

ISSUED BY Shenzhen BALUN Technology Co., Ltd.

FOR

Rugged Tablet PC

ISSUED TO Winmate Communication INC.

9F, No. 111-6, Shing-De Rd., San-Chung Dist, New Taipei 24158, Taiwan, R. O. C.

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website.

Date of Issue: Jun. 17, 2016

Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong, P. R. China 518055 TEL: +86-755-66850100, FAX: +86-755-61824271 Email: info@baluntek.com vxwz.baluntek.com

Revision History

Version

Issue Date Jun. 17, 2016 **Revisions Content** Initial Issue

Rev. 01

TABLE OF CONTENTS

1	ADMIN	IISTRATIVE DATA (GENERAL INFORMATION)	5
	1.1	Identification of the Testing Laboratory	5
	1.2	Identification of the Responsible Testing Location	5
	1.3	Laboratory Condition	5
	1.4	Announce	5
2	PRODU	JCT INFORMATION	7
	2.1	Applicant Information	7
	2.2	Manufacturer Information	7
	2.3	Factory Information	7
	2.4	General Description for Equipment under Test (EUT)	7
	2.5	Ancillary Equipment	7
	2.6	Technical Information	8
	2.7	Additional Instructions	9
3	SUMM	ARY OF TEST RESULTS	10
	3.1	Test Standards	10
	3.2	Verdict	10
4	GENE	RAL TEST CONFIGURATIONS	11
	4.1	Test Environments	11
	4.2	Test Equipment List	11
	4.3	Description of Test Setup	12
	4.3.1	For Antenna Port Test	12
	4.3.2	For AC Power Supply Port Test	12
	4.3.3	For Radiated Test (Below 30 MHz)	13
	4.3.4	For Radiated Test (30 MHz-1 GHz)	13
	4.3.5	For Radiated Test (Above 1 GHz)	14

5	TEST I	TEMS1	15
5	.1	Antenna Requirements1	15
	5.1.1	Standard Applicable1	15
	5.1.2	Antenna Anti-Replacement Construction1	15
	5.1.3	Antenna Gain1	15
5	.2	Output Power1	16
	5.2.1	Test Limit1	16
	5.2.2	Test Setup1	16
	5.2.3	Test Procedure1	16
	5.2.4	Test Result1	17
5	.3	6dB Bandwidth1	18
	5.3.1	Limit1	18
	5.3.2	Test Setup1	18
	5.3.3	Test Procedure1	18
	5.3.4	Test Result1	18
5	.4	Conducted Spurious Emission1	19
	5.4.1	Limit1	19
	5.4.2	Test Setup1	19
	5.4.3	Test Procedure1	19
	5.4.4	Test Result2	20
5	.5	Band Edge (Authorized-band band-edge)2	21
	5.5.1	Limit2	21
	5.5.2	Test Setup2	21
	5.5.3	Test Procedure2	21
	5.5.4	Test Result	21
5	.6	Conducted Emission	22
	5.6.1	Limit2	22
	5.6.2	Test Setup2	22
	5.6.3	Test Procedure	22
	5.6.4	Test Result	22
5	.7	Radiated Spurious Emission2	23

5.7.1	Limit	23
5.7.2	Test Setup	23
5.7.3	Test Procedure	23
5.7.4	Test Result	26
1.1	Band Edge (Restricted-band band-edge)	27
1.1.1	Limit	27
1.1.2	Test Setup	27
1.1.3	Test Procedure	27
1.1.4	Test Result	28
5.8	Power Spectral density (PSD)	29
5.8.1	Limit	29
5.8.2	Test Setup	29
5.8.3	Test Procedure	29
5.8.4	Test Result	29
ANNEX A	TEST RESULT	30
A.1	Output Power	30
A.2	Bandwidth	32
A.3	Conducted Spurious Emissions	35
A.4	Band Edge (Authorized-band band-edge)	44
A.5	Conducted Emissions	51
A.6	Radiated Spurious Emission	53
A.7	Band Edge (Restricted-band band-edge)	64
A.8	Power Spectral Density (PSD)	67
ANNEX B	TEST SETUP PHOTOS	70
ANNEX C	EUT EXTERNAL PHOTOS	70
ANNEX D	EUT INTERNAL PHOTOS	70

1 ADMINISTRATIVE DATA (GENERAL INFORMATION)

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100
Fax Number	+86 755 6182 4271

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.		
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,		
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China		
	The laboratory has been listed by Industry Canada to perform		
	electromagnetic emission measurements. The recognition numbers of		
	test site are 11524A-1.		
	The laboratory has been listed by US Federal Communications		
	Commission to perform electromagnetic emission measurements. The		
Approditation	recognition numbers of test site are 832625.		
Accreditation	The laboratory has met the requirements of the IAS Accreditation Criteria		
Certificate	for Testing Laboratories (AC89), has demonstrated compliance with		
	ISO/IEC Standard 17025:2005. The accreditation certificate number is		
	TL-588.		
	The laboratory is a testing organization accredited by China National		
	Accreditation Service for Conformity Assessment (CNAS) according to		
	ISO/IEC 17025. The accreditation certificate number is L6791.		
	All measurement facilities used to collect the measurement data are		
Description	located at Block B, FL 1, Baisha Science and Technology Park, Shahe Xi		
Description	Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China		
	518055		

1.3 Laboratory Condition

Ambient Temperature	20 to 25°C
Ambient Relative Humidity	45% - 55%
Ambient Pressure	100 kPa - 102 kPa

1.4 Announce

- (1) The test report reference to the report template version v4.3.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.

- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Winmate Communication INC.		
Address	9F, No. 111-6, Shing-De Rd., San-Chung Dist, New Taipei 24158,		
Auuress	Taiwan, R. O. C.		

