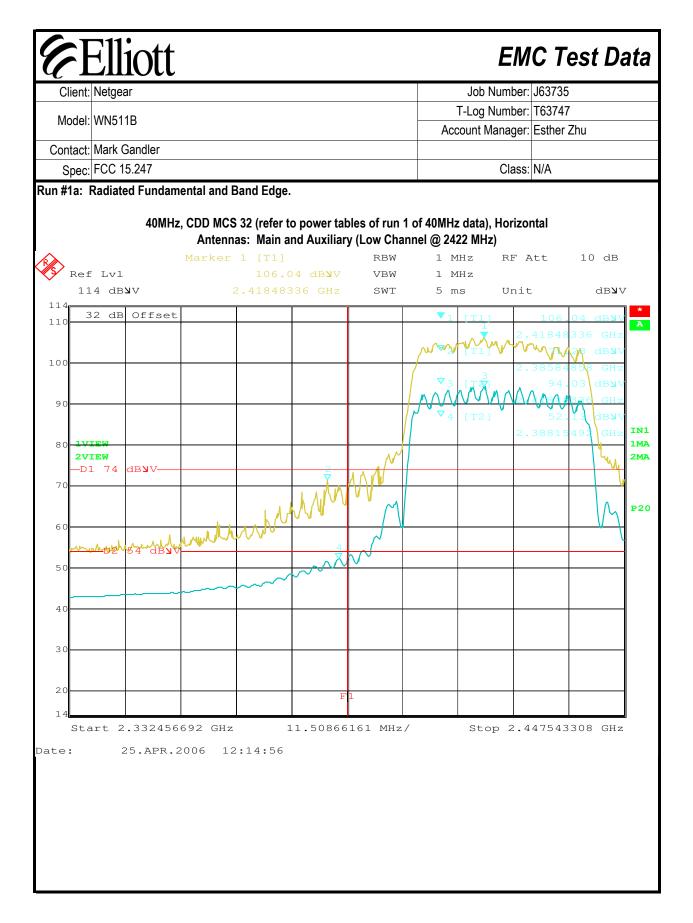

No deviations were made from the requirements of the standard.

