🍯 Sony Ericsson		REPORT		1 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:	0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc

SAR Test Report: T206 (PXITR-503-A2) Supplement A: Results for body-worn usage

Date of test:	May 14 and 15, 2002
Laboratory:	SAR Testing Laboratory Sony Ericsson Mobile Communications, Inc. 7001 Development Drive, P.O. Box 13969, Research Triangle Park, NC, 27709, USA
Tested by:	William Stewart
Test Responsible:	Development Engineer, Antenna Development Group Dulce Altabella Staff Engineer, Antenna Development Group
Accreditation:	This laboratory is accredited to ISO/IEC 17025-1999 to perform the following electromagnetic tests: Specific Absorption Rate (SAR), dielectric parameters, and RF power measurement on the following types of products: Wireless communications devices.
Statement of Compliance:	Sony Ericsson Mobile Communications, Inc. declares under its sole responsibility that the product T206
ACCREDITED	FCC ID: PXITR-503-A2
ACCREDITED	to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested using specifications that closely conform to the latest appropriate measurement standards, guidelines and recommended practices. Any deviations from these specifications or from ISO/IEC 17025-1999 are noted below:

None

© Sony Ericsson Mobile Communications, Inc. 2002

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. All feedback on this report is encouraged, both positive and negative.

🎱 Sony Ericsson		REPORT		
Song chesson				2 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:0)537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc

Table of Contents

2. Device Under Test32.1 Antenna description33.2 Device description33. Test equipment33.1 Dosimetric system33.2 Additional calibrated equipment44. Electrical parameters of the tissue simulating liquid45. System accuracy verification46. Test results5References6Appendix 1: SAR distribution comparison for system accuracy verification7Appendix 2: SAR distribution plots9Appendix 3: Photographs of Device Under Test13Appendix 4: Position of Device on Phantom16Appendix 5: Probe calibration parameters17	1. Introduction	3
3.2 Additional calibrated equipment44. Electrical parameters of the tissue simulating liquid45. System accuracy verification46. Test results5References6Appendix 1: SAR distribution comparison for system accuracy verification7Appendix 2: SAR distribution plots9Appendix 3: Photographs of Device Under Test13Appendix 4: Position of Device on Phantom16	2.1 Antenna description	3
5. System accuracy verification46. Test results5References6Appendix 1: SAR distribution comparison for system accuracy verification7Appendix 2: SAR distribution plots9Appendix 3: Photographs of Device Under Test13Appendix 4: Position of Device on Phantom16	3.1 Dosimetric system	
6. Test results5References6Appendix 1: SAR distribution comparison for system accuracy verification7Appendix 2: SAR distribution plots9Appendix 3: Photographs of Device Under Test13Appendix 4: Position of Device on Phantom16	4. Electrical parameters of the tissue simulating liquid	4
References6Appendix 1: SAR distribution comparison for system accuracy verification7Appendix 2: SAR distribution plots9Appendix 3: Photographs of Device Under Test13Appendix 4: Position of Device on Phantom16	5. System accuracy verification	4
Appendix 1: SAR distribution comparison for system accuracy verification7Appendix 2: SAR distribution plots9Appendix 3: Photographs of Device Under Test13Appendix 4: Position of Device on Phantom16	6. Test results	5
Appendix 2: SAR distribution plots9Appendix 3: Photographs of Device Under Test13Appendix 4: Position of Device on Phantom16	References	6
Appendix 3: Photographs of Device Under Test13Appendix 4: Position of Device on Phantom16	Appendix 1: SAR distribution comparison for system accuracy verification	7
Appendix 4: Position of Device on Phantom16	Appendix 2: SAR distribution plots	9
	Appendix 3: Photographs of Device Under Test	13
Appendix 5: Probe calibration parameters17	Appendix 4: Position of Device on Phantom	16
	Appendix 5: Probe calibration parameters	17

실 Sony Ericsson		REPORT		3 (23)
Prepared (also subject responsible if other) SEM/CV/PF/P Dulce Altabella		^{№.} SEM/CV/P-02:0	0537/REF)
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc

1. Introduction

This report is a supplement to the document SEM/CV/P-02:0536/REP "SAR Test Report: T206 (PXITR-503-A2)." The main document demonstrates compliance of the T206 wireless handset with RF safety guidelines while used against the head. In this report, compliance of the T206 wireless handset with RF safety guidelines is demonstrated while the device is used in body-worn configurations. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in [1].

2. Device Under Test

2.1 Antenna description

Туре	Internal antenna	Internal antenna				
Location	Inside the back cover, near	Inside the back cover, near the top				
Dimensions	Maximum length	20 mm				
Dimensions	Maximum width 40 mm					
Configuration	Patch antenna					

2.2 Device description

Device model	T206		
FCC ID	PXITR-503-A2		
Serial number	UA2020NPHM		
Maximum Size	Length	113 mm	
	Width	50 mm	
	Thickness	26 mm	
Modes	800 AMPS	800 CDMA	1900 CDMA
Multiple Access Scheme	FDMA	CDMA	CDMA
Maximum Output Power Setting	26.0 dBm	23.4 dBm	23.4 dBm
Factory Tolerance in Power Setting	±0.25	± 0.40	± 0.40
Maximum Peak Output Power	26.25 dBm	23.8 dBm	23.8 dBm
Duty Cycle	1	1	1
Transmitting Frequency Range	824 – 849 MHz	824 – 849 MHz	1850 – 1910 MHz
Prototype or Production Unit	Prototype		
Device Category	Portable		
RF Exposure Environment [2]	General population	/ uncontrolled	

3. Test equipment

3.1 Dosimetric system

SAR measurements were made using a DASY3 professional system (software version 3.1d) with a SAM phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The measurement uncertainty of the system is given in [1]. Below is a list of the calibrated equipment.

Description	Serial Number	Due Date
DASY3 DAE V1	415	12 / 2002
DASY3 DAE V1	416	12 / 2002
E-field probe ET3DV5	1324	12 / 2002
E-field probe ET3DV6	1539	12 / 2002
Dipole Validation Kit, D835V2	429	03 / 2003
Dipole Validation Kit, D1900V2	536	03 / 2003

ど Sony Ericsson		REPORT		4 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:05	37/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc

3.2 Additional calibrated equipment

Description	Serial Number	Due Date
Signal Generator HP8648C	3537A01598	9/2002
Dielectric probe kit HP 85070B	US33020256	10/2002
Network analyzer HP 8752C	3410A03105	8/2002
Power meter HP 437B	3125U16190	4/2003
Power sensor HP 8482H	2704A06235	3/2003
Power meter HP 437B	3125U113481	6/2002
Power sensor HP 8482H	MY41090240	6/2002
Power meter E4418B	GB40206594	9/2002
Power sensor HP 8482H	3318A09268	8/2002
Hygrometer / Thermometer	21242911	10/2002
Thermometer / Probe	350078/99172351	10/2002
Thermometer / Probe	21117674/21117824	11/2002
Spectrum Analyzer MS2623A	M07418	10/2002

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the dielectric probe kit. These are tabulated below. A mass density of $\rho = 1.00 \text{ g/cm}^3$ was entered into the DASY3 program in all cases. The temperatures of the tissue simulants during measurements are also given. During the tests, the ambient temperature of the laboratory was in the range 22.7 – 24.5 °C, the relative humidity was 30.0 - 35.1% and the liquid depth was above 15 cm for all the tests. It can be seen that the measured parameters are within tolerance of the recommended limits [1].

f (MHz)	Tissue type	Date	Dielectric Parameters		Simulant Temp
			e r	s (S/m)	(°C)
835	Muscle	16MAY02	55.92	0.97	23.0
1900	Muscle	14MAY02	52.30	1.51	23.9

5. System accuracy verification

A system accuracy verification of the DASY3 was performed using the dipole validation kits listed in Section 3.1. System verification tests were conducted on the same day as the measurement of the DUT. The obtained results are displayed in the table below (SAR values are scaled to 1 Watt power delivered to the antenna). During the tests, the ambient temperature of the laboratory was in the range 22.7-24.5 °C, the relative humidity was 30.0-35.1% and the liquid depth was above 15 cm for all the tests. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. Reference values are taken from numerical simulations for both the 835MHz and 1900MHz muscle simulant [5]. The SAR distributions are shown in Appendix 1.

