

SAR Test Report: T206 (PXITR-503-A2) Supplement A: Results for body-worn usage

Date of test: May 14 and 15, 2002

Laboratory: SAR Testing Laboratory

Sony Ericsson Mobile Communications, Inc. 7001 Development Drive, P.O. Box 13969, Research Triangle Park, NC, 27709, USA

Tested by: William Stewart

Development Engineer, Antenna Development Group

Test Responsible: Dulce Altabella

Staff Engineer, Antenna Development Group

Accreditation: This laboratory is accredited to ISO/IEC 17025-1999 to perform the following

electromagnetic tests: Specific Absorption Rate (SAR), dielectric parameters,

and RF power measurement

on the following types of products: Wireless communications devices.

A2LA certificate Number: 1650-01

Statement of Compliance: Sony Ericsson Mobile Communications, Inc. declares under its sole

responsibility that the product

T206

FCC ID: PXITR-503-A2

to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested using specifications that closely conform to the latest appropriate measurement standards, guidelines and recommended practices. Any deviations from these specifications or from ISO/IEC 17025-1999 are noted below:

None

Jong Chesson				2 (28)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	2:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206bodyok.doc

Table of Contents

1. Introduction	3
2. Device Under Test 2.1 Antenna description 2.2 Device description	3 3 3
3. Test equipment 3.1 Dosimetric system 3.2 Additional calibrated equipment	3 3 4
4. Electrical parameters of the tissue simulating liquid	4
5. System accuracy verification	4
6. Test results	5
References	6
Appendix 1: SAR distribution comparison for system accuracy verification	7
Appendix 2: SAR distribution plots	9
Appendix 3: Photographs of Device Under Test	14
Appendix 4: Position of Device on Phantom	17
Appendix 5: Probe calibration parameters	19

				3 (=3)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	2:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206bodyok.doc

1. Introduction

This report is a supplement to the document SEM/CV/P-02:0536/REP "SAR Test Report: T206 (PXITR-503-A2)." The main document demonstrates compliance of the T206 wireless handset with RF safety guidelines while used against the head. In this report, compliance of the T206 wireless handset with RF safety guidelines is demonstrated while the device is used in body-worn configurations. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in [1].

2. Device Under Test

2.1 Antenna description

Type	Internal antenna		
Location	Inside the back cover, near the top		
Dimensions	Maximum length	20 mm	
Dimensions	Maximum width	40 mm	
Configuration Patch antenna			

2.2 Device description

Device model	T206			
FCC ID	PXITR-503-A2			
Serial number	UA2020NPHM			
Maximum Size	Length 113 mm			
	Width 50 mm			
	Thickness 26 mm			
Modes	800 AMPS	800 CDMA	1900 CDMA	
Multiple Access Scheme	FDMA	CDMA	CDMA	
Maximum Output Power Setting	26.0 dBm	23.4 dBm	23.4 dBm	
Factory Tolerance in Power Setting	± 0.25	± 0.40	± 0.40	
Maximum Peak Output Power	26.25 dBm	23.8 dBm	23.8 dBm	
Duty Cycle	1	1	1	
Transmitting Frequency Range	824 – 849 MHz	824 – 849 MHz	1850 – 1910 MHz	
Prototype or Production Unit	Prototype			
Device Category	Portable			
RF Exposure Environment [2]	General population	/ uncontrolled	·	

3. Test equipment

3.1 Dosimetric system

SAR measurements were made using a DASY3 professional system (software version 3.1d) with a SAM phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The measurement uncertainty of the system is given in [1]. Below is a list of the calibrated equipment.

Description	Serial Number	Due Date
DASY3 DAE V1	415	12 / 2002
DASY3 DAE V1	416	12 / 2002
E-field probe ET3DV5	1324	12 / 2002
E-field probe ET3DV6	1539	12 / 2002
Dipole Validation Kit, D835V2	429	03 / 2003
Dipole Validation Kit, D1900V2	536	03 / 2003

Prepared (also subject responsible if other)		No.		, ,
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	2:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206\bodyok.doc

3.2 Additional calibrated equipment

Description	Serial Number	Due Date
Signal Generator HP8648C	3537A01598	9/2002
Dielectric probe kit HP 85070B	US33020256	10/2002
Network analyzer HP 8752C	3410A03105	8/2002
Power meter HP 437B	3125U16190	4/2003
Power sensor HP 8482H	2704A06235	3/2003
Power meter HP 437B	3125U113481	6/2002
Power sensor HP 8482H	MY41090240	6/2002
Power meter E4418B	GB40206594	9/2002
Power sensor HP 8482H	3318A09268	8/2002
Hygrometer / Thermometer	21242911	10/2002
Thermometer / Probe	350078/99172351	10/2002
Thermometer / Probe	21117674/21117824	11/2002
Spectrum Analyzer MS2623A	M07418	10/2002

