

1/67)

FCC ID: PXITR-G0702

					1(07)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0344/REP			
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Exhibit 11: SAR Test Report of Portable Cellular Phone FCC ID: PXITR-G0702 model: T306

Date of test: October 14-17, 2002 **Date of Report:** October 21, 2002

SAR Testing Laboratory Laboratory:

Sony Ericsson Mobile Communications, Inc. 7001 Development Drive, P.O. Box 13969, Research Triangle Park, NC, 27709, USA

William Stewart

Development Engineer, Antenna Development Group **Tested by:**

Dulce Altabella

Staff Engineer, Antenna Development Group

Dulce Altabella **Test Responsible:**

Staff Engineer, Antenna Development Group

This laboratory is accredited to ISO/IEC 17025-1999 to perform the following **Accreditation:**

electromagnetic exposure tests:

Specific Absorption Rate (SAR)

Dielectric parameters RF power measurement

On the following types of products: Wireless communications devices.

A2LA certificate #1650-01

Statement of **Compliance:**

Sony Ericsson Mobile Communications, Inc declares under its sole responsibility that portable cellular telephone FCC ID PXITR-G0702 model T306 to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093). It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards,

guidelines and recommended practices are noted below:

(none)

[©] Sony Ericsson Mobile Communications, Inc. 2002

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Sony Ericsson Mobile Communications encourages all feedback, both positive and negative, on this test report.

2(67)

					2(67)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0344/REP			
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Table of Contents

1. Introduction	2
2. Description of the Device Under Test	3
2.1 Antenna description	3
2.2 Device description	3
3. Test Equipment Used	3
3.1 Dosimetric System	3
3.2 Additional Equipment	4
4. Electrical parameters of the tissue simulating liquid	4
5. System Accuracy Verification	5
6. Test Results	6
6.1 Head Adjacent Test Results	6
6.2 Body-Worn Test Results	8
References	10
Appendix 1: SAR distribution comparison for system accuracy verification	11
Appendix 2: SAR distribution plots for Phantom Head Adjacent Use	22
Appendix 3: SAR distribution plots for Body Worn Configuration	38
Appendix 4: Probe Calibration Certificate	47
Appendix 5: Measurement Uncertainty Budget	55
Appendix 6: Photographs of the device under test	59

1. Introduction

					3(b1)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0344/REP			
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\qetDoc.doc	
				, garage	

The Sony Ericsson SAR Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone FCC ID PXITR-G0702 model T306. The Specific Absorption Rate (SAR) of this product was measured. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in [1,2,4].

2. **Description of the Device Under Test**

2.1 **Antenna description**

Sony Ericsson

Type	Internal antenna		
Location	Inside the back cover, near the top		
Dimensions	Width	30.5 mm	
Dimensions	Length	17.0 mm	
Configuration	Patch antenna		

2.2 **Device description**

FCC ID Number / Device Model	PXITR-G0702 / T306		
Serial number	A6101TS3YX and A6101TS49L		
Mode(s) of Operation	GSM 800 GSM 1900		
Modulation Mode(s)	TDMA TDMA		
Target Value for Maximum Output Power Setting	29 dBm 30 dBm		
Factory Tolerance Window in Power Setting	$-2.0/+1.0 \text{ dB}$ $\pm 1.0 \text{ dB}$		
Duty Cycle	1/8 1/8		
Transmitting Frequency Rang(s)	824-849 MHz 1850-1910 MH		
Production Unit or Identical Prototype	Identical Prototype		
Device Category	Portable		
RF Exposure Limits	General Population / Uncontrolled		

3. Test Equipment Used

3.1 **Dosimetric System**

The Sony Ericsson SAR Laboratory utilizes a Dosimetric Assessment System (Dasy3TM v3.1d) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The overall RSS uncertainty of the measurement system is $\pm 10.59\%$ (K=1) with an expanded uncertainty of $\pm 21.17\%$ (K=2). The measurement uncertainty budget is given in Appendix 5. The list of calibrated equipment used for the measurements is shown in the following table.

4(67)

					+(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:03	344/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	
SEM/CV/PF/P Dulce Altabella	DA				

Description	Serial Number	Cal Due Date
DASY3 DAE V1	416	05-Dec-2002
DASY3 DAE V1	432	14-Jun-2003
E-Field Probe ETDV6	1539	26-Jul-2003
E-Field Probe ETDV6	1587	20-Jun-2003
Dipole Validation Kit, DV835V2	428	06-Mar-2003
S.A.M. Phantom used for 835MHz	1030/1020	
Dipole Validation Kit, DV1900V2	537	06-Mar-2003
S.A.M. Phantom used for 1900MHz	1031/1023	

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3537A01598	09-Sep-2003
Power Meter 437B	3125U113481	21-May-2003
Power Meter 437B	3110A05257	21-May-2003
Power Sensor - 8482H	MY41090240	08-May-2003
Power Sensor - 8482H	MY41090241	08-May-2003
Network Analyzer HP8752C	3410A3105	23-Aug-2003
Dielectric Probe Kit HP85070B	US33020390	02-May-2003
Digital Thermometer 61220-601	350078	25-Sep-2003
Digital Thermometer 61220-601	21117674	02-Nov-2002
Thermometer Probe 61220-604	99172351	25-Sep-2003
Thermometer Probe 61220-604	21117824	02-Nov-2002
Anritsu MT8801B	MB12477	01-Apr-2003
Power Amplifier 5S1G4	19290	02-Sep-2003

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the dielectric probe kit. These values, along with the temperature of the simulated tissue are shown in the table below. A mass density of $\rho=1g/cm3$ was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits [1,2]. During the tests, the ambient temperature of the laboratory was in the range 22.1-23.1°C, the relative humidity was 38.8-46.6%, and the liquid depth above the ear reference points was more than 150 mm for all the cases. It is seen that the measured parameters are satisfactory for compliance testing.

FCC ID: PXITR-G0702

					5(67)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0344/REP			
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

			Die	lectric Para	ameters
f (MHz)	Tissue type	Limits / Measured	e ,	s (S/m)	Simulated Tissue Temp (°C)
		Measured, 14-Oct-02	42.18	0.89	21.9
	Head	Measured, 15-Oct-02	42.11	0.89	21.7
	пеац	Measured, 16-Oct-02	42.85	0.89	22.6
835		Recommended Limits	41.50	0.90	20-25
		Measured, 15-Oct-02	55.88	0.98	22.0
	Body	Measured, 17-Oct-02	55.53	0.98	22.1
	Body	Recommended Limits	55.20	0.97	20-25
		Measured, 14-Oct-02	40.00	1.46	21.7
	Head	Measured, 16 Oct-02	39.81	1.46	22.6
1900	Heau	Recommended Limits	40.00	1.40	20-25
		Measured, 15-Oct-02	52.59	1.55	21.8
	Dody	Measured, 17-Oct-02	52.61	1.55	22.5
	Body	Recommended Limits	53.30	1.52	20-25

The list of ingredients and the percent composition used for the simulated tissue are indicated in the table below.

	800MHz	800MHz	1900MHz	1900MHz
Ingredient	Head	Body	Head	Body
Sugar	57.99%	56.00%		
DGBE			44.92%	30.82%
Water	39.72%	41.76%	54.90%	68.89%
Salt	1.18%	0.76%	0.18%	0.29%
HEC	0.92%	1.21%		
Bact.	0.19%	0.27%		

5. System Accuracy Verification

A system accuracy verification of the DASY3 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values [1,2,3]. These tests were done at 835 MHz and/or 1900MHz. These frequencies are within 100MHz of the mid-band frequency of the test device, according to [1,2]. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table below (SAR values are normalized to 1W forward power delivered to the dipole). During the tests, the ambient temperature of the laboratory was in the range 21.6-22.3 °C, the relative humidity was in the range 38.7 - 41.8%, and the liquid depth above the ear reference points was above 150 mm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The SAR distributions are shown in Appendix 1. Z-Axis scans showing the SAR penetration are also included in Appendix 1.

Daily, prior to conducting tests, measurements were made with the RF sources powered off to determine the system

FCC ID: PXITR-G0702

					O(OI)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:03	344/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

noise level. The highest system noise was 0.0022 W/kg, which is below the recommended limit in [1].

f (MHz)	Tissue Type	Description	SAR (W/kg), 1g / 10g		ectric meters s (S/m)	Tissue Temp (°C)
		Measured, 14-Oct-2002	9.39 / 6.10	42.18	0.89	21.8
	Head	Measured, 15-Oct-2002	9.59 / 6.24	42.11	0.89	21.9
		Measured, 16-Oct-2002	9.64 / 6.28	42.85	0.89	22.6
835		Recommended Limits	9.5 / 6.2	41.50	0.90	20-25
		Measured, 15-Oct-2002	10.07 / 6.61	55.88	0.98	21.5
	Body	Measured, 17-Oct-2002	9.99 / 6.54	55.53	0.98	21.9
	Ĭ	Recommended Limits	9.90 / 6.46	55.20	0.97	20-25
		Measured, 14-Oct-2002	42.16 / 21.98	40.00	1.46	21.5
	Head	Measured, 16-Oct-2002	42.28 / 22.10	39.81	1.46	22.3
1900		Recommended Limits	39.7 / 20.5	40.00	1.40	20-25
1700		Measured, 15-Oct-2002	42.59 / 22.55	52.59	1.55	21.5
	Body	Measured, 17-Oct-2002	43.10 / 22.86	52.61	1.55	22.5
		Recommended Limits	40.50 / 20.89	53.30	1.52	20-25

6. Test Results

The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1,2]. The phone was positioned into these configurations using the positioner supplied with the DASY 3.1d SAR measurement system.

The Cellular Phone FCC ID PXITR-G0702 model T306 has the following battery options:

Model #1 - DPY901365 700mAh Battery

This battery was used for SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 4 are maximum SAR values averaged over 1 gram and 10 grams of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the simulated tissue, the measured drift, and the extrapolated SAR.

The extrapolated SAR corresponds to the measured SAR scaled to the maximum conducted output power.

The humidity and ambient temperature of the test facility were in the ranges 38.7-43.6 % and 21.6-22.3 °C, respectively. The SAR measurements were performed using the SAM phantoms listed in section 3.1.

The test conditions indicated as bold numbers in the following table are included in Appendix 2. All other test conditions measured lower SAR values than those included.

					7(07)
Prepared (also subject responsible if other)	No.				
SEM/CV/PF/P Dulce Altabella	SEM/CB/D-02:0344/REP				
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

			Left Head (Cheek Position)						
6.0.07	G1 1/	Conducted Output	Measured		Extrapolated		G: 1		
f (MHz)	Channel/	1	(W/kg)		(W/kg)	Amb. Temp	Simulate		
	frequency	Power (dBm) 1	1g/10g	Drift (dB)	1g/10g	(°C)	Temp (°C)		
			0.34 /						
	128 / 824	29.7	0.24	0.03	0.36 / 0.25	22.1	21.0		
800 GSM			0.63 /						
	189 / 837	29.8	0.44	-0.05	0.66 / 0.46	22.1	20.7		
			0.71 /						
	251 / 849	29.8	0.50	-0.05	0.75 / 0.53	22.0	20.7		
			0.25 /						
1900 GSM	512 / 1850	30.87	0.15	-0.19	0.26 / 0.16	22.3	20.9		
			0.26 /						
	660/1880	30.74	0.16	-0.09	0.28 / 0.18	22.0	20.8		
			0.28 /						
	810/1910	30.75	0.17	-0.14	0.29 / 0.18	21.9	20.8		

Table 1: SAR measurement results for the portable cellular telephone FCC ID PXITR-G0702 model T306 at maximum output power. Measured against the left head in the Cheek Position.