Daily, prior to conducting tests, measurements were made with RF sources powered off to determine system noise. The highest system noise value was 0.0089 W/kg, which is below the recommended limit [2].

🎱 Sony Ericsson		REPORT		
				5 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	::0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc

f MHz	Tissue type	Measured / Reference	SAR (W/kg) 1 g/10 g	Dielectric Parameters		Simulant Temp. (°C)
				e r	s (S/m)	(C)
835	Body	Measured, - 05/16/02	9.76 / 6.43	55.92	0.97	23.9
055	Бойу	Reference (Simulation)	9.90 / 6.46	55.2	0.97	+/-2.0 of value in §4
1900	Body	Measured, 05/14/02	38.57 / 20.54	52.3	1.51	23.7
1700	Body	Reference (Simulation)	40.50 / 20.89	53.3	1.52	+/-2.0 of value in §4

6. Test results

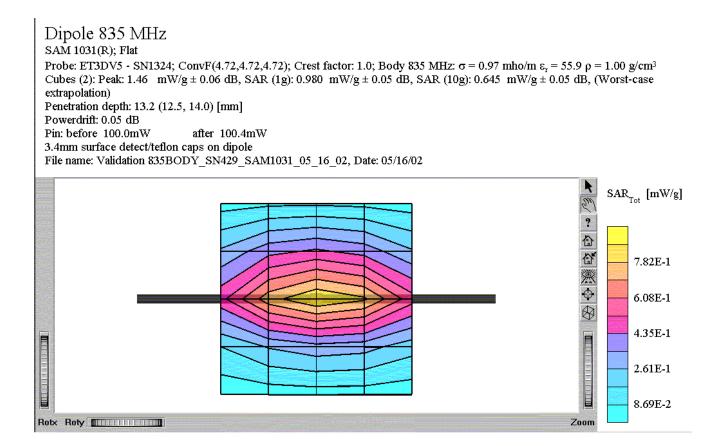
The measured 1- and 10-gram averaged SAR values of the device are provided in Tables 1 and 2. Also shown are the measured conducted output powers and the temperature of the tissue simulant during the test. The depth of the tissue simulating liquid was at least 15 cm for all the cases. The humidity and ambient temperature of the test facility were in the ranges 30.0 - 35.1% and 22.7 - 24.5 °C respectively. Test commands were used to control the device during the SAR measurements.

SAR measured against the body, using battery BKB-193-1054 (800mAh) is presented in Table 1. For body worn measurements, the device was tested against a flat phantom, representing the user's body, using carry accessory KRY 105 186 and hands free accessory RLF-501-25/03. For 800 AMPS and 1900 CDMA modes, the device was tested at the lowest, middle, and highest frequencies of the transmit band.

Mode	f	Output	SXK 109 4705			
	(MHz)	Power	Simulant	SAR, 1g/	0g (W/kg)	
		(dBm)	Temp.	measured	Calculated to	
			(°C)		max. power	
800 AMPS	824	26.13	22.9	0.68/0.46	0.70/0.47	
	837	26.12	22.9	0.64/0.43	0.66/0.44	
	849	26.12	23.0	0.61/0.41	0.63/0.42	
1900 CDMA	1850	23.57	23.8	1.05/0.60	1.09/0.62	
	1880	23.63	23.8	1.20/0.67	1.24/0.70	
	1910	23.79	23.8	1.22/0.66	1.27/0.69	

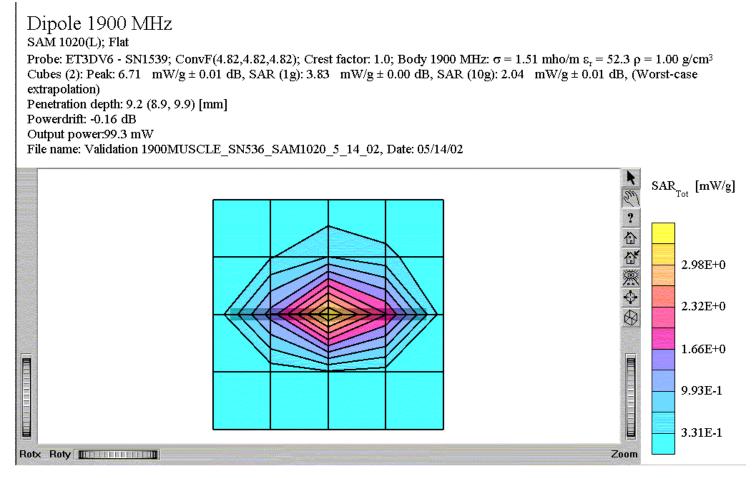
 Table 1: SAR measurement results for the T206 telephone at highest possible output power. Measured against the body using carry accessory KRY 105 186 with hands free accessory RLF 501 25/03.

🍯 Sony Ericsson		REPORT		6 (23)
Prepared (also subject responsible if other)				
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:05	37/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc


References

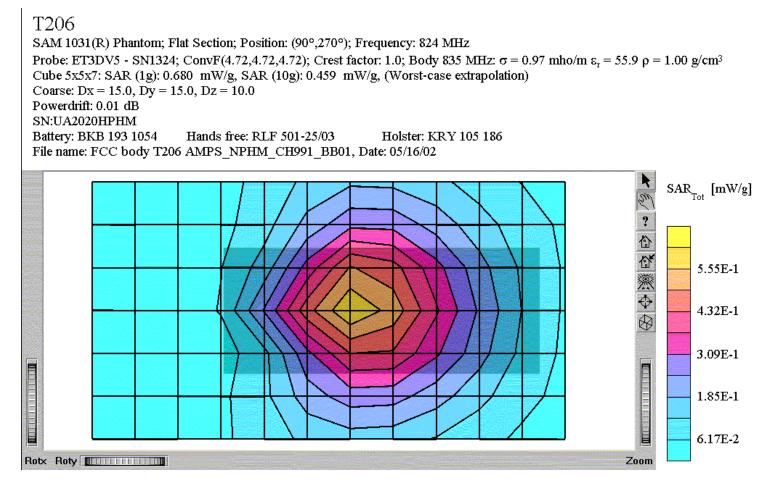
- [1] D. Altabella, "SAR Measurement Specification of Wireless Handsets," Sony Ericsson internal document EUS/CV/R-01:1061/REP, February 2002.
- [2] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).
- [3] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques," Std 1528-200X, Draft 6.5 – August 20, 2001.
- [4] CENELEC, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz)", European Standard EN 50361, July 2001.
- [5] D. Altabella, "Reference values for system validation using body material," internal Sony Ericsson document EUS/CV/R-01:1118 /REP.

				7 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:0	537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc


Appendix 1: SAR distribution comparison for system accuracy verification

835 MHz SAR distribution of validation dipole antenna from system accuracy verification test on May 16, 2002. Using muscle tissue.

