

Page 1 of 15

	Certi	ficate of	Compliand	e			
Test Report No.:	SKTFC	E-021213-122					
NVLAP CODE :	200220-	0					
Applicant:	KTC Teleo	com Co., Ltd.					
Applicant Address:	1381-1, Juan-Dong, Nam-Ku, Incheon, Korea						
Product:	Win Drive						
FCC ID:	PXBKFM-	PXBKFM-1256 Model No.: KFM-1***					
Receipt No.:	SKTEU02	-0079	Date of receipt:	Dec. 11, 20)2		
Date of Issue:	Dec. 13, 2	Dec. 13, 2002					
Testing location:	SK TECH CO., LTD. 820-2, Wolmoon-Ri, Wabu-Up, Namyangju-Si, Kyunggi-Do, Korea						
Test Standards:	ANSI C63.	4 / 2001					
Rule Parts:	FCC part	15 Subpart B					
Equipment Class :	Class B D	igital Device Peri	pheral				
Test Result:	The above	mentioned produc	ct has been tested and	passed.			
Prepared by: Y.H.Kan	g	Tested by:H.P.Kin	n/Engineer App	roved by: K.S.	Kim/Manager		
Farg		B) 10.	lese			
Signature	Date	Signature	Date	Signature	Date		
Other Aspects :							
Abbreviations : · OK, Pass = passed · Fail = failed · N/A = not applicable							
•This test report is not permitted to copy partly without our permission.							
•This test result is dependent on only equipment to be used.							
•This test result is based on a single evaluation of one sample of the above mentioned.							
•Inis test report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government							
ure U.S Government. • We certify that this test report has been based on the measurement standards that is traceable to the							
national or Intern	ational standa	rds.					
					പ്പ് പ്		

NVLAP Lab. Code: 200220-0

SK TECH CO., LTD. SKT Page 2 of 15 **Contents** Contents 2 2 List of Tables List of Figures 2 1. General 3 2. Test Site 3 2.1 Location 3 2.2 List of Test and Measurement Instruments 4 2.3 Test Date 4 2.4 **Test Environment** 4 3. Description of the tested samples 5 3.1 **Rating and Physical Characteristics** 5 3.2 5 Submitted Documents 4. Measurement Conditions 6 4.1 Modes of Operation 6 4.2 List of Peripherals 6 4.3 Type of Used cables 6 4.4 Test Setup 6 7 4.5 Uncertainty 5. EMISSION Te st 10 5.1 **Conducted Emissions** 10 5.2 **Radiated Emissions** 14

List of Tables

Table 3	Test Data, Radiated Emissions	15
Table 2	Test Data, Conducted Emissions	13
Table 1	List of test and measurement Equipment	4

Figure 1Spectral Diagram, LINE-PE11Figure 2Spectral Diagram, Neutral-PE12

Page 3 of 15

1. General

This equipment has been shown to be capable of compliance with the applicable technical standards and was tested in accordance with the measurement procedures as indicated in this report.

We attest to the accuracy of data. All measurements reported herein were performed by SK Tech Co., Ltd. and were made under Chief Engineer's supervision. We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. Test Site

SK TECH Co., Ltd.

2.1 Location

820-2, Wolmoon Ri, Wabu-Up, Namyangju-Si, Kyunggi-Do, Korea

The test site is in compliance with ISO/IEC 17025 for general requirements for the competence of testing and calibration laboratories. This laboratory is accredited by NVLAP for NVLAP Lab. Code : 200220-0 and DATech for DAR-Registration No.:TTI-P-G155/97-10

Page 4 of 15

2.2 List of Test and Measurement Instruments

Table 1 : List of Test and Measurement Equipment

• Conducted Disturbance

Kind of Equipment	Туре	S/N	Calibrated until
EMI Receiver	ESHS10	862970/019	10.2003
Artificial Mains Network	ESH2-Z5	834549/011	10.2003
EMI Receiver	ESHS10	835871/002	10.2003
Artificial Mains Network	ESHB-Z5	836679/018	10.2003
Conducted Cable	N/A	N/A	N/A

• Radiated Disturbance

Kind of Equipment	Туре	S/N	Calibrated until
EMI Receiver	ESVS 10	825120/013	02.2003
EMI Receiver	ESVS 10	834468/008	11.2003
Spectrum Analyzer	R3361A	11730187	07.2003
Amplifier	8447F	3113A05153	06.2003
Log Periodic Antenna	UHALP9107	1819	02.2003
Biconical Antenna	BBA9106	91031626	02.2003
Antenna Mast	5907	N/A	N/A
Antenna & Turntable controller	5906	N/A	N/A
Amp & Receiver connection cables	N/A	N/A	N/A
50 Switcher	MP59B	6100214538	N/A

2.3 Test Date

Date of Application	: Dec. 11, 2002
Date of Test	: Dec. 11, 2002 ~ Dec. 13, 2002

2.4 Test Environment

See each test item's description.

