실 Sony Ericsson		REPORT		
Song Encisson				1 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:0	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

SAR Test Report: T62u (PXITR-502-A2) Supplement A: Results for body-worn usage

Date of test:	May 24 and 30, 2002
Laboratory:	SAR Testing Laboratory Sony Ericsson Mobile Communications, Inc. 7001 Development Drive, P.O. Box 13969, Research Triangle Park, NC, 27709, USA
Tested by: Test Responsible:	William Stewart Development Engineer, Antenna Development Group Dulce Altabella Staff Engineer, Antenna Development Group
Accreditation:	This laboratory is accredited to ISO/IEC 17025-1999 to perform the following electromagnetic tests: Specific Absorption Rate (SAR), dielectric parameters, and RF power measurement on the following types of products: Wireless communications devices. A2LA certificate Number: 1650-01
Statement of Compliance:	Sony Ericsson Mobile Communications, Inc. declares under its sole responsibility that the product T62u FCC ID: PXITR-502-A2 to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested using specifications that closely conform to the latest appropriate measurement standards, guidelines and recommended practices. Any deviations from these specifications or from ISO/IEC 17025-1999 are noted below:

None

© Sony Ericsson Mobile Communications, Inc. 2002

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. All feedback on this report is encouraged, both positive and negative.

🍊 Sony Ericsson		REPORT		
Song chesson				2 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

Table of Contents

1. Introduction	3
2. Device Under Test2.1 Antenna description2.2 Device description	3 3 3
3. Test equipment3.1 Dosimetric system3.2 Additional calibrated equipment	4 4 4
4. Electrical parameters of the tissue simulating liquid	4
5. System accuracy verification	5
6. Test results	5
References	7
Appendix 1: SAR distribution comparison for system accuracy verification	8
Appendix 2: SAR distribution plots	10
Appendix 3: Photographs of Device Under Test	16
Appendix 4: Position of Device on Phantom	19
Appendix 5: Probe calibration parameters	20

실 Sony Ericsson		REPORT		
Song Encisson				3 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

1. Introduction

This report is a supplement to the document SEM/CV/P-02:0591/REP "SAR Test Report: T62u (PXITR-502-A2)." The main document demonstrates compliance of the T62u wireless handset with RF safety guidelines while used against the head. In this report, compliance of the T62u wireless handset with RF safety guidelines is demonstrated while the device is used in body-worn configurations. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in [1].

2. Device Under Test

2.1 Antenna description

Туре	Internal antenna			
Location	Inside the back cover, near the top			
Dimensions	Maximum length	38 mm		
Dimensions	Maximum width	51 mm		
Configuration	Patch antenna			

2.2 Device description

Device model	T62u	T62u					
FCC ID	PXITR-502-A	PXITR-502-A2					
Serial number	UA2020MZV	/Q					
Maximum Size	Length	121 mm					
	Width	54 mm					
	Thickness	25 mm					
Modes	800 AMPS	800 TDMA	800 GSM	1900 TDMA	1900 GSM		
Multiple Access Scheme	FDMA	TDMA	TDMA	TDMA	TDMA		
Maximum Output Power Setting	26.0 dBm	26.0 dBm	29.0 dBm	26.0 dBm	30.0 dBm		
Factory Tolerance in Power Setting	± 0.25	± 0.40	± 0.60	± 0.25	± 0.60		
Maximum Peak Output Power	26.25 dBm	26.40 dBm	29.60 dBm	26.25 dBm	30.60 dBm		
Duty Cycle	1	3	8	3	8		
Transmitting Frequency Range	824 - 849	824 - 849	824 - 849	1850 - 1910	1850 - 1910		
	MHz	MHz	MHz	MHz	MHz		
Prototype or Production Unit	Prototype						
Device Category	Portable						
RF Exposure Environment [2]	General popu	lation / uncont	rolled				

실 Sony Ericsson		REPORT		
Song chesson				4 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:0	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5		U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

3. Test equipment

3.1 Dosimetric system

SAR measurements were made using a DASY3 professional system (software version 3.1d) with a SAM phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The measurement uncertainty of the system is given in [1]. Below is a list of the calibrated equipment.