Joing Chessen				8 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:	:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc

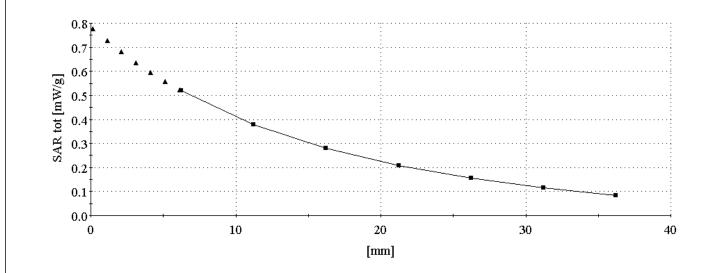


1900 MHz SAR distribution of validation dipole antenna from system accuracy verification test on May 14, 2002. Using muscle tissue.

				9 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella	SEM/CV/P-02:0537/REP			
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc

Appendix 2: SAR distribution plots

Distribution of maximum SAR in 800 AMPS band. Measured with back of device facing the body using carry accessory KRY 105 186 and hands free accessory RLF 501 25/03.

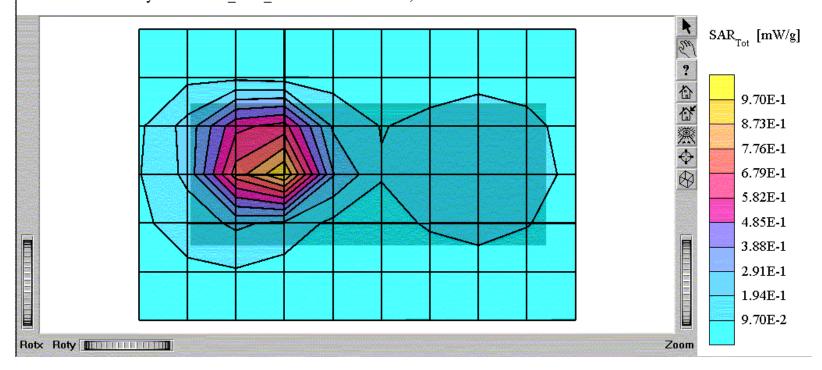


				10 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella	SEM/CV/P-02:0537/REP			
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc

T206

SAM 1031(R) Phantom; Flat Section; Position: (90°,270°); Frequency: 824 MHz Probe: ET3DV5 - SN1324; ConvF(4.72,4.72,4.72); Crest factor: 1.0; Body 835 MHz: $\sigma = 0.97$ mho/m $\epsilon_r = 55.9 \ \rho = 1.00 \ g/cm^3$ Cube 5x5x7: SAR (1g): 0.680 mW/g, SAR (10g): 0.459 mW/g, (Worst-case extrapolation) Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0

SN:UA2020HPHM Battery: BKB 193 1054 Hands free: RLF 501-25/03 Holster: KRY 105 186 File name: FCC body T206 AMPS_NPHM_CH991_BB01, Date: 05/16/02

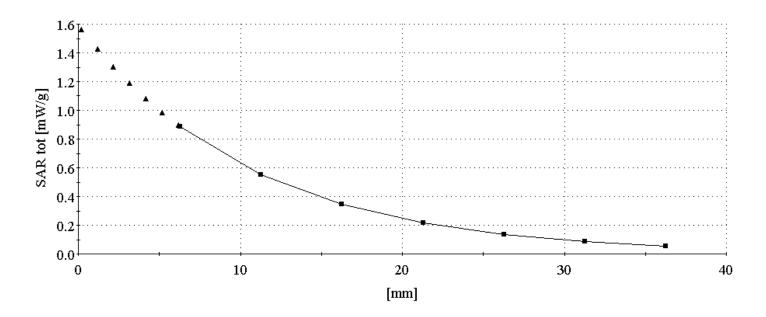

SAR Extrapolation to the phantom inner surface. Measured for maximum SAR in 800 AMPS band, while phone is against the body using carry accessory KRY 105 186 and hands free accessory RLF 501 25/03

				11 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella	SEM/CV/P-02:0537/REP			
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc

T206

SAM 1020(L) Phantom; Flat Section; Position: (90°,270°); Frequency: 1910 MHz Probe: ET3DV6 - SN1539; ConvF(4.82,4.82,4.82); Crest factor: 1.0; Body 1900 MHz: $\sigma = 1.51$ mho/m $\epsilon_r = 52.3 \ \rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 1.22 mW/g, SAR (10g): 0.660 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Powerdrift: -0.04 dB SN:UA2020HPHM File name: FCC body CDMAPCS 1910 holster SN KRY105186, Date: 05/14/02

Distribution of maximum SAR in the 1900 CDMA band. Measured with back of device facing the body using carry accessory KRY 105 186 and hands free accessory RLF 501 25/03.


				12 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:0537/REP		
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc

T206

 $\begin{array}{l} \text{SAM 1020(L) Phantom; Flat Section; Position: (90^{\circ},270^{\circ}); Frequency: 1910 MHz} \\ \text{Probe: ET3DV6 - SN1539; ConvF(4.82,4.82,4.82); Crest factor: 1.0; Body 1900 MHz: $$\sigma$ = 1.51 mho/m $$\epsilon_r$ = 52.3 $$\rho$ = 1.00 g/cm^3$ Cube 5x5x7: SAR (1g): 1.22 mW/g, SAR (10g): 0.660 mW/g, (Worst-case extrapolation) \\ \text{Cube 5x5x7: Dx} = 8.0, Dy = 8.0, Dz = 5.0 \end{array}$

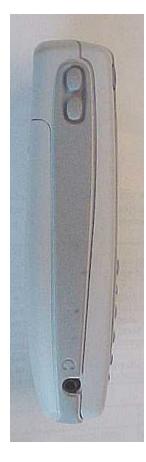
SN:UA2020HPHM

File name: FCC body CDMAPCS_1910_holster SN KRY105186, Date: 05/14/02

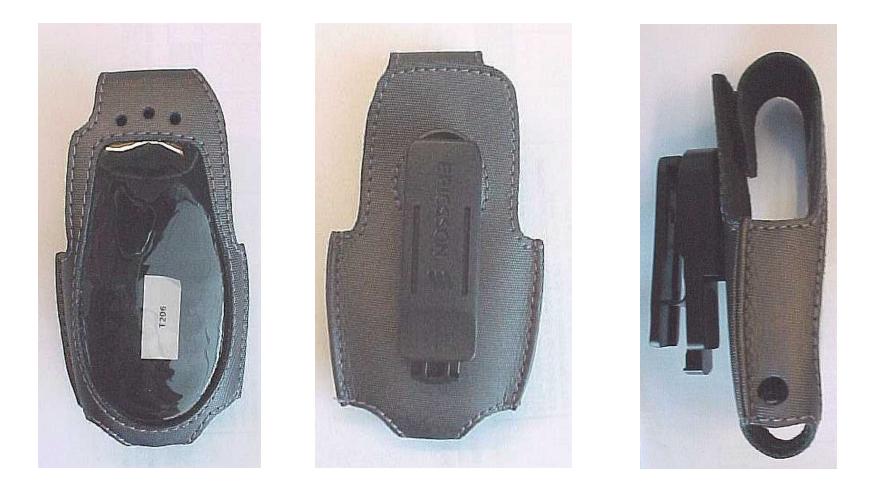
SAR Extrapolation to the phantom inner surface. Measured for maximum SAR in 1900 CDMA band, while phone is against the body using carry accessory KRY 105 186 and hands free accessory RLF 501 25/03