3.2 Submitted Documents

N/A

Page 6 of 15

4. Measurement Conditions

Operating voltage of the EUT is supplied by the PC. (The PC Input Voltage is AC 230, 50Hz)

4.1 Modes of Operation

The EUT was in the following operation mode during all testing;

EUT is tested under the connecting with Notebook PC by USB connector.

The test was made on the mode of uploading, downloading and playing Window Media.

4.2 List of Peripherals

Description	Manufacturer	Model Name	Serial No.	FCC ID
Notebook PC	COMPAQ	CM2080	5Y0AFHRBPD34	Doc
Adapter (for EUT)	Lite-on Electronics	PA-1600-2	3141BS0035A	N/A

4.3 Type of Used Cables

Description	Length	Type of shield	Manufacturer	Remark
AC/DC Power cable	1.5m	Non-shield	N/A	For EUT

4.4 Test Setup

The test setup photographs showed the external supply connections and interfaces.

Page 7 of 15

4.5 Uncertainty

1) Radiated disturbance

Horizontally polarized radiated disturbances from 30MHz to 1000MHz at a distance of 10m

	Uncertainty of Xi		LI(Xi)			
Input quantity	dB	Probability distribution function	dB	Ci	Ciu(xi)	CISPR 16-4
1) Receiver reading	±0.1	K =1	0.1	1	0.1	0.10
2) Attenuation: antenna-receiver	±0.18	K=2	0.09	1	0.09	0.05
3) Antenna factor	±1.5	K=2	0.75	1	0.75	1.00
RECEIVER CORRECTIONS:				•		
4) Sine wave voltage	±0.56	K=2	0.28	1	0.50	0.50
5) Pulse amplitude response	±1.5	Rectangular (√3)	0.87	1	0.87	0.87
6) Pulse repetition rate response	±1.5	Rectangular (√3)	0.87	1	0.87	0.87
7) Noise floor proximity	±0.5	K=2	0.25	1	0.25	0.25
8) AF frequency interpolation	±0.3	Rectangular (√3)	0.17	1	0.17	0.17
9) Balance	±0.3	Rectangular (√3)	0.17	1	0.17	0.53
10) AF height deviations	±0.5	Rectangular (√3)	0.29	1	0.29	0.29
11) Phase center location	±0.3	Rectangular (√3)	0.17	1	0.17	0.17
12) Directive difference	+1.0	Rectangular (√3)	0.29	1	0.29	0.29
13) Cross polarization	±0.9	Rectangular (√3)	0.52	1	0.52	0.52
14) Site corrections	±2.6	Rectangular (√3)	1.5	1	1.5	1.63
15) Mismatch (ant-receiver)	±1.06	Ū-shaped (√2)	0.75	1	0.75	0.67

Combined Uncertainty

Uc(xi)= $\sqrt{(1)^2+(2)^2+(3)^2+(4)^2+(5)^2+(6)^2+(7)^2+(8)^2+(9)^2+(10)^2+(11)^2+(12)^2}$

 $+(13)^{2}+(14)^{2}+(15)^{2} = 2.37$

Expanded Uncertainty

U= k*Uc(xi) = 2 * 2.37= 4.74dB (The coverage factor k = 2 yields approximately a 95% level of confidence)

Page 8 of 15

Vertically polarized radiated disturbances from 30MHz to 1000MHz at a distance of 10m