2.2 Manufacturer Information

Manufacturer	Winmate Communication INC.		
Address	9F, No. 111-6, Shing-De Rd., San-Chung Dist, New Taipei 24158,		
Auuress	Taiwan, R. O. C.		

2.3 Factory Information

Factory	Winmate Communication INC.		
Address	9F, No. 111-6, Shing-De Rd., San-Chung Dist, New Taipei 24158,		
Auuress	Taiwan, R. O. C.		

2.4 General Description for Equipment under Test (EUT)

EUT Type	Rugged Tablet PC
Model Name Under	ΜΖΟΟγγγγγγγγγ
Test	M700xxxxxxxxx
Series Model Name	MMX-070, FlexCommand-7, M700xxxxxxxxx(The "X" can be 0-9, A-
	Z, a-z, or blank for marketing purpose)
Description of Model	All models are same with electrical parameters and internal circuit
name differentiation	structure, but only differ in model name which for the different marketing
	sales area
Hardware Version	MK8-200
Software Version	151110
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A
Network and Wireless	Bluetooth 3.0, WIFI 802.11b, 802.11g and 802.11n (HT20/40), GPS
connectivity	Buetout 3.0, WIFT 602.110, 602.119 and 602.1111 (FT20/40), GPS

2.5 Ancillary Equipment

	Battery 1	
	Brand Name	Winmate
	Model No.	M700DT4
Ancillary Equipment 1	Serial No.	N/A
	Capacitance	5300 mAh
	Rated Voltage	3.7 V
	Limit Charge Voltage	4.2 V
	Charger 1	
Ancillary Equipment 2	Brand Name	ENG
	Model Name	3A-182WP05

Rated Input	100-240 V ~, 50/60 Hz, 600 mA
Rated Output	5 V =, 3000 mA

2.6 Technical Information

The requirement for the following technical information of the EUT was tested in this report:

· · ·	•
	802.11b/g/n(20 MHz): 2.412 GHz - 2.462 GHz
	f _c = 2412 MHz + (N-1)*5 MHz, where
	- f _c = "Operating Frequency" in MHz,
TV/DV Operating	- N = "Channel Number" with the range from 1 to 11.
TX/ RX Operating	
Range	802.11n(40 MHz): 2.422 GHz - 2.452 GHz
	f _c = 2412 MHz + (N-1)*5 MHz, where
	- f _c = "Operating Frequency" in MHz,
	- N = "Channel Number" with the range from 3 to 9.
Modulation Type	DSSS, OFDM
Antenna Type	PCB Antenna
Antenna Gain	1 dBi
	The equipment is Rugged Tablet PC, it contains WIFI and Bluetooth
About the Product	Modules operating at 2.4 GHz ISM band. Only the WIFI 802.11b,
	802.11g and 802.11n (HT20/40) was tested in this report.

Modulation technology	Modulation Type	Transfer Rate (Mbps)	The Frequency Equal to the Transmission Rate of Modulation Signal	
	DBPSK	1	4 MIL	
DSSS (802.11b)	DQPSK	2	1 MHz	
	ССК	5.5/ 11	1.375 MHz	
	BPSK	6 / 9		
OFDM (802.11g)	QPSK	12 / 18	1 MHz	
OFDIVI (802. 119)	16QAM	24 / 36		
	64QAM	48 / 54		
	BPSK	6.5		
OFDM	QPSK	13/19.5	1 MHz	
(802.11n-20MHz)	16QAM	26/39		
	64QAM	52/58.5/65		
	BPSK	13.5		
OFDM	QPSK	27/40.5	1 MHz	
(802.11n-40MHz)	16QAM	54/81/108		
	64QAM	121.5/135		

Note: Preliminary tests were performed in different data rate in above table to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Cha	innel
Output Power	11b/11g/11n20/11n40	1/6/6.5/13.5 Mbps	1/6/11	3/6/9
6dB Bandwidth	11b/11g/11n20/11n40	1/6/6.5/13.5 Mbps	1/6/11	3/6/9
Conducted Spurious Emission	11b/11g/11n20/11n40	1/6/6.5/13.5 Mbps	1/6/11	3/6/9
Conducted Emission	11b/11g/11n20/11n40	1/6/6.5/13.5 Mbps	1/6/11	3/6/9
Radiated Spurious Emission	11b/11g/11n20/11n40	1/6/6.5/13.5 Mbps	1/6/11	3/6/9
Band Edge	11b/11g/11n20/11n40	1/6/6.5/13.5 Mbps	1/6/11	3/6/9
Power spectral density (PSD)	11b/11g/11n20/11n40	1/6/6.5/13.5 Mbps	1/6/11	3/6/9

Note: The above EUT information in section 2.4 and 2.6 was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.7 Additional Instructions

EUT Software Settings:

	Special software is used.
Mode	The software provided by client to enable the EUT under
Wode	transmission condition continuously at specific channel
	frequencies individually.

During testing. Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power level setup in software			
Software Version	WIFI Tool for MT6620		
Mode	Channel	Soft Set	
802.11 b	All	18	
802.11 g	All	15	
802.11 n20	All	15	
802.11 n40	All	14	

Run software:

WIFI Tool for MT6620		_ []]
	Log Output	Clear Log
	Open WIF: invalid handle Read NCH invalid handle Open WIF: success Read NCH success setTestMode success setTestMode success	
NVRAM Save As File Burn NVRAM From File Read All		
Set 2GHz TX Power Profile Set 5GHz TX Power Profile RSSI COMP		
Barohmähi @ 20MHz C 40MHz C U20MHz C L20MHz C Advance Setting		
Set		
/RX Channel 1 (2412MHz) . USERI DEFINE 2412	-	
/R0x Channel 1 (2412hHz) USER DEFINE 2412 TX test Tx Power(dBm) 18		
/RX Channel 1 (241294Hz) USER DCFINE 2412		
/R0X Channel 11 (24124H/k) USER DEFINE [2412] TX test		
ARXCOMPANEI 1241204H2 USER DEFINE 2412		
/RXCDseniel 1 (241294Hz) USER DCFIRE 2412		
/POC Channel 1 [2412]		
//Rok Dhannel 1 [24120H4z] USER DOFFHE 2412		