Description	Serial Number	Due Date
DASY3 DAE V1	416	12 / 2002
E-field probe ET3DV5	1324	12 / 2002
E-field probe ET3DV6	1583	12 / 2002
Dipole Validation Kit, D835V2	428	03 / 2003
Dipole Validation Kit, D1900V2	536	03 / 2003

3.2 Additional calibrated equipment

Description	Serial Number	Due Date
Signal Generator HP8648C	3537A01598	9/2002
Dielectric probe kit HP 85070B	US33020256	10/2002
Network analyzer HP 8752C	3410A03105	8/2002
Power meter HP 437B	3125U16190	4/2003
Power sensor HP 8482H	2704A06235	3/2003
Power meter HP 437B	3125U13729	1/2003
Power sensor HP 8482H	3318A07097	5/2003
Power meter E4418B	GB40206594	9/2002
Power sensor HP 8482H	3318A09268	8/2002
Hygrometer / Thermometer	21242911	10/2002
Thermometer / Probe	350078/99172351	10/2002
Thermometer / Probe	21117674/21117824	11/2002
Spectrum Analyzer MS2623A	M07418	10/2002

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the dielectric probe kit. These are tabulated below. A mass density of $\rho = 1.00 \text{ g/cm}^3$ was entered into the DASY3 program in all cases. The temperatures of the tissue simulants during measurements are also given. During the tests, the ambient temperature of the laboratory was in the range 22.5 – 23.7 °C, the relative humidity was 32.3 – 38.3% and the liquid depth was above 15 cm for all the tests. It can be seen that the measured parameters are within tolerance of the recommended limits [1].

f (MHz)	Tissue type	Date	Dielectric Parameters		Simulant Temp
			e _r	s (S/m)	(°C)
835	Body	24MAY02	55.90	0.97	23.1
1900	Body	30MAY02	52.74	1.55	23.0

🍯 Sony Ericsson		REPORT		5 (24)
Prepared (also subject responsible if other)				I
SEM/CV/PF/P William Stewart		SEM/CV/P-02:	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

5. System accuracy verification

A system accuracy verification of the DASY3 was performed using the dipole validation kits listed in Section 3.1. System verification tests were conducted on the same day as the measurement of the DUT. The obtained results are displayed in the table below (SAR values are scaled to 1 Watt power delivered to the antenna). During the tests, the ambient temperature of the laboratory was in the range 22.7-23.6 °C, the relative humidity was 32.1-38.3% and the liquid depth was above 15 cm for all the tests. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. Reference values are taken from numerical simulations for both the 835MHz and 1900MHz body simulant [5]. The SAR distributions are shown in Appendix 1.

Daily, prior to conducting tests, measurements were made with RF sources powered off to determine system noise. The highest system noise value was 0.000 W/kg, which is below the recommended limit [2].

f MHz	Tissue type	Measured / Reference	SAR (W/kg) 1 g/10 g	Dielectric Parameters		Simulant Temp. (°C)
				e _r	s (S/m)	(C)
835	Body	Measured, - 05/24/02	9.62 / 6.32	55.90	0.97	22.9
000	Douy	Reference (Simulation)	9.90 / 6.46	55.2	0.97	+/-2.0 of value in §4
1900	Body	Measured, 05/30/02	41.90 / 22.20	52.74	1.55	22.9
1700	bouy	Reference (Simulation)	40.50 / 20.89	53.3	1.52	+/-2.0 of value in §4

6. Test results

The measured 1- and 10-gram averaged SAR values of the device against the body, using battery BKB-193-1051 (800mAh) is presented in Tables 1 and 2. For body worn measurements, the device was tested against a flat phantom, representing the user's body, using carry accessory SXK 109 4705 and hands free accessory RLF-501-25/03. For AMPS, TDMA1900 and GSM1900 modes, the device was tested at the lowest, middle, and highest frequencies of the transmit band. For 800 TDMA and 800 GSM modes, the maximum power is significantly lower than that of AMPS mode, therefore SAR values are also lower and not included. Also shown are the measured conducted output powers and the temperature of the tissue simulant during the test. The depth of the tissue simulating liquid was at least 15 cm for all the cases. The humidity and ambient temperature of the test facility were in the ranges 30.3 - 43.8% and $22.8 - 24.3^{\circ}$ C respectively. During the SAR measurements, test commands were used to control the device in the AMPS and TDMA1900 modes, and a base station simulator was used to control the device in the GSM1900 mode.

🥑 Sony Ericsson				6 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:0	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5		U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

-

Mode	f (MHz)	Output Power	Carry Accessory: SXK 109 4705 Rear of phone facing body				
		(dBm)	Simulant	SAR, 1g/	/10g (W/kg)		
			Temp. (°C)	measured	Calculated to max. power		
800 AMPS	824	25.92	22.6	1.32/0.954	1.32/0.954		
800 AMPS	837	26.25	22.5	1.04/0.774	1.04/0.774		
	849	25.25	22.5	0.781/0.556	0.781/0.556		
1900 TDMA	1850	26.25	22.7	0.548/0.314	0.563/0.322		
1,000 120011	1880	26.14	22.5	0.360/0.202	0.370/0.207		
	1910	25.83	22.4	0.290/0.165	0.298/0.169		
1900 GSM	1850	29.86	22.3	0.393/0.222	0.446/0.252		
	1880	30.05	22.2	0.241/0.136	0.273/0.154		
	1910	30.18	22.2	0.247/0.140	0.280/0.159		