	Unce	ertainty of Xi	LI(Xi)			
Input quantity	Probability dB distribution		0(/()	Ci	Ciu(xi)	CISPR
	uБ	function	dB			10-4
1) Receiver reading	±0.1	K =1	0.1	1	0.1	0.10
2) Attenuation: antenna-receiver	±0.18	K=2	0.09	1	0.09	0.05
3) Antenna factor	±1.5	K=2	0.75	1	0.75	1.00
RECEIVER CORRECTIONS:						
4) Sine wave voltage	±0.56	K=2	0.28	1	0.50	0.50
5) Pulse amplitude response	±1.5	Rectangular (√3)	0.87	1	0.87	0.87
6) Pulse repetition rate response	±1.5	Rectangular (√3)	0.87	1	0.87	0.87
7) Noise floor proximity	±0.5	K=2	0.25	1	0.25	0.25
8) AF frequencyinterpolation	±0.3	Rectangular (√3)	0.17	1	0.17	0.17
9) Balance	±0.9	Rectangular (√3)	0.52	1	0.52	0.52
10)AF height deviations	±0.3	Rectangular (√3)	0.17	1	0.17	0.17
11) phase center location	±0.3	Rectangular (√3)	0.17	1	0.17	0.17
12) directive difference	+1.0	Rectangular (√3)	0.29	1	0.29	0.29
13)cross polarization	±0.9	Rectangular (√3)	0.52	1	0.52	0.52
14) site corrections	±2.6	Rectangular (√3)	1.5	1	1.5	1.63
15) Mismatch (ant-receiver)	±1.06	U-shaped (√2)	0.75	1	0.75	0.67

Combined Uncertainty

 $Uc(xi) = \sqrt{(1)^2 + (2)^2 + (3)^2 + (4)^2 + (5)^2 + (6)^2 + (7)^2 + (8)^2 + (9)^2 + (10)^2 + (11)^2 + (12)^2 + (13)^2 + (14)^2 + (15)^2} = 2.43$

Expanded Uncertainty

U= k*Uc(xi) = 2 * 2.43 = 4.86dB (The coverage factor k =2 yields approximately a 95% level of confidence)

Page 9 of 15

2) Conducted disturbance

Conducted disturbance from 150KHz to 30MHz using a 50W/50uH AMN

	U	ncertainty of Xi				
input quantity	dB	Probability distribution function	U(Xi) dB	Ci	Ciu(xi)	CISPR 16-4
1) Receiver Readeing	±0.1	K =1	0.1	1	0.1	0.10
2) Attenuation:AMN-receiver	±0.36	Triangular (√6)	0.15	1	0.15	0.05
RECEIVER CORRECTIONS:						
3) Sine wave voltage	±0.5	K=2	0.25	1	0.25	0.50
4) Pulse amplitude response	±1.5	Rectangular (√3)	0.87	1	0.87	0.87
5) Pulse repetition rate response		Rectangular (√3)	0.87	1	0.87	0.87
6) AMN voltage division factor	±0.07	K=2	0.04	1	0.04	0.1
7) Mismatch : AMN-receiver	±0.55	U-shaped (√2)	0.39	1	0.39	0.53
8) AMN impedance	±1.52	Triangular (√6)	0.62	1	0.62	1.08

• 1)~8) For numbered comments, refer to following articles

Combined Uncertainty

Uc(xi) = $\sqrt{(1)^2+(2)^2+(3)^2+(4)^2+(5)^2+(6)^2+(7)^2+(8)^2} = 1.47$

Expanded uncertainty

U= k*Uc(xi) = 2 * 1.47 = 2.94dB

The coverage factor k =2 yields approximately a 95% level of confidence

Refer

1) receiver's resolution capacity

2) refer to the sub clause 11. of a calibration report

3) quoted from CISPR 16-4

4) refer to a calibration report

5) refer to CISPR 16-4 article 5.7)

6) refer to a calibration report and a measured AMN impedance data

Page 10 of 15

5. EMISSION Test

5.1 Conducted Emissions

Result:

Pass

The line-conducted facility is located inside a 2.0M x 3.6M x 7.2M shielded enclosure. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 604-05. A 1m x 1.5m wooden table 80cm. high is placed 40cm. away from the vertical wall and 1.5m away from the side wall of the shielded room. ROHDE & SCHWARZ Model ESH3-Z5 (10kHz-30MHz) 50ohm/50 uH Line-Impedance Stabilization Networks(LISNs) are bonded to the shielded room.

The EUT is powered from the ROHDE & SCHWARZ LISN and the support equipment is powered from the ROHDE & SCHWARZ LISN. Power to the LISNs are filtered by a high-current high-insertion loss Lindgren enclosures power line filters (100dB 14kHz-10GHz).

The purpose of the filter is to attenuate ambient signal interference and this filter is also bonded to the shielded enclosure.

All electrical cables are shielded by braided tinned copper zipper tubing with inner diameter of 1/2 ". If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the ROHDE & SCHWARZ LISN. All interconnecting cables more than 1 meter were shortened by non-inductive bundling (serpentine fashion) to a 1-meter length.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT.

The spectrum was scanned from 450kHz to 30MHz with 100msec. sweep time.