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the dielectric probe kit. These are tabulated below. A mass density of $\rho = 1.00 \text{ g/cm}^3$ was entered into the DASY3 program in all cases. The temperatures of the tissue simulants during measurements are also given. During the tests, the ambient temperature of the laboratory was in the range 22.7 - 24.5 °C, the relative humidity was 30.0 - 35.1% and the liquid depth was above 15 cm for all the tests. It can be seen that the measured parameters are within tolerance of the recommended limits [1].

f (MHz)	Tissue type	Date	_	ectric meters	Simulant Temp
			e _r	s (S/m)	(°C)
835	Muscle	16MAY02	55.92	0.97	23.0
1900	Muscle	14MAY02	52.30	1.51	23.9

5. System accuracy verification

A system accuracy verification of the DASY3 was performed using the dipole validation kits listed in Section 3.1. System verification tests were conducted on the same day as the measurement of the DUT. The obtained results are displayed in the table below (SAR values are scaled to 1 Watt power delivered to the antenna). During the tests, the ambient temperature of the laboratory was in the range 22.7-24.5 °C, the relative humidity was 30.0-35.1% and the liquid depth was above 15 cm for all the tests. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. Reference values are taken from numerical simulations for both the 835MHz and 1900MHz muscle simulant [5]. The SAR distributions are shown in Appendix 1.

Daily, prior to conducting tests, measurements were made with RF sources powered off to determine system noise. The highest system noise value was 0.0089 W/kg, which is below the recommended limit [2].

					J (20)
Prepared (also subject respon	nsible if other)		No.		
SEM/CV/PF/P D	ulce Altabella		SEM/CV/P-02	2:0537/REF	
Approved		Checked			
SEM/CV/PF/P D	ulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206bodyok.doc

f MHz	Tissue type	Measured / Reference	SAR (W/kg) 1 g/10 g		ectric neters	Simulant Temp.
				e ,	s (S/m)	(°C)
835	Body	Measured, - 05/16/02	9.76 / 6.43	55.92	0.97	23.9
033	bouy Bouy	Reference (Simulation)	9.90 / 6.46	55.2	0.97	+/-2.0 of value in §4
1900	Rody	Measured, 05/14/02	38.57 / 20.54	52.3	1.51	23.7
1700	Body	Body Reference (Simulation)	40.50 / 20.89	53.3	1.52	+/-2.0 of value in §4

6. Test results

The measured 1- and 10-gram averaged SAR values of the device are provided in Tables 1 and 2. Also shown are the measured conducted output powers and the temperature of the tissue simulant during the test. The depth of the tissue simulating liquid was at least 15 cm for all the cases . The humidity and ambient temperature of the test facility were in the ranges 30.0-35.1% and 22.7-24.5 °C respectively. Test commands were used to control the device during the SAR measurements.

SAR measured against the body, using battery BKB-193-1054 (800mAh) is presented in Table 1. For body worn measurements, the device was tested against a flat phantom, representing the user's body, using carry accessory KRY 105 186 and hands free accessory RLF-501-25/03. For 800 AMPS and 1900 CDMA modes, the device was tested at the lowest, middle, and highest frequencies of the transmit band.

Mode	f	Output	SXK 109 4705			
	(MHz)	Power	Simulant	SAR, 1g/	/10g (W/kg)	
		(dBm)	Temp.	measured	Calculated to	
			(°C)		max. power	
800 AMPS	824	26.13	22.9	0.68/0.46	0.70/0.47	
	837	26.12	22.9	0.64/0.43	0.66/0.44	
	849	26.12	23.0	0.61/0.41	0.63/0.42	
1900 CDMA	1850	23.57	23.8	1.05/0.60	1.09/0.62	
	1880	23.63	23.8	1.20/0.67	1.24/0.70	
	1910	23.79	23.8	1.22/0.66	1.27/0.69	

Table 1: SAR measurement results for the T206 telephone at highest possible output power. Measured against the body using carry accessory KRY 105 186 with hands free accessory RLF 501 25/03.