				13 (23)	
Prepared (also subject responsible if other)		No.			
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	:0537/REF		
Approved	Checked				
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc	

Appendix 3: Photographs of Device Under Test

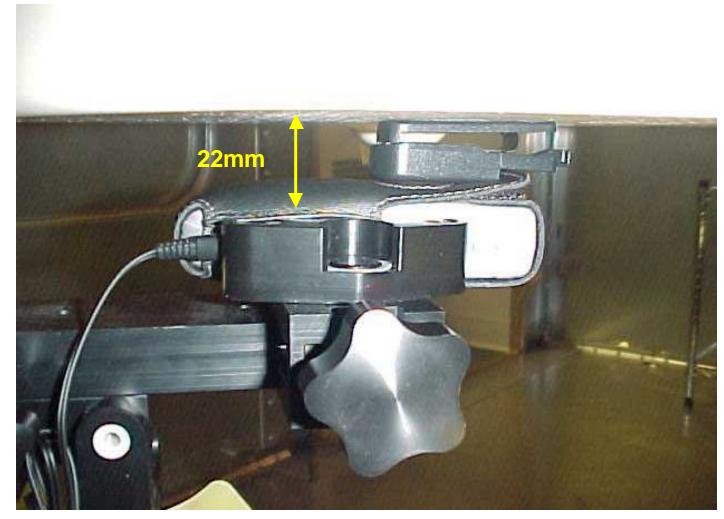

Front view of device

Back view of device


Song Encision				14 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	2:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc

Side view of device.

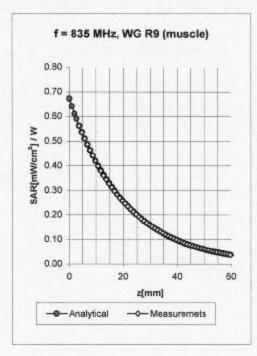
				15 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:0537/REP		
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc



Front, back, and side views of product number KRY 105 186. This accessory contains plastic and metal.

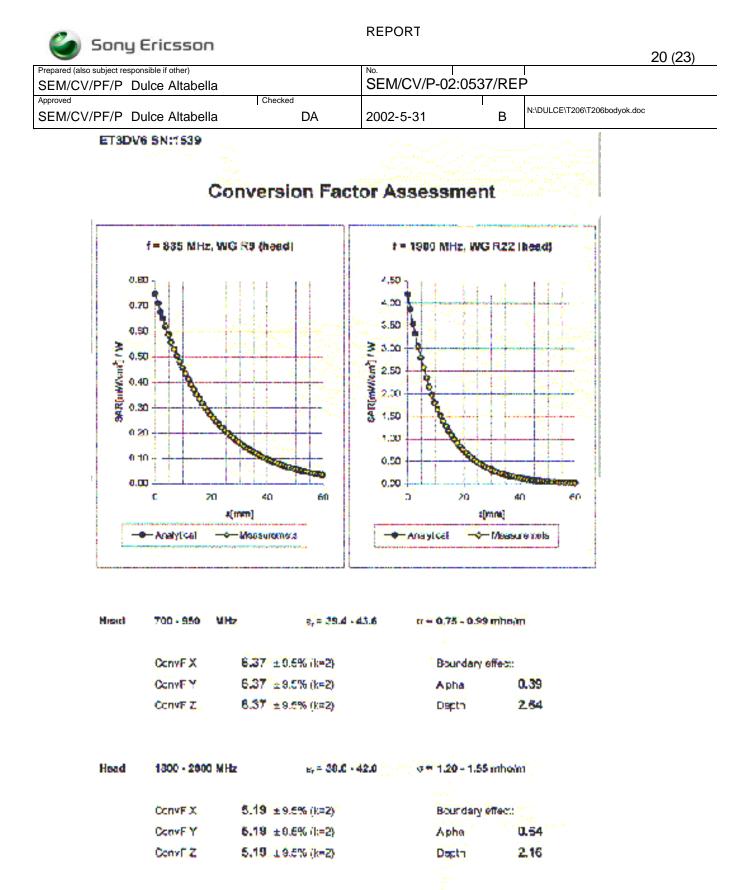
				16 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella	SEM/CV/P-02:0537/REP			
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc

Appendix 4: Position of Device on Phantom


Position of device against flat phantom using carry accessory SXK 109 4705 with hands free accessory RLF 501 25/03