- The frequency producing the maximum level was reexamined using EMI/field Intensity Meter (ESHS 10) and Quasi-Peak adapter. The detector function was set to CISPR quasi-peak mode. The bandwidth of the receiver was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.
- Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; if applicable; whichever determined the worst-case emission. Photographs of the worst-case emission can be seen in photograph of conducted test. Each EME reported was calibrated using self-calibrating mode.

Page 13 of 15

Table 2: Test Data, Conducted Emissions

LINE-PE

Frequency	Reading	C/F	CL	Limit	Margin
(MHz)	(dBµV)	(dB)	(dB)	(dBµV)	(dB)
0.150	46.40	0.3	0.1	66.00	19.20
0.200	44.63	0.1	0.1	63.61	18.78
12.460	42.34	0.3	0.5	60.00	16.86
12.530	39.32	0.3	0.5	60.00	19.88
12.660	42.30	0.3	0.5	60.00	16.90
12.860	40.00	0.3	0.5	60.00	19.20

NEUTRAL-PE

Frequency	Reading	C/F	CL	Limit	Margin
(MHz)	(dBµV)	(dB)	(dB)	(dBµV)	(dB)
0.150	46.90	0.3	0.1	66.00	18.70
0.200	44.63	0.3	0.1	63.61	18.58
0.330	38.52	0.3	0.1	59.45	20.53
12.390	39.08	0.3	0.5	60.00	20.12
12.520	43.40	0.3	0.5	60.00	15.80
12.650	43.22	0.3	0.5	60.00	15.98

NOTES:

1. All modes of operation were investigated

and the worst-case emission are reported.

2. All other emissions are non-significant.

3. All readings are calibrated by self-mode in receiver.

4. Measurements using CISPR quasi-peak mode.

5. C/F = Correction Factor

6. C/L = Cable Loss

Margin Calculation

(6)Margin = (5)Limit - (4)Actual [(4)Actual = (1)Reading + (2)C/F + (3)C/L]

Page 14 of 15

5.2 Radiated Emissions

Result :

Preliminary measurements were made indoors at 3 meter using broadband antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna were noted for each frequency found.

The spectrum was scanned from 30 to 300 MHz using biconical antenna and from 300 to 1000 MHz using log-periodic antenna. Above 1GHz, linearly polarized double ridge horn antennas were used.

Final measurements were made outdoors at 3-meter test range using SCHWARZBECK dipole antennas. The test equipment was placed on a wooden table situated on a 4x4 meter area adjacent to the measurement area. Turntable was to protect from weather in the dome that made with FRP. Sufficient time for the EUT, support equipment, and test e quipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was re-examined and investigated using EMI/Field Intensity Meter(ESVS 10) and Quasi-Peak Adapter. The detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 100kHz or 1MHz depending on the frequency or type of signal.

The half-wave dipole antenna was tuned to the frequency found during preliminary radiated measurements. The EUT, support equipment and interconnecting cables were re-configured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8-meter high nonmetallic 1 x 1.5 meter table.

The EUT, s upport equipment, and interconnecting cables were re-arranged and manipulated to maximize each EME emission. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission. Each emission was maximized by: varying the mode of operation or resolution; clock or data exchange speed, and/or support equipment, if applicable; and changing the polarity of the antenna, whichever determined the worst-case emission.

Photographs of the worst-case emission can be seen in photograph of radiated emission test. Each EME reported was calibrated using self-calibrating mode.

Pass

Page 15 of 15

Table 3 : Test Data, Radiated Emissions

Frequency (MHz)	Pol.	Height [m]	Angle []	(1) Reading (dBµV)	(2) AFCL (dB/m)	(3) Actual (dBµV/m)	(4) Limit (dBµV/m)	(5) Margin (dB)
48.56	Н	3.5	223	19.2	12.2	31.4	40.0	8.6
105.69	Н	4.0	125	21.2	12.8	34.0	43.5	9.5
168.43	Н	2.9	149	15.8	17.5	33.3	43.5	10.2
179.36	V	3.0	87	18.2	18.1	36.3	43.5	7.2

Table. Radiated Measurements at 3-meters

NOTES:

1. All modes of operation were investigated

and the worst-case emission are reported.

- 2. All other emission are non-significant.
- 3. All readings are calibrated by self-mode in receiver.
- 4. Measurements using CISPR quasi-peak mode.
- 5. AFCL = Antenna factor and cable loss
- 6. H = Horizontal, V = Vertical Polarization

Margin Calculation

(5)Margin = (4)Limit - (3)Actual [(3)Actual = (1)Reading + (2)AFCL]