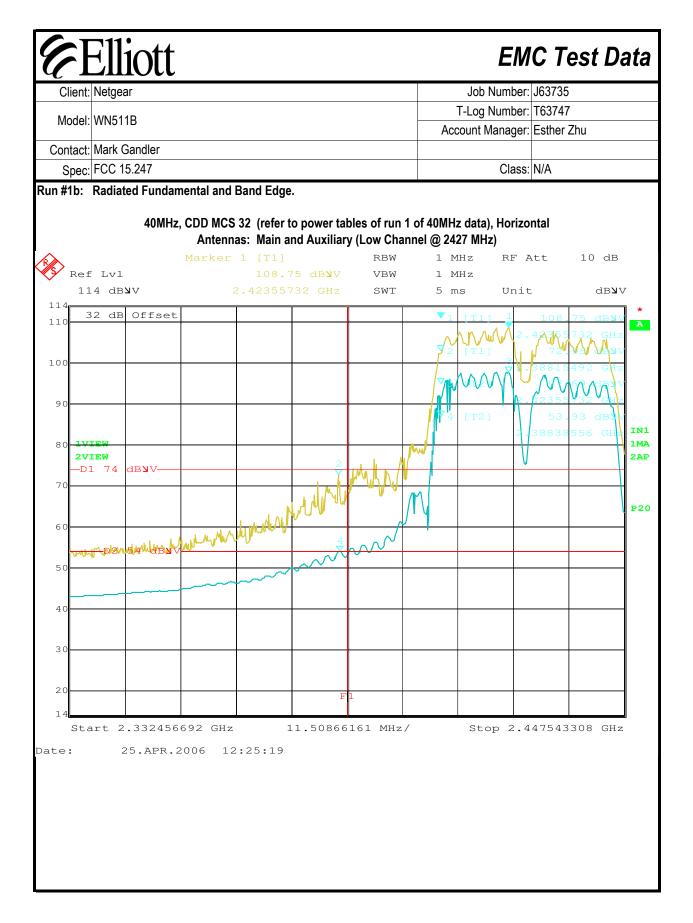

F	Elliott						EM	C Test	Data
	Netgear					Job Number: J63735			
						T-Log Number: T63747			
Model:	WN511B						-	Esther Zhu	
Contact:	Mark Gandler						Ū		
	FCC 15.247						Class:	N/A	
0,000.			MΔ	IN & A11	X PORTS		0.000		
Bun #1 · ∩	utput Power (MCS	32 (00)				,			
	d signal on chain is		Vec						
Transmitter	a signal on chain is	concrent :	103						
Power	Erequency (MHz) Output Power (dBm) Note 1 Anten			a Gain (dBi) Note 3	EIRP	Note 2		
-	Frequency (MHz)	Main	Aux	Total	Main	Aux	, Total	dBm	W
	2422	14.9	14.9	17.9	-1.6	-1.6	1.4	16.3	0.043
	2437	14.9	16.0	18.5	-1.6	-1.6	1.4	16.9	0.049
	2447	15.2	15.1	18.1	-1.6	-1.6	1.4	16.5	0.045
	2452	15.2	14.9	18.1	-1.6	-1.6	1.4	16.5	0.044
	Output power meas	-	•	• •	•	,			
Note 1:	RBW=1MHz, VB=3		•	•		-			
	analyzer was config	-	-	•	the analyzer	was only sv	weeping whe	en the device	was
	tranmsitting) and p								
	EIRP - if transmit c							•	
Note 2:	power (i.e. beam-fo	-			•	,		al chains are i	ncoherent
	then the EIRP is ca								
	If the transmit chair				-			-	
Note 3:	antenna. If the trar		s are incone	rent then the	e system ante	enna gain is	not applicat	ble as each tra	ansmit chain
	can be treated inde	ependently.							