REPORT

6 (28)

Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:0537/REP		
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206bodyok.doc

References

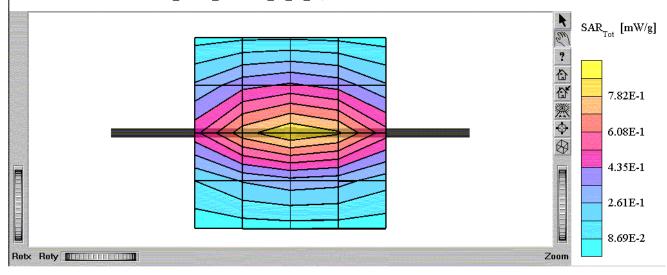
- [1] D. Altabella, "SAR Measurement Specification of Wireless Handsets," Sony Ericsson internal document EUS/CV/R-01:1061/REP, February 2002.
- [2] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).
- [3] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques," Std 1528-200X, Draft 6.5 August 20, 2001.
- [4] CENELEC, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz)", European Standard EN 50361, July 2001.
- [5] D. Altabella, "Reference values for system validation using body material," internal Sony Ericsson document EUS/CV/R-01:1118 /REP.

Jong Chesson				7 (28)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:	:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206bodyok.doc

Appendix 1: SAR distribution comparison for system accuracy verification

Dipole 835 MHz

SAM 1031(R); Flat


Probe: ET3DV5 - SN1324; ConvF(4.72,4.72,4.72); Crest factor: 1.0; Body 835 MHz: $\sigma = 0.97$ mho/m $\epsilon_r = 55.9$ $\rho = 1.00$ g/cm³ Cubes (2): Peak: 1.46 mW/g \pm 0.06 dB, SAR (1g): 0.980 mW/g \pm 0.05 dB, SAR (10g): 0.645 mW/g \pm 0.05 dB, (Worst-case extrapolation)

Penetration depth: 13.2 (12.5, 14.0) [mm]

Powerdrift: 0.05 dB

Pin: before 100.0mW after 100.4mW 3.4mm surface detect/teflon caps on dipole

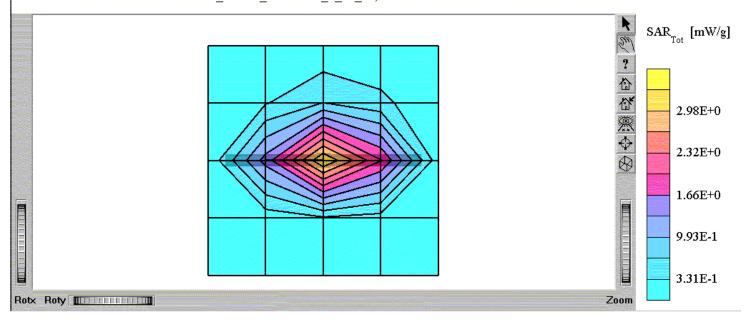
File name: Validation 835BODY SN429 SAM1031 05 16 02, Date: 05/16/02

835 MHz SAR distribution of validation dipole antenna from system accuracy verification test on May 16, 2002.

Using muscle tissue.

Prepared (also subject responsible if other)		No.		, ,
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:	:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206\bodyok.doc

Dipole 1900 MHz


SAM 1020(L); Flat

Probe: ET3DV6 - SN1539; ConvF(4.82,4.82,4.82); Crest factor: 1.0; Body 1900 MHz: σ = 1.51 mho/m ϵ_r = 52.3 ρ = 1.00 g/cm³ Cubes (2): Peak: 6.71 mW/g ± 0.01 dB, SAR (1g): 3.83 mW/g ± 0.00 dB, SAR (10g): 2.04 mW/g ± 0.01 dB, (Worst-case extrapolation)

Penetration depth: 9.2 (8.9, 9.9) [mm]

Powerdrift: -0.16 dB Output power:99.3 mW

File name: Validation 1900MUSCLE SN536 SAM1020 5 14 02, Date: 05/14/02

1900 MHz SAR distribution of validation dipole antenna from system accuracy verification test on May 14, 2002. Using muscle tissue.

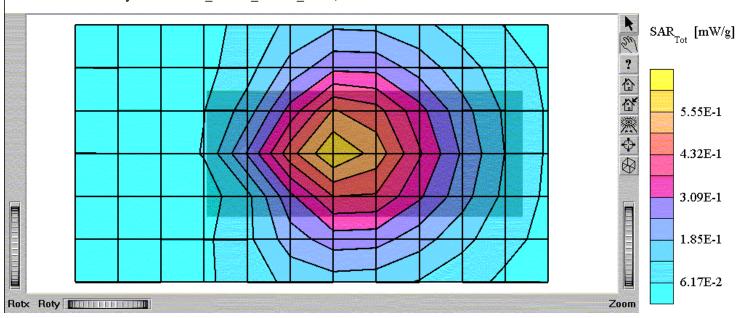
Prepared (also subject responsible if other) SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:0)537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206bodyok.doc