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title	
	47 CFR Part 15,		
1	Subpart C	Miscellaneous Wireless Communications Services	
	(10-1-14 Edition)		
2	KDB Publication	Guidance for Performing Compliance Measurements on	
2	558074 D01v03r05	Digital Transmission Systems (DTS) Operating Under §15.247	
3	ANSI C63.10-2014	American National Standard for Testing Unlicensed Wireless Devices	

3.2 Verdict

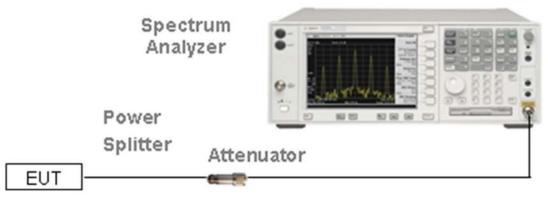
No.	Description	FCC Part No.	Test Result	Verdict
1	Antenna Requirement	15.203	Note1	Pass
2	Output Power	15.247(b) 15.247(b)	ANNEX A.1	Pass
3	6dB Bandwidth	15.247(a)	ANNEX A.2	Pass
4	Conducted Spurious Emission	15.247(d)	ANNEX A.3	Pass
5	Band Edge(Authorized-band band- edge)	15.247(d)	ANNEX A.4	Pass
6	Conducted Emission	15.207	ANNEX A.5	Pass
7	Radiated Spurious Emission	15.209 15.247(d)	ANNEX A.6	Pass
8	Band Edge(Restricted-band band- edge)	15.209 15.247(d)	ANNEX A.7	Pass
9	Power spectral density (PSD)	15.247(e)	ANNEX A.8	Pass
Note 1: Please refer to section 5.1				

4 GENERAL TEST CONFIGURATIONS

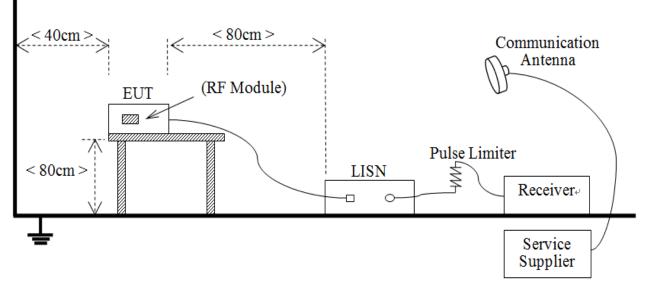
4.1 Test Environments

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	45% - 55%	
Atmospheric Pressure	100 kPa - 102 kPa	
Temperature	NT (Normal Temperature)	+22°C to +25°C
Working Voltage of the EUT	NV (Normal Voltage)	3.7V from battery/ 5V from Adapter

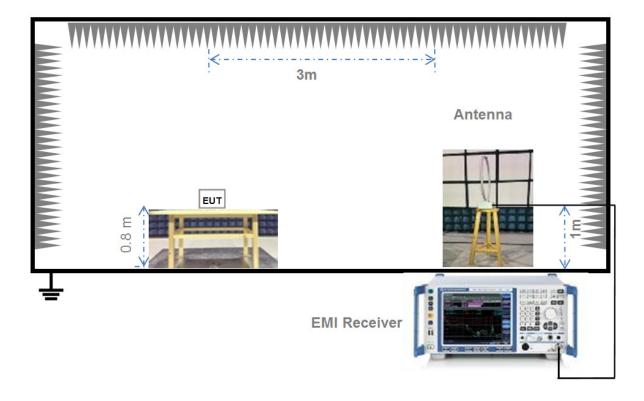

4.2 Test Equipment List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-30	103118	2015.07.16	2016.07.15
Vector Signal Generator	ROHDE&SCHWARZ	SMBV100A	177746	2015.07.16	2016.07.15
Signal Generator	ROHDE&SCHWARZ	SMB100A	260592	2015.07.01	2016.06.30
Switch Unit with OSP- B157	ROHDE&SCHWARZ	OSP120	101270	2015.07.16	2016.07.15
Spectrum Analyzer	AGILENT	E4440A	MY45304434	2015.10.15	2016.10.14
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2015.07.14	2016.07.13
LISN	SCHWARZBECK	NSLK 8127	8127-687	2015.07.14	2016.07.13
Bluetooth Tester	ROHDE&SCHWARZ	CBT	101005	2015.07.16	2016.07.15
Power Splitter	KMW	DCPD-LDC	1305003215	2015.07.01	2016.06.30
Power Sensor	ROHDE&SCHWARZ	NRP-Z21	103971	2015.07.21	2016.07.20
Attenuator (20 dB)	KMW	ZA-S1-201	110617091		
Attenuator (6 dB)	KMW	ZA-S1-61	1305003189		
DC Power Supply	ROHDE&SCHWARZ	HMP2020	018141664	2015.07.17	2016.07.16
Temperature Chamber	ANGELANTIONI SCIENCE	NTH64-40A	1310	2015.08.07	2016.08.06
Test Antenna- Loop(9 kHz-30 MHz)	SCHWARZBECK	FMZB 1519	1519-037	2015.07.22	2017.07.21
Test Antenna- Bi-Log(30 MHz-3 GHz)	SCHWARZBECK	VULB 9163	9163-624	2015.07.22	2017.07.21
Test Antenna- Horn(1-18 GHz)	SCHWARZBECK	BBHA 9120D	9120D-1148	2015.07.22	2017.07.21
Test Antenna- Horn(15-26.5 GHz)	SCHWARZBECK	BBHA 9170	9170-305	2015.07.22	2017.07.21
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2015.02.28	2017.02.27
Shielded Enclosure	ChangNing	CN-130701	130703		