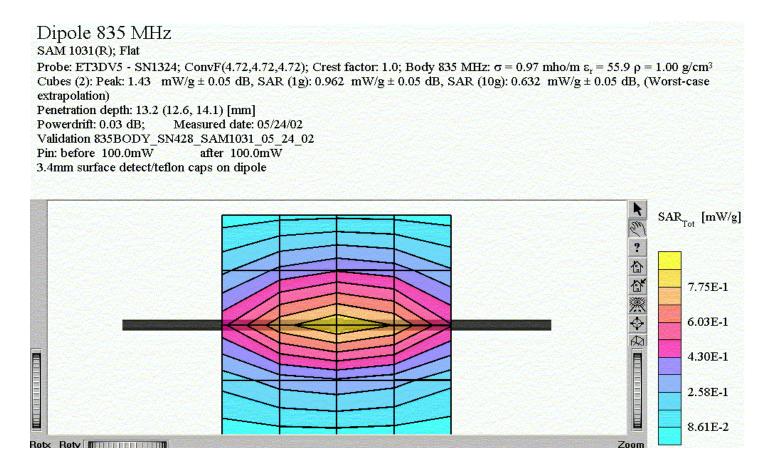
Table 1: SAR measurement results for the T62u telephone at highest possible output power. Measuredagainst the body using carry accessory SXK 109 4705 with hands free accessory RLF 501 25/03. Rear ofphone facing body

Mode	f (MHz)	Output Power	Carry Accessory: SXK 109 4705 Front of phone facing body					
		(dBm)	Simulant	SAR, 1g /10g (W/kg)				
			Temp. (°C)	measured	Calculated to max. power			
200 AMDS	824	25.92	22.5	0.322/0.235	0.322/0.235			
800 AMPS	837	26.25	22.5	0.579/0.416	0.579/0.416			
	849	25.25	22.6	0.461/0.330	0.461/0.330			
1900 TDMA	1850	26.25	22.6	0.066/0.041	0.068/0.042			
1900 120011	1880	26.14	22.5	0.065/0.040	0.066/0.041			
	1910	25.83	22.4	0.073/0.045	0.075/0.046			
1900 GSM	1850	29.86	22.0	0.072/0.044	0.081/0.050			
	1880	30.05	22.1	0.051/0.032	0.057/0.036			
	1910	30.18	22.2	0.047/0.029	0.053/0.033			

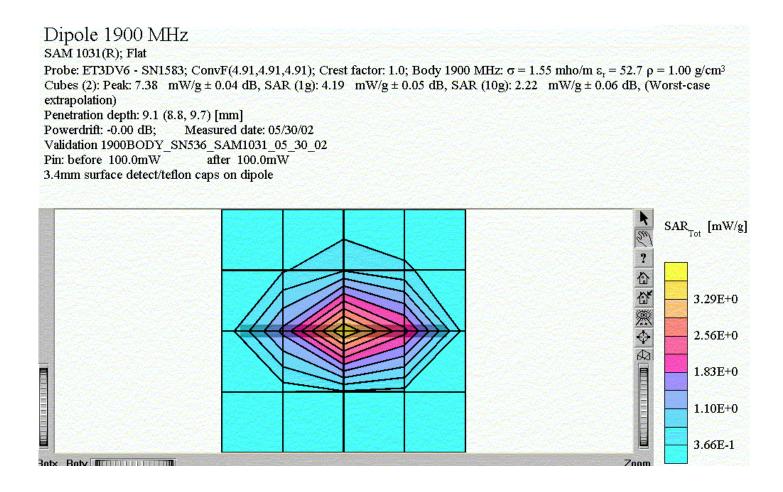
Table 2: SAR measurement results for the T62u telephone at highest possible output power. Measured
against the body using carry accessory SXK 109 4705 with hands free accessory RLF 501 25/03. Front of
phone facing body

🥘 Sony Ericsson				7 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:0)592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5		U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