Appendix 2: SAR distribution plots

T206

SAM 1031(R) Phantom; Flat Section; Position: (90°,270°); Frequency: 824 MHz

Probe: ET3DV5 - SN1324; ConvF(4.72,4.72,4.72); Crest factor: 1.0; Body 835 MHz: σ = 0.97 mho/m ϵ_r = 55.9 ρ = 1.00 g/cm³


Cube 5x5x7: SAR (1g): 0.680 mW/g, SAR (10g): 0.459 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: 0.01 dB SN:UA2020HPHM

Battery: BKB 193 1054 Hands free: RLF 501-25/03 Holster: KRY 105 186

File name: FCC body T206 AMPS_NPHM_CH991_BB01, Date: 05/16/02

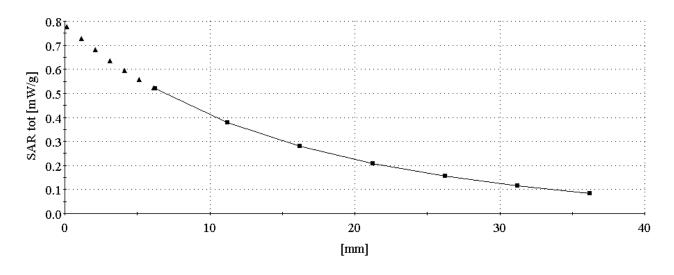
Distribution of maximum SAR in 800 AMPS band. Measured with back of device facing the body using carry accessory KRY 105 186 and hands free accessory RLF 501 25/03.

Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206bodyok.doc

T206

SAM 1031(R) Phantom; Flat Section; Position: (90°,270°); Frequency: 824 MHz

Probe: ET3DV5 - SN1324; ConvF(4.72,4.72,4.72); Crest factor: 1.0; Body 835 MHz: $\sigma = 0.97$ mho/m $\varepsilon_r = 55.9$ $\rho = 1.00$ g/cm³


Cube 5x5x7: SAR (1g): 0.680 mW/g, SAR (10g): 0.459 mW/g, (Worst-case extrapolation)

Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0

SN:UA2020HPHM

Battery: BKB 193 1054 Hands free: RLF 501-25/03 Holster: KRY 105 186

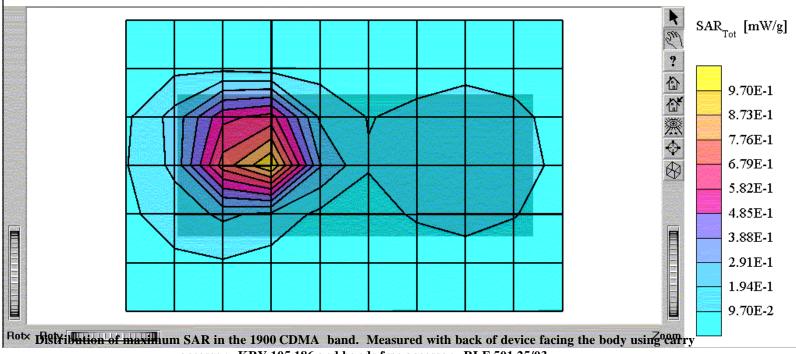
File name: FCC body T206 AMPS_NPHM_CH991_BB01, Date: 05/16/02

SAR Extrapolation to the phantom inner surface. Measured for maximum SAR in 800 AMPS band, while phone is against the body using carry accessory KRY 105 186 and hands free accessory RLF 501 25/03 SAR Extrapolation to the phantom inner surface. Measured for maximum SAR in 800 AMPS band, while phone is against the body using carry accessory KRY 105 186 and hands free accessory RLF 501 25/03

Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	2:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206\bodyok.doc

T206

SAM 1020(L) Phantom; Flat Section; Position: (90°,270°); Frequency: 1910 MHz


Probe: ET3DV6 - SN1539; ConvF(4.82,4.82,4.82); Crest factor: 1.0; Body 1900 MHz: σ = 1.51 mho/m ϵ_r = 52.3 ρ = 1.00 g/cm³

Cube 5x5x7: SAR (1g): 1.22 mW/g, SAR (10g): 0.660 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.04 dB SN:UA2020HPHM