			Right head (Cheek Position)					
f (MHz)	Channel/ frequency	Conducted Output Power (dBm) 1	Measured (W/kg) 1g/10g	Drift (dB)	Extrapolated (W/kg) 1g/10g	Amb. Temp	Simulate Temp (°C)	
	128 / 824	29.7	0.36 / 0.25	-0.01	0.38 / 0.26	22.2	21.6	
800 GSM	189 / 837	29.8	0.59 / 0.41	-0.14	0.62 / 0.43	22.0	21.2	
	251 / 849	29.8	0.68 / 0.48	0.06	0.71 / 0.50	21.6	21.1	
	512 / 1850	30.87	0.28 / 0.17	-0.03	0.30 / 0.18	22.2	21.4	
1900 GSM	660/1880	30.74	0.31 / 0.19	-0.13	0.33 / 0.20	22.0	21.3	
	810/1910	30.75	0.32 / 0.19	0.00	0.34 / 0.21	22.2	21.1	

Table 2: SAR measurement results for the portable cellular telephone FCC ID PXITR-G0702 model T306 at maximum output power. Measured against the right head in the Cheek Position.

			Left Head (15° Tilt Position)					
f (MHz)	Channel/ frequency	Conducted Output Power (dBm) ¹	Measured (W/kg) 1g/10g	Drift (dB)	Extrapolated (W/kg) 1g/10g	Amb. Temp (°C)	Simulate Temp (°C)	
000 600	128 / 824	29.7	0.15 / 0.11	0.12	0.16 / 0.12	21.8	21.1	
800 GSM	189 / 837	29.8	0.28 / 0.20	-0.08	0.29 / 0.21	22.1	20.7	
	251 / 849	29.8	0.33 /0.24	-0.05	0.35 / 0.25	22.2	20.7	
1900 GSM	512 / 1850	30.87	0.22 / 0.13	-0.09	0.24 / 0.14	22.3	20.9	
	660/1880	30.74	0.28 / 0.16	-0.14	0.30 / 0.17	22.0	20.9	

¹ Output power was measured at Sony Ericsson by personnel outside the scope and control of the SAR testing laboratory.

8(67)

					O(OI)
Prepared (also subject responsible if other)	No.				
SEM/CV/PF/P Dulce Altabella	SEM/CB/D-02:0344/REP				
Approved	Checked		ļ	HATCO Cubmittalal Fac. CO703	
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

			Left Head (15° Tilt Position)					
810/1910	30.75	0.30 / 0.17	-0.19	0.32 / 0.17	22.1	20.8		

Table 3: SAR measurement results for the portable cellular telephone FCC ID PXITR-G0702 model T306 at maximum output power. Measured against the left head in the 15° Tilt Position.

			Right Head (15° Tilt Position)					
f (MHz)	Channel/ frequency	Conducted Output Power (dBm) ¹	Measured (W/kg) 1g/10g	Drift (dB)	Extrapolated (W/kg) 1g/10g	Amb. Temp (°C)	Simulate Temp (°C)	
	128 / 824	29.7	0.17 / 0.12	-0.10	0.18 / 0.13	22.2	21.1	
800 GSM	189 / 837	29.8	0.27 / 0.19	-0.06	0.28 / 0.19	21.9	21.0	
	251 / 849	29.8	0.32 / 0.23	0.13	0.34 / 0.24	22.2	21.1	
	512 / 1850	30.87	0.27 / 0.16	-0.00	0.29 / 0.17	22.1	21.3	
1900 GSM	660/1880	30.74	0.33 / 0.19	-0.12	0.35 / 0.20	22.2	21.3	
	810/1910	30.75	0.34 / 0.20	-0.07	0.37 / 0.21	22.3	21.1	

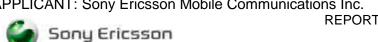
Table 4: SAR measurement results for the portable cellular telephone FCC ID PXITR-G0702 model T306 at maximum output power. Measured against the right head in the 15° Tilt Position.

6.2 Body-Worn Test Results

The SAR results shown in table 5-8 are the maximum SAR values averaged over 1gram and 10 grams of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the simulated tissue after the test, the measured drift and the extrapolated SAR.

The extrapolated SAR corresponds to the measured SAR scaled to the maximum conducted output power.

The humidity and ambient temperature of the test facility were in the ranges 39.7-42.7% and 22.2-23°C, respectively.


A "flat" phantom was used for the body-worn tests. This "flat" phantom corresponds to the flat portion of the SAM phantom.

The tissue stimulant depth above the ear canal was verified to be above 150mm in all the measurements. The same device holder described in section 6 was used for positioning the phone. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There are two Body-Worn Accessories available for this phone:

A Plastic case with Belt Clip: Model #ICT-14 A Leather case with Belt Clip: Model # ICE-25

A full data set output of two test conditions with the highest SAR values from the DasyTM measurement system is included as appendix 3. The test conditions included are indicated as bold numbers in the following table. All other test conditions measured lower SAR values than those included.

FCC ID: PXITR-G0702

					9(07)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella	SEM/CB/D-02:0344/REP				
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

			Body Worn Carry Accessory: ICT-14 (Back of phone facing body)						
f (MHz)	Channel/ frequency	Conducted Output Power (dBm) ¹	Measured (W/kg) 1g/10g	Drift (dB)	Extrapolated (W/kg) 1g/10g	Amb. Temp	Simulate Temp (°C)		
	128 / 824	29.7	0.27 / 0.19	-0.05	0.28 / 0.20	23.4	21.3		
800 GSM	189 / 837	29.8	0.21 / 0.15	0.00	0.22 / 0.16	22.5	21.3		
	251 / 849	29.8	0.15 / 0.11	-0.05	0.16 / 0.12	22.9	21.2		
	512 / 1850	30.87	0.29 / 0.18	-0.11	0.31 / 0.19	22.1	20.9		
1900 GSM	660/1880	30.74	0.31/ 0.19	-0.13	0.32 / 0.20	22.1	21.0		
	810/1910	30.75	0.37 / 0.23	-0.08	0.39 / 0.24	22.1	20.7		

Table 5: SAR measurement results for the portable cellular telephone FCC ID PXITR-G0702 model T306 at maximum output power. Measured against the body with carry accessory ICE-14. Back of the phone facing the flat phantom.

			Body Worn Carry Accessory: ICT-14 (Font of phone facing body)					
f (MHz)	Channel/ frequency	Conducted Output Power (dBm) ¹	Measured (W/kg) 1g/10g	Drift (dB)	Extrapolated (W/kg) 1g/10g	Amb. Temp	Simulate Temp (°C)	
	128 / 824	29.7	0.11 / 0.08	-0.09	0.12 / 0.08	23.2	21.2	
800 GSM	189 / 837	29.8	0.17 / 0.12	-0.15	0.17 / 0.12	22.9	21.2	
	251 / 849	29.8	0.10 / 0.07	-0.12	0.10 / 0.72	23.1	21.1	
	512 / 1850	30.87	0.06 / 0.04	-0.13	0.06 / 0.04	22.8	20.7	
1900 GSM	660/1880	30.74	0.06 / 0.04	-0.15	0.07 / 0.04	23.2	20.7	
	810/1910	30.75	0.08 / 0.05	-0.12	0.08 / 0.05	23.0	20.7	

Table 6: SAR measurement results for the portable cellular telephone FCC ID PXITR-G0702 model T306 at maximum output power. Measured against the body with carry accessory ICE-14. Front of the phone facing the flat phantom.

			Body Worn Carry Accessory: ICE-25 (Back of phone facing body)						
f (MHz)	Channel/ frequency	Conducted Output Power (dBm) ¹	Measured (W/kg) 1g/10g	Drift (dB)	Extrapolated (W/kg) 1g/10g	Amb. Temp	Simulate Temp (°C)		
	128 / 824	29.7	0.30 / 0.22	0.03	0.32 / 0.23	23.7	21.4		
800 GSM	189 / 837	29.8	0.23 / 0.16	-0.01	0.24 / 0.16	23.8	21.4		
	251 / 849	29.8	0.17 / 0.12	0.06	0.18 / 0.12	24.0	21.5		
	512 / 1850	30.87	0.45 / 0.27	-0.13	0.48 / 0.28	22.2	21.9		
1900 GSM	660/1880	30.74	0.58 / 0.35	-0.12	0.61 / 0.37	23.1	21.7		
	810/1910	30.75	0.41 / 0.24	-0.16	0.43 / 0.25	22.6	21.6		

oc. FCC ID: PXITR-G0702

10(67)

				10(01)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:03	344/REP	
SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc

Table 7: SAR measurement results for the portable cellular telephone FCC ID PXITR-G0702 model T306 at maximum output power. Measured against the body with carry accessory ICE-25. Back of the phone facing the flat phantom.

			Body Worn Carry Accessory: ICE-25 (Front of phone facing body)							
f (MHz)	Channel/ frequency	Conducted Output Power (dBm) ¹	Measured (W/kg) 1g/10g	Drift (dB)	Extrapolated (W/kg) 1g/10g	Amb. Temp	Simulate Temp (°C)			
	128 / 824	29.7	0.30 / 0.19	-0.05	0.32 / 0.20	23.6	21.4			
800 GSM	189 / 837	29.8	0.23 / 0.14	0.00	0.24 / 0.15	23.8	21.5			
	251 / 849	29.8	0.13 / 0.08	0.02	0.14 / 0.08	24.2	21.6			
	512 / 1850	30.87	0.09 / 0.06	-0.14	0.10 / 0.07	22.5	21.5			
1900 GSM	660/1880	30.74	0.12 / 0.07	-0.08	0.12 / 0.08	22.7	21.5			
	810/1910	30.75	0.11 / 0.07	-0.01	0.12 / 0.07	22.8	21.4			

Table 8: SAR measurement results for the portable cellular telephone FCC ID PXITR-G0702 model T306 at maximum output power. Measured against the body with carry accessory ICE-25. Front of the phone facing the flat phantom.

References

- [1] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).
- [2] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques," Std 1528-200X, Draft 6.5 – August 20, 2001.
- [3] D. Altabella, "SAR Measurement Specification of Wireless Handsets," Sony Ericsson internal document EUS/CV/R-01:1061/REP, February 2002.
- [4] CENELEC, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz)", European Standard EN 50361, July 2001.

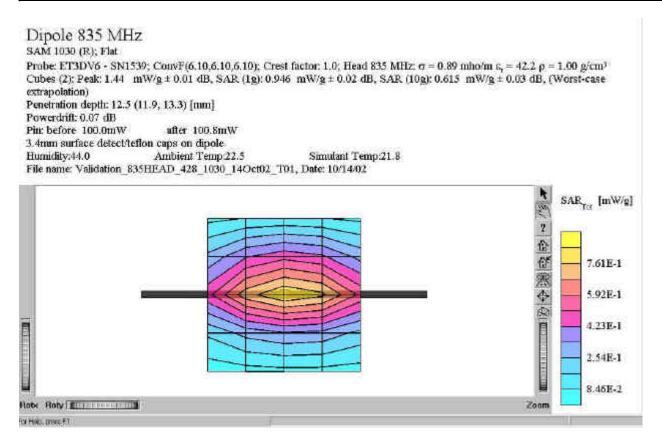
APPLICANT: Sony Ericsson Mobile Communications Inc.

REPORT

11(67)

FCC ID: PXITR-G0702

				11(67)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:03	344/REP	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc


Appendix 1

SAR distribution comparison for the system accuracy verification

12(67)

						12(01)
Prepared (also subject responsible if other)		No.				
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:	0344/	REP		
Approved	Checked					
SEM/CV/PF/P Dulce Altabella	DA			В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

835 MHz SAR distribution of validation dipole antenna from system performance check on October 14, 2002. Using head tissue.