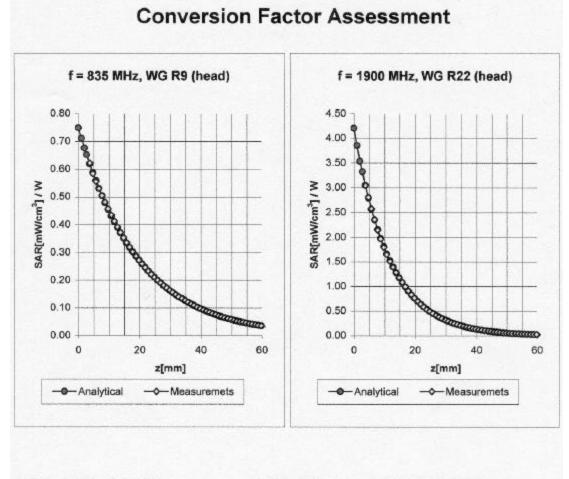
SeparationCreated DA2002-5-31BMOULDENTROPTIONSEM/CV/PF/PDuice AltabellaDA2002-5-31BMOULDENTROPTIONAppendix 5: Probe calibration parametersET3DV5 SN:1324DASY3 - Parameters of Probe: ET3DV5 SN:1324Sensitivity in Free SpaceDiode CompressionNormX1.52 μ V/(V/m) ² DCP X103 mVNormY1.73 μ V/(V/m) ² DCP Y103 mVNormY1.73 μ V/(V/m) ² DCP Z103 mVNormZ1.53 μ V/(V/m) ² DCP Z103 mVSensitivity in Tissue Simulating LiquidHead460 MHz $e_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 10\%$ mho/mConvF X5.23 extrapolatedBoundary effect:ConvF Z5.23 extrapolatedDepth1.63Head700 -950 MHz $e_r = 39.4 \cdot 43.6$ $\sigma = 1.75 \cdot 0.99$ mho/mConvF Z4.89 $\pm 9.5\%$ (k=2)Boundary effect:ConvF Z4.89 $\pm 9.5\%$ (k=2)Depth1.71Brain1500 MHz $e_r = 41 \pm 5\%$ $\sigma = 1.32 \pm 10\%$ mho/mConvF Z4.43 interpolatedBoundary effect:ConvF Z4.43 interpolatedAlpha0.70ConvF Z4.43 interpolatedDepth1.82Brain1700 - 1910 MHz $e_r = 39.3 \cdot 41.6$ $\sigma = 1.53 \cdot 1.90$ mho/mConvF X4.21 $\pm 9.5\%$ (k=2)Boundary effect:ConvF X4.21 $\pm 9.5\%$ (k=2)Boundary effect:ConvF Z4.23 interpolatedAlpha0.72ConvF Z4.24 $\pm 9.5\%$ (k=2) <th>red (also subject respons</th> <th></th> <th></th> <th>No. SF</th> <th>M/CV/P-02:053</th> <th>7/RE</th> <th> P</th>	red (also subject respons			No. SF	M/CV/P-02:053	7/RE	 P
Appendix 5: Probe calibration parametersET3DV5 SN:1324DASY3 - Parameters of Probe: ET3DV5 SN:1324Sensitivity in Free SpaceDiode CompressionNormX $1.52 \ \mu V/(V/m)^2$ DCP X103 mVNormY $1.73 \ \mu V/(V/m)^2$ DCP Y103 mVNormY $1.53 \ \mu V/(V/m)^2$ DCP Z103 mVNormZ $1.53 \ \mu V/(V/m)^2$ DCP Z103 mVSensitivity in Tissue Simulating LiquidHead460 MHz $e_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 10\%$ mholmConvF X $5.23 \ extrapolated$ Boundary effect: ConvF Z $5.23 \ extrapolated$ ConvF X $4.89 \ \pm 9.5\%$ (kr2)Boundary effect: ConvF Z $0.65 \$ ConvF ZConvF X $4.89 \ \pm 9.5\%$ (kr2)Boundary effect: ConvF Z $0.67 \$ ConvF ZConvF X 4.43 interpolatedBoundary effect: ConvF Z $0.67 \$ 	ved		Check	ed			N:\DULCE\T206\T206bodyok.doc
ET3DV5 SN:1324 DASY3 - Parameters of Probe: ET3DV5 SN:1324 Sensitivity in Free Space Diode Compression NormX 1.52 μ V/(V/m) ² DCP X 103 mV NormY 1.73 μ V/(V/m) ² DCP Z 103 mV NormZ 1.53 μ V/(V/m) ² DCP Z 103 mV NormZ 1.53 μ V/(V/m) ² DCP Z 103 mV NormZ 1.53 μ V/(V/m) ² DCP Z 103 mV NormZ 1.53 μ V/(V/m) ² DCP Z 103 mV Sensitivity in Tissue Simulating Liquid Head 450 MHz e_r = 43.5 ± 5% σ = 0.87 ± 10% mho/m ConvF X 5.23 extrapolated Boundary effect: 0.65 ConvF Z 5.23 extrapolated Depth 1.63 Head 700 - 950 MHz e_r = 39.4 - 43.6 σ = 0.75 - 0.99 mho/m ConvF Z 4.89 ± 9.5% (k=2) Boundary effect: ConvF Z 0.67 ConvF Z 4.89 ± 9.5% (k=2) Depth 1.71 Brain 1500 MHz e_r = 41 ± 5% σ = 1.52 ± 10% mho/m ConvF Z 4.4						5	
DASY3 - Parameters of Probe: ET3DV5 SN:1324Sensitivity in Free SpaceDiode CompressionNormX $1.52 \mu V / (V/m)^2$ DCP X $103 mV$ NormY $1.73 \mu V / (V/m)^2$ DCP X $103 mV$ NormZ $1.53 \mu V / (V/m)^2$ DCP Z $103 mV$ NormZ $1.53 \mu V / (V/m)^2$ DCP Z $103 mV$ NormZ $1.53 \mu V / (V/m)^2$ DCP Z $103 mV$ Sensitivity in Tissue Simulating LiquidHead460 MHz $e_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 10\%$ mho/mConvF X 5.23 extrapolatedBoundary effect:ConvF X 5.23 extrapolatedDepth 1.63 Head700 - 950 MHz $e_r = 39.4 \cdot 43.6$ $\sigma = 0.75 \cdot 0.99$ mho/mConvF X $4.89 \pm 9.5\%$ (k=2)Boundary effect:ConvF X $4.89 \pm 9.5\%$ (k=2)Depth 1.67 ConvF Z $4.89 \pm 9.5\%$ (k=2)Depth 1.71 Brain1500 MHz $e_r = 41 \pm 5\%$ $\sigma = 1.32 \pm 10\%$ mho/mConvF X 4.43 interpolatedBoundary effect:ConvF X 4.43 interpolatedBoundary effect:ConvF X 4.43 interpolatedAlpha 0.70 ConvF X $4.21 \pm 9.5\%$ (k=2)Boundary effect:ConvF X $4.21 \pm 9.5\%$ (k=2)Boundary effect:ConvF X $4.21 \pm 9.5\%$ (k=2)Alpha 0.72 ConvF X $4.21 \pm 9.5\%$ (k=2)Alpha 0.72 ConvF X $4.21 \pm 9.5\%$ (k=2)Alpha 0.72 ConvF Y $4.21 \pm 9.5\%$ (k=2)Alpha 0.72 <td></td> <td></td> <td>i paran</td> <td>neters</td> <td></td> <td></td> <td></td>			i paran	neters			
Diode CompressionNormX $1.52 \mu V/(V/m)^2$ DCP X $103 mV$ NormY $1.73 \mu V/(V/m)^2$ DCP Y $103 mV$ NormZ $1.53 \mu V/(V/m)^2$ DCP Z $103 mV$ NormZ $1.53 \mu V/(V/m)^2$ DCP Z $103 mV$ CP Z $103 mV$ Diode CompressionCP Z $103 mV$ DCP Z $103 mV$ DCP Z $103 mV$ DCP Z $103 mV$ CP Z $103 mV$ CONF Z $5.23 extrapolated$ Boundary effect:ConvF X $5.23 extrapolated$ Boundary effect: 0.65 ConvF Z $4.89 \pm 9.5\%$ (k=2)Boundary effect: 0.67 ConvF Z $4.89 \pm 9.5\%$ (k=2)Boundary effect: 0.67 ConvF Z 4.43 interpolatedBoundary effect: 0.70 ConvF Z 4.43 interpolatedBoundary effect: 0.70 ConvF Z 4.43 interpolatedAlpha 0.70 ConvF Z 4.43 interpolatedAlpha 0.70 ConvF Z $4.21 \pm 9.5\%$ (k=2)Boundary effect:ConvF X $4.21 \pm 9.5\%$ (k=2)Boundary effect:ConvF Y $4.21 \pm 9.5\%$ (k=2)Boundary effect:<	ET3I	0V5 SN:1324					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DA	SY3 - Para	mete	rs of Probe:	ET3DV5 SN	1:13:	24