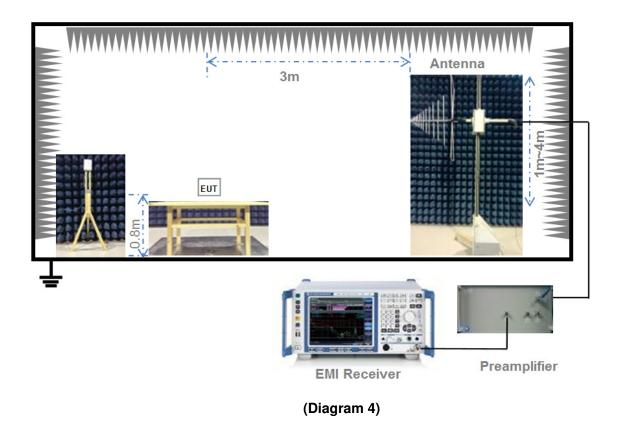

4.3 Description of Test Setup

4.3.1 For Antenna Port Test

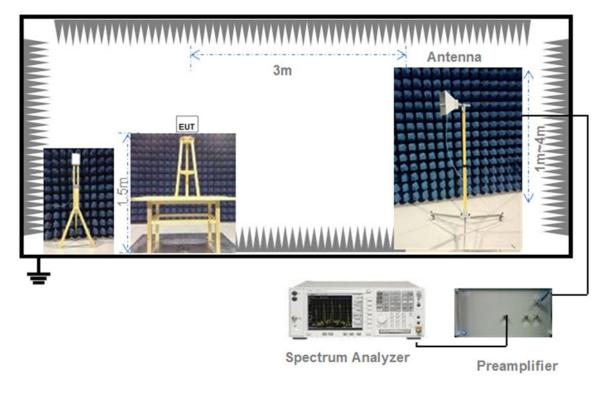
(Diagram 1)



(Diagram 2)



4.3.3 For Radiated Test (Below 30 MHz)


(Diagram 3)

4.3.4 For Radiated Test (30 MHz-1 GHz)

4.3.5 For Radiated Test (Above 1 GHz)

(Diagram 5)

5 TEST ITEMS

5.1 Antenna Requirements

5.1.1 Standard Applicable

FCC §15.203 & 15.247(b)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

5.1.2 Antenna Anti-Replacement Construction

le Antenna Anti-Replacement as following method.			
Protected Method	Description		
The antenna is An embedded-in	An embedded-in antenna design is used.		
	RF Chip PCB Antenna		
Reference Documents	Item		
Photo			

The Antenna Anti-Replacement as following method:

5.1.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

5.2 Output Power

5.2.1 Test Limit

FCC § 15.247(b)

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antennas and antennas and antennas and antennas elements.

5.2.2 Test Setup

See section 4.3.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.2.3 Test Procedure

Maximum peak conducted output power

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the *DTS bandwidth* and shall utilize a fast-responding diode detector.

Maximum conducted (average) output power (Reporting Only)

a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed

using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.

1) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.

2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.

3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a

factor of five.

b) If the transmitter does not transmit continuously, measure the duty cycle (x) of the transmitter output signal as

described in Section 6.0.

c) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

d) Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement result.

Measurements of duty cycle

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal.

Set the center frequency of the instrument to the center frequency of the transmission.

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.

Set VBW \geq RBW. Set detector = peak or average.

The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

5.2.4 Test Result

Please refer to ANNEX A.1.

5.36dB Bandwidth

5.3.1 Limit

FCC §15.247(a)

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW. The 6 dB bandwidth must be greater than 500 kHz.

5.3.2 Test Setup

See section 4.3.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.3.3 Test Procedure

Use the following spectrum analyzer settings:

Set RBW = 100 kHz.

Set the video bandwidth (VBW) \geq 3 RBW.

Detector = Peak.

Trace mode = max hold.

Sweep = auto couple.

Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.3.4 Test Result

Please refer to ANNEX A.2.

5.4 Conducted Spurious Emission

5.4.1 Limit

FCC §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.4.2 Test Setup

See section 4.3.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.4.3 Test Procedure

The DTS rules specify that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

a) If the maximum peak conducted output power procedure was used to demonstrate compliance as described in 9.1, then the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 20 dBc).

 b) If maximum conducted (average) output power was used to demonstrate compliance as described in 9.2, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 30 dBc).

c) In either case, attenuation to levels below the 15.209 general radiated emissions limits is not required.

The following procedures shall be used to demonstrate compliance to these limits. Note that these procedures can be used in either an antenna-port conducted or radiated test set-up. Radiated tests must conform to the test site requirements and utilize maximization procedures defined herein.

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to \geq 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Emission level measurement

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

5.4.4 Test Result

Please refer to ANNEX A.3.

5.5 Band Edge (Authorized-band band-edge)

5.5.1 Limit

FCC §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.5.2 Test Setup

See section 4.3.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.5.3 Test Procedure

The following procedures may be used to determine the peak or average field strength or power of an unwanted emission that is within 2 MHz of the authorized band edge. If a peak detector is utilized, use the procedure described in 13.2.1. Use the procedure described in 13.2.2 when using an average detector and the EUT can be configured to transmit continuously (i.e., duty cycle \geq 98%). Use the procedure described in 13.2.3 when using an average detector and the EUT cannot be configured to transmit continuously but the duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent). Use the procedure described in 13.2.4 when using an average detector for those cases where the EUT cannot be configured to transmit continuously and the duty cycle is not constant (duty cycle variations equal or exceed 2 percent).