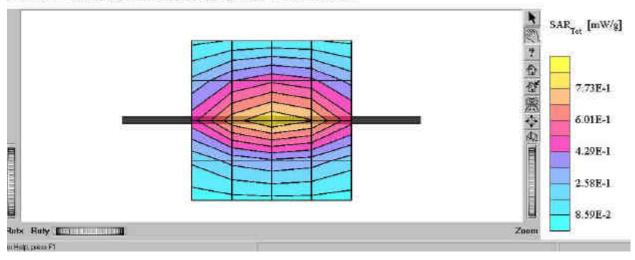
13(67)

				10/01
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0	0344/REP	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc

Dipole 835 MHz

SAM 1030 (R); Flat

Probe: ET3DV6 - SN1539; ConvF(6.10,6.10,6.10); Crest factor, 1.0; Head 835 MHz: $\sigma = 0.89$ mho/m $\epsilon_{\rm c} = 42.1~\rho = 1.00~{\rm g/cm^3}$ Cubes (2): Peak: 1.45 mW/g ± 0.07 dB, SAR (1g): 0.957 mW/g ± 0.08 dB, SAR (10g): 0.623 mW/g ± 0.08 dB, (Worst-case

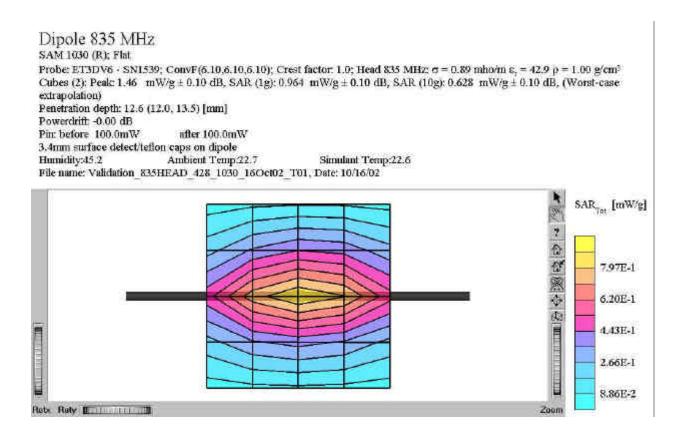

Penetration depth: 12.6 (11.9, 13.5) [mm]

Powerdrift: 0.02 dB

Pin: before 100.0mW after 99.8mW 3.4mm surface detect/tetlon caps on dipole Humidity 38.7 Ambient Temp:22.1

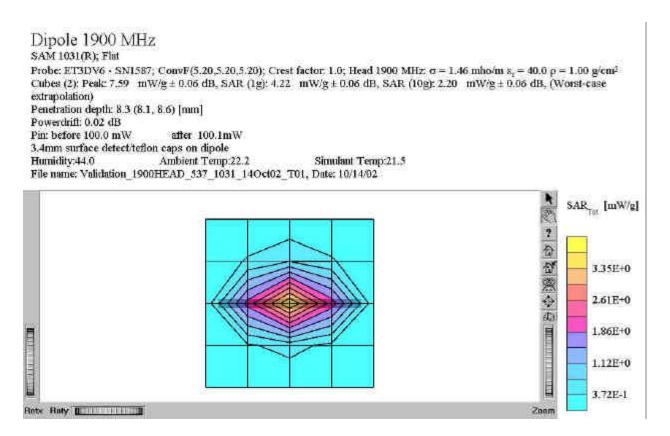
Simulant Temp:21.9

File name: Validation 835HEAD 428 1030 15Oct02 T01, Date: 10/15/02



835 MHz SAR distribution of validation dipole antenna from system performance check on October 15, 2002. Using head tissue.

14(67)


					1 1(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0	344/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

835 MHz SAR distribution of validation dipole antenna from system performance check on October 16, 2002. Using head tissue.

				10(01)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0	0344/REP	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702
OZIVI/OV/11/1 Baloo / Illabolia	BA			(T306)\XHIBIT11\getDoc.doc

1900 MHz SAR distribution of validation dipole antenna from system performance check on October 14, 2002. Using head tissue.

16(67)

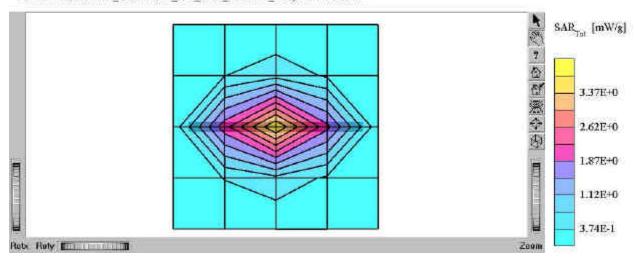
					10(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0344	l/REP		
SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Dipole 1900 MHz

SAM 1031(R) Phantom; Flat Section; Position: (90°,90°); Frequency: 1900 MHz.

Probe: ET3DV6 • SN1587; ConvF(5.20,5.20,5.20); Crest factor: 1.0; Head 1900 MHz: $\sigma = 1.46$ mho/m $\epsilon_r = 39.8$ $\rho = 1.00$ g/cm²

Cubes (2): SAR (1g): 4.19 mW/g ± 0.06 dB, SAR (10g): 2.19 mW/g ± 0.05 dB, (Worst-case extrapolation)


Coarse: Dx = 26.0, Dy = 20.0, Dz = 16.0

Powerdrift: -0.02 dB

Pin before 100.0mW after 99.1mW 3.4mm surface detect/teflon caps on dipole

Humidity:44.0 Ambient Temp:22.7 Simulant Temp:22.3

File name: Validation_1900HEAD_537_1031_16Oct02_T01, Date: 10/16/02

1900 MHz SAR distribution of validation dipole antenna from system performance check on October 16, 2002. Using head tissue.

Zeum

17(67)

				17(07)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:03	344/REP	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc

Dipole 835 MHz

SAM 1020(L); Flat

Probe: ET3DV6 - SN1587; ConvF(6.50,6.50,6.50); Crest factor: 1.0; Body 835 MHz: $\sigma = 0.98$ mho/m $\epsilon_r = 55.9$ $\rho = 1.00$ g/cm² Cubes (2): Peak: 1.49 mW/g ± 0.05 dB, SAR (1g): 0.997 mW/g ± 0.06 dB, SAR (10g): 0.654 mW/g ± 0.06 dB, (Worst-case extrapolation)

Penetration depth: 13.2 (12.6, 14.1) [mm]

Powerdrift: -0.03 dB

Rote Roty [

Pin: before 100.0 mW after 99.0mW 3.4mm surface detect/teflon caps on dipole

Humidity:42.7 Ambient Temp:22.2 Simulant Temp:21.5 Pile name: Validation 835BODY 428 1020 15Oct02 T01, Date: 10/15/02

SAR_{Tex} [mW/g]

8.25E-1

6.42E-1

4.59E-1

2.75E-1

9.17E-2

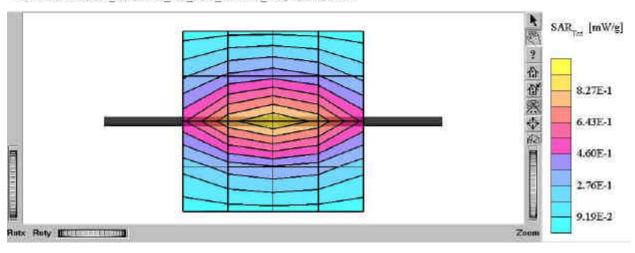
835 MHz SAR distribution of validation dipole antenna from system performance check on October 15, 2002. Using muscle tissue.

18(67)

						10(01)
Prepared (also subject responsible if other)		No.				
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:	0344/REI	Ρ		
Approved	Checked		l			
SEM/CV/PF/P Dulce Altabella	DA		В		U:\FCC Submittals\Fcc_G0702	
OZIVI, OVI, I I I Daloo i iliabolia	571		_		(T306)\XHIBIT11\getDoc.doc	

Dipole 835 MHz SAM 1020(L); Flat

Probe: ET3DV6 - SN1587; ConvF(6.50,6.50,6.50); Crest factor: 1.0; Body 835 MHz: $\sigma = 0.98$ mho/m s, = 55.5 p = 1.00 g/cm³ Cubes (2): Peak: 1.49 mW/g ± 0.05 dB, SAR (1g): 0.997 mW/g ± 0.05 dB, SAR (10g): 0.653 mW/g ± 0.05 dB, (Worst-case extrapolation)


Penetration depth: 13.2 (12.5, 14.1) [mm]

Powerdrift: -0.01 dB

after 99.8mW Pin: before 100.0mW 3.4mm surface detect/teflon caps on dipole

Ambient Temp:22.9 Humidity:39.5 Simulant Temp:21.9

File name: Validation 835BODY 428 1020 17Oct02 T01, Date: 10/17/02

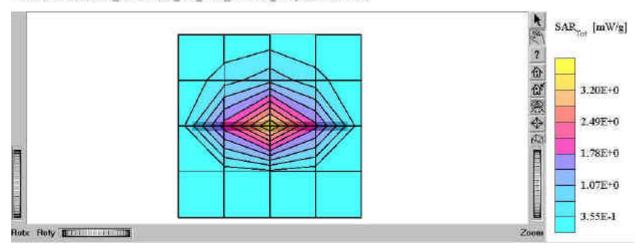
835 MHz SAR distribution of validation dipole antenna from system performance check on October 17, 2002. Using muscle tissue.

19(67)

			10(01)
	SEM/CB/D-02:0	0344/REP	
Checked			
DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc
	Checked	Checked	SEM/CB/D-02:0344/REP

Dipole 1900 MHz

SAM 1023 (L); Flat

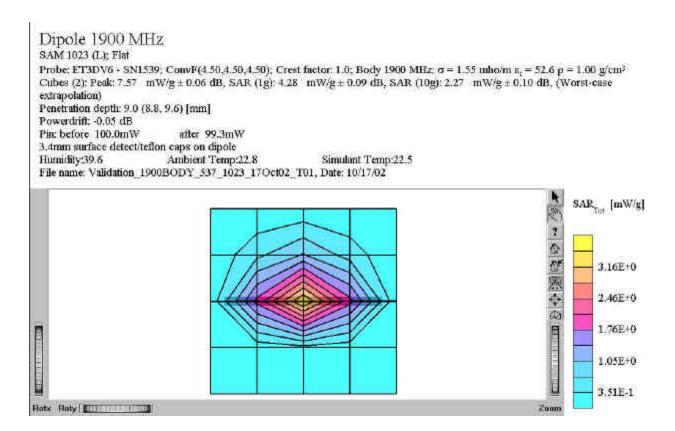

Probe: ET3DV6 - SN1539; ConvF(4.50,4.50,4.50); Crest factor: 1.0; Body 1900 MHz: $\sigma = 1.55$ mho/m $a_z = 52.6$ p = 1.00 g/cm² Cubes (2): Peak: 7.48 mW/g ± 0.03 dB, SAR (1g): 4.25 mW/g ± 0.06 dB, SAR (10g): 2.25 mW/g ± 0.09 dB, (Worst-case extrapolation)

Penetration depth: 9.1 (8.9, 9.7) [mm]

Powerdrift; -0.02 dB

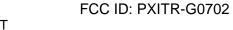
Pin: before 100.0mW after 99.8mW 3.4mm surface detect/teflon caps on dipole

Humidity:39.9 Ambient Temp:21.4 Simulant Temp:21.5 File name: Validation 1900BODY 537 1023 15Oct02 T01, Date: 10/15/02



1900 MHz SAR distribution of validation dipole antenna from system performance check on October 15, 2002. Using muscle tissue.

20(67)


					20(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:	0344/REP		
SLIVI/CV/FT/F Duice Altabella		02.0.00,000	00 1 1/1 (2)		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA		R	U:\FCC Submittals\Fcc_G0702	
OLIVI/OV/11/1 Daloc / Illabolia	D/ ((T306)\XHIBIT11\getDoc.doc	

1900 MHz SAR distribution of validation dipole antenna from system performance check on October 17, 2002. Using muscle tissue.

APPLICANT: Sony Ericsson Mobile Communications Inc.