NormY $1.73 \ \mu V/(V/m)^2$ DCP Y $103 \ mV$ NormZ $1.53 \ \mu V/(V/m)^2$ DCP Z $103 \ mV$ Sensitivity in Tissue Simulating LiquidHead450 MHz $e_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 10\%$ mho/mConvF X 5.23 extrapolatedBoundary effect:ConvF Y 5.23 extrapolatedDepth 1.63 Head700 - 950MHz $u_r = 39.4 - 43.6$ $\sigma = 0.75 - 0.99$ mho/mConvF X $4.89 \ \pm 9.5\%$ (k=2)Boundary effect:ConvF X $4.89 \ \pm 9.5\%$ (k=2)Boundary effect:ConvF Z $4.89 \ \pm 9.5\%$ (k=2)Boundary effect:ConvF Z $4.89 \ \pm 9.5\%$ (k=2)Boundary effect:ConvF X $4.43 \$ interpolatedBoundary effect:ConvF X $4.43 \$ interpolatedBoundary effect:ConvF Z $4.43 \$ interpolatedBoundary effect:ConvF X $4.21 \ \pm 9.5\%$ (k=2)Boundary effect:ConvF X $4.21 \ \pm 9.5\%$ (k=2)Boundary effect:ConvF Y $4.21 \ \pm 9.5\%$ (k=2)Boundary effect:ConvF X $4.21 \ \pm 9.5\%$ (k=2)Boundary effect:ConvF X $4.21 \ \pm 9.5\%$ (k=2)Boundary effect:ConvF X $4.21 \ \pm 9.5\%$ (k=2)B	Sen	sitivity in Free	Space		Diode Compre	ssion	
NormY1.73 NormZ $\mu V/(V/m)^2$ DCP Y103 mVNormZ1.53 $\mu V/(V/m)^2$ DCP Z103 mVDCP Z103 mVSensitivity in Tissue Simulating LiquidHead460 MHz $e_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 10\%$ mho/mConvF X5.23 5.23extrapolatedBoundary effect: Alpha0.65ConvF Z5.23 5.23extrapolatedDepth1.63Head700 - 950MHz $e_r = 39.4 \cdot 43.6$ $\sigma = 0.75 \cdot 0.99$ mho/mConvF X4.89 4.89 $\pm 9.5\%$ (k=2)Boundary effect: ConvF ZAlpha0.67ConvF X4.89 4.89 $\pm 9.5\%$ (k=2)Depth1.71Brain1500 MHz $e_r = 41 \pm 5\%$ $\sigma = 1.32 \pm 10\%$ mho/mConvF X4.43 (interpolatedBoundary effect: Depth0.70ConvF Z4.43 (interpolatedBoundary effect: Depth1.82Brain1700 - 1910 MHz $e_r = 39.3 \cdot 41.6$ $\sigma = 1.53 - 1.90$ mho/mConvF X4.21 $\pm 9.5\%$ (k=2)Boundary effect: Depth1.82Brain1700 - 1910 MHz $e_r = 39.3 \cdot 41.6$ $\sigma = 1.53 - 1.90$ mho/mConvF X4.21 $\pm 9.5\%$ (k=2)Boundary effect: Depth1.88		NormX	1.52	μV/(V/m) ²	DCP X		103 mV
NormZ $1.53 \mu V/(V/m)^2$ DCP Z $103 mV$ Sensitivity in Tissue Simulating Liquid Head $450 MHz$ $e_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 10\% mho/m$ ConvF X 5.23 extrapolated Boundary effect: ConvF Y 5.23 extrapolated Boundary effect: ConvF Z 5.23 extrapolated Depth 1.63 Head $700 - 950$ MHz $e_r = 39.4 - 43.6$ $\sigma = 0.75 - 0.99 mho/m$ ConvF X $4.89 \pm 9.5\%$ (k=2) Boundary effect: ConvF X $4.89 \pm 9.5\%$ (k=2) Boundary effect: ConvF X $4.89 \pm 9.5\%$ (k=2) Depth 1.71 Brain 1500 MHz $e_r = 41 \pm 5\%$ $\sigma = 1.32 \pm 10\% mho/m$ ConvF X 4.43 interpolated Boundary effect: ConvF X 4.43 interpolated Boundary effect: ConvF Z 4.43 interpolated Boundary effect: ConvF X 4.43 interpolated Boundary effect: ConvF Z 4.43 interpolated Boundary effect: ConvF Z 4.43 interpol							
Sensitivity in Tissue Simulating Liquid Head 450 MHz $e_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 10\%$ mho/m ConvF X 5.23 extrapolated Boundary effect: ConvF Y 5.23 extrapolated Alpha 0.65 ConvF Z 5.23 extrapolated ConvF X Alpha 0.65 ConvF Z 5.23 extrapolated CorvF X Alpha 0.65 ConvF Z 5.23 extrapolated CorvF X Alpha 0.65 ConvF X 4.89 9.95% (k=2) Boundary effect: Boundary effect: ConvF X 4.89 9.95% (k=2) Depth 1.71 Brain 1500 MHz $e_r = 41 \pm 5\%$ $\sigma = 1.32 \pm 10\%$ mho/m ConvF X 4.43 interpolated Boundary effect: ConvF Z 4.43 interpolated Depth 1.82 Brain 1500 MHz $e_r = 39.3 \cdot 41.6$ $\sigma = 1.53 \cdot 1.90$ mho/m ConvF Z 4.43 interpolated Depth 1.82 Brain 1700 - 1910 MHz $e_r = 39.3 \cdot 41.6$ $\sigma = 1.53 \cdot 1.90$ mho/m <							
Head 450 MHz $e_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 10\%$ mho/m ConVF X 5.23 extrapolated Boundary effect: ConVF Y 5.23 extrapolated Alpha 0.65 ConVF Z 5.23 extrapolated $alpha$ 0.65 ConVF Z 5.23 extrapolated $\sigma = 0.75 \cdot 0.99$ mho/m Head 700 · 950 MHz $e_r = 39.4 \cdot 43.6$ $\sigma = 0.75 \cdot 0.99$ mho/m ConVF X 4.89 $\pm 9.5\%$ (k=2) Boundary effect: ConVF Z 4.89 $\pm 9.5\%$ (k=2) Depth 1.71 Brain 1500 MHz $e_r = 41 \pm 5\%$ $\sigma = 1.32 \pm 10\%$ mho/m ConVF X 4.43 interpolated Boundary effect: ConVF Y 4.43 interpolated Alpha 0.70 ConVF Z 4.43 interpolated Alpha 0.70 ConVF Z 4.43 interpolated G = 1.53 - 1.90 mho/m ConVF Z 4.43 interpolated G = 1.53 - 1.90 mho/m ConVF Z 4.21 $\pm 9.5\%$ (k=2) Boundary effect: ConVF Y 4.21 $\pm 9.5\%$ (k=2)	Sen	sitivity in Tissu					