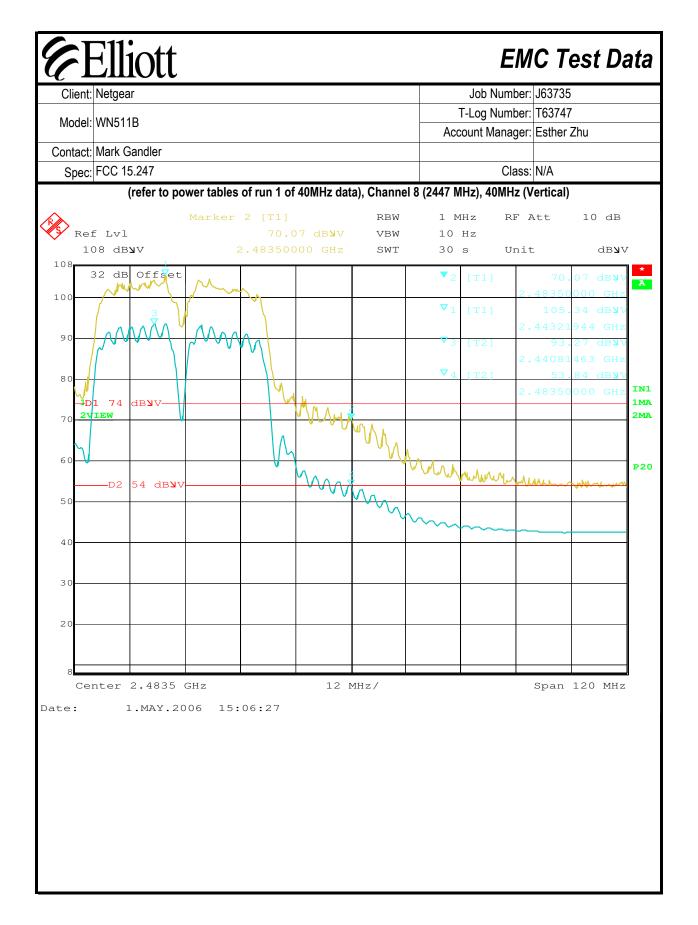


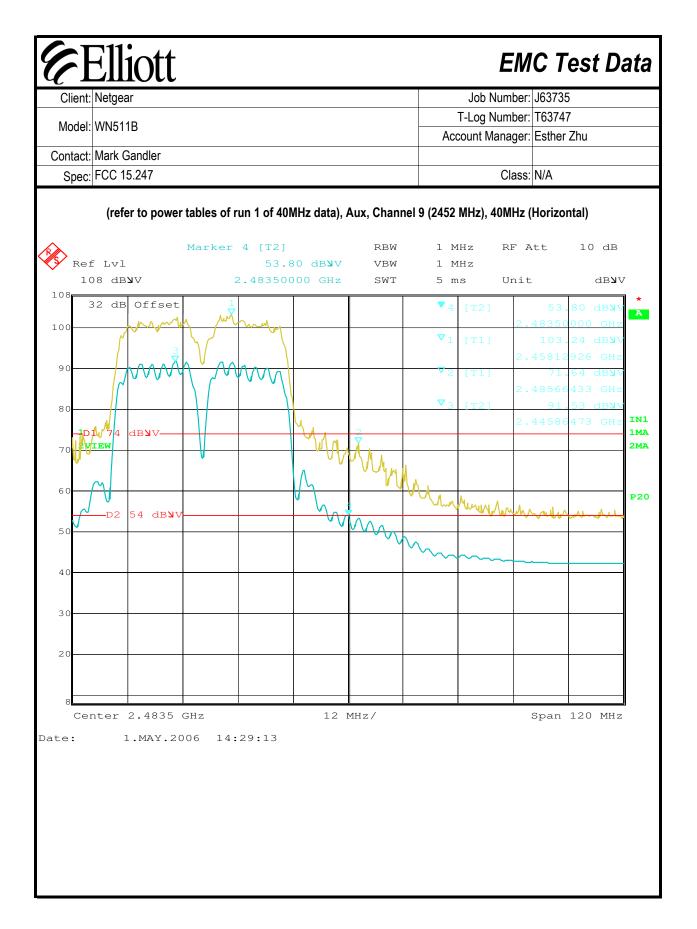


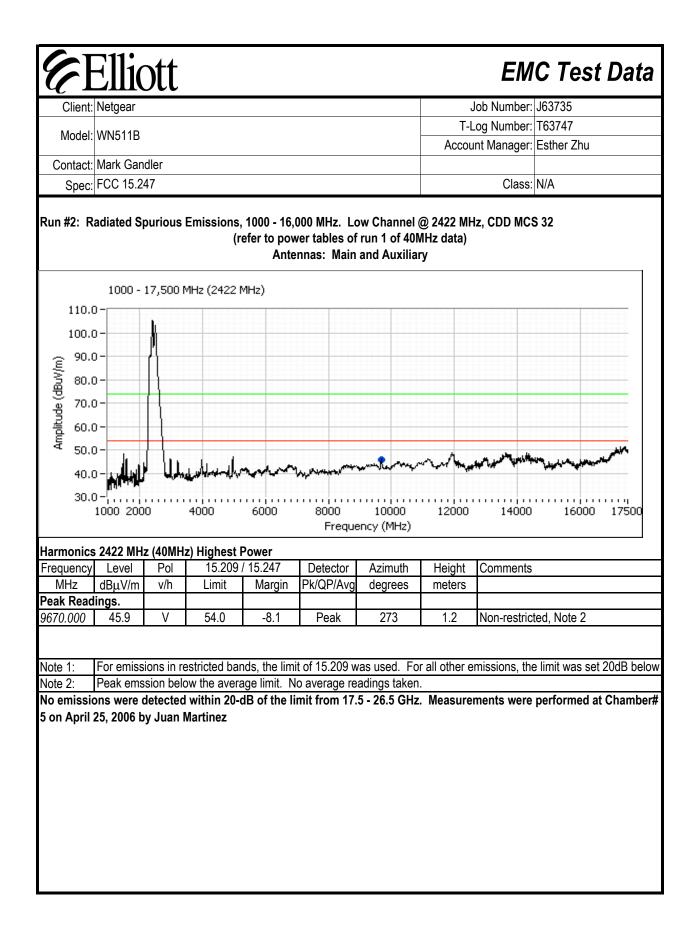


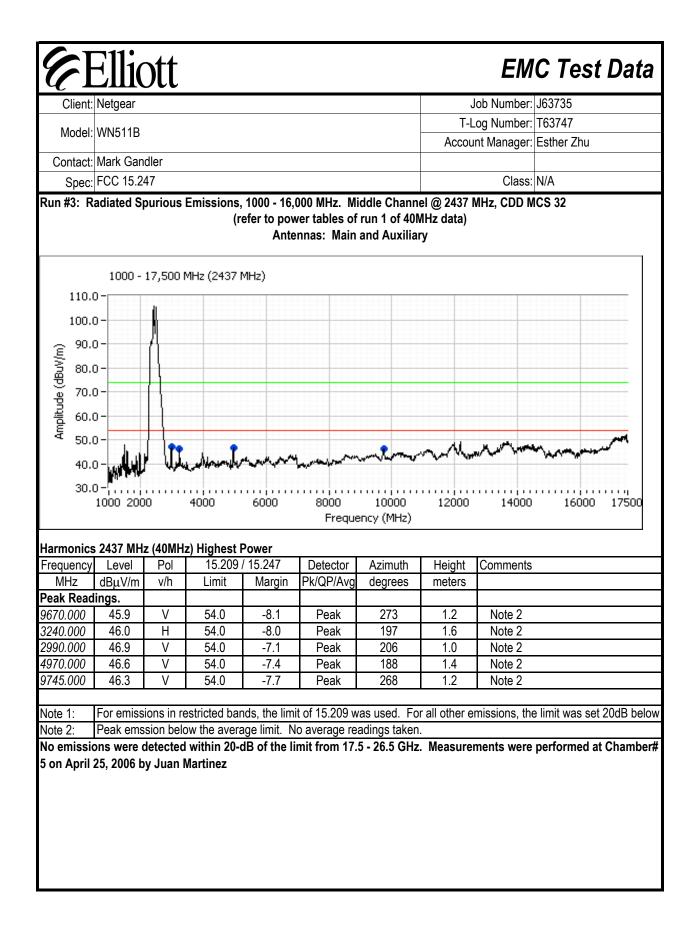


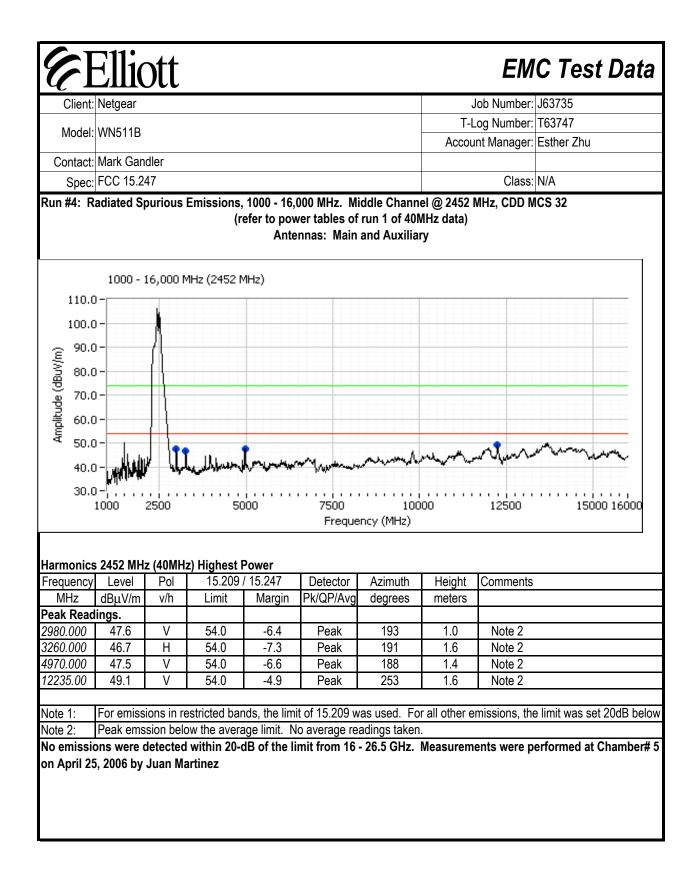












ClientNetgearJob Number:J63498Model:WN511BTest-Log Number:T63589Contact:David BoldyProject Manager:Esther ZhuContact:David BoldyClass:RadioEmissions Spec:FCC 15.247, EN55022Environment:-

EMC Test Data

For The

Netgear

Model

WN511B

Date of Last Test: 4/24/2006

Elliott

EMC Test Data

Client:	Netgear	Job Number:	J63498
Model:	WN511B	Test-Log Number:	T63589
		Project Manager:	Esther Zhu
Contact:	David Boldy		
Emissions Spec:	FCC 15.247, EN55022	Class:	Radio
Immunity Spec:	-	Environment:	-

EUT INFORMATION

The following information was collected during the test sessions(s).