When using a peak detector to measure unwanted emissions at or near the band edge (within 2 MHz of the authorized band), the following integration procedure can be used.

Set instrument center frequency to the frequency of the emission to be measured (must be within 2 MHz of the authorized band edge).

Set span to 2 MHz

RBW = 100 kHz.

VBW \geq 3 x RBW.

Detector = peak.

Sweep time = auto.

Trace mode = max hold.

Allow sweep to continue until the trace stabilizes (required measurement time may increase for low duty cycle applications)

Compute the power by integrating the spectrum over 1 MHz using the analyzer's band power measurement function with band limits set equal to the emission frequency (femission) \pm 0.5 MHz. If the instrument does not have a band power function, then sum the amplitude levels (in power units) at 100 kHz intervals extending across the 1 MHz spectrum defined by femission \pm 0.5 MHz.

5.5.4 Test Result

Please refer to ANNEX A.4.

5.6 Conducted Emission

5.6.1 Limit

FCC §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)		
(MHz)	Quai-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
0.50 - 30	60	50	

5.6.2 Test Setup

See section 4.3.2 for test setup description for the AC power supply port. The photo of test setup please refer to ANNEX B.

5.6.3 Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.6.4 Test Result

Please refer to ANNEX A.5.

5.7 Radiated Spurious Emission

5.7.1 Limit

FCC §15.209&15.247(c)

Radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- 1. For Above 1000 MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- 2. For above 1000 MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK).

5.7.2 Test Setup

See section 4.3.2-4.3.5 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.7.3 Test Procedure

Since the emission limits are specified in terms of radiated field strength levels, measurements performed to demonstrate compliance have traditionally relied on a radiated test configuration. Radiated measurements remain the principal method for demonstrating compliance to the specified limits; however antenna-port conducted measurements are also now acceptable to demonstrate compliance (see below for details). When radiated measurements are utilized, test site requirements and procedures for maximizing and measuring radiated emissions that are described in ANSI C63.10 shall be followed.

Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

General Procedure for conducted measurements in restricted bands

a) Measure the conducted output power (in dBm) using the detector specified (see guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see guidance on determining the applicable antenna gain)

c) Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies \leq 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).

d) For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).

e) Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20log D + 104.8

where:

E = electric field strength in $dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

- f) Compare the resultant electric field strength level to the applicable limit.
- g) Perform radiated spurious emission test.

Quasi-Peak measurement procedure

The specifications for measurements using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Frequency Interference (CISPR) of the International Electrotechnical Commission.

As an alternative to CISPR quasi-peak measurement, compliance can be demonstrated to the applicable emission limits using a peak detector.

Peak power measurement procedure

Peak emission levels are measured by setting the instrument as follows:

a) RBW = as specified in Table 1.

- b) VBW \geq 3 x RBW.
- c) Detector = Peak.
- d) Sweep time = auto.
- e) Trace mode = max hold.

f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be longer for low duty cycle applications).

Table 1-R	RBW as a	function	of frequency
-----------	----------	----------	--------------

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz

> 1000 MHz 1 MHz

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Trace averaging across on and off times of the EUT transmissions followed by duty cycle correction

If continuous transmission of the EUT (i.e., duty cycle \geq 98 percent) cannot be achieved and the duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent), then the following procedure shall be used:

a) The EUT shall be configured to operate at the maximum achievable duty cycle.

b) Measure the duty cycle, x, of the transmitter output signal as described in section 6.0.

c) RBW = 1 MHz (unless otherwise specified).

d) VBW \geq 3 x RBW.

e) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.

f) Averaging type = power (i.e., RMS).

1) As an alternative, the detector and averaging type may be set for linear voltage averaging.

2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.

g) Sweep time = auto.

h) Perform a trace average of at least 100 traces.

i) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

1) If power averaging (RMS) mode was used in step f), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.

2) If linear voltage averaging mode was used in step f), then the applicable correction factor is $20 \log(1/x)$, where x is the duty cycle.

3) If a specific emission is demonstrated to be continuous (\geq 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

NOTE: Reduction of the measured emission amplitude levels to account for operational duty factor is not permitted. Compliance is based on emission levels occurring during transmission - not on an average across on and off times of the transmitter.

Determining the applicable transmit antenna gain

A conducted power measurement will determine the maximum output power associated with a restricted band emission; however, in order to determine the associated EIRP level, the gain of the transmitting antenna (in dBi)

must be added to the measured output power (in dBm).

Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

See KDB 662911 for guidance on calculating the additional array gain term when determining the effective antenna gain for a EUT with multiple outputs occupying the same or overlapping frequency ranges in the same band.

Radiated spurious emission test

An additional consideration when performing conducted measurements of restricted band emissions is that unwanted emissions radiating from the EUT cabinet, control circuits, power leads, or intermediate circuit elements will likely go undetected in a conducted measurement configuration. To address this concern, a radiated test shall be performed to ensure that emissions emanating from the EUT cabinet (rather than the antenna port) also comply with the applicable limits.

For these cabinet radiated spurious emission measurements the EUT transmit antenna may be replaced with a termination matching the nominal impedance of the antenna. Procedures for performing radiated measurements are specified in ANSI C63.10. All detected emissions shall comply with the applicable limits.

The measurement frequency range is from 30 MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

5.7.4 Test Result

Please refer to ANNEX A.6.

1.1 Band Edge (Restricted-band band-edge)

1.1.1 Limit

FCC §15.209&15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

1.1.2 Test Setup

See section 4.3.1 (Diagram 1) for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

1.1.3 Test Procedure

The following procedures may be used to determine the peak or average field strength or power of an unwanted emission that is within 2 MHz of the authorized band edge. If a peak detector is utilized, use the procedure described in 13.2.1. Use the procedure described in 13.2.2 when using an average detector and the EUT can be configured to transmit continuously (i.e., duty cycle \ge 98%). Use the procedure described in 13.2.3 when using an average detector and the EUT can be configured to transmit continuously (i.e., duty cycle \ge 98%). Use the procedure described in 13.2.3 when using an average detector and the EUT cannot be configured to transmit continuously but the duty cycle is constant (i.e., duty cycle variations are less than \pm 2 percent). Use the procedure described in 13.2.4 when using an average detector for those cases where the EUT cannot be configured to transmit continuously and the duty cycle is not constant (duty cycle variations equal or exceed 2 percent).

