RADIO TEST REPORT Report No.: STS2002188W18 Issued for Winmate Inc. 9F, No.111-6, Shing-De Rd., San-Chung Dist., New Taipei City, 24158, Taiwan, R.O.C | Product Name: | Rugged Tablet PC | |----------------|---| | Brand Name: | Winmate | | Model Name: | M700DQ8 | | Series Model: | M700XXXXXXXXXXX
(Where X can be A-Z,a-z ,0-9,"-", Blank or
Slash) | | FCC ID: | PX9M700DQ8002 | | Test Standard: | FCC Part 22H and 24E, 27 | Any reproduction of this document must be done in full. No single part of this document may be reproduced with permission from STS, All Test Data Presented in this report is only applicable to presented Test sample VAL #### **TEST RESULT CERTIFICATION** | Applicant's Name: | Winmate Inc. | |----------------------------|--| | Address: | 9F, No.111-6, Shing-De Rd., San-Chung Dist., New Taipei City, 24158, Taiwan, R.O.C | | Manufacture's Name: | Winmate Inc. | | Address: | 9F, No.111-6, Shing-De Rd., San-Chung Dist., New Taipei City, 24158, Taiwan, R.O.C | | Product Description | | | Product Name: | Rugged Tablet PC | | Brand Name: | Winmate | | Model Name: | M700DQ8 | | Series Model | M700XXXXXXXXXXXX(Where X can be A-Z,a-z ,0-9,"-", Blank of Slash) | | Test Standards: | FCC Part 22H and 24E, 27 | | Test Procedure: | KDB 971168 D01 v03r01,ANSI C63.26(2015) | This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.. Date of Test 27 Feb. 2020 Date of receipt of test item 27 Feb. 2020 Date (s) of performance of tests 27 Feb. 2020 ~ 10 June 2020 Date of Issue 10 June 2020 Test Result Pass Technical Manager : (Chris Chen) (Chris Chen) (Sean she) Authorized Signatory : (Vita Li) | Table of Contents | Page | |--|--------| | 1 INTRODUCTION | 6 | | 1.1 TEST FACTORY | 6 | | 1.2 MEASUREMENT UNCERTAINTY | 6 | | 2 PRODUCT INFORMATION | 7 | | 3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST | 8 | | 4 MEASUREMENT INSTRUMENTS | 9 | | 5 TEST ITEMS | 10 | | 5.1 CONDUCTED OUTPUT POWER | 10 | | 5.2 PEAK TO AVERAGE RATIO | 11 | | 5.3 TRANSMITTER RADIATED POWER (EIRP/ERP) | 12 | | 5.4 OCCUPIED BANDWIDTH | 13 | | 5.5 FREQUENCY STABILITY | 14 | | 5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS | 15 | | 5.7 BAND EDGE | 16 | | 5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT | 17 | | APPENDIX A.TESTRESULT | 19 | | A1.CONDUCTED OUTPUT POWER | 19 | | A2. PEAK-TO-AVERAGE RADIO | 22 | | A3. TRANSMITTER RADIATED POWER (EIRP/ERP) | 29 | | A4. OCCUPIED BANDWIDTH (99% OCCUPIED BANDWIDTH/26DB BANDWI | DTH)31 | | A5.FREQUENCY STABILITY | 38 | | A6. SPURIOUS EMISSIONS AT ANTENNA TERMINALS | 41 | | A7. BAND EDGE | 47 | | A8. FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT | 52 | | APPENDIX-PHOTOS OF TEST SETUP | 61 | Page 4 of 61 Report No.: STS2002188W18 # **Revision History** | Rev. | Issue Date | Report NO. | Effect Page | Contents | |------|--------------|---------------|-------------|---------------| | 00 | 10 June 2020 | STS2002188W18 | ALL | Initial Issue | | | | | | | # SUMMARY OF TEST RESULTS Test procedures according to the technical standards: The radiated emission testing was performed according to the procedures of KDB 971168 D01 v03r01 and ANSI C63.26(2015) | FCC Rules | Test Description | Test Limit | Test Result | Reference | |-------------------------------------|--|---|-------------|-----------| | 2.1046 | Conducted OutputPower | Reporting Only | PASS | | | 22.913d
24.232d | Peak-to-AverageRatio | < 13 dB | PASS | | | 2.1046
22.913
24.232
27.50 | Effective Radiated Power/Equivalent Isotropic Radiated Power | < 7 Watts max. ERP(Part 22) < 2 Watts max. EIRP(Part 24) <1 Watts max. EIRP(Part 27) | PASS | | | 2.1049
22.917
24.238
27.53 | Occupied Bandwidth | Reporting Only | PASS | | | 2.1055
22.355
24.235
27.54 | Frequency Stability | < 2.5 ppm (Part 22) Emission must remain in band (Part 24) Emission must remain in band (Part 27) | PASS | | | 2.1051
22.917
24.238
27.53 | Spurious Emission at
Antenna Terminals | < 43+10log10(P[Watts]) | PASS | | | 2.1053
22.917
24.238
27.53 | Field Strength of Spurious
Radiation | < 43+10log10(P[Watts]) | PASS | | | 2.1051
22.917
24.238
27.53 | Band Edge | < 43+10log10(P[Watts]) | PASS | | #### 1 INTRODUCTION #### 1.1 TEST FACTORY SHENZHEN STS TEST SERVICES CO., LTD Add.: A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A A2LA Certificate No.: 4338.01 #### 1.2 MEASUREMENT UNCERTAINTY The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance. | No. | Item | Uncertainty | |-----|-----------------------------------|-------------| | 1 | RF output power, conducted | ±0.68dB | | 2 | Unwanted Emissions, conducted | ±2.988dB | | 3 | All emissions, radiated 30-1GHz | ±6.7dB | | 4 | All emissions, radiated 1G-6GHz | ±5.5dB | | 5 | All emissions, radiated>6G | ±5.8dB | | 6 | Conducted Emission (9KHz-150KHz) | ±4.43dB | | 7 | Conducted Emission (150KHz-30MHz) | ±5dB | # **2 PRODUCT INFORMATION** | Product Name | Rugged Tablet PC | |-----------------------------|--| | Trade Name | Winmate | | Model Name | M700DQ8 | | Series Model | M700XXXXXXXXXXX(Where X can be A-Z,a-z ,0-9,"-", Blank or Slash) | | Model Difference | Only for marketing purpose | | | WCDMA: | | Ty Fraguency: | Band V: 824 MHz ~ 849 MHz | | Tx Frequency: | Band II: 1850 MHz ~ 1910 MHz | | | Band IV: 1710 MHz ~ 1755 MHz | | | WCDMA: | | Dy Fraguenov: | Band V: 869 MHz ~ 894 MHz | | Rx Frequency: | Band II: 1930 MHz ~ 1990 MHz | | | Band IV: 2110 MHz ~ 2155 MHz | | Max RF Output Power: | WCDMA Band V:22.83dBm, WCDMA Band II:23.24dBm WCDMA Band IV:23.47dBm | | Type of Emission: | WCDMA850: 4M14F9W
WCDMA1900: 4M15F9W
WCDMA1700: 4M13F9W | | Modulation Characteristics: | WCDMA: QPSK; HSDPA:QPSK/16QAM; HSUPA:BPSK | | Power Class: | Power class 3 | | SIM Card: | Only support single SIM Card. | | Antenna: | PIFA | | Antenna gain: | WCDMA 850: 2dBi, WCDMA1900: 2dBi, WCDMA1700: 2dBi | | | Rated Voltage: 3.7 V | | Battery parameter: | Charge Limit: 4.2 V | | | Capacity: 5300 mAh | | Adoptor | Input: AC 100-240V, 50/60 Hz, 0.6A | | Adapter: | Output: DC 5V 3 A | | Extreme Vol. Limits: | DC 3.33V~ DC 4.2V(Normal: DC 3.7V) | | Extreme Temp. Tolerance: | -30℃ to +50℃ | | Hardware version number: | M700DQ8-300 | | Software version number: | M700DQ8_MB200_STD_P_SIE_200131 | | ** Noto: The High Voltage A | 2V and Low Voltage 3.33V was declared by manufacturer. The FLIT | ^{**} Note: The High Voltage 4.2V and Low Voltage 3.33V was declared by manufacturer, The EUT couldn't be operate normally with higher or lower voltage. #### 3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST Antenna port conducted and radiated test items were performed according to KDB 971168 D01 and ANSI C63.26 2015 Power Meas. License Digital Systems with maximum output power. Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission. Radiated emissions were investigated as following frequency range: - 1. 30 MHz to 10th harmonic for WCDMA Band V. - 2. 30 MHz to 10th harmonic for WCDMA Band IV. - 3. 30 MHz to 10th harmonic for WCDMA Band II. All modes and data rates and positions were investigated. Test modes are chosen to be reported as the worst case configuration below: | | TEST MODES | | | |---------------|-------------------|-------------------|--| | BAND | RADIATED TCS | CONDUCTED TCS | | | WCDMA BAND V | RMC 12.2KBPS LINK | RMC 12.2KBPS LINK | | | WCDMA BAND II | RMC 12.2KBPS LINK | RMC 12.2KBPS LINK | | | WCDMA BAND IV | RMC 12.2KBPS LINK | RMC 12.2KBPS LINK | | Note: the battery is full-charged during the radited and RF conducted test. # **4 MEASUREMENT INSTRUMENTS** Radiation Test equipment | Kind of Equipment | Manufacturer | Type No. | Serial No. | Last calibration | Calibrated