References

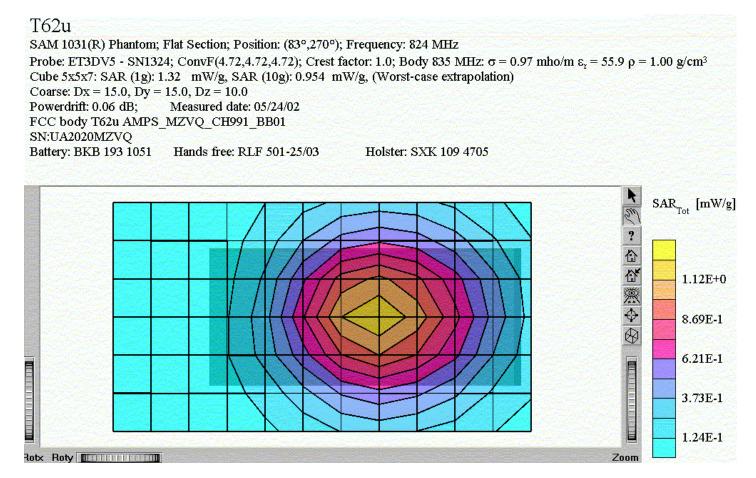

-

- D. Altabella, "SAR Measurement Specification of Wireless Handsets," Sony Ericsson internal document EUS/CV/R-01:1061/REP, February 2002.
- [2] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).
- [3] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques," Std 1528-200X, Draft 6.5 – August 20, 2001.
- [4] CENELEC, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz)", European Standard EN 50361, July 2001.
- [5] D. Altabella, "Reference values for system validation using body material," internal Sony Ericsson document EUS/CV/R-01:1118 /REP.


Appendix 1: SAR distribution comparison for system accuracy verification

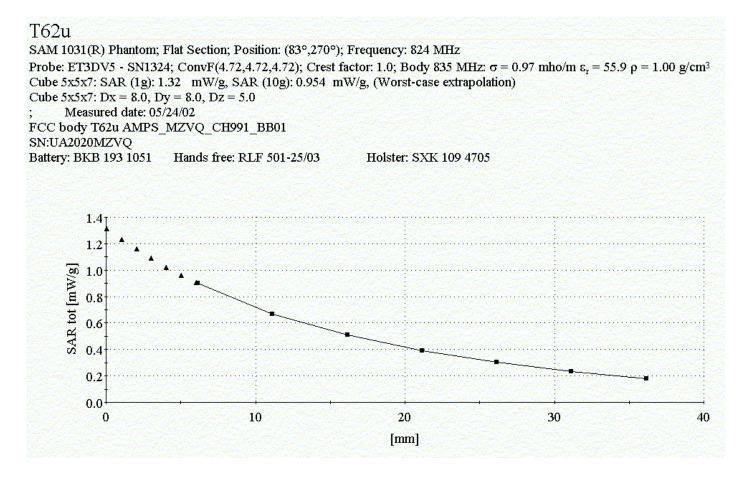
835 MHz SAR distribution of validation dipole antenna from system accuracy verification test on May 24, 2002. Using body tissue.

Joing chessen				9 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02	:0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

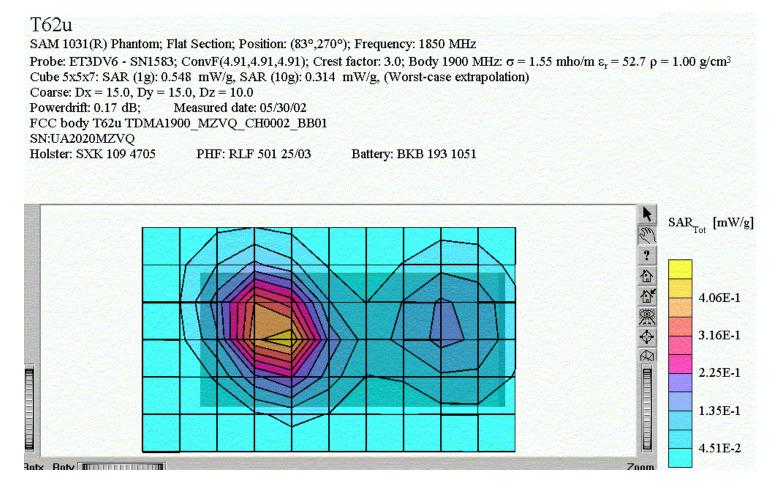


1900 MHz SAR distribution of validation dipole antenna from system accuracy verification test on May 30, 2002. Using body tissue.

Song chessen				10 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

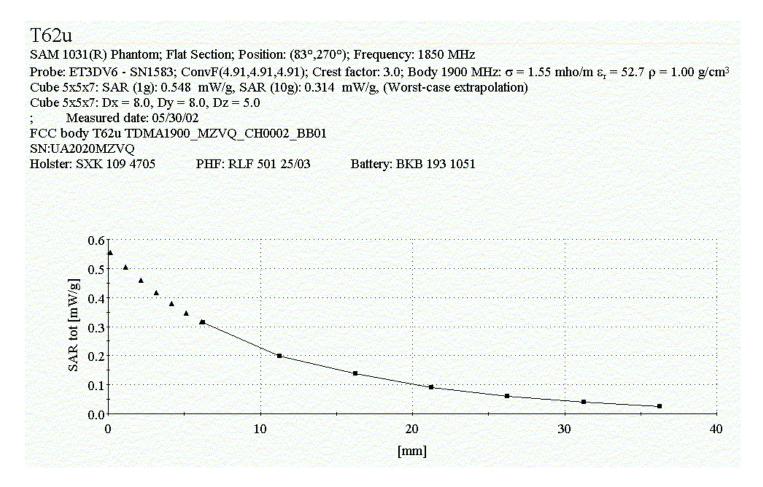

Appendix 2: SAR distribution plots

Distribution of maximum SAR in 800 AMPS band. Measured with back of device facing the body using carry accessory SXK 109 4705 and hands free accessory RLF 501 25/03.