When using a peak detector to measure unwanted emissions at or near the band edge (within 2 MHz of the authorized band), the following integration procedure can be used.

Set instrument center frequency to the frequency of the emission to be measured (must be within 2 MHz of the authorized band edge).

Set span to 2 MHz

RBW = 100 kHz.

VBW \geq 3 x RBW.

Detector = peak.

Sweep time = auto.

Trace mode = max hold.

Allow sweep to continue until the trace stabilizes (required measurement time may increase for low duty cycle applications)

Compute the power by integrating the spectrum over 1 MHz using the analyzer's band power measurement function with band limits set equal to the emission frequency (femission) \pm 0.5 MHz. If the instrument does not have a band power function, then sum the amplitude levels (in power units) at 100 kHz intervals extending across the 1 MHz spectrum defined by femission \pm 0.5 MHz.

1.1.4 Test Result

Please refer to ANNEX A.7.

5.8 Power Spectral density (PSD)

5.8.1 Limit

FCC §15.247(d)

The same method of determining the conducted output power shall be used to determine the power spectral density. If a peak output power is measured, then a peak power spectral density measurement is required. If an average output power is measured, then an average power spectral density measurement should be used.

5.8.2 Test Setup

See section 4.3.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.8.3 Test Procedure

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.

Set the VBW \geq 3 RBW.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.8.4 Test Result

Please refer to ANNEX A.8.

ANNEX A TEST RESULT

A.1 Output Power

Duty Cycle

Test Mode	Duty Cycle	T (ms)	1/T(kHz)
802.11b	0.98	8.367	0.120
802.11g	0.92	1.367	0.732
802.11n-20 MHz	0.91	1.267	0.789
802.11n-40 MHz	0.84	0.623	1.604

Peak Power Test Data

802.11b Mode:

Channel	Measured Output Peak Power		Limit		Vardiat	
Channel	dBm	mW	dBm	mW	Verdict	
Low	13.30	21.38			Pass	
Middle	12.87	19.36	30	1000	Pass	
High	12.14	16.37			Pass	

802.11g Mode:

Channel	Measured Output Peak Power		Limit		Vordiot
Channel	dBm	mW	dBm	mW	Verdict
Low	10.13	10.30			Pass
Middle	10.06	10.14	30	1000	Pass
High	10.11	10.26			Pass

802.11n-20 MHz Mode:

Channel	Measured Output Peak Power		Limit		Verdict	
Channel	dBm	mW	dBm	mW	Verdici	
Low	10.08	10.19			Pass	
Middle	9.82	9.59	30	1000	Pass	
High	10.21	10.50			Pass	

802.11n-40 MHz Mode:

Channel	Measured Output Peak Power		Limit		Vordiot	
Channel	dBm	mW	dBm	mW	Verdict	
Low	9.57	9.06			Pass	
Middle	9.36	8.63	30	1000	Pass	
High	9.17	8.26			Pass	

A.2 Bandwidth

Test Data

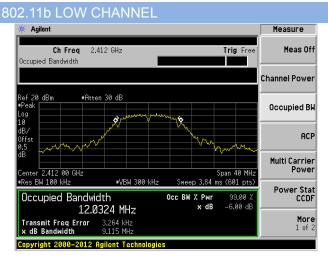
802.11b Mode:

Channel	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)	6 dB Bandwidth Limits (kHz)
Low	9.115	12.0324	≥500
Middle	8.641	11.9307	≥500
High	9.102	11.8784	≥500

802.11g Mode:

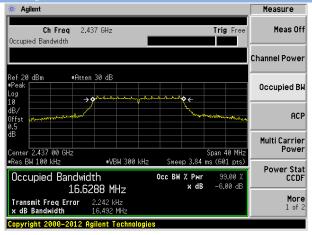
Channel	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)	6 dB Bandwidth Limits (kHz)
Low	16.511	16.626	≥500
Middle	16.492	16.6288	≥500
High	16.544	16.6201	≥500

802.11n-20MHz Mode:

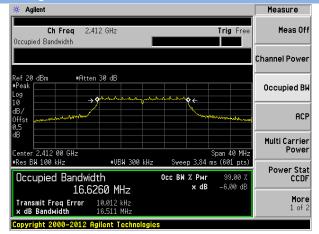

Channal	6 dB Bandwidth	99% Bandwidth	6 dB Bandwidth
Channel	(MHz)	(MHz)	Limits (kHz)
Low	17.711	17.7396	≥500
Middle	17.720	17.7534	≥500
High	17.702	17.7547	≥500

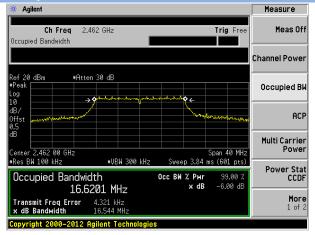
802.11n-40MHz Mode:

Channel	6 dB Bandwidth	99% Bandwidth	6 dB Bandwidth
Channel	(MHz)	(MHz)	Limits (kHz)
Low	35.615	36.1327	≥500
Middle	35.647	36.1586	≥500
High	35.391	36.0294	≥500