until | |--|--------------|---------------------|--------------|------------------|---------------------| | Test Receiver | R&S | ESCI | 101427 | 2019.07.29 | 2020.07.28 | | Signal Analyzer | Agilent | N9020A | MY51110105 | 2020.03.05 | 2021.03.04 | | Wireless
Communications Test
Set | R&S | CMW 500 | 133884 | 2020.03.05 | 2021.03.04 | | Bilog Antenna | TESEQ | CBL6111D | 34678 | 2017.11.02 | 2020.11.01 | | Horn Antenna | SCHWARZBECK | BBHA
9120D(1201) | 9120D-1343 | 2018.10.19 | 2021.10.18 | | SHF-EHF Horn
Antenna (18G-40GHz) | A-INFO | LB-180400-KF | J211020657 | 2018.03.11 | 2021.03.10 | | Pre-Amplifier
(0.1M-3GHz) | EM | EM330 | 060665 | 2019.10.09 | 2020.10.08 | | Pre-Amplifier
(1G-18GHz) | SKET | LNPA-01018G-45 | SK2018080901 | 2019.10.12 | 2020.10.11 | | Turn table | EM | SC100_1 | 60531 | N/A | N/A | | Antenna mast | EM | SC100 | N/A | N/A | N/A | |
Temperature & Humidity | HH660 | Mieo | N/A | 2019.10.12 | 2020.10.11 | | Test SW | BULUN | BL410-E/18.905 | | | | # RF Connected Test | Kind of Equipment | Manufacturer | Туре No. | Serial No. | Last calibration | Calibrated
until | |--|--------------|-----------------|------------|------------------|---------------------| | Universal Radio communication tester | R&S | CMU200 | 11764 | 2019.10.11 | 2020.10.10 | | Wireless
Communications Test
Set | R&S | CMW 500 | 133884 | 2020.03.05 | 2021.03.04 | | Signal Analyzer | Agilent | N9020A | MY49100060 | 2019.10.09 | 2020.10.08 | | Temperature & Humidity | HH660 | Mieo | N/A | 2019.10.12 | 2020.10.11 | | Test SW | FARAD | LZ-RF /LzRf-3A3 | | | | Equipment with a calibration date of "NCR" shown in this list was not used to make direct calibrated measurements. #### **5 TEST ITEMS** #### 5.1 CONDUCTED OUTPUT POWER #### Test overview A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported. # Test procedures - 1. The transmitter output port was connected to the system simulator. - 2. Set eut at maximum power through the system simulator. - 3. Select lowest, middle, and highest channels for each band and different modulation. - 4. Measure and record the power level from the system simulator. ### Test setup #### 5.2 PEAK TO AVERAGE RATIO #### **TEST OVERVIEW** According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 db. #### TEST PROCEDURES - 1. The testing follows fcckdb 971168 v03r01 section - 2. The eut was connected to the and peak and av system simulator& spectrum analysis reads - 3. Select lowest, middle, and highest channels for each band and different modulation. - 4. Set the test probe and measure average power of the spectrum analysis #### TEST SETUP # 5.3 TRANSMITTER RADIATED POWER (EIRP/ERP) TEST OVERVIEW Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI C63.26 2015 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies. #### TEST PROCEDURE - 1. The testing follows FCC KDB 971168 Section 5.8 and ANSI C63.26-2015 Section 5.2. - 2. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable. - 3. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis. - 4. The frequency range up to tenth harmonic of the fundamental frequency was investigated. - 5. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a nonradiating cable. The absolute levels of the spurious emissions were measured by the substitution. - 6. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to ANSI C63.26-2015. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain – Analyzer reading. Then the EUT's EIRP/ERP was calculated with the correction factor, EIRP = P.SG + GT – LC, ERP=EIRP-2.15 in radiated method ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMe as, typically dBW or dBm); PMeas(PK) = measured transmitter output power or PSD, in dBm or dBW; GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP); LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB. #### 5.4 OCCUPIED BANDWIDTH #### **TEST OVERVIEW** The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth. All modes of operation were investigated and the worst case configuration results are reported in this section. ### TEST PROCEDURE - 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission. - 2. RBW = 1 5% of the expected OBW - 3. VBW \geq 3 x RBW - 4. Detector = Peak - 5. Trace mode = max hold - 6. Sweep = auto couple - 7. The trace was allowed to stabilize - 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within - 1 5% of the 99% occupied bandwidth observed in Step 7 #### TEST SETUP #### 5.5 FREQUENCY STABILITY #### **Test Overview** Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26 2015. The frequency stability of the transmitter is measured by: - a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber. - b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer. For Part 22, the frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency. For Part 24 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. #### Test Procedure Temperature Variation - 1. The testing follows fcckdb 971168 D01 section 9.0 - 2. The EUT was set up in the thermal chamber and connected with the system simulator. - 3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute. - 4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute. Voltage Variation - 1. The testing follows FCC KDB 971168 D01 Section 9.0. - 2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator. - 3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT. - 4. The variation in frequency was measured for the worst case. #### TEST SETUP # 5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS Test Overview The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic. #### Test procedure - 1. The testing FCC KDB 971168 D01 v03r01 Section 6.0. and ANSI C63.26-2015-Section 5.5 - 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider. - 3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement. - 4. The middle channel for the highest RF power within the transmitting frequency was measured. - 5. The conducted spurious emission for the whole frequency range was taken. - 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. - 7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts) - = P(W) [43 + 10log(P)] (dB) - = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB) - = -13dBm. #### Test Setup #### 5.7 BAND EDGE #### **OVERVIEW** All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts. # TEST PROCEDURE - 1. The testing FCC KDB 971168 D01 v03r01 Section 6.0. and ANSI
C63.26-2015-Section 5.7 - 2. Start and stop frequency were set such that the band edge would be placed in the center of the Plot. - 3. The EUT was connected to the spectrum analyzer and system simulator via a power divider. - 4. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement. - 5. The band edges of low and high channels for the highest RF powers were measured. - 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. - 7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts) - = P(W) [43 + 10log(P)] (dB) - = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB) - = -13dBm. #### **TEST SETUP** # 5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT Test overview the EUT isoperating at maximum power and at the appropriate frequencies. # Radiated spurious emissions measurements are performed using the substitution method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements on signalsoperating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized horn antennas. All measurements are performed as peak measurements while It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic. #### Test procedure - 1. The testing FCC KDB 971168 D01 Section 5.8 and ANSI C63.26-2015-Section 5.5. - 2. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz - 3. VBW \geq 3 x RBW - 4. Span = 1.5 times the OBW - 5.No. of sweep points > 2 x span/RBW - 6. Detector = Peak - 7. Trace mode = max hold - 8. The trace was allowed to stabilize - 9. Effective Isotropic Spurious Radiation was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain – Analyzer reading. Then the EUT's EIRP/ERP was calculated with the correction factor, ERP/EIRP = P.SG + GT – LC ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMeas, t ypically dBW or dBm); P.SG = measured transmitter output power or PSD, in dBm or dBW; GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP); LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB. # **TEST SETUP** #### For radiated test from 30MHz to 1GHz #### For radiated test from above 1GHz # APPENDIX A.TESTRESULT A1.CONDUCTED OUTPUT POWER UMTS BAND V | | UMTS BAND V | | |------------------------|----------------|-----------| | Mode | Frequency(MHz) | AVG Power | | WCDMA 850 | 826.4 | 22.39 | | RMC | 836.6 | 22.45 | | KIVIC | 846.6 | 22.83 | | HSDPA - | 826.4 | 22.47 | | Subtest 1 | 836.6 | 22.52 | | Sublest 1 | 846.6 | 22.38 | | HSDPA - | 826.4 | 21.97 | | Subtest 2 | 836.6 | 22.09 | | Sublest 2 | 846.6 | 21.94 | | LICDDA | 826.4 | 21.58 | | HSDPA -