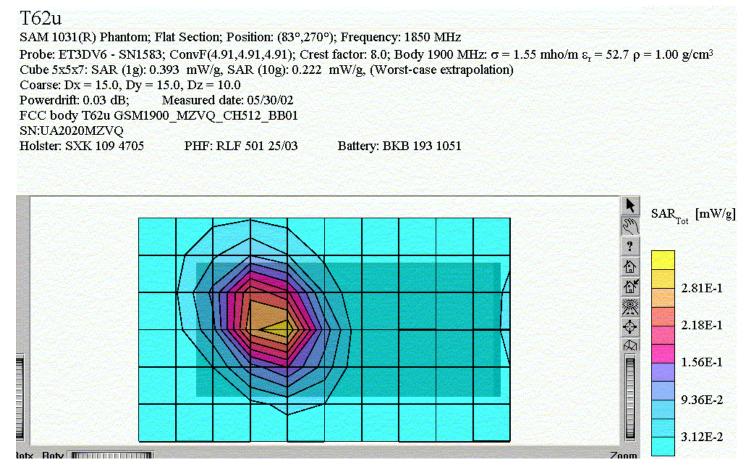


				11 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:0	592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

SAR Extrapolation to the phantom inner surface. Measured for maximum SAR in 800 AMPS band, while phone is against the body using carry accessory SXK 109 4705 and hands free accessory RLF 501 25/03



Distribution of maximum SAR in the 1900 TDMA band. Measured with back of device facing the body using carry accessory SXK 109 4705 and hands free accessory RLF 501 25/03.


				13 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

SAR Extrapolation to the phantom inner surface. Measured for maximum SAR in 1900 TDMA band, while phone is against the body using carry accessory SXK 109 4705 and hands free accessory RLF 501 25/03

				14 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:0	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

Distribution of maximum SAR in the 1900 GSM band. Measured with back of device facing the body using carry accessory SXK 109 4705 and hands free accessory RLF 501 25/03.

Song chessen				15 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

T62u SAM 1031(R) Phantom; Flat Section; Position: (83°,270°); Frequency: 1850 MHz Probe: ET3DV6 - SN1583; ConvF(4.91,4.91,4.91); Crest factor: 8.0; Body 1900 MHz: $\sigma = 1.55$ mho/m $\epsilon_{e} = 52.7 \ \rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 0.393 mW/g, SAR (10g): 0.222 mW/g, (Worst-case extrapolation) Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0 Measured date: 05/30/02 FCC body T62u GSM1900_MZVQ_CH512_BB01 SN:UA2020MZVQ Battery: BKB 193 1051 Holster: SXK 109 4705 PHF: RLF 501 25/03 0.5 0.4 SAR tot [mW/g] 0.3 0.2 0.1 0.0 10 20 30 40 0 [mm]

SAR Extrapolation to the phantom inner surface. Measured for maximum SAR in 1900 GSM band, while phone is against the body using carry accessory SXK 109 4705 and hands free accessory RLF 501 25/03

Jong chesson				16 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:0	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

Appendix 3: Photographs of Device Under Test

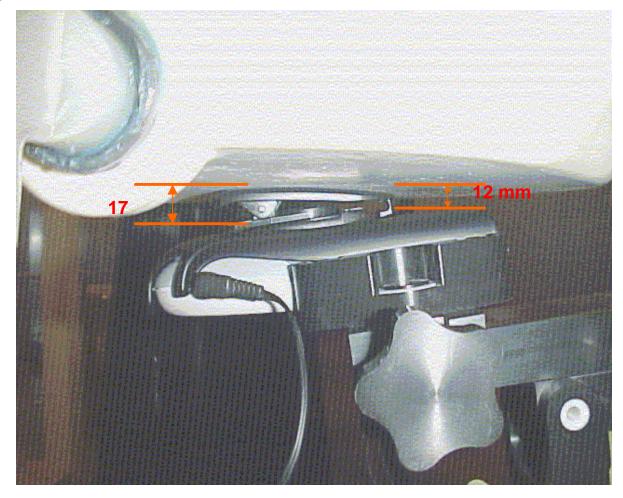
Front view of device

Back view of device


Song enceson				17 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

Side view of device.

U				18 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc



Front, back, and side views of product number SXK 109 4705. This accessory contains plastic and metal.