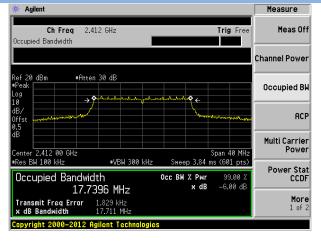

Test plots

802.11b HIGH CHANNEL

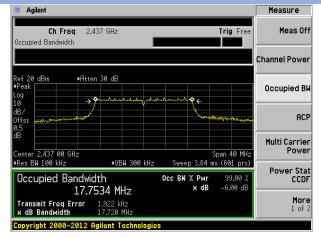

802.11g MIDDLE CHANNEL


802.11b MIDDLE CHANNEL

802.11g LOW CHANNEL

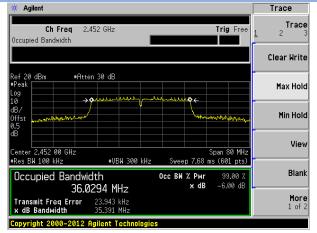


802.11g HIGH CHANNEL



802.11n-20 MHz LOW CHANNEL

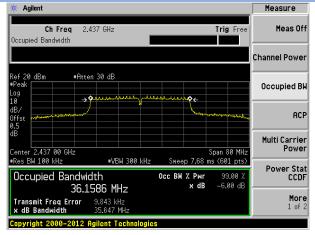
802.11 n-20 MHz MIDDLE CHANNEL



802.11n-40 MHz LOW CHANNEL

Copyright 2000-2012 Agilent Technologies

802.11n-40 MHz HIGH CHANNEL



802.11n-20 MHz HIGH CHANNEL

🔆 Agilent Measure Ch Freq 2.462 GHz Meas Off Trig Free Occupied Bandwidth Channel Power Ref 20 dBm #Atten 30 dB Occupied BW .og 10 ACP)ffst ΗF Multi Carrier 2.462 00 GHz Power Span 40 MHz Cente Res BW 100 kHz ●VBW 300 kHz Sweep 3.84 ms (601 pts) Power Stat CCDF Осс BW % Рwr х dB Occupied Bandwidth -6.00 dE 17.7547 MHz Transmit Freq Error -4.610 kHz x dB Bandwidth 17.702 MHz More 1 of 2

Copyright 2000–2012 Agilent Technologies

802.11n-40 MHz MIDDLE CHANNEL

A.3 Conducted Spurious Emissions

Test Data

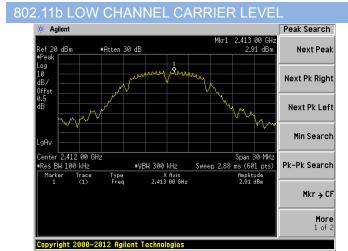
802.11b Mode:

Channel	Measured Max. Out of Band Emission (dBm)	Limit (dBm)		
		Carrier Level	Calculated 20 dBc Limit	Verdict
Low	-45.11	2.91	-17.09	Pass
Middle	-46.42	1.80	-18.20	Pass
High	-47.51	1.36	-18.64	Pass

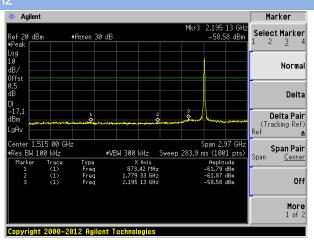
802.11g Mode:

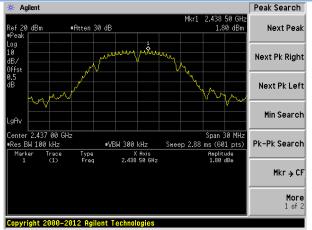
Channel	Measured Max. Out of Band Emission (dBm)	Limit (dBm)		
		Carrier Level	Calculated 20 dBc Limit	Verdict
Low	-54.24	-0.76	-20.76	Pass
Middle	-54.49	-0.65	-20.65	Pass
High	-53.64	-1.07	-21.07	Pass

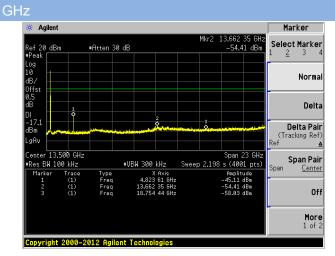
802.11n-20MHz Mode:


Channel	Measured Max. Out of Band Emission (dBm)	Limit (dBm)		
		Carrier Level	Calculated 20 dBc Limit	Verdict
Low	-53.95	-1.07	-21.07	Pass
Middle	-55.32	-0.71	-20.71	Pass
High	-54.72	-0.87	-20.87	Pass

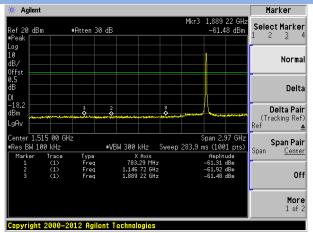
802.11n-40MHz Mode:

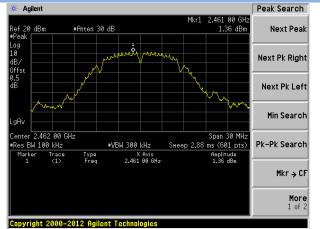

Channel	Measured Max. Out of Band Emission (dBm)	Limit (dBm)		
		Carrier Level	Calculated 20 dBc Limit	Verdict
Low	-55.20	-1.64	-21.64	Pass
Middle	-53.36	-1.61	-21.61	Pass
High	-53.93	-2.68	-22.68	Pass


Test Plots

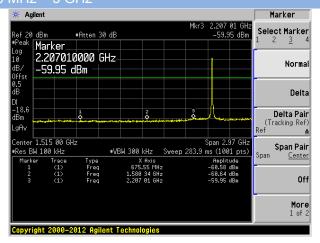

802.11b LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11b MIDDLE CHANNEL CARRIER LEVEL