$ \begin{array}{c ccccc} ConvF X & 5.23 & extrapolated \\ ConvF Y & 5.23 & extrapolated \\ ConvF Z & 5.23 & extrapolated \\ ConvF Z & 5.23 & extrapolated \\ \hline \end{tabular} & 5.25 &$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Head	450 M	MHz	€, = 43.5 ± 5%	σ = 0.87 ± 10)% mho	/m
ConvF Z5.23 extrapolatedDepth1.63Head700 - 950MHz $\epsilon_r = 39.4 - 43.6$ $\sigma = 0.75 - 0.99$ mho/mConvF X4.89 ± 9.5% (k=2)Boundary effect: Alpha0.67ConvF Y4.89 ± 9.5% (k=2)Alpha0.67ConvF Z4.89 ± 9.5% (k=2)Depth1.71Brain1500 MHz $\epsilon_r = 41 \pm 5\%$ $\sigma = 1.32 \pm 10\%$ mho/mConvF X4.43 interpolatedBoundary effect: ConvF YAlpha0.70ConvF Z4.43 interpolatedBoundary effect: Depth1.82Brain1700 - 1910 MHz $\epsilon_r = 39.3 - 41.6$ $\sigma = 1.53 - 1.90$ mho/mConvF X4.21 ± 9.5% (k=2)Boundary effect: ConvF YAlpha0.72ConvF X4.21 ± 9.5% (k=2)Boundary effect: Depth1.88		ConvF X	5.23	extrapolated	Boundar	y effect:	
Head700 - 950MHz $\epsilon_r = 39.4 - 43.6$ $\sigma = 0.75 - 0.99$ mho/mConvF X4.89 $\pm 9.5\%$ (k=2)Boundary effect:ConvF Y4.89 $\pm 9.5\%$ (k=2)DepthConvF Z4.89 $\pm 9.5\%$ (k=2)DepthBrain1500 MHz $\epsilon_r = 41 \pm 5\%$ $\sigma = 1.32 \pm 10\%$ mho/mConvF X4.43interpolatedBoundary effect:ConvF Y4.43interpolatedBoundary effect:ConvF Z4.43interpolatedDepthConvF Z4.43interpolatedDepthBrain1700 - 1910 MHz $\epsilon_r = 39.3 \cdot 41.6$ $\sigma = 1.53 - 1.90$ mho/mConvF X4.21 $\pm 9.5\%$ (k=2)Boundary effect:ConvF Y4.21 $\pm 9.5\%$ (k=2)Boundary effect:ConvF Y4.21 $\pm 9.5\%$ (k=2)Boundary effect:ConvF Z4.21 $\pm 9.5\%$ (k=2)Boundary effect:ConvF Z4.21 $\pm 9.5\%$ (k=2)DepthDepth1.88		ConvF Y	5.23	extrapolated	Alpha		0.65
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ConvF Z	5.23	extrapolated	Depth		1.63
$ \begin{array}{c ccccc} ConvF Y & 4.89 \pm 9.5\% (k=2) & Alpha & 0.67 \\ ConvF Z & 4.89 \pm 9.5\% (k=2) & Depth & 1.71 \\ \end{array} \\ \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Head	700 - 950	WHz	ε _r = 39.4 - 43.6	σ = 0.75 - 0.1	99 mho	/m
ConvF Z4.89 $\pm 9.5\%$ (k=2)Depth1.71Brain1500 MHz $\epsilon_r = 41 \pm 5\%$ $\sigma = 1.32 \pm 10\%$ mho/mConvF X4.43 interpolatedBoundary effect: ConvF Y4.43 interpolatedAlpha0.70ConvF Z4.43 interpolatedDepth1.82Brain1700 - 1910 MHz $\epsilon_r = 39.3 \cdot 41.6$ $\sigma = 1.53 - 1.90$ mho/mConvF X4.21 $\pm 9.5\%$ (k=2)Boundary effect: ConvF ZAlpha0.72ConvF X4.21 $\pm 9.5\%$ (k=2)Depth1.88		ConvF X	4.89	± 9.5% (k=2)	Boundar	y effect:	
Brain 1500 MHz $\epsilon_r = 41 \pm 5\%$ $\sigma = 1.32 \pm 10\%$ mho/m ConvF X 4.43 interpolated Boundary effect: ConvF Y 4.43 interpolated Alpha 0.70 ConvF Z 4.43 interpolated Depth 1.82 Brain 1700 - 1910 MHz $\epsilon_r = 39.3 - 41.6$ $\sigma = 1.53 - 1.90$ mho/m ConvF X 4.21 $\pm 9.5\%$ (k=2) Boundary effect: ConvF Y 4.21 $\pm 9.5\%$ (k=2) Boundary effect: ConvF Z 4.21 $\pm 9.5\%$ (k=2) Boundary effect: ConvF Z 4.21 $\pm 9.5\%$ (k=2) Depth 1.88		ConvF Y	4.89	± 9.5% (k=2)	Alpha		0.67
$\begin{array}{c cccc} ConvF X & \textbf{4.43} & interpolated & Boundary effect: \\ ConvF Y & \textbf{4.43} & interpolated & Alpha & \textbf{0.70} \\ ConvF Z & \textbf{4.43} & interpolated & Depth & \textbf{1.82} \\ \hline \end{array}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ConvF Z	4.89	± 9.5% (k=2)	Depth		1.71
$ \begin{array}{c ccccc} ConvF \ Y & 4.43 & interpolated & Alpha & 0.70 \\ ConvF \ Z & 4.43 & interpolated & Depth & 1.82 \\ \hline \\ Brain & 1700 - 1910 \ MHz & \epsilon_r = 39.3 - 41.6 & \sigma = 1.53 - 1.90 \ mho/m \\ \hline \\ ConvF \ X & 4.21 \ \pm 9.5\% \ (k=2) & Boundary \ effect: \\ ConvF \ Y & 4.21 \ \pm 9.5\% \ (k=2) & Alpha & 0.72 \\ ConvF \ Z & 4.21 \ \pm 9.5\% \ (k=2) & Depth & 1.88 \\ \hline \end{array} $	Brain	1500 1	MHz	$\epsilon_r = 41 \pm 5\%$	σ = 1.32 ± 10	0% mho	n/m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ConvF X	4.43	interpolated	Boundar	y effect:	
Brain1700 - 1910 MHz $\epsilon_r = 39.3 - 41.6$ $\sigma = 1.53 - 1.90 \text{ mho/m}$ ConvF X4.21 $\pm 9.5\%$ (k=2)Boundary effect:ConvF Y4.21 $\pm 9.5\%$ (k=2)Alpha0.72ConvF Z4.21 $\pm 9.5\%$ (k=2)Depth1.88		ConvF Y	4.43	interpolated	Alpha		0.70
ConvF X 4.21 ± 9.5% (k=2) Boundary effect: ConvF Y 4.21 ± 9.5% (k=2) Alpha 0.72 ConvF Z 4.21 ± 9.5% (k=2) Depth 1.88		ConvF Z	4.43	interpolated	Depth		1.82
ConvF Y 4.21 ± 9.5% (k=2) Alpha 0.72 ConvF Z 4.21 ± 9.5% (k=2) Depth 1.88	Brair	1700 - 1910 1	MHz	ε _r = 39.3 - 41.	6 σ = 1.53 - 1.	90 mho	Im
ConvF Y 4.21 ± 9.5% (k=2) Alpha 0.72 ConvF Z 4.21 ± 9.5% (k=2) Depth 1.88		ConvF X	4.21	± 9.5% (k=2)	Boundar	y effect:	
		ConvF Y	4.21	± 9.5% (k=2)	Alpha		0.72
		ConvF Z	4.21	± 9.5% (k=2)	Depth		1.88
Sensor Offset	Ser	sor Offset					
Probe Tip to Sensor Center 2.7 mm		Probe Tip to	Sensor Ce	nter	2.7	mm	
Optical Surface Detection 1.8 ± 0.2 mm		Optical Surfa	ce Detectio	on	1.8 ± 0.2	mm	