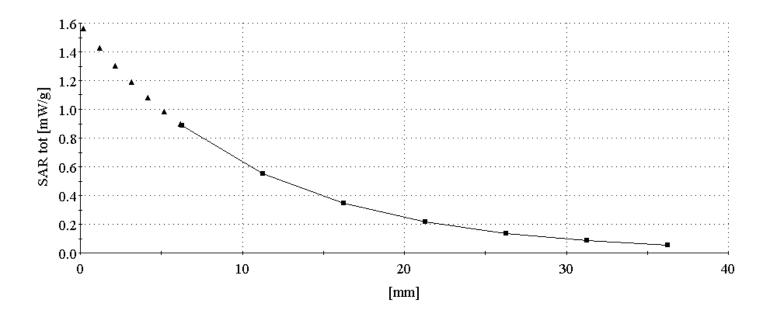
File name: FCC body CDMAPCS_1910_holster SN KRY105186, Date: 05/14/02

accessory KRY 105 186 and hands free accessory RLF 501 25/03.

Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	::0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206\bodyok.doc

T206

SAM 1020(L) Phantom; Flat Section; Position: (90°,270°); Frequency: 1910 MHz


Probe: ET3DV6 - SN1539; ConvF(4.82,4.82,4.82); Crest factor: 1.0; Body 1900 MHz: $\sigma = 1.51$ mho/m $\epsilon_r = 52.3$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 1.22 mW/g, SAR (10g): 0.660 mW/g, (Worst-case extrapolation)

Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0

SN:UA2020HPHM

File name: FCC body CDMAPCS 1910 holster SN KRY105186, Date: 05/14/02

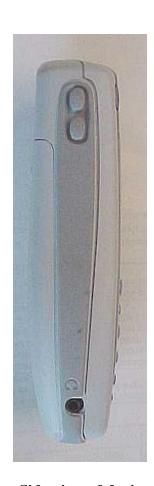
SAR Extrapolation to the phantom inner surface. Measured for maximum SAR in 1900 CDMA band, while phone is against the body using carry accessory KRY 105 186 and hands free accessory RLF 501 25/03



Sony Ericsson				13 (28)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:	0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206bodyok.doc

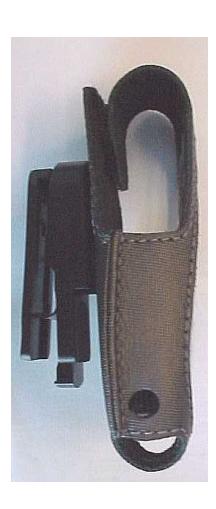
Prepared (also subject responsible if other)		No.		,
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	2:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206\bodyok.doc

Appendix 3: Photographs of Device Under Test


Front view of device

Back view of device

				(=0)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	2:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206bodyok.doc


Side view of device.

				: 0 (=0)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	2:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206bodyok.doc

Front, back, and side views of product number KRY 105 186. This accessory contains plastic and metal.

				:: (=0)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	2:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206\bodyok.doc

Appendix 4: Position of Device on Phantom

				.0 (=0)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella	SEM/CV/P-02	2:0537/REF		
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206\bodyok.doc

Position of device against flat phantom using carry accessory SXK 109 4705 with hands free accessory RLF 501 25/03

				. 5 (=5)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:0537/REP		
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206\bodyok.doc