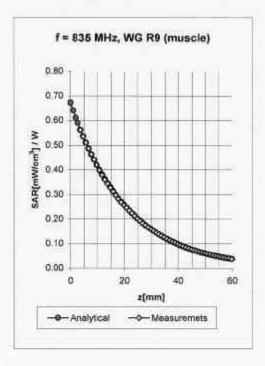
				19 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:0)592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5		U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

Appendix 4: Position of Device on Phantom

Position of device against flat phantom using carry accessory SXK 109 4705 with hands free accessory RLF 501 25/03 🥝 Sony Ericsson

	genesson				20 (24)
Prepared (also subject re	sponsible if other)		No.		
SEM/CV/PF/P	William Stewart		SEM/CV/P-02:0	0592/REP	
Approved		Checked		Rev.	
SEM/CV/PF/P	Dulce Altabella	DA	2002-6-5		U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

Appendix 5: Probe calibration parameters


ET3DV5 SN:1324 DASY3 - Parameters of Probe: ET3DV5 SN:1324 Sensitivity in Free Space **Diode Compression** 1.52 µV/(V/m)2 DCP X 103 mV NormX 1.73 µV/(V/m)2 DCP Y 103 mV NormY 1.53 µV/(V/m)2 DCP Z NormZ 103 mV Sensitivity in Tissue Simulating Liquid Hoad 450 MHz c. = 43.5 ± 5% a = 0.87 ± 10% mho/m ConvF X 5.23 extrapolated Boundary effect: ConvF Y 0.65 5.23 extrapolated Alpha 1.63 5.23 extrapolated Depth ConvF Z 700 - 950 MHz E, = 39.4 - 43.6 a = 0.75 - 0.99 mho/m Head 4.89 ± 9.5% (k=2) Boundary effect: ConvF X ConvF Y 4.89 ± 9.5% (k=2) Alpha 0.67 1.71 ConvF Z 4.89 ± 9.5% (k=2) Depth 1500 MHz $\varepsilon_r = 41 \pm 5\%$ o = 1.32 ± 10% mho/m Brain 4.43 interpolated ConvF X Boundary effect: 4.43 interpolated Alpha 0.70 ConvF Y 1.82 ConvF Z 4.43 interpolated Depth Brain 1700 - 1910 MHz s,= 39.3 - 41.6 o = 1.53 - 1.90 mho/m 4.21 ± 9.5% (k=2) Boundary effect: ConvF X ConvF Y 4.21 ± 9.5% (k=2) Alpha 0.72 ConvF Z 4.21 ±9.5% (k=2) Depth 1.88 Sensor Offset 2.7 Probe Tip to Sensor Center mm **Optical Surface Detection** 1.8 ± 0.2 mm

Page 2 of 9

실 Sony Ericsson		REPORT		
Song Enceson				21 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:0	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

ET3DV5 SN:1324

Conversion Factor Assessment

750 - 950 MHz		E _r = 52.4 - 58.0	σ = 0.90 - 1.05 ml	σ = 0.90 - 1.05 mho/m		
ConvF X	4.72	± 9.5% (k=2)	Boundary effe	ct:		
ConvF Y	4.72	± 9.5% (k=2)	Alpha	0.69		
ConvF Z	4.72	± 9.5% (k=2)	Depth	1.70		
	ConvF X ConvF Y	ConvF X 4.72 ConvF Y 4.72	ConvF X 4.72 ± 9.5% (k=2) ConvF Y 4.72 ± 9.5% (k=2)	ConvF X 4.72 ± 9.5% (k=2) Boundary effe ConvF Y 4.72 ± 9.5% (k=2) Alpha		

Page 8 of 9

ET3DV6 SN:1583

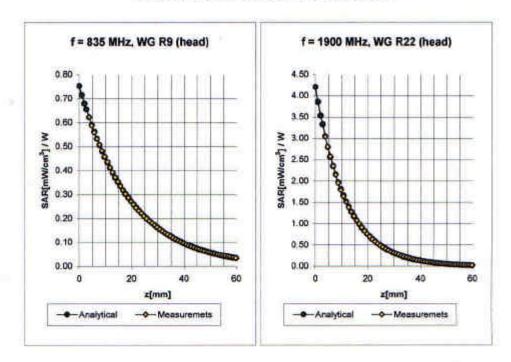
DASY3 - Parameters of Probe: ET3DV6 SN:1583

Sensitivity in Free Space		Space	Diode Compression			
	NormX	1.78 µV/(V/m)2	DCP X	100 mV		
	NormY 1.96 µV/(V/		m) ² DCP Y			
NormZ 1.89 µ		1.89 µV/(V/m) ²	DCP Z	100 mV		
Sensit	tivity in Tiss	ue Simulating Liquid				
Head	450	MHz c, = 43.5 d	σ = 0.87 ± 10% m	n/od		