Subtest 3 - | 836.6 | 21.61 | | Sublest 3 | 846.6 | 21.53 | | HSDPA - | 826.4 | 21.11 | | Subtest 4 | 836.6 | 21.23 | | Sublest 4 | 846.6 | 21.03 | | HSUPA | 826.4 | 21.43 | | Subtest 1 | 836.6 | 21.68 | | Sublest 1 | 846.6 | 21.79 | | LICLIDA | 826.4 | 20.60 | | HSUPA -
Subtest 2 - | 836.6 | 20.71 | | Sublest 2 | 846.6 | 20.84 | | LICLIDA | 826.4 | 20.57 | | HSUPA | 836.6 | 20.21 | | Subtest 3 | 846.6 | 20.47 | | LICLIDA | 826.4 | 20.19 | | HSUPA
Subtest 4 | 836.6 | 19.71 | | Sublest 4 | 846.6 | 20.09 | | LICLIDA | 826.4 | 18.76 | | HSUPA
Subtest 5 | 836.6 | 18.26 | | Sublest 5 | 846.6 | 18.67 | # UMTS BAND II | | UMTS BAND II | | |--------------------|----------------|-----------| | Mode | Frequency(MHz) | AVG Power | | WCDMA 1900 | 1852.4 | 23.24 | | RMC - | 1880 | 22.87 | | RIVIC | 1907.6 | 22.90 | | HSDPA | 1852.4 | 22.41 | | Subtest 1 | 1880 | 22.63 | | Subtest 1 | 1907.6 | 22.35 | | HSDPA | 1852.4 | 21.97 | | Subtest 2 | 1880 | 22.13 | | Sublest 2 | 1907.6 | 21.93 | | HSDPA | 1852.4 | 21.65 | | Subtest 3 | 1880 | 21.67 | | Sublest 3 | 1907.6 | 21.60 | | HSDPA | 1852.4 | 21.27 | | Subtest 4 | 1880 | 21.18 | | Sublest 4 | 1907.6 | 21.20 | | HSUPA | 1852.4 | 22.21 | | Subtest 1 | 1880 | 21.97 | | Sublest 1 | 1907.6 | 22.43 | | HSUPA | 1852.4 | 21.40 | | Subtest 2 | 1880 | 21.01 | | Sublest 2 | 1907.6 | 21.44 | | HSUPA | 1852.4 | 21.39 | | Subtest 3 | 1880 | 20.59 | | Sublest 3 | 1907.6 | 21.03 | | ПСПВУ | 1852.4 | 20.96 | | HSUPA
Subtest 4 | 1880 | 20.24 | | Sublest 4 | 1907.6 | 20.72 | | ПСПВУ | 1852.4 | 19.52 | | HSUPA | 1880 | 18.75 | | Sublest 5 | 1907.6 | 19.25 | # **UMTS BAND IV** | UMTS BAND IV | | | | | | | | |--------------|----------------|-----------|--|--|--|--|--| | Mode | Frequency(MHz) | AVG Power | | | | | | | WCDMA 1700 | 1712.6 | 23.22 | | | | | | | RMC | 1740 | 22.71 | | | | | | | RIVIC | 1752.4 | 23.47 | | | | | | | HSDPA | 1712.6 | 22.49 | | | | | | | Subtest 1 | 1740 | 22.65 | | | | | | | Subtest | 1752.4 | 22.68 | | | | | | | HSDPA - | 1712.6 | 22.07 | | | | | | | Subtest 2 | 1740 | 22.22 | | | | | | | Subtest 2 | 1752.4 | 22.27 | | | | | | | HSDPA | 1712.6 | 21.64 | | | | | | | Subtest 3 | 1740 | 21.75 | | | | | | | Subtest 5 | 1752.4 | 21.80 | | | | | | | HSDPA | 1712.6 | 21.18 | | | | | | | Subtest 4 | 1740 | 21.30 | | | | | | | Subtest 4 | 1752.4 | 21.44 | | | | | | | HSUPA | 1712.6 | 22.21 | | | | | | | Subtest 1 | 1740 | 22.30 | | | | | | | Subtest 1 | 1752.4 | 22.47 | | | | | | | HSUPA | 1712.6 | 21.29 | | | | | | | Subtest 2 | 1740 | 21.37 | | | | | | | Sublest 2 | 1752.4 | 21.55 | | | | | | | HSUPA | 1712.6 | 21.12 | | | | | | | Subtest 3 | 1740 | 20.97 | | | | | | | วนมเฮิงเ ว | 1752.4 | 21.15 | | | | | | | HSUPA | 1712.6 | 20.63 | | | | | | | Subtest 4 | 1740 | 20.50 | | | | | | | Subicst 4 | 1752.4 | 20.77 | | | | | | | HSUPA | 1712.6 | 19.21 | | | | | | | Subtest 5 | 1740 | 19.02 | | | | | | | Sublest 5 | 1752.4 | 19.36 | | | | | | # A2. PEAK-TO-AVERAGE RADIO | | UMTS Band II | | |------------|-----------------|------| | Mode | Frequency (MHz) | PAR | | WCDMA 1900 | 1852.4 | 3.13 | | RMC | 1880 | 3.06 | | | 1907.6 | 3.19 | | | 1852.4 | 3.13 | | HSDPA 1900 | 1880 | 3.12 | | | 1907.6 | 3.09 | | | 1852.4 | 3.38 | | HSUPA 1900 | 1880 | 3.26 | | | 1907.6 | 3.50 | | | UMTS Band V | | | | | | | | |------------------|----------------------|------|--|--|--|--|--|--| | Mode | Mode Frequency (MHz) | | | | | | | | | | 826.4 | 3.09 | | | | | | | | WCDMA 850
RMC | 836.6 | 3.22 | | | | | | | | Tuno | 846.6 | 3.30 | | | | | | | | | 826.4 | 3.23 | | | | | | | | HSDPA 850 | 836.6 | 3.34 | | | | | | | | | 846.6 | 3.43 | | | | | | | | | 826.4 | 3.10 | | | | | | | | HSUPA 850 | 836.6 | 3.18 | | | | | | | | | 846.6 | 3.17 | | | | | | | | UMTS Band IV | | | | | | | | |--------------|-----------------|------|--|--|--|--|--| | Mode | Frequency (MHz) | PAR | | | | | | | WCDMA 1700 | 1712.6 | 3.12 | | | | | | | RMC | 1740 | 3.01 | | | | | | | | 1752.4 | 3.00 | | | | | | | | 1712.6 | 3.18 | | | | | | | HSDPA 1700 | 1740 | 2.99 | | | | | | | | 1752.4 | 3.01 | | | | | | | | 1712.6 | 3.27 | | | | | | | HSUPA 1700 | 1740 | 3.35 | | | | | | | | 1752.4 | 3.26 | | | | | | # HSDPA2 Lower #### WCDMA2 Middle HSDPA2 Middle WCDMA2_Higher_ HSDPA2_Higher_ HSUPA2_Middle_ HSUPA2_Higher_ # HSDPA4 Lower #### WCDMA4 Middle **HSDPA4** Middle WCDMA4_Higher_ HSDPA4_Higher_ HSUPA4_Middle_ HSUPA4_Higher_ #### HSDPA5 Lower #### WCDMA5 Middle HSDPA5 Middle WCDMA5_Higher_ HSDPA5_Higher_ HSUPA5_Middle_ HSUPA5_Higher_ # A3. TRANSMITTER RADIATED POWER (EIRP/ERP) Note: Test is divided into three directions, X/Y/Z. X pattern for the worst | Radiated Power (EIRP) for WCDMA Band II | | | | | | | | | | |---|-----------|-----------|-------|---------|---------------|----------------|------------|--|--| | | | | | | sult | | | | | | Mode | Frequency | S G.Level | Cable | Gain | PMeas | Polarization | Conclusion | | | | | | (dBm) | loss | (dBi) | E.I.R.P.(dBm) | Of Max.
ERP | | | | | | 1852.4 | 12.73 | 2.41 | 10.35 | 20.67 | Horizontal | Pass | | | | | 1852.4 | 14.66 | 2.41 | 10.35 | 22.60 | Vertical | Pass | | | | WCDMA | 1880 | 12.43 | 2.42 | 10.35 | 20.36 | Horizontal | Pass | | | | VVCDIVIA | 1880 | 14.25 | 2.42 | 10.35 | 22.18 | Vertical | Pass | | | | | 1907.4 | 12.33 | 2.43 | 10.35 | 20.25 | Horizontal | Pass | | | | | 1907.4 | 14.33 | 2.43 | 10.35 | 22.25 | Vertical | Pass | | | | | 1852.4 | 12.01 | 2.41 | 10.35 | 19.95 | Horizontal | Pass | | | | | 1852.4 | 13.97 | 2.41 | 10.35 | 21.91 | Vertical | Pass | | | | HSUPA | 1880 | 12.11 | 2.42 | 10.35 | 20.04 | Horizontal | Pass | | | | поога | 1880 | 13.81 | 2.42 | 10.35 | 21.74 | Vertical | Pass | | | | | 1907.4 | 11.98 | 2.43 | 10.35 | 19.90 | Horizontal | Pass | | | | | 1907.4 | 13.77 | 2.43 | 10.35 | 21.69 | Vertical | Pass | | | | | 1852.4 | 11.43 | 2.41 | 10.35 | 19.37 | Horizontal | Pass | | | | | 1852.4 | 13.37 | 2.41 | 10.35 | 21.31 | Vertical | Pass | | | | HSDPA | 1880 | 11.28 | 2.42 | 10.35 | 19.21 | Horizontal | Pass | | | | ПООГА | 1880 | 13.28 | 2.42 | 10.35 | 21.21 | Vertical | Pass | | | | | 1907.4 | 11.79 | 2.43 | 10.35 | 19.71 | Horizontal | Pass | | | | | 1907.4 | 13.69 | 2.43 | 10.35 | 21.61 | Vertical | Pass | | | | Limit | | | | EIRP<2V | V=33dBm | | | | | | Radiated Power (ERP) for WCDMA Band V | | | | | | | | | |---------------------------------------|-----------|------------------|-------|--------|------------|------------|----------------|------------| | | | | | | Result | | | | | Mode Frequenc | Frequency | S | Cable | e Gain | correction | PMeas | Polarization | Conclusion | | | | G.Level
(dBm) | loss |
(dBi) | factor(dB) | E.R.P(dBm) | Of Max.