ሬ Sony Ericsson		REPORT		
				18 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:053	37/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc


ET3DV5 SN:1324

Conversion Factor Assessment

Muscle	750 - 950	MHz	ε _r = 52.4 - 58.0	σ = 0.90 - 1.05 m	ho/m
	ConvF X	4.72	± 9.5% (k=2)	Boundary effe	ect:
	ConvF Y	4.72	± 9.5% (k=2)	Alpha	0.69
	ConvF Z	4.72	± 9.5% (k=2)	Depth	1.70

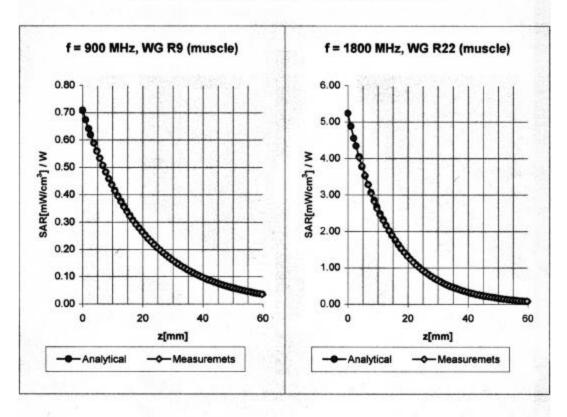

•	ed (also subject respo	,						19 (23
		ulce Altabella	Che	cked	SEM/CV/F	2-02:0537/REI	ر ا	
		ulce Altabella		DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc	;
	ET3DV6	SN:1539						
	DASY	'3 - Parar	nete	rs of Prc	be: ET:	3DV6 SN	1539	
	Sancita	vity in Free S	naca.		Dior	de Compres	cion	
	venaun	ng in rice o	ipace		ja se se como conoce Se se	se compres		
		NomX	1.30	$\mu VI(VIm)^2$		DCP X	95 mV	
		NormY		μV/(V/m) [≆]		DCP Y	95 mV	
		NormZ	1.28	uVI(V/m) ²		DCP Z	95 mV	
	Sensitiv	vity in Tissue	(Simi)	latino Liqui	engen sover der Brechtenstern			
	an an i than chi				≂in oʻninin Alimiyalisi			
	Head	450 MH	lz ^{ale} "i	e _r = 43.)	5 £ 5%	$n = 0.87 \pm 10\%$	mho/m	
		ConvF X	6 04	extrapolated		Boundary	affairt	
		ConvF.Y		extrapolated		Alpha	0.27	
		ConvF Z		extrapolated (Depth	2.88	
					uli e surre Selutione			
	Head	700 - 950 MH	lz (s, ≠ 39.4	4 - 43.6	n = 0.75 - 0.99	mho/m	
		ConvF X	6.37	±9.5% (k=2)		Boundary.	effect;	
		CorwF Y	6.37	+ 9 5% (k=2)		Alpha	0.39	
		CowF Z	6.37	£9,5% (k=2)		Depth	2.64	
	Head	1500 MH		r.; = 40.	6 H R94	o = 1.23 ± 10%		
			n seed	14 m 400				
		CowF X		interpolated		Boundary	affect:	
		CorwF Y		interpolated		Alphe	0.66	
		ConvF Z	5.58	interpolated		Depth	2.32	
	Head	1800 - 2000 MH	iz.	r, = 38.i	0 • 42.0	o = 1.20 - 1.88	mholm	
		CorvF X		± 9.5% (k=2)		Boundary (
		ConvF Y		±95% (k=2)		Alpha	0.64	
		ConvF Z	0.18	± 9 5% (k=2)		Depth	2.18	
	Sensor	Offset						
		د میں کو میں کا ایک جزیر میں میں میں ایک میں میں میں میں م	- 187 - 19 <u>1917 - 1</u> 1					
		Probe Tip to Se			2.7	an a	mm	
		Optical Surface	Detectio	n an an Arta Lineachadh	1.3 ±	. 9.2 (* 1963) 1973 - J. (* 1965)	, mm, see a se	
				n shift a san An Signatan				
				Page 2 of				

Page 7 of 9

ሬ Sony Ericsson		REPORT		
Song chesson				21 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	2:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc
	COMPANY OF STREET, SAME AND DESCRIPTION.	C. In the Internet Street Classical States	and the second second second	

ET3DV6 SN:1539

700 - 950 MHz		ε _r = 39.4 - 43.6	σ = 0.75 - 0.99 mho/n	n
ConvF X	6.37	± 9.5% (k=2)	Boundary effect:	
ConvF Y	6.37	± 9.5% (k=2)	Alpha (0.39
ConvF Z	6.37	± 9.5% (k=2)	Depth	2.64
1800 - 2000 MH2		e _r ≖ 38.0 - 42.0	σ = 1.20 - 1.55 mho/n	n
ConvF X	5.19	± 9.5% (k=2)	Boundary effect:	
ConvF Y	5.19	± 9.5% (k=2)	Alpha (0.64
ConvF Z	5.19	± 9.5% (k=2)	Depth	2.16
	ConvF X ConvF Y ConvF Z 1800 - 2000 MHz ConvF X ConvF Y	ConvF X 6.37 ConvF Y 6.37 ConvF Z 6.37 1800 - 2000 MHz ConvF X 5.19 ConvF Y 5.19	ConvF X6.37 \pm 9.5% (k=2)ConvF Y6.37 \pm 9.5% (k=2)ConvF Z6.37 \pm 9.5% (k=2)1800 - 2000 MHz $\epsilon_r = 38.0 - 42.0$ ConvF X5.19 \pm 9.5% (k=2)ConvF X5.19 \pm 9.5% (k=2)ConvF Y5.19 \pm 9.5% (k=2)	ConvF X 6.37 $\pm 9.5\%$ (k=2) Boundary effect: ConvF Y 6.37 $\pm 9.5\%$ (k=2) Alpha O ConvF Z 6.37 $\pm 9.5\%$ (k=2) Depth ConvF Z 1800 - 2000 MHz $\epsilon_r = 38.0 - 42.0$ $\sigma = 1.20 - 1.55$ mho/m ConvF X 5.19 $\pm 9.5\%$ (k=2) Boundary effect: ConvF Y 5.19 $\pm 9.5\%$ (k=2) Boundary effect: ConvF Y 5.19 $\pm 9.5\%$ (k=2) Alpha G


Prepared (also subject res SEM/CV/PF/P				No. SEM/	CV/P-02:05	37/REF		
Approved Checked SEM/CV/PF/P Dulce Altabella DA					5-31	В	N:\DULCE\T206\T206bo	dyok.doc
	ET3DV6	SN:1539			1895 D. 19			
	f	C = 835 MHz, W			tor Asse		ent /G R22 (muscle)	
	1							
	0.80	11111	1111	11	4.00	111	IIIIII	1
	0.70		+++++		3.50			-
	0.60	8			3.00			-
	₹ 0.50	000			\$ 2.50			
	M / [_e mo/Mm]] 0.30	8			M / [
	Mm	800			ALL CO	8		
	84K	A	40		AR 1.50	80		-
	0.20	×	AND NO		1.00	No.		-
	0.10		Contraction of the local division of the loc	200	0.50	8		-
	0.00			CONTRACTOR	0.00		40	CENTE
	2.20	0 20		60	0	20		60
		Appletical	z[mm]			A	z[mm]	
	-	-Analytical -	- O -Measurem	ets	-O-Analy	vtical -	-> Measuremets	
	Muscle	750 - 950 M	MHz	ε _r = 52.4 -	58.0 σ=	= 0.90 - 1	.05 mho/m	
		ConvF X	6.24 ±	9.5% (k=2)		Bounda	ry effect:	
		ConvF Y	6.24 ±	9.5% (k=2)		Alpha	0.61	
		ConvF Z	6.24 ± 9	9.5% (k=2)		Depth	2.01	
	Muscle	1800 - 2050 1	MHz	ε _r = 50.6 -	56.0 σ=	= 1.40 - 1	.60 mho/m	
		ConvF X	4.82 ±1	9.5% (k=2)		Bounda	ry effect:	
							STORES CONTRACTOR	
		ConvF Y	4.82 ± 9	9.5% (k=2)		Alpha	0.91	

Page 8 of 9

🍯 Sony Ericsson		REPORT		23 (23)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	2:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	N:\DULCE\T206\T206bodyok.doc

ET3DV6 SN:1538

Conversion Factor Assessment

Muscle	900 MH	2	$\varepsilon_r = 56 \pm 5\%$	σ = 0.99 ± 10% mho	o/m
	ConvF X	6.06	± 7% (k=2)	Boundary effect	
	ConvF Y	6.06	± 7% (k=2)	Alpha	0.63
	ConvF Z	6.06	± 7% (k=2)	Depth	1.90
Muscle	luscle 1800 MHz		$\epsilon_r = 54 \pm 5\%$	σ = 1.4 ± 10% mho/	m
	ConvF X	4.73	± 7% (k=2)	Boundary effect	
	ConvF Y	4.73	± 7% (k=2)	Alpha	0.68

Depth

2.19

4.73 ±7% (k=2)

ConvF Z