REPORT

Sony Ericsson		REPORT				21(67)
Prepared (also subject responsible if other) SEM/CV/PF/P Dulce Altabella		No. SEM/CB/D-02:	0344	/REP		
Approved SEM/CV/PF/P Dulce Altabella	Checked DA				U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Appendix 2

SAR distribution plots for Phantom Head Adjacent Use

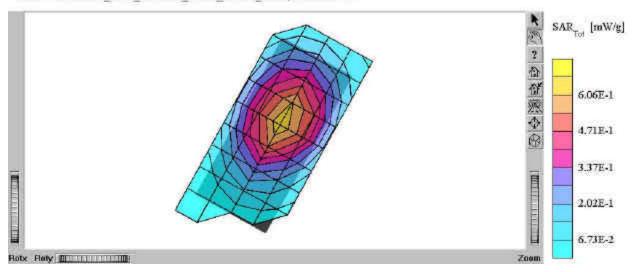
22(67)

					22(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:03	344/REP		
SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

T306

SAM 1030 (R) Phantom; Left Hand Section; Position: (91°,61°); Frequency: 849 MHz

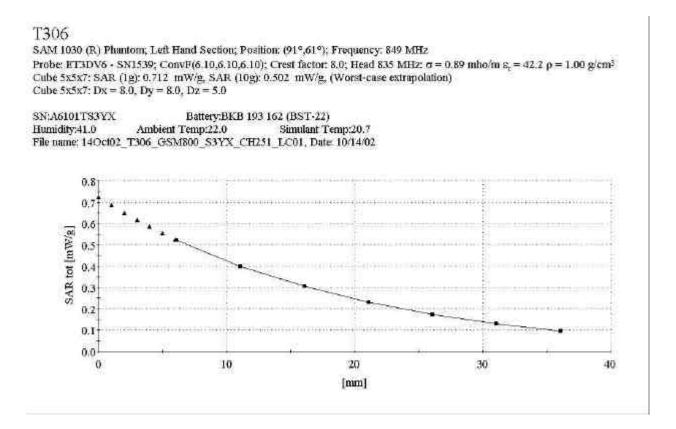
Probe: ET3DV6 - SNL539; ConvF(6.10,6.10,6.10); Crest factor: 8.0; Head 835 MHz: $\sigma = 0.89$ mho/m $\epsilon_z = 42.2$ $\rho = 1.00$ g/cm²


Cube 5x5x7: SAR (1g): 0.712 mW/g, SAR (10g): 0.502 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift; -0.05 dB

SN:A6101TS3YX Battery BKB 193 162 (BST-22)


Humidity/41.0 Ambient Temp:22.0 Simulant Temp:20.7 File name: 14Oct02 T306 GSM800 S3YX CH251 LC01, Date: 10/14/02

Distribution of maximum SAR in 800 GSM band. Measured against the left hand side of the head in the "Cheek" position.

					23(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0344	/REP		
Approved SEM/CV/PF/P Dulce Altabella	Checked DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

SAR Extrapolation to the phantom inner surface. Measured for Maximum SAR in 800 GSM band, while phone is against the left hand side of the head in the "cheek" position.

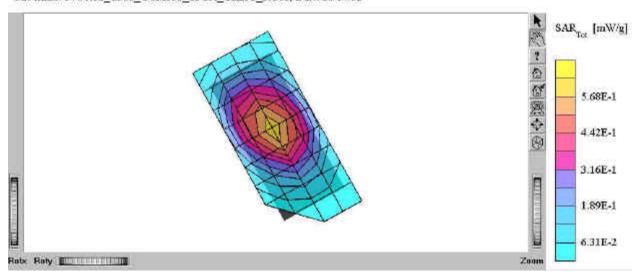
24(67)

			21(01)
	SEM/CB/D-02:0	0344/REP	
Checked			
DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc
	Checked	Checked	SEM/CB/D-02:0344/REP

T306

SAM 1030 (R) Phantom; Righ Hand Section; Position: (91°,299°); Frequency: 849 MHz

Probe: ET3DV6 • SN1539; ConvF (6.10,6.10,6.10); Crest factor: 8.0; Head 835 MHz: $\sigma = 0.89$ mho/m $\epsilon_t = 42.2$ $\rho = 1.00$ g/cm²


Cube 5x5x7: SAR (1g): 0.682 mW/g, SAR (10g): 0.478 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift 0.06 dB

SN:A6101TS3YX Battery; BKB 193 162 (BST-22)

Humidity:41.3 Ambient Temp:21.6 Simulant Temp:21.1 File name: 14Oct02_T306_GSM800_S3YX_CH251_RC01, Date: 10/14/02

Distribution of maximum SAR in 800 GSM band. Measured against the right hand side of the head in the "Cheek" position.

				=0(0.)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:03	344/REP	
Approved	Checked			HAFOC Culturational Face CO700
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc
				· · · · · · · · · · · · · · · · · · ·

T306

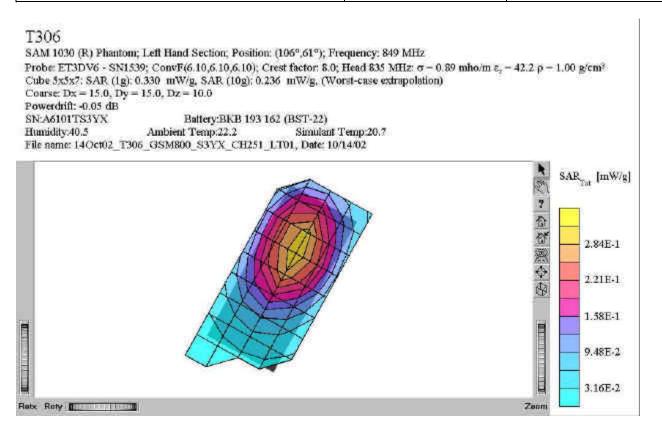
SAM 1030 (R) Phantom; Righ Hand Section; Position: (91°,299°); Frequency: 849 MHz

Probe: ET3DV6 - SN1539; ConvF(6.10,6.10,6.10); Crest factor; 8.0; Head 835 MHz; σ = 0.89 mho/m ε_i = 42.2 ρ = 1.00 g/cm²

Cube 5x5x7; SAR (1g): 0.682 mW/g, SAR (10g): 0.478 mW/g, (Worst-case extrapolation)

Cube 5x5x7; Dx = 8.0, Dy = 8.0, Dz = 5.0

SN:A6101TS3YX Battery: BKB 193 162 (BST-22)
Humidity:41.3 Ambient Temp:21.6 Simulant Temp:21.1
File name: 14Oct02 T306 GSM800 S3YX CH251 RC01, Date: 10/14/02

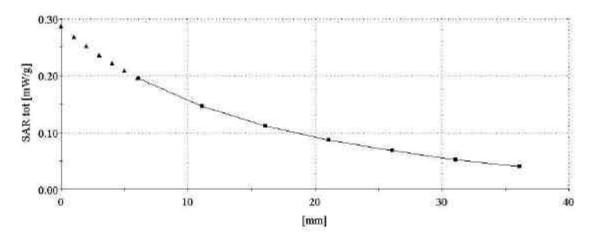


SAR Extrapolation to the phantom inner surface. Measured for Maximum SAR in 800 GSM band, while phone is against the right hand side of the head in the "cheek" position.

26(67)

					20(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:03	344/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Distribution of maximum SAR in 800 GSM band. Measured against the left hand side of the head in the "tilt" position.



				21(01)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0	0344/REP	
OZIN/OV/11/1 Daloo / Inabolia				
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702
OZIVI, OVI, I I I Daloo i iliabolia	571		_	(T306)\XHIBIT11\getDoc.doc

T306

SAM 1030 (R) Phantom; Left Hand Section; Position: $(106^{\circ},61^{\circ})$; Frequency; 849 MHz Probe: ET3DV6 - SN1539; ConvF(6.10,6.10,6.10); Crest factor; 8.0; Head 835 MHz; $\sigma = 0.89$ mbo/m $\epsilon_{\gamma} = 42.2$ $\rho = 1.00$ g/cm³ Cube 5x5x7; SAR (1g): 0.330 mW/g, SAR (10g): 0.236 mW/g, (Worst-case extrapolation) Cube 5x5x7; Dx = 8.0, Dy = 8.0, Dz = 5.0

SN:A6101TS3YX Baftery:BKB 193 162 (BST-22)
Humidity:40.5 Ambient Temp:22.2 Simulant Temp:20.7
File name: 14Oct02 T306 GSM800 S3YX CH251 LT01, Date: 10/14/02

SAR Extrapolation to the phantom inner surface. Measured for Maximum SAR in 800 GSM band, while phone is against the left hand side of the head in the "tilt" position.

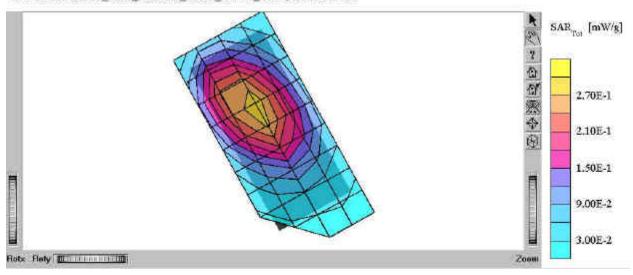
28(67)

					20(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:034	44/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

T306

SAM 1030 (R) Phantom; Righ Hand Section; Position: (106°,299°); Frequency: 849 MHz

Probe: ET3DV6 • SN1539; ConvF(6.10.6.10,6.10); Crest factor; 8.0; Head 835 MHz: $\sigma = 0.89 \text{ mho/m s}_2 = 42.2 \text{ } \rho = 1.00 \text{ g/cm}^2$


Cube 5x5x7: SAR (1g): 0.322 mW/g, SAR (10g): 0.229 mW/g, (Worst-case extrapolation)

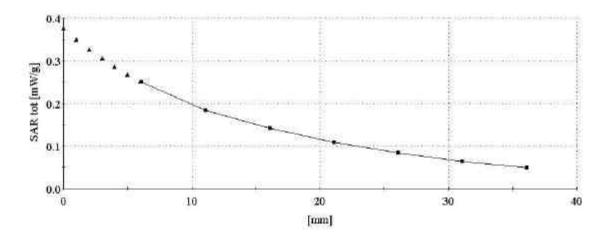
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: 0.13 dB

SN:A6101TS3YX Battery:BKB 193 162 (BST-22)

Humidity:40.3 Ambient Temp:22.2 Simulant Temp:21.1 File name: 14Oct02 T306 GSM800 S3YX CH251 RT01, Date: 10/14/02

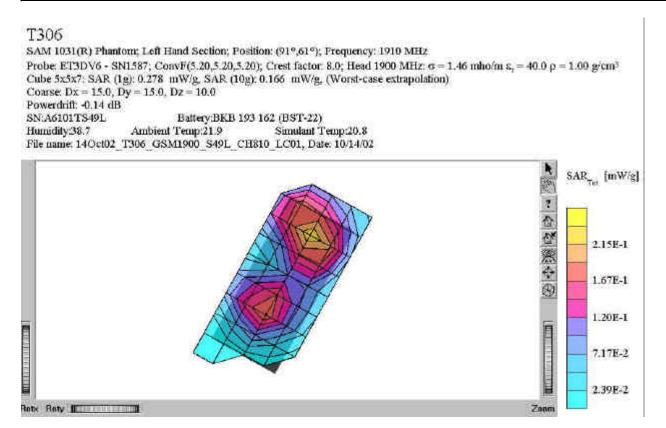
Distribution of maximum SAR in 800 GSM band. Measured against the right hand side of the head in the "tilt" position.


29(67)

				23(01)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0	0344/REP	
Approved	Checked		ļ	
SEM/CV/PF/P Dulce Altabella	DA		B	U:\FCC Submittals\Fcc_G0702
OZIVI/OV/11/11 Bulloo / Illubollu	271			(T306)\XHIBIT11\getDoc.doc

T306

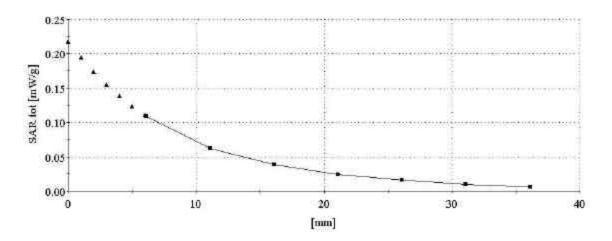
SAM 1030 (R) Phantom; Righ Hand Section; Position: (106°,209°); Frequency: 849 MHz Probe; ET3DV6 - SN1539; ConvF(6.10,6.10,6.10); Crest factor: 8.0; Head 835 MHz: $\sigma = 0.89$ mho/m $\varepsilon_c = 42.2$ $\rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 0.322 mW/g, SAR (10g): 0.229 mW/g, (Worst-case extrapolation) Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0


SN:A6101TS3YX Battery:BKB 193 162 (BST-22)
Humidity:40.3 Ambient Temp;22.2 Simulant Temp;21.1
File name: 14Oct02_T306_GSM800_S3YX_CH251_RT01, Date: 10/14/02

SAR Extrapolation to the phantom inner surface. Measured for Maximum SAR in 800 GSM band, while phone is against the right hand side of the head in the "tilt" position.