Appendix 5: Probe calibration parameters

	on paran	neters			
5 SN:1324					
Y3 - Pai	ramete	rs of Probe:	ET3DV	/5 SN:	1324
ivity in Fre	e Space		Diode C	ompress	sion
NormX	1.52	μV/(V/m) ²		DCP X	103 m
NormY	1.73	$\mu V/(V/m)^2$		DCP Y	103 m
NormZ	1.53	$\mu V/(V/m)^2$		DCP Z	103 m
ivity in Tis	sue Simu	lating Liquid			
450	MHz	$\epsilon_r = 43.5 \pm 5\%$	σ=	0.87 ± 10%	mho/m
ConvF X	5.23	extrapolated		Boundary e	effect:
ConvF Y				Alpha	0.65
ConvF Z				Depth	1.63
700 - 950	MHz	ε _r = 39.4 - 43.6	σ=	0.75 - 0.99	mho/m
ConvF X	4.89	± 9.5% (k=2)		Boundary e	effect:
ConvF Y	4.89	± 9.5% (k=2)		Alpha	0.67
ConvF Z	4.89	± 9.5% (k=2)		Depth	1.71
150	0 MHz	$\epsilon_{\rm r}$ = 41 ± 5%	σ=	1.32 ± 10%	mho/m
ConvF X	4.43	interpolated		Boundary e	effect:
ConvF Y	4.43	interpolated		Alpha	0.70
ConvF Z	4.43	interpolated		Depth	1.82
1700 - 191	0 MHz	ε _r = 39.3 - 41.6	σ=	1.53 - 1.90	mho/m
ConvF X	4.21	± 9.5% (k=2)		Boundary e	effect:
ConvF Y	4.21	± 9.5% (k=2)		Alpha	0.72
ConvF Z	4.21	± 9.5% (k=2)		Depth	1.88
or Offset					
Probe Tip	to Sensor Ce	nter	2.7		mm
Optical Su	rface Detection	on	1.8 ± 0.2		mm
		Page 2 of 9			
	Y3 - Par ivity in Free NormX NormY NormZ ivity in Tis 456 ConvF X ConvF Y ConvF Z 700 - 950 ConvF X ConvF Y ConvF Z 150 ConvF X ConvF Y ConvF Z 150 ConvF X ConvF Y ConvF Z 1700 - 191 ConvF X ConvF X ConvF Y ConvF Z 1700 - 191 ConvF X ConvF	Y3 - Parameter ivity in Free Space NormX	Y3 - Parameters of Probe: ivity in Free Space NormX	Y3 - Parameters of Probe: ET3DV ivity in Free Space Diode C NormX 1.52 μV/(V/m)² NormY 1.73 μV/(V/m)² NormZ 1.53 μV/(V/m)² ivity in Tissue Simulating Liquid 450 MHz ε _r = 43.5 ± 5% σ = ConvF X 5.23 extrapolated ConvF Z 5.23 extrapolated ConvF Z 5.23 extrapolated 700 - 950 MHz ε _r = 39.4 - 43.6 σ = ConvF X 4.89 ± 9.5% (k=2) ConvF Z 4.89 ± 9.5% (k=2) ConvF Z 4.89 ± 9.5% (k=2) ConvF X 4.43 interpolated ConvF Z 4.21 ± 9.5% (k=2)	Y3 - Parameters of Probe: ET3DV5 SN: ivity in Free Space Diode Compress NormX 1.52 μV/(V/m)² DCP X NormY 1.73 μV/(V/m)² DCP Y DCP Z ivity in Tissue Simulating Liquid 450 MHz $ε_r = 43.5 \pm 5\%$ $σ = 0.87 \pm 10\%$ ConvF X 5.23 extrapolated Boundary ε ConvF Z 5.23 extrapolated Depth 700 - 950 MHz $ε_r = 39.4 - 43.6$ $σ = 0.75 - 0.98$ ConvF X 4.89 $\pm 9.5\%$ (k=2) Alpha Depth 1500 MHz $ε_r = 41 \pm 5\%$ $σ = 1.32 \pm 10\%$ ConvF X 4.43 interpolated Boundary ε ConvF X 4.43 interpolated Depth $ε_r = 39.3 - 41.6$ $ε_$

REPORT

Prepared (also subject responsible if other)

SEM/CV/PF/P Dulce Altabella

Approved

SEM/CV/PF/P Dulce Altabella

DA

SEM/CV/PF/P Dulce Altabella

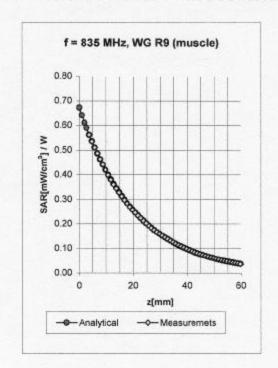
SEM/CV/PF/P Dulce Altabella

SEM/CV/PF/P Dulce Altabella

DA

SEM/CV/PF/P Dulce Altabella

DA


SEM/CV/PF/P Dulce Altabella

					21 (20)
Prepared (also subject responsible if other	er)		No.		
SEM/CV/PF/P Dulce Alt	abella		SEM/CV/P-02	2:0537/REF	
Approved	Checked	ı			
SEM/CV/PF/P Dulce Alt	abella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206bodyok.doc

Conversion Factor Assessment

Muscle 750 - 950 MHz ϵ_r = 52.4 - 58.0 σ = 0.90 - 1.05 mho/m ConvF X 4.72 \pm 9.5% (k=2) Boundary effect: ConvF Y 4.72 \pm 9.5% (k=2) Alpha 0.69 ConvF Z 4.72 \pm 9.5% (k=2) Depth 1.70