General Description

The EUT is a MIMO and legacy cardbus card that is designed to provide high speed wireless internet access. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the enduser environment. The EUT receives it power from the host computer system. The electrical rating of the host computer is 120 -

Equipment Under Test

-1-1-1						
Manufacturer	Model	Description	Serial Number	FCC ID		
Broadcom	BMC93321CB2	MIMO cardbus	-	TBD		

Other EUT Details

The Broadcom model BMC93321CB was considered representative of the Netgear WN511B. They are identical in all respects except for cosmetic changes necessary for rebranding.

EUT Antenna (Intentional Radiators Only)

The antenna is integral to the device.

EUT Enclosure

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

Modification History

Mod. #	Test	Date	Modification
1	-	-	None
2			
3			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Elliott

EMC Test Data

Client:	Netgear	Job Number:	J63498
Model:	WN511B	T-Log Number:	T63589
		Project Manager:	Esther Zhu
Contact:	David Boldy		
Emissions Spec:	FCC 15.247, EN55022	Class:	Radio
Immunity Spec:	-	Environment:	-

Test Configuration #1

The following information was collected during the test sessions(s).

Local Support Equipment

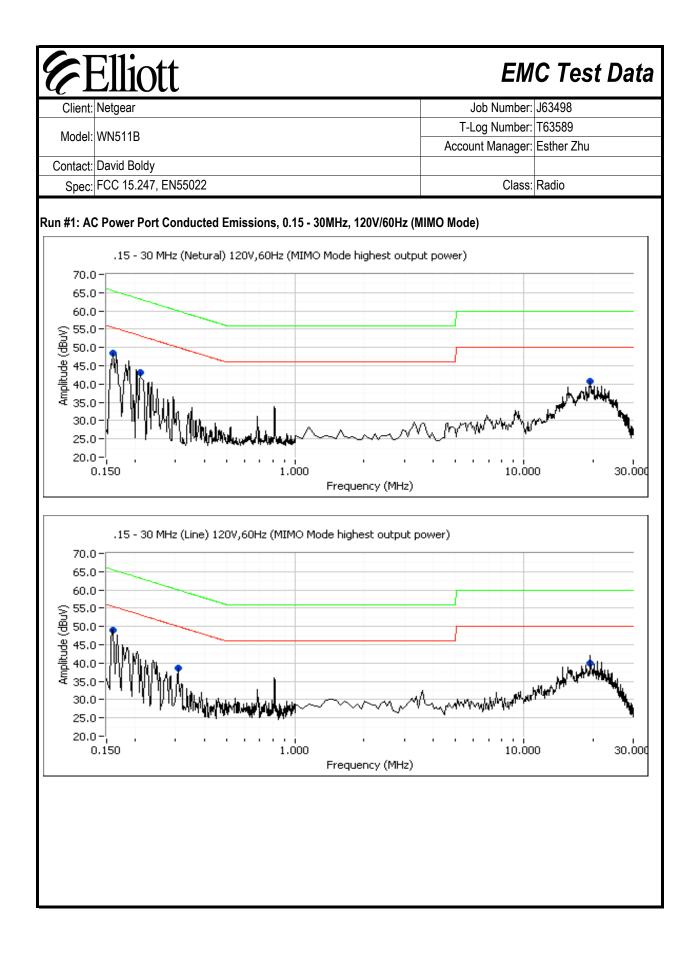
Manufacturer	Model	Description	Serial Number	FCC ID			
Hewlett Packard	zv6000	Laptop	CND52904S1	DoC			
Hewlett Packard	Deskjet 3820	Printer	CN2451B1	DoC			
Hewlett Packard	F3-0507013399C	AC/DC adaptor	CN2451B1	-			