					JO(OI)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0344/REP			
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Distribution of maximum SAR in 1900 GSM band. Measured against the left hand side of the head in the "cheek" position.


31(67)

Prepared (also subject responsible if other) SEM/CV/PF/P Dulce Altabella		No. SEM/CB/D-02:0344	l/REP	,
SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc

T306

SAM 1031(R) Phantom; Left Hand Section; Position; (91°,61°); Frequency: 1910 MHz Probe; ET3DV6 · SN1587; ConvF(5,20,5,20,5,20); Crest factor: 8.0; Head 1900 MHz: $\sigma = 1.46$ mho/m $\epsilon_r = 40.0$ p = 1.00 g/cm³ Cube 5x5x7; SAR (1g): 0.278 mW/g, SAR (10g): 0.166 mW/g, (Worst-case extrapolation) Cube 5x5x7; Dx = 8.0, Dy = 8.0, Dz = 5.0

\$N:A6101TS49L Battery:BKB 193 162 (BST-22)
Humidity:38.7 Ambient Temp:21.9 Simulant Temp:20.8
File name: 14Oct02 T306 GSM1900 \$49L CH810 LC01, Date: 10/14/02

SAR Extrapolation to the phantom inner surface. Measured for Maximum SAR in 1900 GSM band, while phone is against the left hand side of the head in the "cheek" position.

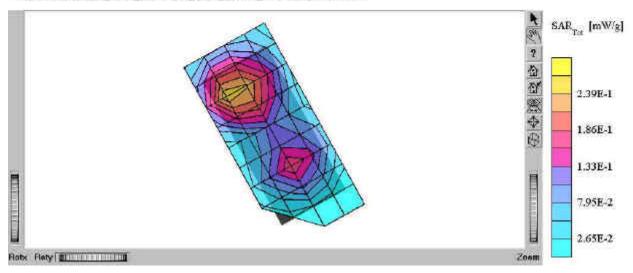
32(67)

					32(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:03	344/REP		
SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

T306

SAM 1031(R) Phantom; Righ Hand Section; Position: (91°,299°); Frequency: 1910 MHz

Probe: ET3DV6 - SN1587; ConvF(5.20,5.20,5.20); Crest factor: 8.0; Head 1900 MHz: $\sigma = 1.46$ mho/m $\epsilon_i = 40.0$ p = 1.00 g/cm²


Cube 5x5x7: SAR (1g): 0.321 mW/g, SAR (10g): 0.188 mW/g, (Worst-case extrapolation)

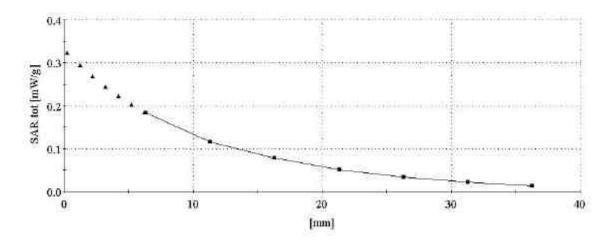
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: 0.00 dB

SN:A6101TS49L Battery: BKB 193 162 (BST-22)

Humidity:40.7 Ambient Temp:22.2 Simulant Temp:21.1 File name: 14Oct02 T306 GSM1900 S49L CH810 RC01, Date: 10/14/02

Distribution of maximum SAR in 1900 GSM band. Measured against the right hand side of the head in the "cheek" position.


33(67)

				00(01)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0	344/REP	
Approved	Checked		l	
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702
OZIVI/OV/11/11 Daloo / Illabolla	271			(T306)\XHIBIT11\getDoc.doc

T306

SAM 1031(R) Phantom; Righ Hand Section; Position: $(91^{\circ},299^{\circ})$; Frequency: 1910 MHz Probe: ET3DV6 · SN1587; ConvF(5.20,5.20,5.20); Crest factor: 8.0; Head 1900 MHz: $\sigma = 1.46$ mho/m $\epsilon_{r} = 40.0$ $\rho = 1.00$ g/cm² Cube 5x5x7; SAR (1g): 0.321 mW/g, SAR (10g): 0.188 mW/g, (Worst-case extrapolation) Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0

SN:A6101TS49L Battery: BKB 193 162 (BST-22)
Humidity:40.7 Ambient Temp:22 2 Simulant Temp:21.1
File name: 14Oct02 T306 GSM1900 S49L CH810 RC01, Date: 10/14/02

SAR Extrapolation to the phantom inner surface. Measured for Maximum SAR in 1900 GSM band, while phone is against the right hand side of the head in the "cheek" position.

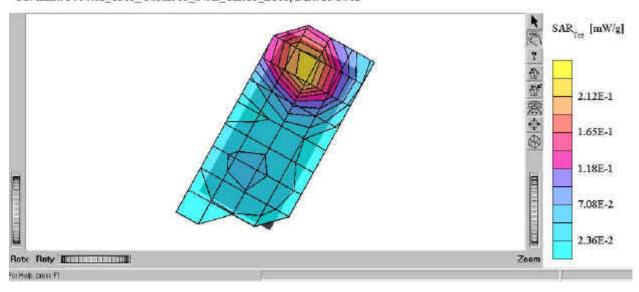
34(67)

					3+(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0344	l/REP		
Approved SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

T306

SAM 1031(R) Phantom; Left Hand Section; Position: (106°,61°); Frequency: 1910 MHz

Probe: ET3DV6 - SN1587; ConvF(5.20,5.20,5.20); Crest factor: 8.0; Head 1900 MHz: $\sigma = 1.46$ mho/m $v_r = 40.0$ $\rho = 1.00$ g/cm²


Cube 5x5x7: SAR (1g): 0.298 mW/g, SAR (10g): 0.174 mW/g, (Worst-case extrapolation)

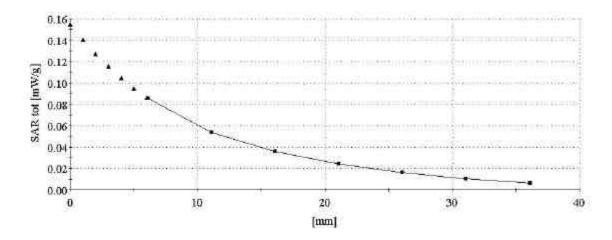
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.19 dB

SN:A6101TS49L Battery:BKB 193 162 (BST-22)

Humiclity:40.5 Ambient Temp:22.1 Simulant Temp:20.8 File name: 14Oct02_T306_GSM1900_S49L_CH810_LT01, Date: 10/14/02

Distribution of maximum SAR in 1900 GSM band. Measured against the right hand side of the head in the "tilt" position.



				00(01)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0	0344/REP	
Approved	Checked		l	
SEM/CV/PF/P Dulce Altabella	DA		R	U:\FCC Submittals\Fcc_G0702
OLIVI/OV/11/11 Bulgo / Illabolia	B/ ((T306)\XHIBIT11\getDoc.doc

T306

SAM 1031(R) Phantom; Left Hand Section; Position: (106°,61°); Frequency; 1910 MHz Probe; ET3DV6 - SN1587; ConvF(5.20,5.20,5.20); Crest factor: 8.0; Head 1900 MHz: $\sigma = 1.46$ mho/m $c_c = 40.0$ $\rho = 1.00$ g/cm⁵ Cube 5x5x7; SAR (1g): 0.298 mW/g, SAR (10g): 0.174 mW/g, (Worst-case extrapolation) Cube 5x5x7; Dx = 8.0, Dy = 8.0, Dz = 5.0

SN:A6101TS49L Battery:BKB 193 162 (BST-22)
Humidity:40.5 Ambient Temp:22.1 Simulant Temp:20.8
File name: 14Oct02 T306 GSM1900 S49L CH810 LT01, Date: 10/14/02

SAR Extrapolation to the phantom inner surface. Measured for Maximum SAR in 1900 GSM band, while phone is against the left hand side of the head in the "tilt" position.

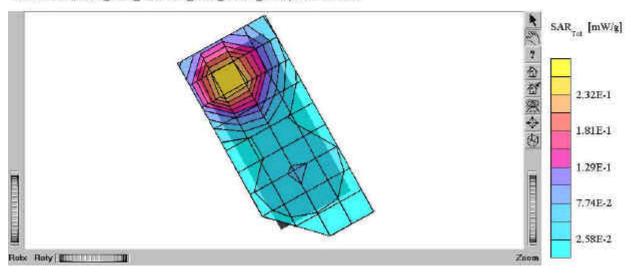
36(67)

						30(01)
Prepared (also subject responsible if other)		No.				
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:	0344/REF	Ρ		
	To:					
Approved	Checked		Į.			
SEM/CV/PF/P Dulce Altabella	DA		В		U:\FCC Submittals\Fcc_G0702	
OZIVI, OVI, I I I Daloo i iliabolia	271		_		(T306)\XHIBIT11\getDoc.doc	

T306

SAM 1031(R) Phantom; Righ Hand Section; Position: (106°,299°); Frequency: 1910 MHz

Probe: ET3DV6 - SN1587; ConvF(5.20,5.20,5.20); Crest factor: 8.0; Head 1900 MHz: $\sigma = 1.46$ mho/m $s_r = 40.0$ p = 1.00 g/cm²


Cube 5x5x7; SAR (1g): 0.345 mW/g, SAR (10g): 0.199 mW/g, (Worst-case extrapolation)

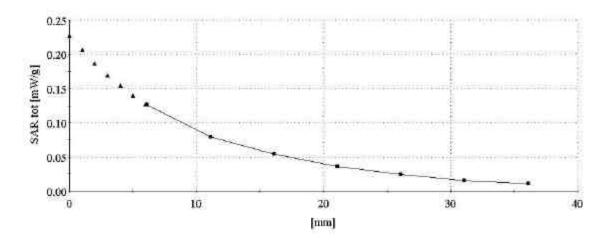
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.07 dB

SN:A6101TS49L Battery:BKB 193 162 (BST-22)

Humidity:40.3 Ambient Temp:22.3 Simulant Temp:21.1 File name: 14Oct02 T306 GSM1900 S49L CH810 RT01, Date: 10/14/02

Distribution of maximum SAR in 1900 GSM band. Measured against the right hand side of the head in the "tilt" position.


37(67)

Prepared (also subject responsible if other) SEM/CV/PF/P Dulce Altabella		No. SEM/CB/D-02:0	0344/REP	37(07)
Approved SEM/CV/PF/P Dulce Altabella	Checked DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc

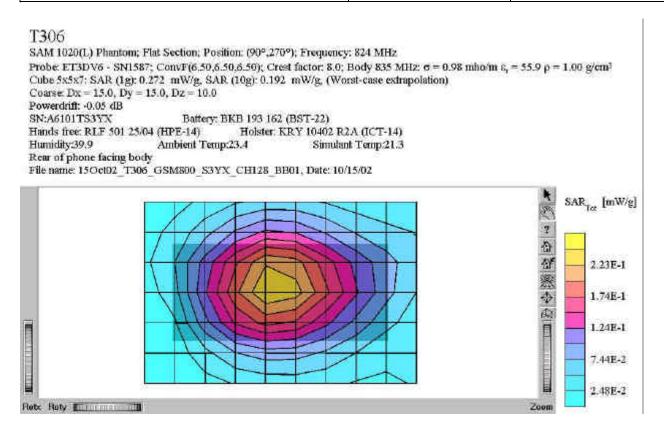
T306

SAM 1031(R) Phantom, Righ Hand Section, Position; (106°,299°); Frequency: 1910 MHz. Probe: ET3DV6 • SN1587; ConvF(5.20,5.20,5.20); Crest factor: 8.0; Head 1900 MHz: $\sigma = 1.46$ mho/m $\epsilon_r = 40.0$ p = 1.00 g/cm³ Cube 5x5x7: SAR (1g): 0.345 mW/g, SAR (10g): 0.199 mW/g, (Worst-case extrapolation) Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0

SN:A6101TS49L Battery:BKB 193 162 (BST-22)
Humidity:40.3 Ambient Temp:22.3 Simulant Temp:21.1
File name: 14Oct02 T306 GSM1900 S49L CH810 RT01, Date: 10/14/02

SAR Extrapolation to the phantom inner surface. Measured for Maximum SAR in 1900 GSM band, while phone is against the right hand side of the head in the "tilt" position.