	7. (1999.199	of the search	48 (A)		
ConvF X	7.77	extrapolated		Boundary e	ffect:
ConvF Y	7.77	extrapolated		Alpha	0.30
ConvF Z	7.77	extrapolated		Depth	2.30
700 - 950	MHz	s,= 39.4 - 43.	6	a = 0.75 - 0.99	mho/m
ConvF X	6.95	± 9.5% (k=2)		Boundary e	ffect:
ConvF Y	6.95	± 9.5% (k=2)		Alpha	0.38
ConvF Z	6.95	± 9.5% (k=2)		Depth	2.28
1500 MHz		$\varepsilon_r = 40.4 \pm 5\%$		σ = 1.23 ± 10% mho/m	
ConvF X	5.87	interpolated		Boundary e	ffect
ConvF Y	5.87	interpolated		Alpha	0.48
ConvF Z	5.87	interpolated		Depth	2.25
1800 - 200	0 MHz	s,= 38.0 - 42.	0	s = 1.20 - 1.55	mho/m
ConvF X	5.32	± 9.5% (k=2)		Boundary e	ffect
ConvF Y	5.32	± 9.5% (k=2)		Alpha	0.53
ConvF Z	5.32	± 9.5% (k=2)		Depth	2.24
r Offset					
Probe Tip t	o Sensor Cel	nter	2.7		mm
	ConvF Y ConvF Z 700 - 950 ConvF X ConvF Y ConvF Z 150 ConvF X ConvF Y ConvF Z 1800 - 200 ConvF X ConvF X ConvF X	ConvF Y 7.77 ConvF Z 7.77 700 - 950 MHz ConvF X 6.95 ConvF Y 6.95 ConvF Z 6.95 ConvF Z 6.95 ConvF Z 5.87 ConvF X 5.87 ConvF Y 5.87 ConvF Z 5.87 1800 - 2000 MHz ConvF Z 5.32 ConvF Z 5.32 ConvF Z 5.32	ConvF X 7.77 extrapolated ConvF Y 7.77 extrapolated ConvF Z 7.77 extrapolated 700 - 950 MHz $e_r = 39.4 - 43.$ ConvF X 6.95 $\pm 9.5\%$ (k=2) ConvF Y 6.95 $\pm 9.5\%$ (k=2) ConvF Z 6.95 $\pm 9.5\%$ (k=2) ConvF Z 6.95 $\pm 9.5\%$ (k=2) ConvF Z 6.95 $\pm 9.5\%$ (k=2) ConvF X 5.87 interpolated ConvF Z 5.32 $\pm 9.5\%$ (k=2) ConvF X 5.32 $\pm 9.5\%$ (k=2) ConvF X 5.32 $\pm 9.5\%$ (k=2)	ConvF X 7.77 extrapolated ConvF Y 7.77 extrapolated ConvF Z 7.77 extrapolated 700 - 950 MHz $e_r = 39.4 - 43.6$ $e_r = 39.4 - 43.6$ ConvF X $6.95 \pm 9.5\%$ (k=2) $e_r = 39.4 - 43.6$ $e_r = 39.4 - 43.6$ ConvF X $6.95 \pm 9.5\%$ (k=2) $e_r = 39.4 - 43.6$ $e_r = 39.4 - 43.6$ ConvF X $6.95 \pm 9.5\%$ (k=2) $e_r = 39.4 - 43.6$ $e_r = 30.7 - 42.6$ ConvF Z 5.87 interpolated $e_r = 38.0 - 42.0$ $e_r = 38.0 - 42.0$ ConvF X $5.32 \pm 9.5\%$ (k=2) $e_r = 38.0 - 42.0$ $e_r = 38.0 - 42.0$ ConvF X $5.32 \pm 9.5\%$ (k=2) $e_r = 38.0 - 42.0$ $e_r = 38.0 - 42.0$ ConvF X $5.32 \pm 9.5\%$ (k=2) $e_r = 38.0 - 42.0$ $e_r = 38.0 - 42.0$ ConvF X $5.32 \pm 9.5\%$ (k=2) $e_r = 38.0 - 42.0$ $e_r = 38.0 - 42.0$ ConvF X $5.32 \pm 9.5\%$ (k=2) $e_r = 38.0 - 42.0$ ConvF X $5.32 \pm 9.5\%$ (k=2) $e_r = 38.0 - 42.0$ <	ConvF X7.77extrapolatedBoundary eConvF Y7.77extrapolatedAlphaConvF Z7.77extrapolatedDepth700 - 950MHz $v_r = 39.4 - 43.6$ $\alpha = 0.75 - 0.99$ ConvF X6.95 $\pm 9.5\%$ (k=2)Boundary eConvF X6.95 $\pm 9.5\%$ (k=2)AlphaConvF Z6.95 $\pm 9.5\%$ (k=2)DepthConvF Z6.95 $\pm 9.5\%$ (k=2)Depth1500MHz $c_r = 40.4 \pm 5\%$ $\sigma = 1.23 \pm 10\%$ ConvF X5.87interpolatedBoundary eConvF X5.87interpolatedDepth1800 - 2000MHz $v_r = 38.0 - 42.0$ $\sigma = 1.20 - 1.55$ ConvF X5.32 $\pm 9.5\%$ (k=2)Boundary eConvF X5.32 $\pm 9.5\%$ (k=2)Depth1800 - 2000MHz $v_r = 38.0 - 42.0$ $\sigma = 1.20 - 1.55$ ConvF X5.32 $\pm 9.5\%$ (k=2)AlphaConvF Z5.32 $\pm 9.5\%$ (k=2)Depthr OffsetSize 10.5\% (k=2)Depth