ERP | | | | 826.4 | 13.96 | 0.44 | 6.5 | 2.15 | 17.87 | Horizontal | Pass | | | 826.4 | 15.81 | 0.44 | 6.5 | 2.15 | 19.72 | Vertical | Pass | | | 836.6 | 13.87 | 0.45 | 6.5 | 2.15 | 17.77 | Horizontal | Pass | | WCDMA | 836.6 | 15.85 | 0.45 | 6.5 | 2.15 | 19.75 | Vertical | Pass | | | 846.4 | 14.49 | 0.46 | 6.5 | 2.15 | 18.38 | Horizontal | Pass | | | 846.4 | 16.28 | 0.46 | 6.5 | 2.15 | 20.17 | Vertical | Pass | | | 826.4 | 13.93 | 0.44 | 6.5 | 2.15 | 17.84 | Horizontal | Pass | | | 826.4 | 15.73 | 0.44 | 6.5 | 2.15 | 19.64 | Vertical | Pass | | HSUPA | 836.6 | 13.94 | 0.45 | 6.5 | 2.15 | 17.84 | Horizontal | Pass | | ПЗОРА | 836.6 | 15.76 | 0.45 | 6.5 | 2.15 | 19.66 | Vertical | Pass | | | 846.4 | 13.92 | 0.46 | 6.5 | 2.15 | 17.81 | Horizontal | Pass | | | 846.4 | 15.70 | 0.46 | 6.5 | 2.15 | 19.59 | Vertical | Pass | | | 826.4 | 13.00 | 0.44 | 6.5 | 2.15 | 16.91 | Horizontal | Pass | | | 826.4 | 14.72 | 0.44 | 6.5 | 2.15 | 18.63 | Vertical | Pass | | HSDPA | 836.6 | 13.07 | 0.45 | 6.5 | 2.15 | 16.97 | Horizontal | Pass | | HSDPA | 836.6 | 14.99 | 0.45 | 6.5 | 2.15 | 18.89 | Vertical | Pass | | | 846.4 | 13.33 | 0.46 | 6.5 | 2.15 | 17.22 | Horizontal | Pass | | | 846.4 | 15.16 | 0.46 | 6.5 | 2.15 | 19.05 | Vertical | Pass | | Limit | | | | EF | RP<7W=38.4 | l5dBm | | | | Radiated Power (EIRP) for WCDMA Band IV | | | | | | | | | |---|-----------|-----------------------|------------|---------------|------------------------|--------------------------------|------------|--| | | | | , | Ŕ | esult | | | | | Mode | Frequency | S
G.Level
(dBm) | Cable loss | Gain
(dBi) | PMeas
E.I.R.P.(dBm) | Polarization
Of Max.
ERP | Conclusion | | | | 1712.6 | 12.5 | 2.07 | 10.13 | 20.56 | Horizontal | Pass | | | | 1712.6 | 14.29 | 2.07 | 10.13 | 22.35 | Vertical | Pass | | | WCDMA | 1740 | 11.9 | 2.08 | 10.13 | 19.95 | Horizontal | Pass | | | VVCDIVIA | 1740 | 13.76 | 2.08 | 10.13 | 21.81 | Vertical | Pass | | | | 1752.4 | 13.05 | 2.09 | 10.13 | 21.09 | Horizontal | Pass | | | | 1752.4 | 14.88 | 2.09 | 10.13 | 22.92 | Vertical | Pass | | | | 1712.6 | 12.12 | 2.07 | 10.13 | 20.18 | Horizontal | Pass | | | | 1712.6 | 13.83 | 2.07 | 10.13 | 21.89 | Vertical | Pass | | | HSUPA | 1740 | 12.12 | 2.08 | 10.13 | 20.17 | Horizontal | Pass | | | ПЗОРА | 1740 | 14.05 | 2.08 | 10.13 | 22.10 | Vertical | Pass | | | | 1752.4 | 12.04 | 2.09 | 10.13 | 20.08 | Horizontal | Pass | | | | 1752.4 | 13.95 | 2.09 | 10.13 | 21.99 | Vertical | Pass | | | | 1712.6 | 11.67 | 2.07 | 10.13 | 19.73 | Horizontal | Pass | | | | 1712.6 | 13.37 | 2.07 | 10.13 | 21.43 | Vertical | Pass | | | HSDPA | 1740 | 11.75 | 2.08 | 10.13 | 19.80 | Horizontal | Pass | | | HODFA | 1740 | 13.68 | 2.08 | 10.13 | 21.73 | Vertical | Pass | | | | 1752.4 | 11.75 | 2.09 | 10.13 | 19.79 | Horizontal | Pass | | | | 1752.4 | 13.56 | 2.09 | 10.13 | 21.60 | Vertical | Pass | | | Limit | | | | EIRP<3V | /=34.78dBm | | | | # A4. OCCUPIED BANDWIDTH (99% OCCUPIED BANDWIDTH/26dB BANDWIDTH) | WCDMA Bandwidth [MHz] | | | | | | | | | |-----------------------|------------------|---------|--------|---------|--------|---------|--|--| | Mode | de Lowest Middle | | | Highest | | | | | | | 99% BW | 26dB BW | 99% BW | 26dB BW | 99% BW | 26dB BW | | | | WCDMA II | 4.137 | 4.7 | 4.142 | 4.703 | 4.1509 | 4.705 | | | | HSDPA II | 4.142 | 4.696 | 4.1414 | 4.712 | 4.14 | 4.697 | | | | HSUPA II | 4.147 | 4.701 | 4.146 | 4.691 | 4.153 | 4.694 | | | | WCDMA Bandwidth [MHz] | | | | | | | | | |-----------------------|--------|-----------------------|--------|---------|--------|---------|--|--| | Mode | Lov | Lowest Middle Highest | | | | | | | | | 99% BW | 26dB BW | 99% BW | 26dB BW | 99% BW | 26dB BW | | | | WCDMA V | 4.129 | 4.695 | 4.1269 | 4.679 | 4.137 | 4.687 | | | | HSDPA V | 4.132 | 4.692 | 4.131 | 4.675 | 4.128 | 4.676 | | | | HSUPA V | 4.1315 | 4.69 | 4.135 | 4.701 | 4.128 | 4.692 | | | | WCDMA Bandwidth [MHz] | | | | | | | | | | |-----------------------|--------|-----------------------|--------|---------|--------|---------|--|--|--| | Mode | Lov | Lowest Middle Highest | | | | | | | | | | 99% BW | 26dB BW | 99% BW | 26dB BW | 99% BW | 26dB BW | | | | | WCDMA IV | 4.133 | 4.675 | 4.121 | 4.686 | 4.1254 | 4.684 | | | | | HSDPA IV | 4.13 | 4.681 | 4.133 | 4.694 | 4.132 | 4.695 | | | | | HSUPA IV | 4.1349 | 4.706 | 4.133 | 4.689 | 4.1334 | 4.69 | | | | # B2 WCDMA Lower 26BW and 99% B2 HSDPA Lower 26BW and 99% #### B2 WCDMA Middle 26BW and 99% B2_WCDMA_Higher_26BW and 99% B2_HSDPA_Higher_26BW and 99% B2_HSUPA_Middle_26BW and 99% B2 HSUPA Lower 26BW and 99% B2_HSUPA_Higher_26BW and 99% # B4 WCDMA Lower 26BW and 99% B4 HSDPA Lower 26BW and 99% #### B4 WCDMA Middle 26BW and 99% B4_HSDPA_Middle_26BW and 99% B4_WCDMA_Higher_26BW and 99% B4_HSDPA_Higher_26BW and 99% B4_HSUPA_Middle_26BW and 99% B4_HSUPA_Higher_26BW and 99% # B5 WCDMA_Lower_26BW and 99% B5 HSDPA Lower 26BW and 99% #### B5 WCDMA Middle 26BW and 99% B5 HSDPA Middle 26BW and 99% B5_HSDPA_Higher_26BW and 99% B5_HSUPA_Middle_26BW and 99% B5_HSUPA_Higher_26BW and 99% # A5.FREQUENCY STABILITY | | UMTS Band II /1880MHz | | | | | | | | | | |-------------|-----------------------|-------|-------|-------------------|--------|--|--|--|--|--| | Temperature | Voltage | Freq. | Freq. | | | | | | | | | • | voltage | Dev. | Dev. | Limit | Result | | | | | | | (°C) | (Volt) | (Hz) | (ppm) | | | | | | | | | 50 | | 12.30 | 0.007 | | | | | | | | | 40 | | 18.84 | 0.010 | | | | | | | | | 30 | | 27.29 | 0.015 | Within Authorized | | | | | | | | 20 | | 12.32 | 0.007 | | | | | | | | | 10 | Normal Voltage | 16.58 | 0.009 | | | | | | | | | 0 | | 13.51 | 0.007 | | PASS | | | | | | | -10 | | 30.81 | 0.016 | Band | PASS | | | | | | | -20 | 1 | 31.91 | 0.017 | | | | | | | | | -30 | | 16.40 | 0.009 | | | | | | | | | 25 | Maximum
Voltage | 28.04 | 0.015 | | | | | | | | | 25 | BEP | 22.16 | 0.012 | | | | | | | | | | HSDPA Band II /1880MHz | | | | | | | | | | |-------------|------------------------|---------------|---------------|-------------------|--------|--|--|--|--|--| | Temperature | Voltage | Freq.