Sony Ericsson		REPORT				38(67)
Prepared (also subject responsible if other) SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:	0344	/REP		
SEM/CV/PF/P Dulce Altabella	Checked DA				U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

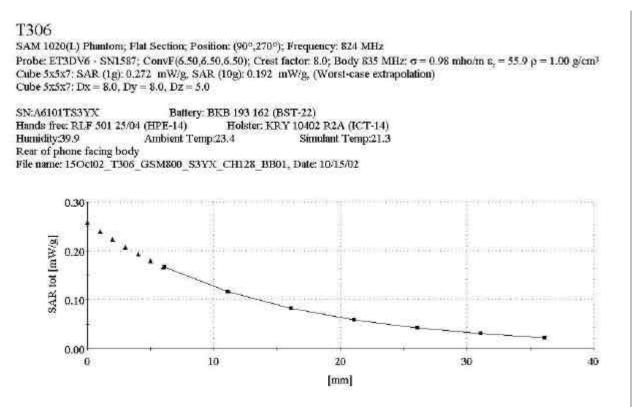

Appendix 3

SAR distribution plots for Body Worn Configuration

39(67)

					33(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:03	344/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	
Selvi/CV/FF/F Duice Altabella	DA		Ь	(T306)\XHIBIT11\getDoc.doc	

Distribution of maximum SAR in 800 GSM band. Measured with back of device facing the body using carry ICT-14 and hands free accessory RLF 501 25/04.


REPORT

40(67)

FCC ID: PXITR-G0702

				-10	J(UI)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0	344/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

SAR Extrapolation to the phantom inner surface. Measured for maximum SAR in 800 GSM band, while phone is against the body using carry accessory ICT-14 and hands free accessory RLF 501 25/04.

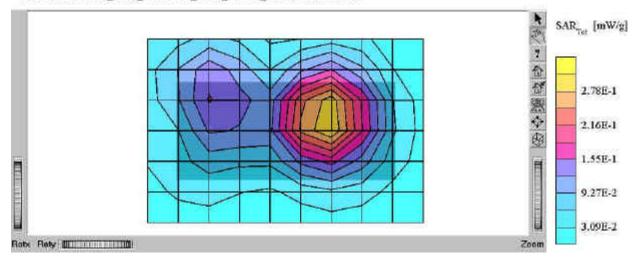
41(67)

				11(01)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0)344/REP	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc

T306

SAM 1023 (L) Phantom; Flat Section; Position: (90°,270°); Frequency: 1910 MHz.

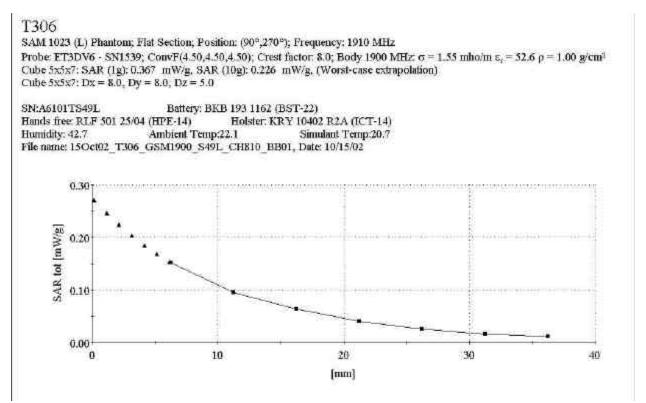
Probe: ET3DV6 - SN1539; ConvF(4.50,4.50,4.50); Crest factor: 8.0; Body 1900 MHz: $\sigma = 1.55$ mho/m $\varepsilon_t = 52.6$ $\rho = 1.00$ g/cm³


Cube 5x5x7: SAR (1g): 0.367 mW/g, SAR (10g): 0.226 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.08 dB

SN:A6101TS49L Battery: BKE 193 1162 (BST-22)


Hands free: RLF 501 25/04 (HPE-14) Holster: KRY 10402 R2A (ICT-14) Humidity: 42.7 Ambient Temp:22.1 Simulant Temp:20.7 File name: 15Oct02 T306 GSM1900 S49L CH810 BB01, Date: 10/15/02

Distribution of maximum SAR in 1900 GSM band. Measured with back of device facing the body using carry ICT-14 and hands free accessory RLF 501 25/04.

				12(01)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0)344/REP	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc

SAR Extrapolation to the phantom inner surface. Measured for maximum SAR in 1900 GSM band, while phone is against the body using carry accessory ICT-14 and hands free accessory RLF 501 25/04.

43(67)

					43(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0	344/REP		
SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

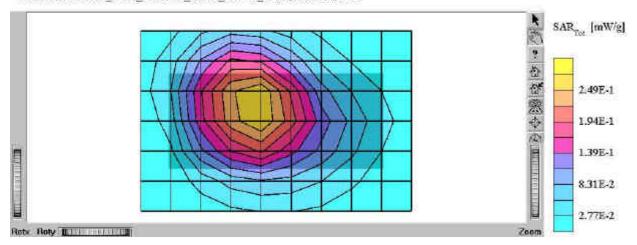
T306

SAM 1020(L) Phantom; Flat Section; Position: (90°,270°); Frequency: 824 MHz

Probe: ET3DV6 · SN1587; ConvF(6.50,6.50,6.50); Crest factor: 8.0; Body 835 MHz: $\sigma = 0.98 \text{ mbo/m} \text{ s}_c = 55.5 \text{ } \rho = 1.00 \text{ g/cm}^3$

Cube 5x5x7: SAR (1g): 0.305 mW/g, SAR (10g): 0.218 mW/g, (Worst-case extrapolation)

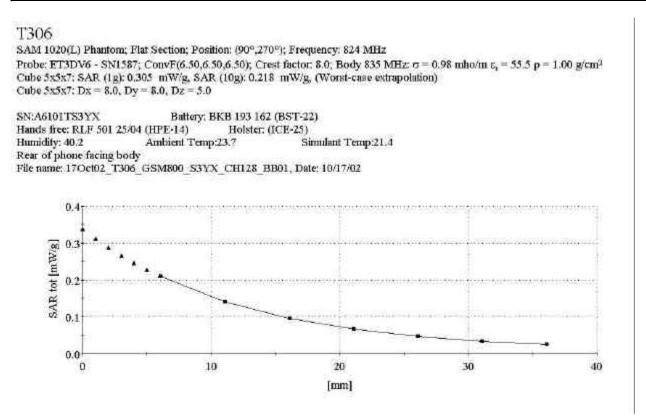
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0


Powerdrift: 0.03 dB

SN:A6101TS3YX Battery: BKB 193 162 (BST-22) Hands free: RLF 501 25/04 (HPE-14) Holster: (ICE-25)

Humidity: 40.2 Ambient Temp:23.7 Simulant Temp:21.4

Rear of phone facing body


File name: 17Ocl02 'T306 GSM800 S3YX CH128 BB01, Date: 10/17/02

Distribution of maximum SAR in 800 GSM band. Measured with back of device facing the body using carry ICE-25 and hands free accessory RLF 501 25/04.

Prepared (also subject responsible if other) SEM/CV/PF/P Dulce Altabella		No. SEM/CB/D-02:0344	/REP	\
SEM/CV/PF/P Dulce Altabella	Checked DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc

SAR Extrapolation to the phantom inner surface. Measured for maximum SAR in 800 GSM band, while phone is against the body using carry accessory ICE-25 and hands free accessory RLF 501 25/04.

45(67)

				1 3(01)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:	0344/REF	P
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc

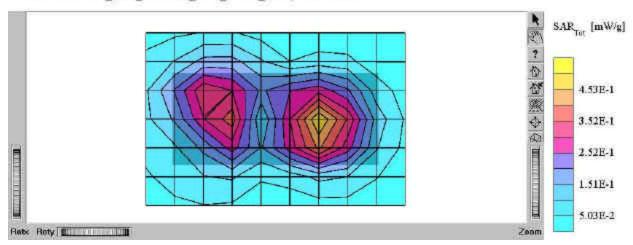
T306

SAM 1023 (L) Phantom; Flat Section; Position: (90°,270°); Frequency: 1880 MHz.

Probe: FT3DV6 · SN1539; ConvF(4.50,4.50,4.50); Crest factor: 8.0; Body 1900 MHz: $\sigma = 1.55$ mho/m $s_c = 52.6$ $\rho = 1.00$ g/cm²

Cube 5x5x7: SAR (1g): 0.577 mW/g, SAR (10g): 0.349 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0


Powerdrift: -0.12 dB

SN:A6101TS49L Battery: BKB 193 162 (BST-22) Hands free: RLF 501 25/04 (HPE-14) Holster: (ICE-25)

Humidity39.4 Ambient Temp:23.1 Simulant Temp:21.7

Rear of phone facing body

File name: 17Oct02_T306_GSM1900_S49L_CH660_BB01, Date: 10/17/02

Distribution of maximum SAR in 1900 GSM band. Measured with back of device facing the body using carry ICE-25 and hands free accessory RLF 501 25/04.

46(67)

Prepared (also subject responsible if other) SEM/CV/PF/P Dulce Altabella		No. SEM/CB/D-02:034	4/REP	10(01)
SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc

T306

SAM 1023 (L) Phintom; Flat Section; Position: (90°,270°); Frequency: 1880 MHz.

Probe: ET3DV6 - SN1539; ConvF(4.50,4.50,4.50); Crest factor: 8.0; Body 1900 MHz: $\sigma = 1.55$ mho/m $\epsilon_{\gamma} = 52.6$ p = 1.00 g/cm² Cube 5x5x7; SAR (1g): 0.577 mW/g, SAR (10g): 0.349 mW/g, (Worst-case extrapolation) Cube 5x5x7; Dx = 8.0, Dy = 8.0, Dz = 5.0

SN:A6101TS49L Battery: BKB 193 162 (BST-22) Hands free: RLF 501 25/04 (HPE-14) Holster: (ICE-25)

Humidity:39.4 Ambient Temp:23.1 Simulant Temp:21.7

Rear of phone facing body

File name: 17Oct02 T306 GSM1900 S49L CH660 BB01, Date: 10/17/02

SAR Extrapolation to the phantom inner surface. Measured for maximum SAR in 1900 GSM band, while phone is against the body using carry accessory ICE-25 and hands free accessory RLF 501 25/04.