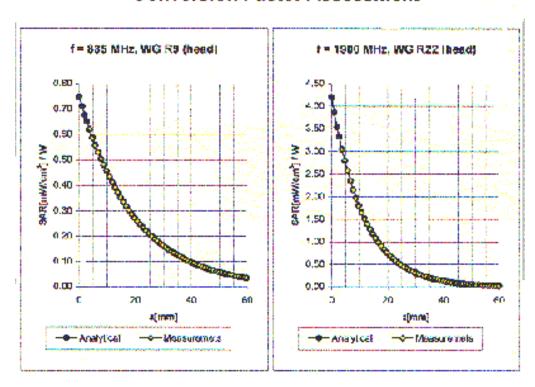
REPORT

Prepared (also subject responsible if other) SEM/CV/P-02:0537/REP SEM/CV/PF/P Dulce Altabella Checked \\Eusrtnt045\antenna\DULCE\T206\T206bodyok.doc В SEM/CV/PF/P Dulce Altabella DA 2002-5-31

22 (28)

					23 (23)
	Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:0537/REP			
	Approved	Checked			
	SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206\bodyok.doc

ET3DV6 SN:1539

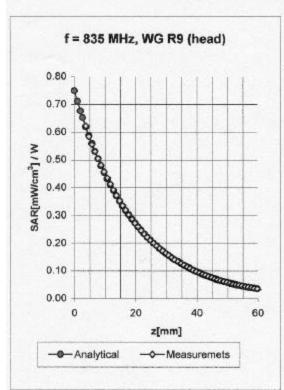

DASY3 - Parameters of Probe: ET3DV6 SN:1539

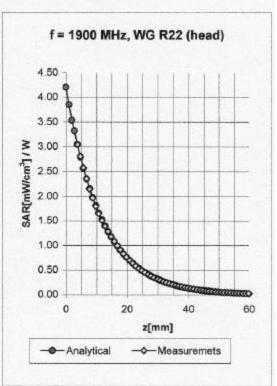
Sensit	ivity in Free	Space		Diode C	ompress	ion
	NormX	1.30	μ V/(V/m) ²		DCP X	95 r
	NormY	1.19	μV/(V/m) ²		DCP Y	95 r
	NomZ	1.28	μV/(V/m) ²		DCP Z	95 r
Sensit	ívity in Tiss	ue Simu	lating Liquid			
lead	450	MHz	e _r = 43.5 ± 5%	- n =	0.87 ± 10%	mhe/m
	ConvF X	6.95	contrapolated		Boundary et	fect:
	ConvF.Y	6.85	extrapolated		Alpha	0.27
	ConvF Z	6.95	extrapolated		Depth	2.88
lead	700 - 950	MHz	e _r = 39.4 - 43.6	,	0.75 - 0.99	nho/m
	ConvF X	6.37	±9.5% (k=2)		Boundary of	fect:
	CorwF Y	6.37	+ 9 5% (k=2)		Alpha	0.39
	ConvF Z	6.37	£ 9 5% (k=2)		Depth	2.64
lead	1500	MHz	r ₇ = 45.4 ± 5%	o =	1.23 ± 10%	mho/m
	CowF X	5.58	interpolated		Boundary et	fect:
	CorwE Y	5.58	interpolated		Alpha	0.66
	ConvF Z	5.58	interpolated		Depth	2.32
Head	1800 - 2000	MHz	_{Fy} = 38.0 • 42.0	p =	1.20 - 1.88 :	mbo/m
	CowF X	5.19	± 9 5% (k=2)		Boundary et	lect:
	CorwF Y	5.19	£95% (k=2)		Alpha	0.64
	ConvF Z	5.19	± 9 5% (k=2)		Depth	2.18
Senso	r Offset					
	Probe Tip to	Sensor Cer	rter	2.7		mm
	Cotical Surfa	ace Detectio		1.3 ± 0.2		mm

					= : (= 9)
	Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella			SEM/CV/P-02	2:0537/REF	
	Approved	Checked			
	SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206bodyok.doc

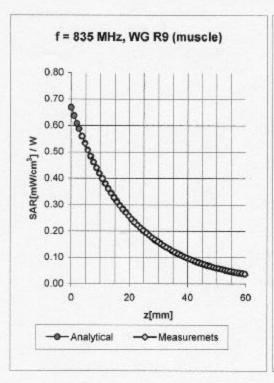
ET3DV6 SN:1539

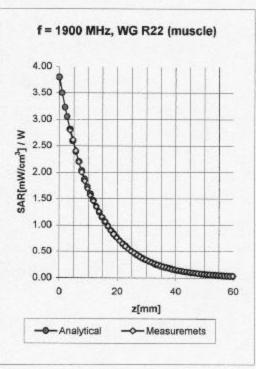
Missiel	700 - 950 WHS	s, = 39.4 · 43.6	a = 0.75 - 0.89 mho/m
	OcnvF X	6.37 ± 0.5% (k=2)	Boundary offect:
	ConvE Y	6.37 ±9.5% (k=2)	Apha 0.39
	ConvF Z	8.37 ±9.5% (k=2)	Depth 2.64
Head	1300 - 2000 MHz	e _r = 28.0 · 42.0	o = 1,20 - 1,55 mhoim
	ConvF X	5.19 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	6.19 ± 9.6% (k=2)	Apha 0.54
	ConvF Z	5.19 19.5% (k=2)	Dacth 2.16