Optical Surface Detection

1.6 ± 0.2

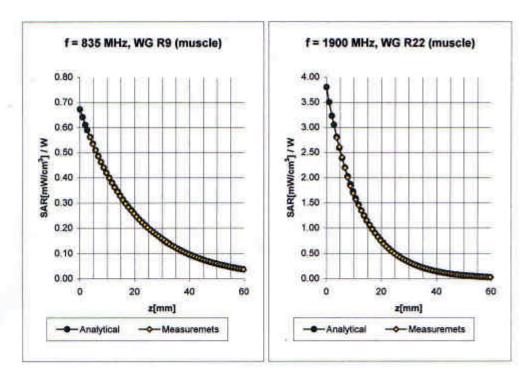

.

mm

Page 2 of 9

🎒 Sony Ericsson		REPORT		
Song Encisson				23 (24)
Prepared (also subject responsible if other)		No.		
SEM/CV/PF/P William Stewart		SEM/CV/P-02:0	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5		U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

ET3DV6 SN:1583


Conversion Factor Assessment

Head	700 - 950	MHz	$e_i = 39.4 - 43.6$	σ = 0.75 - 0.99 n	nho/m
	ConvF X	6.95	±9.5% (k=2)	Boundary eff	fect
	ConvF Y	6.95	±9.5% (k=2)	Alpha	0.38
	ConvF Z	6.95	± 9.5% (k=2)	Depth	2.28
Head	1800 - 2000	MHz	e ₇ = 38.0 - 42.0	σ = 1.20 - 1.55 n	nho/m
	ConvF X	5.32	±9.5% (k=2)	Boundary eff	ect
	ConvF Y	5.32	± 9.5% (k=2)	Alpha	0.53
	ConvF Z	5.32	±9.5% (k=2)	Depth	2.24

Page 7 of 9

실 Sony Ericsson		REPORT		
				24 (24)
Prepared (also subject responsible if other)		No.	l	
SEM/CV/PF/P William Stewart		SEM/CV/P-02:	0592/REP	
Approved	Checked		Rev.	
SEM/CV/PF/P Dulce Altabella	DA	2002-6-5	В	U:\FCC Submittals\Fcc_502 gerri anna nicole\XHIBIT11\Source\502-11 body.doc

ET3DV6 SN:1583

Conversion Factor Assessment

scle 750-950 MHz		E _r = 52.4 - 58.0	σ = 0.90 - 1.05 mho/m	
ConvF X 6.65		± 9.5% (k=2)	Boundary effect:	
ConvF Y	6.65	± 9.5% (k=2)	Alpha	0.49
ConvF Z	6.65	± 9.5% (k=2)	Depth	1.97
1800 - 2050 MHz		ε _r = 50.6 - 56.0	σ = 1.40 - 1.60 mho/m	
ConvF X	4.91	± 9.5% (k=2)	Boundary effect:	
ConvF Y	4.91	± 9.5% (k=2)	Alpha	0.69
ConvF Z	4.91	± 9.5% (k=2)	Depth	2.10
	ConvF X ConvF Y ConvF Z 1800 - 205 ConvF X ConvF Y	ConvF X 6.65 ConvF Y 6.65 ConvF Z 6.65 1800 - 2050 MHz 1800 ConvF X 4.91 ConvF Y 4.91	ConvF X 6.65 \pm 9.5% (k=2) ConvF Y 6.65 \pm 9.5% (k=2) ConvF Z 6.65 \pm 9.5% (k=2) 1800 - 2050 MHz $\epsilon_r = 50.6 - 56.0$ ConvF X 4.91 \pm 9.5% (k=2) ConvF Y 4.91 \pm 9.5% (k=2)	ConvF X 6.65 \pm 9.5% (k=2) Boundary eff ConvF Y 6.65 \pm 9.5% (k=2) Alpha ConvF Z 6.65 \pm 9.5% (k=2) Depth 1800 - 2050 MHz $\epsilon_r = 50.6 - 56.0$ $\sigma = 1.40 - 1.60$ m ConvF X 4.91 \pm 9.5% (k=2) Boundary eff ConvF Y 4.91 \pm 9.5% (k=2) Alpha

Page 8 of 9