REPORT

47(67)

FCC ID: PXITR-G0702

					47(67)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:03	344/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Appendix 4

Probe Calibration Certificate

. RT

48(67)

FCC ID: PXITR-G0702

					40(07)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0)344/REP		
SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

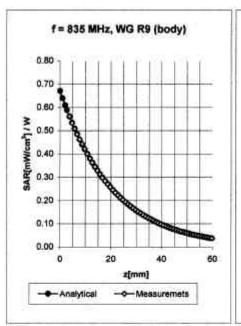
ET3DV6 SN:1539

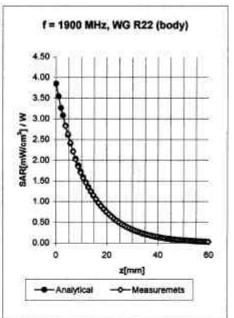
July 26, 2002

DASY3 - Parameters of Probe: ET3DV6 SN:1539

Sensit	tivity in Fre	e Space		Diode C	Compress	sion	
	NormX	1.32	$\mu V/(V/m)^2$		DCP X	92	mV
	NormY	1.23	$\mu V/(V/m)^2$		DCP Y	92	mV
	NormZ	1.34	$\mu V/(V/m)^2$		DCP Z	92	mV
Sensi	tivity in Tiss	sue Simu	lating Liquid				
Head	835	MHz	c, = 41.5 ± 55	. o=	0.90 ± 5%	mho/m	
Head	900	MHz	s,= 41.5 ± 51	6 a=	0.97 ± 5%	mho/m	
	ConvF X	6.1	± 9.5% (k=2)		Boundary 6	effect	
	ConvF Y	6.1	± 9.5% (k=2)		Alpha	0.46	
	ConvF Z	6.1	± 9.5% (k=2)		Depth	2.27	
Head	1900	MHz	s, = 40.0 ± 55	6 o=	1.40 ± 5%	mho/m	
Head	1800	MHz	E, = 40.0 ± 55	4 a=	1.40 ± 5%	mho/m	
	ConvF X	4.9	± 9.5% (k=2)		Boundary e	effect	
	ConvF Y	4.9	± 9.5% (k=2)		Alpha	0.66	
	ConvF Z	4.9	± 9.5% (k=2)		Depth	2.13	
Bound	dary Effect						
Head	835	MHz	Typical SAR gradie	nt: 5 % per n	nm		
	Probe Tip to	Boundary			1 mm	2 mm	
	SAR _{be} [%]	Without Co	rrection Algorithm		10.4	5,7	
	SAR _{be} [%]	With Corre	ction Algorithm		0.4	0.4	
Head	1900	MHz	Typical SAR gradie	nt: 10 % per	mm		
	Probe Tip to	Boundary			1 mm	2 mm	
	SAR _{be} [%]	Without Co	rrection Algorithm		12.9	8,1	
	SAR _{be} [%]	With Corre	ction Algorithm		0.2	0.3	
Senso	or Offset						
	Probe Tip to	Sensor Ce	nter	2.7		mm	
	Optical Surf	ace Detection	on	1.5 ± 0.2		mm	

Page 2 of 10




49(67)

				U)CF	<u>'</u>
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0	0344/REP		
Approved	Checked		l		
SEM/CV/PF/P Dulce Altabella	DA		R	U:\FCC Submittals\Fcc_G0702	
OLIVI/OV/11/11 Buloo / Illabolla	D/ ((T306)\XHIBIT11\getDoc.doc	

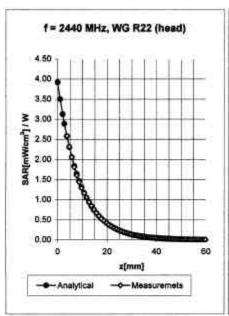
ET3DV6 SN:1539

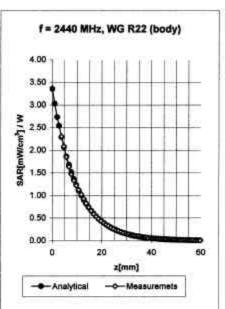
July 26, 2002

Body	835 MHz	r, = 55.2 ± 5	5% σ= 0.97±5% n	nho/m
Body	900 MHz	e,= 55.0 ± 5	σ = 1.05 ± 5% n	nho/m
	ConvF X	6.1 ±9.5% (k=2)	Boundary e	ffect:
	ConvF Y	6.1 ± 9.5% (k=2)	Alpha	0.47
	ConvF Z	6.1 ± 9.5% (k=2)	Depth	2.24

Body	1900 MHz	c, = 53.3 ± 5%	g = 1.52 ± 5% mho/	m
Body	1800 MHz	E, = 53.3 ± 5%	a = 1.52 ± 5% mho/	m
	ConvF X	4.5 ± 9.5% (k=2)	Boundary effect:	
	ConvF Y	4.5 ± 9.5% (k=2)	Alpha	0.81
	ConvF Z	4.5 ± 9.5% (k=2)	Depth	1.98

Page 8 of 10




50(67)

				30(01)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0)344/REP	
SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc

ET3DV6 SN:1539

July 26, 2002

Head	2440 MHz	e, = 39.2 ± 5%	a = 1.80 ± 5% 1	nho/m
	ConvF X	4.7 ±8.9% (k=2)	Boundary e	ffect:
	ConvF Y	4.7 ±8.9% (k=2)	Alpha	1.00
	ConvF Z	4.7 ± 8.9% (k=2)	Depth	1.73

Body	2440 MHz	E, = 52.7 ± 5%	o = 1.95 ± 5% mho/m	
	ConvF X	4.1 ±8.9% (k=2)	Boundary effect:	
	ConvF Y	4.1 ±8.9% (ko2)	Alpha 1.	.00
	ConvF Z	4.1 ±8.9% (k=2)	Depth 1.	90

Page 9 of 10

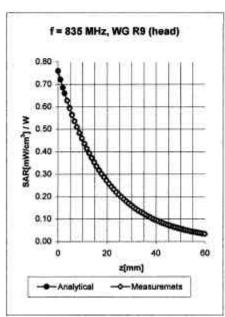
51(67)

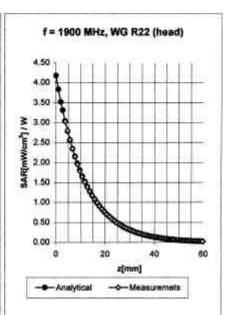
				01(01)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0	0344/REP	
OZIN/OV/11/1 Daloo / Inabolia				
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA		R	U:\FCC Submittals\Fcc_G0702
OZIVI/OV/11/11 Bulloo / Illubollu	D/ ((T306)\XHIBIT11\getDoc.doc

ET3DV6 SN:1587 June 20, 2002

835 I 900 I onvF X onvF Y 1900 I 1800 I	1.8 1.7 Je Sim MHz 6. 6. MHz MHz	2 μ V/(V/m) ² 9 μ V/(V/m) ² 6 μ V/(V/m) ² Fullating Liquid E _g = 41.5 ± 5% E _g = 41.5 ± 5% 8 ± 9.5% (k=2) 8 ± 9.5% (k=2) 8 ± 9.5% (k=2) E _T = 40.0 ± 5% E _T = 40.0 ± 5%	DCP X DCP Y DCP Z	mho/m effect: 0.40 2.18 mho/m	
an Tissu 835 I 900 I 900 I 900 I 900 I 1800 I 900 I	1.70 Je Sim MHz MHz 6. 6. MHz	6 μV/(V/m) ² nulating Liquid ε _r = 41.5 ± 5% ε _r = 41.5 ± 5% 8 ± 9.5% (k=2) 8 ± 9.5% (k=2) ε _r = 40.0 ± 5% ε _r = 40.0 ± 5%	o = 0.90 ± 5% o = 0.97 ± 5% Boundary Alpha Depth o = 1.40 ± 5%	mho/m mho/m effect: 0.40 2.18	
835 I 900 I onvF X onvF Z 1900 I 1800 I	Je Sim MHz 6. 6. MHz MHz	s _r = 41.5 ± 5% s _r = 41.5 ± 5% 8 ± 9.5% (k=2) 8 ± 9.5% (k=2) 8 ± 9.5% (k=2) s _r = 40.0 ± 5% s _r = 40.0 ± 5%	a = 0.90 ± 5% a = 0.97 ± 5% Boundary Alpha Depth a = 1.40 ± 5%	mho/m mho/m effect: 0.40 2.18	
835 I 900 I onvF X onvF Y 1900 I 1800 I	MHz 6. 6. MHz MHz	ε _r = 41.5 ± 5% ε _r = 41.5 ± 5% 8 ± 9.5% (k=2) 8 ± 9.5% (k=2) 8 ± 9.5% (k=2) ε _r = 40.0 ± 5% ε _r = 40.0 ± 5%	o = 0.97 ± 5% Boundary Alpha Depth o = 1.40 ± 5%	mho/m effect: 0.40 2.18 mho/m	
900 I ORVF Y ORVF Z 1900 I 1800 I	MHz 6. 6. 6. MHz MHz	E _r = 41.5 ± 5% 8 ± 9.5% (k=2) 8 ± 9.5% (k=2) 8 ± 9.5% (k=2) E _r = 40.0 ± 5% E _r = 40.0 ± 5%	o = 0.97 ± 5% Boundary Alpha Depth o = 1.40 ± 5%	mho/m effect: 0.40 2.18 mho/m	
onvF X onvF Y onvF Z 1900 I 1800 I	6. 6. 6. MHz MHz	8 ± 9.5% (k=2) 8 ± 9.5% (k=2) 8 ± 9.5% (k=2) s _r = 40.0 ± 5% s _r = 40.0 ± 5%	Boundary Alpha Depth o = 1.40 ± 5%	effect: 0.40 2.18 mho/m	
1900 I 1800 I 2004 Y	6. 6. MHz MHz	8 ± 9.5% (k=2) 8 ± 9.5% (k=2) $\varepsilon_r = 40.0 \pm 5\%$ $\varepsilon_r = 40.0 \pm 5\%$	Alpha Depth 0 = 1.40 ± 5%	0.40 2.18 mho/m	
1900 J 1800 J DOVF X	6. MHz MHz	8 ± 9.5% (k=2) ϵ_r = 40.0 ± 5% ϵ_r = 40.0 ± 5%	Depth o = 1.40 ± 5%	2.18 mho/m	
1900 I 1800 I povF X	MHz MHz	ε _r = 40.0 ± 5% ε _r = 40.0 ± 5%	σ = 1.40 ± 5%	mho/m	
1800 I povF X povF Y	MHz	e _r = 40.0 ± 5%		000000000000000000000000000000000000000	
onvF X		기 - 15가 전 10 10 10 10 10 10 10 10 10 10 10 10 10	o = 1.40 ± 5%	mho/m	
nvF Y	5.	2 +0 5% (0-2)	% o = 1.40 ± 5% mho/m		
		2 ± 9.5% (k=2) Bou		dary effect	
CONTRACTOR OF THE PARTY OF THE	5.	2 ± 9.5% (k=2)	Alpha	0.49	
nvF Z	5.	2 ± 9.5% (k=2)	Depth	2.40	
Effect					
835 I	MHz	Typical SAR gradient	: 5 % per mm		
obe Tip to I	Boundary	r	1 mm	2 mm	
VR _{be} [%] V	Without C	Correction Algorithm	8.1	4.4	
VR ₀₀ [%] V	With Corr	rection Algorithm	0.2	0.4	
1900 M	MHz	Typical SAR gradient	: 10 % per mm		
obe Tip to I	Boundary	r.	1 mm	2 mm	
VR _{be} [%] V	Without C	Correction Algorithm	11.4	7.8	
√R _{be} [%] \	With Corr	rection Algorithm	0.3	0.4	
	obe Tip to INR _{to} [%] INR _{to}	R _{be} [%] Without C R _{be} [%] With Cond 1900 MHz obe Tip to Boundary R _{be} [%] Without C R _{be} [%] With Cond	obe Tip to Boundary NR _{bs} [%] Without Correction Algorithm NR _{bs} [%] With Correction Algorithm 1900 MHz Typical SAR gradient obe Tip to Boundary NR _{bs} [%] Without Correction Algorithm NR _{bs} [%] With Correction Algorithm	obe Tip to Boundary 1 mm Res [%] Without Correction Algorithm 8.1 Res [%] With Correction Algorithm 0.2 1900 MHz Typical SAR gradient: 10 % per mm obe Tip to Boundary 1 mm Res [%] Without Correction Algorithm 11.4 Res [%] With Correction Algorithm 0.3	

Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.6 ± 0.2	mm




52(67)

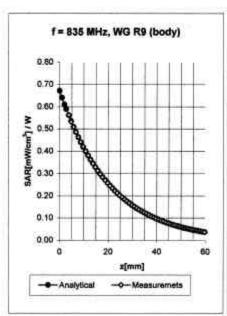
					32(U1)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0344	1/REP		
SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