25 (28)

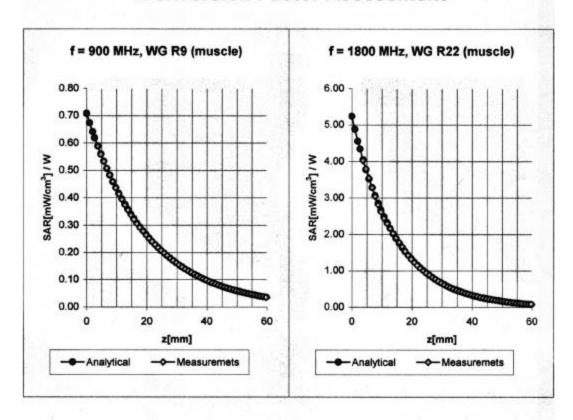
					20 (20)
Prepared (also subject res	sponsible if other)		No.		
SEM/CV/PF/P	Dulce Altabella		SEM/CV/P-02	2:0537/REF	
Approved		Checked			
SEM/CV/PF/P	Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206bodyok.doc




lead	700 - 950	MHz	e _r = 39.4 - 43.6	σ = 0.75 - 0.99	mho/m
	ConvF X	6.37	± 9.5% (k=2)	Boundary e	ffect:
	ConvF Y	6.37	± 9.5% (k=2)	Alpha	0.39
	ConvF Z	6.37	± 9.5% (k=2)	Depth	2.64
Head	1800 - 2000 I	MHz	e _r = 38.0 - 42.0	σ = 1.20 - 1.55	mho/m
Head	1800 - 2000 I	ИНZ	€ _r = 38.0 - 42.0	σ = 1.20 - 1.55	mho/m
Head	1800 - 2000 I		$\varepsilon_{\rm r}$ = 38.0 - 42.0 \pm 9.5% (k=2)	σ = 1.20 - 1.55 Boundary e	
Head		5.19			

					2: (20)
	Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02:0537/REP			
	Approved	Checked			
	SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206\bodyok.doc

ET3DV6 SN:1539



Muscle	750 - 950 MHz		$\epsilon_{\rm r}$ = 52.4 - 58.0	a = 0.90 - 1.05	mho/m
	ConvF X	6.24	± 9.5% (k=2)	Boundary et	ffect:
	ConvF Y	6.24	± 9.5% (k=2)	Alpha	0.61
	ConvF Z	6.24	± 9.5% (k=2)	Depth	2.01
Muscle	1800 - 2050 MHz		ε _r = 50.6 - 56.0	o = 1.40 - 1.60	mho/m
	ConvF X	4.82	± 9.5% (k=2)	Boundary et	ffect:
	ConvF Y	4.82	± 9.5% (k=2)	Alpha	0.91
	ConvF Z	4.82	± 9.5% (k=2)	Depth	1.92

				== (==)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P Dulce Altabella		SEM/CV/P-02	2:0537/REF	
Approved	Checked			
SEM/CV/PF/P Dulce Altabella	DA	2002-5-31	В	\\Eusrtnt045\antenna\\DULCE\\T206\\T206\bodyok.doc

ET3DV6 SN:1538

Muscle	e 900 MHz		$\varepsilon_{\rm r}$ = 56 ± 5%	σ = 0.99 ± 10%	σ = 0.99 ± 10% mho/m	
	ConvF X	6.06	± 7% (k=2)	Boundary et	ffect:	
	ConvF Y	6.06	± 7% (k=2)	Alpha	0.63	
	ConvF Z	6.06	± 7% (k=2)	Depth	1.90	
Muscle	1800 MHz		$\epsilon_{\rm r}$ = 54 ± 5%	σ = 1.4 ± 10% mho/m		
	ConvF X 4.73		± 7% (k=2)	Boundary effect:		
	ConvF Y	4.73	± 7% (k=2)	Alpha	0.68	
	ConvF Z	4.73	± 7% (k=2)	Depth	2.19	