Remote Support Equipment

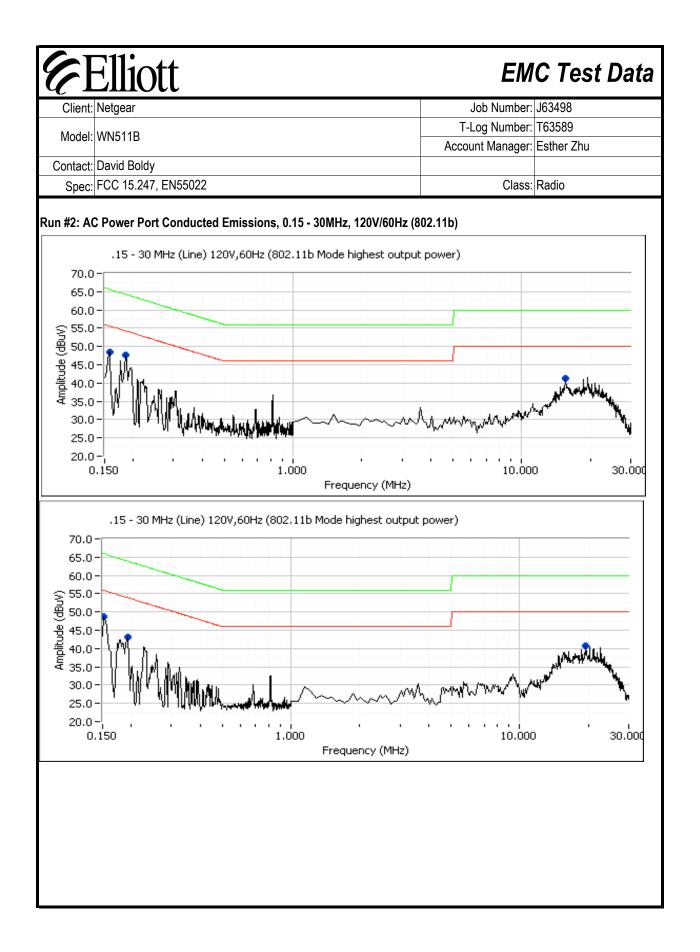
Manufacturer	Model	Description	Serial Number	FCC ID			
Netgear	EN104	Hub	ENT4B06271953	-			

Cabling and Ports								
Port	Connected To	Cable(s)						
		Description	Shielded or Unshielded	Length(m)				
Laptop USB	Printer	Multiwire	Shielded	1.5				
Laptop Ethernet	Hub	CAT 5	Unshielded	10.0				
Laptop Power	AC Adapter	2 wire	Unshielded	2.0				
AC adpater	AC Mains	3 wire	Unshielded	1.5				

EUT Operation During Transmitter Tests


During MIMO testing the EUT was transmitting simultaneously on two RF chains at either the low, 2412MHZ, the middle, 2437MHz, or the high, 2462MHz in either the 20MHz or 40MHz signaling mode.