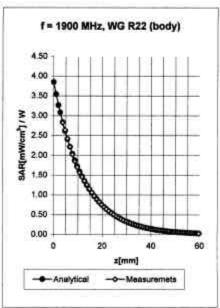
ET3DV6 SN:1587

June 20, 2002

Head	835 MHz	s, = 41.5 ± 5%	$\sigma = 0.90 \pm 5\% \text{ mho/m}$
Head	900 MHz	$e_r = 41.5 \pm 5\%$	a = 0.97 ± 5% mho/m
	ConvF X	6.8 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	6.8 ± 9.5% (k=2)	Alpha 0.40
	ConvF Z	6.8 ± 9.5% (k=2)	Depth 2.18
Head	1900 MHz	ε _r = 40.0 ± 5%	σ = 1.40 ± 5% mho/m
Head	1800 MHz	$n_r = 40.0 \pm 5\%$	σ = 1.40 ± 5% mho/m
	ConvF X	5.2 ± 9.5% (k=2)	Boundary effect;
	ConvF Y	5.2 ± 9.5% (k=2)	Alpha 0.49
	ConvF Z	5.2 ± 9.5% (k=2)	Depth 2.40

Page 7 of 10



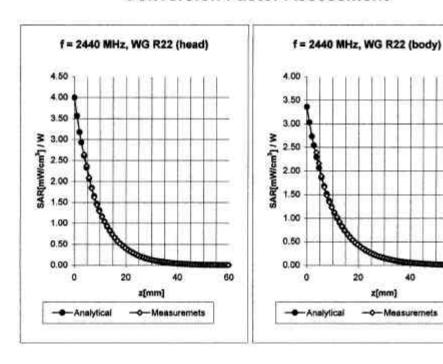

53(67)

					33(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0344	l/REP		
Approved SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

ET3DV6 SN:1587

June 20, 2002

Body	835 MHz	s, = 55.2 ± 5%	o = 0.97 ± 5% mho/m
Body	900 MHz	E _e = 55.0 ± 5%	a = 1.05 ± 5% mho/m
	ConvF X	6.5 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	6.5 ± 9.5% (k=2)	Alpha 0.37
	ConvF Z	6.5 ± 9.5% (k=2)	Depth 2.38
Body	1900 MHz	e= 53.3 ± 6%	g = 1.52 ± 5% mbo/m
Body	THE REPORTED IN	ε _τ = 53.3 ± 5%	a = 1.52 ± 5% mho/m
Body	1800 MHz	e, = 53.3 ± 5%	$\sigma = 1.52 \pm 5\% \text{ mho/m}$
	ConvF X	4.9 ± 9.5% (k=2)	Boundary effect
	ConvF Y	4.9 ± 9.5% (k=2)	Alpha 0.68
	ConvF Z	4.9 ± 9.5% (k=2)	Depth 2.09


Page 8 of 10

54(67)

				3 4 (07)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0344	1/REP	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc

ET3DV6 SN:1587 June 20, 2002

Head	2440 MHz	E,= 39.2 ± 5%	σ = 1.80 ± 10% mho/m	
	ConvF X	5.0 ±8.9% (k=2)	Boundary effect	
	ConvF Y	5.0 ± 8.9% (k=2)	Alpha 1.00	
	ConvF Z	5.0 ± 8.9% (k=2)	Depth 1.63	

Body	2440 MHz		$\varepsilon_{\rm r}$ = 52.7 ± 5%	$\sigma = 1.95 \pm 10\%$	mho/m
	ConvF X	4.3	± 8.9% (k=2)	Boundary et	ffect:
	ConvF Y	4.3	± 8.9% (k=2)	Alpha	1.00
	ConvF Z	4.3	± 8.9% (k=2)	Depth	1.59

Page 9 of 10

EE/G7\

FCC ID: PXITR-G0702

					55(67)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:	0344/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Appendix 5

Measurement Uncertainty Budget

					30(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0344	l/REP		
Approved SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Table 1. Uncertainty Budget for System Performance Check (Dipole & flat phantom)

а	ь	с	d	e = f(d,k)	f	g	h = c x f/e	i= cxg/e	k
Uncertainty Component	Sec.	Tol. (±%)	Prob. Dist.	Div.	c _i (1-g)	c _i (10-g)	1-g <i>u_i</i> (±%)	10-g <i>u_i</i> (±%)	Vi
Measurement System									
Probe Calibration (<i>k</i> =1)	E2.1	4.8	N	1	1	1	4.8	4.8	8
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	8.3	R	1.73	1	1	4.8	4.8	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	1.0	N	1	1	1	1.0	1.0	∞
Response Time	E.2.7	0.0	R	1.73	1	1	0.0	0.0	∞
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance(corresponds to the mechanical constrains of the robot)	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to Phantom Shell	E.6.3	2.9	R	1.73	1	1	1.7	1.7	~
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	∞
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	1.0	R	1.73	1	1	0.6	0.6	∞
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty - shell thickness tolerance	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity - deviation from target values (5)	E.3.2	4.2	R	1.73	0.64	0.43	1.55	1.04	∞
Liquid Conductivity - measurement uncertainty (6)	E.3.3	6.20	R	1.73	0.64	0.43	2.29	1.54	∞
Liquid Permittivity - deviation from target values (5)	E.3.2	3.3	R	1.73	0.6	0.49	1.14	0.93	∞
Liquid Permittivity - measurement uncertainty (6)	E.3.3	6.08	R	1.73	0.6	0.49	2.11	1.72	∞
Combined Standard Uncertainty			RSS				10.59	10.29	
Expanded Uncertainty (95% CONFIDENCE LEVEL)							21.17	20.59	

					31 (01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0	344/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	
		l			

Table 2. Uncertainty Budget for the Device Under Test

a	ь	с	d	e = f(d,k)	f	g	h = c x f/e	i= cxg/e	k
Uncertainty Component	Sec.	Tol. (±%)	Prob. Dist.	Div.	c _i (1-g)	c _i (10-g)	1-g u _i (±%)	10-g <i>u_i</i> (±%)	v _i
Measurement System									
Probe Calibration (<i>k</i> =1)	E2.1	4.8	N	1	1	1	4.8	4.8	8
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	8.3	R	1.73	1	1	4.8	4.8	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	1.0	N	1	1	1	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	E.2.8	1.4	R	1.73	1	1	0.8	0.8	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance(corresponds to the mechanical constrains of the robot)	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to Phantom Shell	E.6.3	2.9	R	1.73	1	1	1.7	1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	∞
Test sample Related									
Test Sample Positioning	E.4.2	1.2	N	1	1	1	1.2	1.2	4
Device Holder Uncertainty	E.4.1	1.2	R	1.73	1	1	0.7	0.7	4
Output Power Variation - SAR drift measurement (4)	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity - deviation from target values (5)	E.3.2	4.2	R	1.73	0.64	0.43	1.6	1.0	∞
Liquid Conductivity - measurement uncertainty (6)	E.3.3	6.20	R	1.73	0.64	0.43	2.3	1.5	8
Liquid Permittivity - deviation from target values (5)	E.3.2	3.3	R	1.73	0.6	0.49	1.1	0.9	8
Liquid Permittivity - measurement uncertainty (6)	E.3.3	6.08	R	1.73	0.6	0.49	2.1	1.7	∞
Combined Standard Uncertainty			RSS				10.71	10.40	
Expanded Uncertainty			K=2				21.41	20.80	

58(67)

					30(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:034	4/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G07 (T306)\XHIBIT11\qetDoc.doc	
				(1300) Milbit Frigerboc.doc	,
(95% CONFIDENCE LEVEL)					

Table 3a. Values for e'

Uncertainty Component	Tolerance (±%)	Probability Distribution	Divisor	Ci	Standard Uncertainty (±%)	v _i or v _{eff}
Repeatability (n repeats)	0.97	N	1	1	0.97	4
Network analyzer uncertainty sources	8.38	R	1.73	1	4.83	8
Dielectric Error Sources	5.93	R	1.73	1	3.42	8
Combined standard uncertainty					6.08	

Table 3b. Values for s

Uncertainty Component	Tolerance (±%)	Probability Distribution	Divisor	ci	Standard Uncertainty (±%)	v _i or v _{eff}
Repeatability (n repeats)	1.85	N	1	1	1.85	4
Network analyzer uncertainty sources	8.38	R	1.73	1	4.83	∞
Dielectric Error Sources	5.93	R	1.73	1	3.42	∞
Combined standard uncertainty					6.20	

FCC ID: PXITR-G0702

Sony Ericsson		REPORT				59(67)
Prepared (also subject responsible if other) SEM/CV/PF/P Dulce Altabella		No. SEM/CB/D-02:	0344/R	REP		
Approved SEM/CV/PF/P Dulce Altabella	Checked DA				U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Appendix 6

Photographs of the device under test

FCC ID: PXITR-G0702

				00(01)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:	0344/REP	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA		В	U:\FCC Submittals\Fcc_G0702
OZIVI, OVII I I I Daloo I iliabolia	271		_	(T306)\XHIBIT11\getDoc.doc

Front view of device

Back view of device

FCC ID: PXITR-G0702

Sony Ericsson		REPORT				61(67)
Prepared (also subject responsible if other) SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:	0344	/REP		
SEM/CV/PF/P Dulce Altabella	Checked DA				U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Side view of device

FCC ID: PXITR-G0702

					02(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:034	44/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Front, back, and side views of carry accessory model ICT-14.

FCC ID: PXITR-G0702

63(67)

					03(0 <i>1)</i>
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0)344/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	


Front, back, and side views of carry accessory model ICE-25.

Position of Device on Phantom

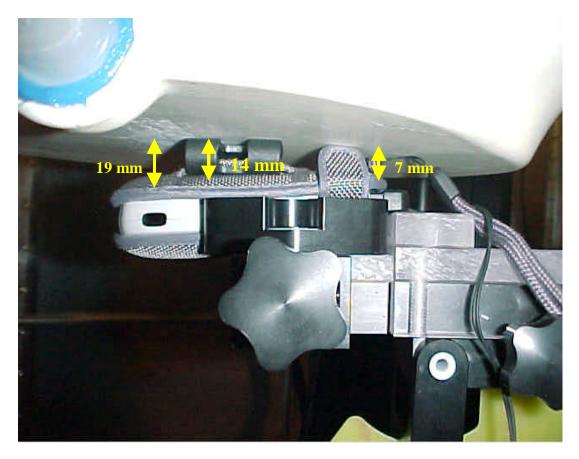
FCC ID: PXITR-G0702

					04(07)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0)344/REP		
Approved SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Position of device against head phantom using the "cheek" position

FCC ID: PXITR-G0702

					03(01)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:03	344/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

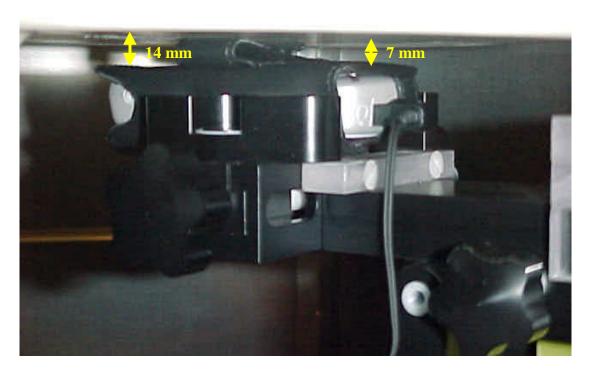


Position of device against head phantom using the "tilt" position

FCC ID: PXITR-G0702

					00(07)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:03	344/REP		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Position of device against flat phantom using carry accessory ICT-14 with hands free accessory RLF $501\ 25/04$


REPORT

67(67)

FCC ID: PXITR-G0702

					67(67)
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CB/D-02:0	344/REP		
SEM/CV/PF/P Dulce Altabella	Checked DA			U:\FCC Submittals\Fcc_G0702 (T306)\XHIBIT11\getDoc.doc	

Position of device against flat phantom using carry accessory ICE-25 with hands free accessory RLF 501 25/04