Dev. | Freq.
Dev. | Limit | Result | | | | | | | (°C) | (Volt) | (Hz) | (ppm) | | | | | | | | | 50 | | 36.43 | 0.019 | | | | | | | | | 40 | | 24.13 | 0.013 | | | | | | | | | 30 | | 16.11 | 0.009 | | | | | | | | | 20 | | 28.82 | 0.015 | | | | | | | | | 10 | Normal Voltage | 22.47 | 0.012 | | | | | | | | | 0 | | 20.60 | 0.011 | Within Authorized | PASS | | | | | | | -10 | | 13.84 | 0.007 | Band | PASS | | | | | | | -20 | | 25.78 | 0.014 | | | | | | | | | -30 | | 17.34 | 0.009 | | | | | | | | | 25 | Maximum
Voltage | 26.73 | 0.014 | | | | | | | | | 25 | BEP | 18.80 | 0.010 | | | | | | | | | | HS | UPA Band II | /1880MHz | | | |-------------|--------------------|-------------|----------|-------------------|--------| | Temperature | Voltage | Freq. | Freq. | | | | (°C) | voltage | Dev. | Dev. | Limit | Result | | (0) | (Volt) | (Hz) | (ppm) | | | | 50 | | 30.29 | 0.016 | | | | 40 | | 26.92 | 0.014 | | | | 30 | | 20.91 | 0.011 | | | | 20 | | 33.60 | 0.018 | | | | 10 | Normal Voltage | 29.27 | 0.016 | | | | 0 | | 19.01 | 0.010 | Within Authorized | PASS | | -10 | 1 | 22.41 | 0.012 | Band | PASS | | -20 | 1 | 28.71 | 0.015 | | | | -30 | 1 | 28.11 | 0.015 | | | | 25 | Maximum
Voltage | 31.11 | 0.017 | | | | 25 | BEP | 29.54 | 0.016 | | | | | UMTS Band V / 836.6MHz | | | | | | | | | | |------------------|------------------------|------------|------------|--------|--------|--|--|--|--|--| | Tomporature (°C) | Voltage | Freq. Dev. | Freq. Dev. | Limit | Result | | | | | | | Temperature (°C) | (Volt) | (Hz) | (ppm) | LIIIII | Nesuit | | | | | | | 50 | | 20.98 | 0.025 | | | | | | | | | 40 | | 12.57 | 0.015 | | | | | | | | | 30 | | 28.55 | 0.034 | | | | | | | | | 20 | | 26.38 | 0.032 | 2.5ppm | PASS | | | | | | | 10 | Normal Voltage | 23.14 | 0.028 | | | | | | | | | 0 | | 24.85 | 0.030 | | | | | | | | | -10 | | 31.44 | 0.038 | | | | | | | | | -20 | | 35.42 | 0.042 |] | | | | | | | | -30 | | 35.49 | 0.042 | 1 | | | | | | | | 25 | Maximum Voltage | 29.21 | 0.035 | 1 | | | | | | | | 25 | BEP | 20.72 | 0.025 | | | | | | | | | | HSDPA Band V / 836.6MHz | | | | | | | | | |------------------|-------------------------|------------|------------|--------|--------|--|--|--|--| | Temperature (°C) | Voltage | Freq. Dev. | Freq. Dev. | Limit | Result | | | | | | remperature (C) | (Volt) | | (ppm) | LIIIII | Nesuit | | | | | | 50 | | 12.89 | 0.015 | | | | | | | | 40 | | 14.04 | 0.017 | | | | | | | | 30 | | 30.04 | 0.036 | | | | | | | | 20 | | 29.14 | 0.035 | 2.5ppm | PASS | | | | | | 10 | Normal Voltage | 27.59 | 0.033 | | | | | | | | 0 | | 31.29 | 0.037 | | | | | | | | -10 | | 18.86 | 0.023 | | | | | | | | -20 | | 14.29 | 0.017 | | | | | | | | -30 | | 25.15 | 0.030 | | | | | | | | 25 | Maximum Voltage | 24.33 | 0.029 | 1 | | | | | | | 25 | BEP | 22.07 | 0.026 | | | | | | | | | HSUPA Band V / 836.6MHz | | | | | | | | | | |------------------|-------------------------|------------|------------|--------|--------|--|--|--|--|--| | Temperature (°C) | Voltage | Freq. Dev. | Freq. Dev. | Limit | Result | | | | | | | Temperature (C) | (Volt) | (Hz) | (ppm) | LIIIII | Nesuit | | | | | | | 50 | | 16.69 | 0.020 | | | | | | | | | 40 | | 12.60 | 0.015 | | | | | | | | | 30 | | 12.63 | 0.015 | | | | | | | | | 20 | | 13.06 | 0.016 | 2.5ppm | PASS | | | | | | | 10 | Normal Voltage | 33.07 | 0.040 | | | | | | | | | 0 | | 36.48 | 0.044 | | | | | | | | | -10 | | 33.90 | 0.041 | | | | | | | | | -20 | | 31.55 | 0.038 |] | | | | | | | | -30 | | 27.62 | 0.033 |] | | | | | | | | 25 | Maximum Voltage | 13.58 | 0.016 | | | | | | | | | 25 | BEP | 14.44 | 0.017 | | | | | | | | | | UMTS Band IV /1740MHz | | | | | | | | | |-------------|-----------------------|-------|-------|-------------------|--------|--|--|--|--| | Temperature | Voltage | Freq. | Freq. | | | | | | | | • | voltage | Dev. | Dev. | Limit | Result | | | |
 | (°C) | (Volt) | (Hz) | (ppm) | | | | | | | | 50 | | 31.67 | 0.017 | | | | | | | | 40 | | 28.24 | 0.015 | | | | | | | | 30 | | 34.38 | 0.018 | | | | | | | | 20 | | 15.81 | 0.008 | | | | | | | | 10 | Normal Voltage | 19.14 | 0.010 | | | | | | | | 0 | | 21.81 | 0.012 | Within Authorized | PASS | | | | | | -10 | | 25.94 | 0.014 | Band | PASS | | | | | | -20 | | 20.96 | 0.011 | | | | | | | | -30 | | 23.33 | 0.012 | | | | | | | | 25 | Maximum
Voltage | 16.15 | 0.009 | | | | | | | | 25 | BEP | 21.68 | 0.012 | | | | | | | | | HSDPA Band IV /1740MHz | | | | | | | | | | |-------------|------------------------|---------------|---------------|-------------------|--------|--|--|--|--|--| | Temperature | Voltage | Freq.
Dev. | Freq.