During legacy testing the EUT was transmitting on a single chain at either the low, 2412MHZ, the middle, 2437MHz, or the high, 2462MHz in either the 802.11b or 802.11g mode.


EUT Operation During Emissions Tests

During emissions testing the EUT was transmitting at full power on channel #6, 2437MHz in either MIMO, multiple transmitters, mode or 802.11b legacy mode, single transmitter

Elliott EMC Test Data									
Client: Netgea	Client: Netgear				lob Number:	J63498			
Model: WN511B					.og Number: nt Manager:				
Contact: David Boldy									
Spec: FCC 15.247, EN55022					Class:	Radio			
Test Specifics	(Conducted Er	nissions - P	ower P	orts				
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.									
Date of Test: 4/21/2006 Test Engineer: Juan Martinez Test Location: SVOATS #2			Config. Used: 1 Config Change: None EUT Voltage: Refer to individual run						
General Test C The EUT was loca used for all local su	ted on a woo	den table, 40 cm from a	vertical coupling plan	e and 80cm	from the LIS	N. A second LISN was			
Ambient Conditions: Temperature: Rel. Humidity:		12 °C 80 %							
Summary of R	esults								
Run #	Te	st Performed	Limit	Result		argin			
1	CE, AC	Power,120V/60Hz	EN55022 B	Pass	(-6	@ 0.161MHz .3dB)			
2	CE, AC	Power,120V/60Hz	EN55022 B	Pass		@ 0.154MHz .6dB)			
Deviations Fro	ere made to t m The Sta t	he EUT during testing	tandard.						

E	Ellio	ott					EM	C Test Data
	Netgear						Job Number:	J63498
Model	WN511B						T-Log Number:	T63589
							Account Manager:	Esther Zhu
	David Bo							
Spec:	FCC 15.2	47, EN550)22				Class:	Radio
requency	Level	AC	EN55	6022 B	Comments			
MHz	dBµV	Line	Limit	Margin	Detector QP/Ave			
0.1606	49.1	Line 1	55.4	-6.3	Peak	Note 1		
0.1606	48.4	Neutral	55.4	-7.1	Peak	Note 1		
19.488	40.6	Neutral	50.0	-9.4	Peak	Note 1		
0.210	43.1	Neutral	53.2	-10.1	Peak	Note 1		
19.488	39.9	Line 1	50.0	-10.1	Peak	Note 1		
0.307	38.7	Line 1	50.0	-11.4	Peak	Note 1		

<u>v</u> 1	Ellio	ott					EM	C Test Data
Client:	Netgear						Job Number:	
Model:	WN511B				T-Log Number:			
		-l		Account Manager:	Esther Zhu			
	David Bol		000	Classi	Dadia			
Spec:	FUU 15.2	47, EN550	JZZ				Class:	Radio
requency	Level	AC	EN55	022 B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.154	49.2	Line 1	55.8	-6.6	Peak	Note 1		
0.152	48.8	Neutral	55.9	-7.1	Peak	Note 1		
0.167 15.573	46.8 41.4	Line 1	55.1 50.0	-8.3 -8.6	Peak	Note 1 Note 1		
19.488	41.4	Line 1 Neutral	50.0	-8.6 -9.3	Peak Peak	Note 1		
0.193	43.2	Neutral	53.9	-10.8	Peak	Note 1		

EXHIBIT 3: Photographs of Test Configurations

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of Netgear Model WN511B Construction

EXHIBIT 6: Operator's Manual for Netgear Model WN511B

EXHIBIT 7: Block Diagram of Netgear Model WN511B

EXHIBIT 8: Schematic Diagrams for Netgear Model WN511B

EXHIBIT 9: Theory of Operation for Netgear Model WN511B

EXHIBIT 10: Advertising Literature

EXHIBIT 11: RF Exposure Information