Dev. | Limit | Result | | | | | | | (°C) | (Volt) | (Hz) | (ppm) | | | | | | | | | 50 | | 30.29 | 0.016 | | | | | | | | | 40 | | 33.15 | 0.018 | | | | | | | | | 30 | | 32.36 | 0.017 | | | | | | | | | 20 | | 36.20 | 0.019 | | | | | | | | | 10 | Normal Voltage | 12.76 | 0.007 | | | | | | | | | 0 | | 25.57 | 0.014 | Within Authorized | PASS | | | | | | | -10 | | 24.89 | 0.013 | Band | PASS | | | | | | | -20 | | 14.77 | 0.008 | | | | | | | | | -30 | | 20.87 | 0.011 | | | | | | | | | 25 | Maximum
Voltage | 17.73 | 0.009 | | | | | | | | | 25 | BEP | 28.98 | 0.015 | | | | | | | | | | HSUPA Band IV /1740MHz | | | | | | | | | | |-------------|------------------------|-------|-------|---------------------------|--------|--|--|--|--|--| | Temperature | Voltage | Freq. | Freq. | | | | | | | | | • | Voltago | Dev. | Dev. | Limit | Result | | | | | | | (°C) | (Volt) | (Hz) | (ppm) | | | | | | | | | 50 | | 27.48 | 0.015 | | | | | | | | | 40 | | 33.30 | 0.018 | | | | | | | | | 30 | | 24.25 | 0.013 | Within Authorized
Band | | | | | | | | 20 | | 12.81 | 0.007 | | | | | | | | | 10 | Normal Voltage | 18.64 | 0.010 | | | | | | | | | 0 | | 34.42 | 0.018 | | PASS | | | | | | | -10 | | 27.66 | 0.015 | | PASS | | | | | | | -20 | | 29.15 | 0.016 | | | | | | | | | -30 | | 15.78 | 0.008 | | | | | | | | | 25 | Maximum
Voltage | 36.18 | 0.019 | | | | | | | | | 25 | BEP | 21.13 | 0.011 | | | | | | | | ^{1.} The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small. ## A6. SPURIOUS EMISSIONS AT ANTENNA TERMINALS B2 WCDMA Lower Conducted Spurious **B2 HSDPA Lower Conducted Spurious** B2 WCDMA Middle Conducted Spurious B2 HSDPA Middle Conducted Spurious B2_WCDMA_Higher_Conducted Spurious B2_HSDPA_Higher_Conducted Spurious B2_HSUPA_Middle_Conducted Spurious B2_HSUPA_Higher_Conducted Spurious **B4 WCDMA Lower Conducted Spurious** B4_HSDPA_Lower_Conducted Spurious B4 WCDMA Middle Conducted Spurious B4_WCDMA_Higher_Conducted Spurious B4_HSDPA_Middle_Conducted Spurious B4_HSDPA_Higher_Conducted Spurious B4_HSUPA_Middle_Conducted Spurious B4_HSUPA_Higher_Conducted Spurious B5 WCDMA Lower Conducted Spurious B5_HSDPA_Lower_Conducted Spurious B5 WCDMA Middle Conducted Spurious B5_HSDPA_Middle_Conducted Spurious B5_WCDMA_Higher_Conducted Spurious B5_HSDPA_Higher_Conducted Spurious Page 46 of 61 B5_HSUPA_Middle_Conducted Spurious B5_HSUPA_Lower_Conducted Spurious B5_HSUPA_Higher_Conducted Spurious #### A7. BAND EDGE B2_WCDMA_Low_Band edge B2 WCDMA Low Band edge B2 HSDPA Low Band edge B2 WCDMA High Band edge B2_HSDPA_Low_Band edge B2_WCDMA_High_Band edge B2_HSDPA_High_Band edge ## B2_HSUPA_Low_Band edge B2_HSUPA_Low_Band edge B2_HSUPA_High_Band edge B2_HSUPA_High_Band edge enter 1.710000 GHz Res BW 68 kHz B4 WCDMA Low Band edge B4_WCDMA_Low_Band edge B4 HSDPA Low Band edge B4_WCDMA_High_Band edge B4_HSDPA_Low_Band edge B4_WCDMA_High_Band edge B4_HSDPA_High_Band edge B4 HSUPA Low Band edge Span 5,000 MHz Sweep 1,333 ms (1001 pts B4_HSUPA_Low_Band edge B4_HSUPA_High_Band edge B4_HSUPA_High_Band edge B5 HSDPA Low Band edge #### B5_WCDMA_High_Band edge B5_HSDPA_High_Band edge B5_HSUPA_Low_Band edge B5_HSUPA_High_Band edge # A8. FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT **Note:** (1) Below 30MHz no Spurious found is the worst condition. - (2) Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value - (3)Test is divided into three directions, X/Y/Z. X pattern for the worst. | | | WCDMA Ba | • | 0-9000)MI | | | | |----------------|----------------|--------------|-----------|------------|-----------|--------|----------| | | The w | ost testresu | Its chann | nel 4132/8 | 26.4MHz | | | | | S | | | PMea | Limit | Margin | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | 1652.20 | -40.60 | 9.40 | 4.75 | -35.95 | -13.00 | -22.95 | Н | | 2479.33 | -39.48 | 10.60 | 8.39 | -37.27 | -13.00 | -24.27 | Н | | 3305.59 | -31.72 | 12.00 | 11.79 | -31.51 | -13.00 | -18.51 | Н | | 1652.30 | -43.75 | 9.40 | 4.75 | -39.10 | -13.00 | -26.10 | V | | 2479.48 | -45.27 | 10.60 | 8.39 | -43.06 | -13.00 | -30.06 | V | | 3305.59 | -43.02 | 12.00 | 11.79 | -42.81 | -13.00 | -29.81 | V | | | | rst Test Res | ults Cha | nnel 4183 | | | | | | S | | | PMea | Limit | Margin | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | 1673.23 | -41.06 | 9.50 | 4.76 | -36.32 | -13.00 | -23.32 | Н | | 2509.50 | -40.20 | 10.70 | 8.40 | -37.90 | -13.00 | -24.90 | Н | | 3346.13 | -31.05 | 12.20 | 11.80 | -30.65 | -13.00 | -17.65 | Н | | 1673.13 | -44.19 | 9.40 | 4.75 | -39.54 | -13.00 | -26.54 | V | | 2509.76 | -45.13 | 10.60 | 8.39 | -42.92 | -13.00 | -29.92 | V | | 3346.22 | -42.65 | 12.20 | 11.82 | -42.27 | -13.00 | -29.27 | V | | | The Wo | rst Test Res | ults Cha | nnel 4233 | /846.6MHz | | | | | S | | | PMea | Limit | Margin | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | 1693.62 | -40.47 | 9.60 | 4.77 | -35.64 | -13.00 | -22.64 | Н | | 2539.20 | -39.48 | 10.80 | 8.50 | -37.18 | -13.00 | -24.18 | Н | | 3386.00 | -30.91 | 12.50 | 11.90 | -30.31 | -13.00 | -17.31 | Н | | 1693.25 | -44.03 | 9.60 | 4.77 | -39.20 | -13.00 | -26.20 | V | | 2539.49 | -44.27 | 10.80 | 8.50 | -41.97 | -13.00 | -28.97 | V | | 3386.11 | -43.27 | 12.50 | 11.90 | -42.67 | -13.00 | -29.67 | V | | | | HSUPA Ba | nd V: (30 |)-9000)MF | łz | | | |----------------|----------------|--------------|-----------|------------|-----------|--------|----------| | | The w | ost testresu | Its chann | nel 4132/8 | 26.4MHz | | | | | S | | | PMea | Limit | Margin | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | 1652.01 | -40.36 | 9.40 | 4.75 | -35.71 | -13.00 | -22.71 | Н | | 2479.64 | -40.53 | 10.60 | 8.39 | -38.32 | -13.00 | -25.32 | Н | | 3305.50 | -31.34 | 12.00 | 11.79 | -31.13 | -13.00 | -18.13 | Н | | 1652.02 | -43.39 | 9.40 | 4.75 | -38.74 | -13.00 | -25.74 | V | | 2479.41 | -44.02 | 10.60 | 8.39 | -41.81 | -13.00 | -28.81 | V | | 3305.88 | -43.32 | 12.00 | 11.79 | -43.11 | -13.00 | -30.11 | V | | | | rst Test Res | ults Cha | nnel 4183 | /836.6MHz | | | | | S | | | PMea | Limit | Margin | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | 1673.13 | -40.59 | 9.50 | 4.76 | -35.85 | -13.00 | -22.85 | Н | | 2509.87 | -40.56 | 10.70 | 8.40 | -38.26 | -13.00 | -25.26 | Н | | 3346.01 | -31.68 | 12.20 | 11.80 | -31.28 | -13.00 | -18.28 | Н | | 1673.02 | -43.40 | 9.40 | 4.75 | -38.75 | -13.00 | -25.75 | V | | 2509.64 | -44.03 | 10.60 | 8.39 | -41.82 | -13.00 | -28.82 | V | | 3346.05 | -43.26 | 12.20 | 11.82 | -42.88 | -13.00 | -29.88 | V | | | | rst Test Res | ults Cha | nnel 4233 | /846.6MHz | | | | | S | | | PMea | Limit | Margin | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | 1693.39 | -41.01 | 9.60 | 4.77 | -36.18 | -13.00 | -23.18 | Н | | 2539.13 | -39.68 | 10.80 | 8.50 | -37.38 | -13.00 | -24.38 | Н | | 3385.99 | -31.10 | 12.50 | 11.90 | -30.50 | -13.00 | -17.50 | Н | | 1693.29 | -44.60 | 9.60 | 4.77 | -39.77 | -13.00 | -26.77 | V | | 2539.10 | -45.43 | 10.80 | 8.50 | -43.13 | -13.00 | -30.13 | V | | 3386.15 | -42.65 | 12.50 | 11.90 | -42.05 | -13.00 | -29.05 | V | | | | HSDPA Ba | nd V: (30 |)-9000)MF | łz | | | |----------------|----------------|--------------|-----------|-----------|-----------|--------|----------| | | The w | ost testresu | Its chann | el 4132/8 | 26.4MHz | | | | | S | | | PMea | Limit | Margin | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | 1652.46 | -40.75 | 9.40 | 4.75 | -36.10 | -13.00 | -23.10 | Н | | 2479.52 | -40.51 | 10.60 | 8.39 | -38.30 | -13.00 | -25.30 | Н | | 3305.47 | -31.69 | 12.00 | 11.79 | -31.48 | -13.00 | -18.48 | Н | | 1652.36 | -44.52 | 9.40 | 4.75 | -39.87 | -13.00 | -26.87 | V | | 2479.34 | -45.31 | 10.60 | 8.39 | -43.10 | -13.00 | -30.10 | V | | 3305.90 | -43.21 | 12.00 | 11.79 | -43.00 | -13.00 | -30.00 | V | | | | rst Test Res | ults Cha | nnel 4183 | /836.6MHz | | | | | S | | | PMea | Limit | Margin | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | 1673.10 | -41.33 | 9.50 | 4.76 | -36.59 | -13.00 | -23.59 | Н | | 2509.60 | -40.00 | 10.70 | 8.40 | -37.70 | -13.00 | -24.70 | Н | | 3346.42 | -30.85 | 12.20 | 11.80 | -30.45 | -13.00 | -17.45 | Н | | 1673.21 | -43.79 | 9.40 | 4.75 | -39.14 | -13.00 | -26.14 | V | | 2509.88 | -44.99 | 10.60 | 8.39 | -42.78 | -13.00 | -29.78 | V | | 3346.31 | -43.23 | 12.20 | 11.82 | -42.85 | -13.00 | -29.85 | V | | | The Wo | rst Test Res | ults Cha | nnel 4233 | /846.6MHz | | | | | S | | | PMea | Limit | Margin | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | 1693.59 | -40.93 | 9.60 | 4.77 | -36.10 | -13.00 | -23.10 | Н | | 2539.37 | -40.10 | 10.80 | 8.50 | -37.80 | -13.00 | -24.80 | Н | | 3386.27 | -32.20 | 12.50 | 11.90 | -31.60 | -13.00 | -18.60 | Н | | 1693.58 | -43.23 | 9.60 | 4.77 | -38.40 | -13.00 | -25.40 | V | | 2539.38 | -44.76 | 10.80 | 8.50 | -42.46 | -13.00 | -29.46 | V | | 3386.09 |
-43.54 | 12.50 | 11.90 | -42.94 | -13.00 | -29.94 | V | | WCDMA Band II: (30-20000)MHz | | | | | | | | | | |---|----------------|--------------|------------|------------|-------------|--------|----------|--|--| | The Worst Test Results for Channel 9262/1852.4MHz | | | | | | | | | | | | S | | | PMea | Limit | Margin | Polarity | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | | | | | 3704.30 | -34.41 | 12.60 | 12.93 | -34.74 | -13.00 | -21.74 | Н | | | | 5557.36 | -34.35 | 13.10 | 17.11 | -38.36 | -13.00 | -25.36 | Н | | | | 7409.95 | -32.37 | 11.50 | 22.20 | -43.07 | -13.00 | -30.07 | Н | | | | 3704.30 | -35.76 | 12.60 | 12.93 | -36.09 | -13.00 | -23.09 | V | | | | 5557.27 | -35.11 | 13.10 | 17.11 | -39.12 | -13.00 | -26.12 | V | | | | 7409.50 | -32.08 | 11.50 | 22.20 | -42.78 | -13.00 | -29.78 | V | | | | | The Wors | st Test Resu | lts for Ch | annel 940 | 00/1880MHz | | | | | | | S | | | PMea | Limit | Margin | | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | | 3760.18 | -33.55 | 12.60 | 12.93 | -33.88 | -13.00 | -20.88 | Н | | | | 5640.20 | -34.57 | 13.10 | 17.11 | -38.58 | -13.00 | -25.58 | Н | | | | 7520.20 | -32.92 | 11.50 | 22.20 | -43.62 | -13.00 | -30.62 | Н | | | | 3760.06 | -34.52 | 12.60 | 12.93 | -34.85 | -13.00 | -21.85 | V | | | | 5639.92 | -34.13 | 13.10 | 17.11 | -38.14 | -13.00 | -25.14 | V | | | | 7520.00 | -31.79 | 11.50 | 22.20 | -42.49 | -13.00 | -29.49 | V | | | | | The Wors | t Test Resul | ts for Cha | annel 9538 | 3/1907.6MHz | • | | | | | | S | | | PMea | Limit | Margin | | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | | 3815.27 | -33.60 | 12.60 | 12.93 | -33.93 | -13.00 | -20.93 | Н | | | | 5722.21 | -34.23 | 13.10 | 17.11 | -38.24 | -13.00 | -25.24 | Н | | | | 7630.28 | -33.48 | 11.50 | 22.20 | -44.18 | -13.00 | -31.18 | Н | | | | 3815.49 | -34.76 | 12.60 | 12.93 | -35.09 | -13.00 | -22.09 | V | | | | 5722.48 | -34.65 | 13.10 | 17.11 | -38.66 | -13.00 | -25.66 | V | | | | 7630.25 | -32.93 | 11.50 | 22.20 | -43.63 | -13.00 | -30.63 | V | | | | HSUPA Band II: (30-20000)MHz | | | | | | | | | | |---|----------------|--------------|------------|------------|-------------|--------|----------|--|--| | The Worst Test Results for Channel 9262/1852.4MHz | | | | | | | | | | | | S | | | PMea | Limit | Margin | | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | | 3704.09 | -33.72 | 12.60 | 12.93 | -34.05 | -13.00 | -21.05 | Н | | | | 5557.55 | -35.11 | 13.10 | 17.11 | -39.12 | -13.00 | -26.12 | Н | | | | 7409.52 | -32.89 | 11.50 | 22.20 | -43.59 | -13.00 | -30.59 | Н | | | | 3704.47 | -35.30 | 12.60 | 12.93 | -35.63 | -13.00 | -22.63 | V | | | | 5557.50 | -34.53 | 13.10 | 17.11 | -38.54 | -13.00 | -25.54 | V | | | | 7409.82 | -32.96 | 11.50 | 22.20 | -43.66 | -13.00 | -30.66 | V | | | | | The Wors | st Test Resu | Its for Ch | annel 940 | 00/1880MHz | | | | | | | S | | | PMea | Limit | Margin | | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | | 3759.90 | -34.21 | 12.60 | 12.93 | -34.54 | -13.00 | -21.54 | Н | | | | 5640.05 | -34.00 | 13.10 | 17.11 | -38.01 | -13.00 | -25.01 | Н | | | | 7519.98 | -32.85 | 11.50 | 22.20 | -43.55 | -13.00 | -30.55 | Н | | | | 3760.30 | -35.66 | 12.60 | 12.93 | -35.99 | -13.00 | -22.99 | V | | | | 5640.20 | -33.99 | 13.10 | 17.11 | -38.00 | -13.00 | -25.00 | V | | | | 7519.86 | -33.06 | 11.50 | 22.20 | -43.76 | -13.00 | -30.76 | V | | | | | The Wors | t Test Resul | ts for Cha | annel 9538 | 3/1907.6MHz | • | | | | | | S | | | PMea | Limit | Margin | | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | | 3815.68 | -34.81 | 12.60 | 12.93 | -35.14 | -13.00 | -22.14 | Н | | | | 5722.03 | -35.36 | 13.10 | 17.11 | -39.37 | -13.00 | -26.37 | Н | | | | 7630.15 | -32.24 | 11.50 | 22.20 | -42.94 | -13.00 | -29.94 | Н | | | | 3815.33 | -35.47 | 12.60 | 12.93 | -35.80 | -13.00 | -22.80 | V | | | | 5722.41 | -33.94 | 13.10 | 17.11 | -37.95 | -13.00 | -24.95 | V | | | | 7630.20 | -33.07 | 11.50 | 22.20 | -43.77 | -13.00 | -30.77 | V | | | | HSDPA Band II: (30-20000)MHz | | | | | | | | | |---|----------------|--------------|-------------------------|------------|-------------|--------|----------|--| | The Worst Test Results for Channel 9262/1852.4MHz | | | | | | | | | | | S | S | nt(dBi) Loss PMea (dBm) | Limit | Margin | | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | | (dBm) | (dBm) | (dBm) | Polarity | | | 3704.44 | -34.23 | 12.60 | 12.93 | -34.56 | -13.00 | -21.56 | Ι | | | 5557.25 | -34.35 | 13.10 | 17.11 | -38.36 | -13.00 | -25.36 | Ι | | | 7409.57 | -32.53 | 11.50 | 22.20 | -43.23 | -13.00 | -30.23 | I | | | 3704.43 | -34.90 | 12.60 | 12.93 | -35.23 | -13.00 | -22.23 | V | | | 5557.45 | -34.24 | 13.10 | 17.11 | -38.25 | -13.00 | -25.25 | V | | | 7409.57 | -32.53 | 11.50 | 22.20 | -43.23 | -13.00 | -30.23 | V | | | | The Wors | st Test Resu | lts for Ch | annel 940 | 00/1880MHz | | | | | | S | | | PMea | Limit | Margin | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | 3759.77 | -34.82 | 12.60 | 12.93 | -35.15 | -13.00 | -22.15 | Н | | | 5640.06 | -34.21 | 13.10 | 17.11 | -38.22 | -13.00 | -25.22 | Н | | | 7520.16 | -33.36 | 11.50 | 22.20 | -44.06 | -13.00 | -31.06 | Ι | | | 3759.96 | -34.86 | 12.60 | 12.93 | -35.19 | -13.00 | -22.19 | V | | | 5640.10 | -34.21 | 13.10 | 17.11 | -38.22 | -13.00 | -25.22 | V | | | 7519.94 | -32.80 | 11.50 | 22.20 | -43.50 | -13.00 | -30.50 | V | | | | The Wors | t Test Resul | ts for Cha | annel 9538 | 3/1907.6MHz | • | | | | | S | | PMea Limit | Margin | | | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | 3815.57 | -34.21 | 12.60 | 12.93 | -34.54 | -13.00 | -21.54 | Н | | | 5722.37 | -34.39 | 13.10 | 17.11 | -38.40 | -13.00 | -25.40 | Н | | | 7630.30 | -32.72 | 11.50 | 22.20 | -43.42 | -13.00 | -30.42 | Η | | | 3815.34 | -34.65 | 12.60 | 12.93 | -34.98 | -13.00 | -21.98 | V | | | 5722.25 | -34.77 | 13.10 | 17.11 | -38.78 | -13.00 | -25.78 | V | | | 7630.08 | -32.68 | 11.50 | 22.20 | -43.38 | -13.00 | -30.38 | V | | | WCDMA Band IV: (30-20000)MHz | | | | | | | | | |---|----------------|---------------|------------|------------|-------------|--------|----------|--| | The Worst Test Results for Channel 1313/1712.6MHz | | | | | | | | | | | S | | | PMea | Limit | Margin | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | 3425.12 | -33.62 | 12.90 | 12.05 | -32.77 | -13.00 | -19.77 | Н | | | 5137.40 | -34.18 | 12.80 | 16.27 | -37.65 | -13.00 | -24.65 | Н | | | 6850.23 | -32.94 | 12.30 | 20.13 | -40.77 | -13.00 | -27.77 | Н | | | 3425.06 | -35.77 | 12.90 | 12.05 | -34.92 | -13.00 | -21.92 | V | | | 5137.31 | -34.61 | 12.80 | 16.27 | -38.08 | -13.00 | -25.08 | V | | | 6850.09 | -33.01 | 12.30 | 20.13 | -40.84 | -13.00 | -27.84 | V | | | | The Wors | t Test Resul | ts for Cha | annel 1450 | 0/1740.0MHz | • | | | | | S | | | PMea | Limit | Margin | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | 3479.82 | -34.82 | 12.90 | 12.05 | -33.97 | -13.00 | -20.97 | Н | | | 5219.89 | -34.33 | 12.80 | 16.27 | -37.80 | -13.00 | -24.80 | Н | | | 6959.86 | -33.34 | 12.30 | 20.13 | -41.17 | -13.00 | -28.17 | Н | | | 3479.68 | -34.84 | 12.90 | 12.05 | -33.99 | -13.00 | -20.99 | V | | | 5219.85 | -35.17 | 12.80 | 16.27 | -38.64 | -13.00 | -25.64 | V | | | 6959.84 | -32.31 | 12.30 | 20.13 | -40.14 | -13.00 | -27.14 | V | | | | The Wors | t Test Result | ts for Cha | annel 1512 | 2/1752.4MHz | • | | | | | S | | | PMea | Limit | Margin | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | 3504.51 | -34.57 | 12.90 | 12.05 | -33.72 | -13.00 | -20.72 | Н | | | 5256.93 | -34.08 | 12.80 | 16.27 | -37.55 | -13.00 | -24.55 | Н | | | 7009.33 | -33.40 | 12.30 | 20.13 | -41.23 | -13.00 | -28.23 | Н | | | 3504.71 | -35.73 | 12.90 | 12.05 | -34.88 | -13.00 | -21.88 | V | | | 5256.75 | -34.43 | 12.80 | 16.27 | -37.90 | -13.00 | -24.90 | V | | | 7009.39 | -32.22 | 12.30 | 20.13 | -40.05 | -13.00 | -27.05 | V | | | HSUPA Band IV: (30-20000)MHz | | | | | | | | | |---|----------------|---------------|------------|------------|-------------|--------|----------|--| | The Worst Test Results for Channel 1313/1712.6MHz | | | | | | | | | | | S | | | PMea | Limit | Margin | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | 3424.79 | -34.18 | 12.90 | 12.05 | -33.33 | -13.00 | -20.33 | Н | | | 5137.30 | -35.20 | 12.80 | 16.27 | -38.67 | -13.00 | -25.67 | Н | | | 6850.11 | -32.36 | 12.30 | 20.13 | -40.19 | -13.00 | -27.19 | Н | | | 3424.89 | -35.79 | 12.90 | 12.05 | -34.94 | -13.00 | -21.94 | V | | | 5137.78 | -33.85 | 12.80 | 16.27 | -37.32 | -13.00 | -24.32 | V | | | 6849.96 | -31.83 | 12.30 | 20.13 | -39.66 | -13.00 | -26.66 | V | | | | The Wors | t Test Result | ts for Cha | annel 1450 | 0/1740.0MHz | • | | | | | S | | | PMea | Limit | Margin | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | 3479.80 | -34.82 | 12.90 | 12.05 | -33.97 | -13.00 | -20.97 | Н | | | 5219.65 | -34.76 | 12.80 | 16.27 | -38.23 | -13.00 | -25.23 | Н | | | 6959.70 | -33.40 | 12.30 | 20.13 | -41.23 | -13.00 | -28.23 | Н | | | 3479.87 | -35.05 | 12.90 | 12.05 | -34.20 | -13.00 | -21.20 | V | | | 5219.90 | -34.82 | 12.80 | 16.27 | -38.29 | -13.00 | -25.29 | V | | | 6959.63 | -32.05 | 12.30 | 20.13 | -39.88 | -13.00 | -26.88 | V | | | | The Wors | t Test Result | ts for Cha
| annel 1512 | 2/1752.4MHz | • | | | | | S | | | PMea | Limit | Margin | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | 3504.34 | -33.47 | 12.90 | 12.05 | -32.62 | -13.00 | -19.62 | Н | | | 5256.94 | -34.31 | 12.80 | 16.27 | -37.78 | -13.00 | -24.78 | Н | | | 7009.42 | -33.53 | 12.30 | 20.13 | -41.36 | -13.00 | -28.36 | Н | | | 3504.37 | -35.21 | 12.90 | 12.05 | -34.36 | -13.00 | -21.36 | V | | | 5257.10 | -35.21 | 12.80 | 16.27 | -38.68 | -13.00 | -25.68 | V | | | 7009.22 | -32.29 | 12.30 | 20.13 | -40.12 | -13.00 | -27.12 | V | | | HSDPA Band IV: (30-20000)MHz | | | | | | | | | |---|----------------|--------------|-------------|------------|-------------|--------|----------|--| | The Worst Test Results for Channel 1313/1712.6MHz | | | | | | | | | | | S | rest resul | .5 101 0110 | PMea | Limit | Margin | Polarity | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | | | | 3425.13 | -34.35 | 12.90 | 12.05 | -33.50 | -13.00 | -20.50 | Н | | | 5137.66 | -34.08 | 12.80 | 16.27 | -37.55 | -13.00 | -24.55 | Н | | | 6850.22 | -33.01 | 12.30 | 20.13 | -40.84 | -13.00 | -27.84 | Н | | | 3424.93 | -35.33 | 12.90 | 12.05 | -34.48 | -13.00 | -21.48 | V | | | 5137.42 | -34.49 | 12.80 | 16.27 | -37.96 | -13.00 | -24.96 | V | | | 6850.27 | -32.94 | 12.30 | 20.13 | -40.77 | -13.00 | -27.77 | V | | | | The Wors | t Test Resul | ts for Cha | annel 1450 |)/1740.0MHz | | | | | | S | | | PMea | Limit | Margin | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | 3479.93 | -34.01 | 12.90 | 12.05 | -33.16 | -13.00 | -20.16 | Н | | | 5219.99 | -34.85 | 12.80 | 16.27 | -38.32 | -13.00 | -25.32 | Н | | | 6959.95 | -33.63 | 12.30 | 20.13 | -41.46 | -13.00 | -28.46 | Н | | | 3479.79 | -35.24 | 12.90 | 12.05 | -34.39 | -13.00 | -21.39 | V | | | 5219.81 | -34.14 | 12.80 | 16.27 | -37.61 | -13.00 | -24.61 | V | | | 6959.82 | -32.25 | 12.30 | 20.13 | -40.08 | -13.00 | -27.08 | V | | | | The Wors | t Test Resul | ts for Cha | annel 1512 | 2/1752.4MHz | • | | | | | S | | | PMea | Limit | Margin | | | | Frequency(MHz) | G.Lev
(dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | 3504.52 | -34.79 | 12.90 | 12.05 | -33.94 | -13.00 | -20.94 | Н | | | 5257.00 | -34.23 | 12.80 | 16.27 | -37.70 | -13.00 | -24.70 | Н | | | 7009.48 | -33.64 | 12.30 | 20.13 | -41.47 | -13.00 | -28.47 | Н | | | 3504.40 | -34.73 | 12.90 | 12.05 | -33.88 | -13.00 | -20.88 | V | | | 5257.10 | -34.96 | 12.80 | 16.27 | -38.43 | -13.00 | -25.43 | V | | | 7009.53 | -32.97 | 12.30 | 20.13 | -40.80 | -13.00 | -27.80 | V | | # APPENDIX-PHOTOS OF TEST SETUP Note: See test photos in setup photo document for the actual connections between Product and support equipment. ****END OF THE REPORT***