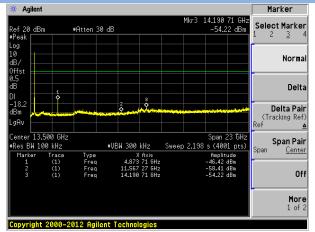

802.11b LOW CHANNEL, SPURIOUS 2 GHz ~ 25



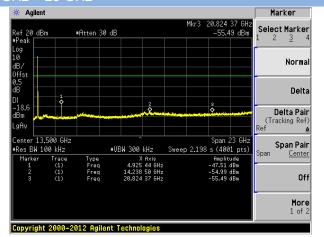
802.11b MIDDLE CHANNEL, SPURIOUS


30 MHz ~ 3 GHz

802.11b HIGH CHANNEL CARRIER LEVEL

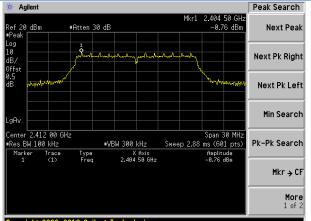


802.11b HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

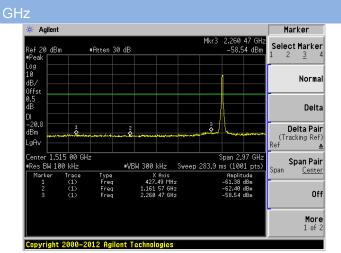


802.11b MIDDLE CHANNEL, SPURIOUS

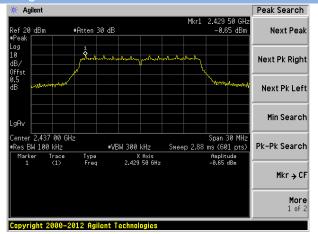
2 GHz ~ 25 GHz



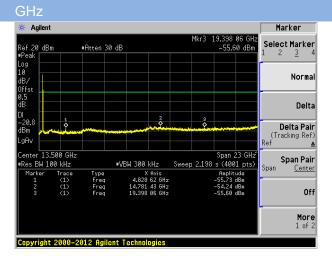
802.11b HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz



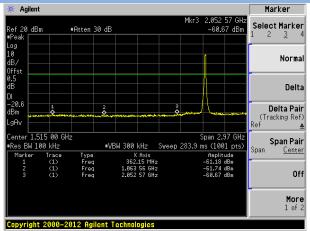
802.11g LOW CHANNEL CARRIER LEVEL

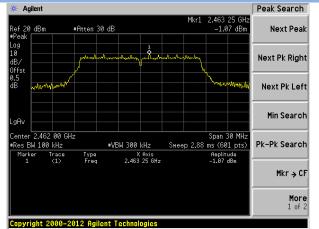


Copyright 2000-2012 Agilent Technologies

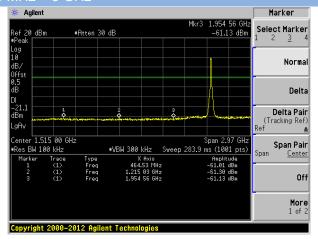

802.11g LOW CHANNEL, SPURIOUS 30 MHz ~ 3

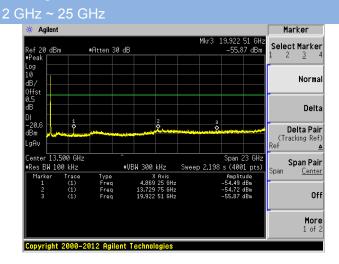
802.11g MIDDLE CHANNEL CARRIER LEVEL

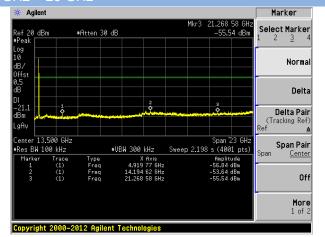

802.11g LOW CHANNEL, SPURIOUS 2 GHz ~ 25



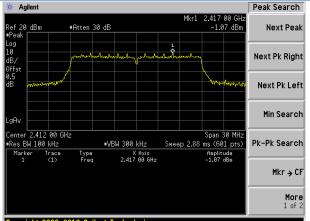
802.11g MIDDLE CHANNEL, SPURIOUS


30 MHz ~ 3 GHz

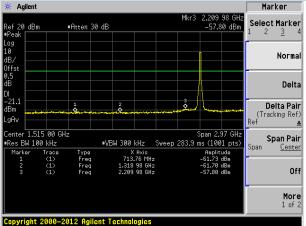

802.11g HIGH CHANNEL CARRIER LEVEL

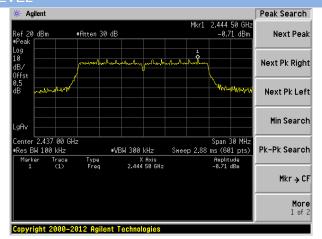

802.11g HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11g MIDDLE CHANNEL, SPURIOUS

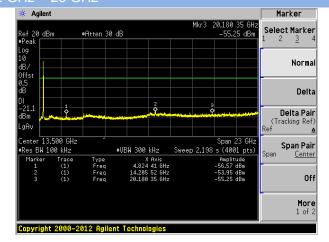


802.11g HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

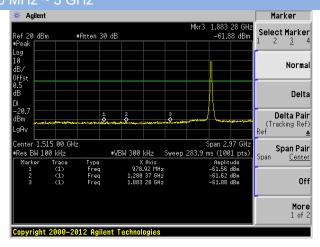

802.11n-20 MHz LOW CHANNEL CARRIER LEVEL


Copyright 2000-2012 Agilent Technologies

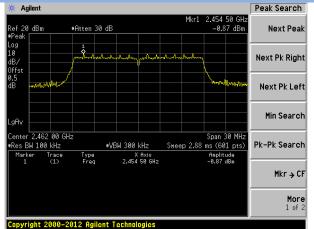
802.11n-20 MHz LOW CHANNEL, SPURIOUS

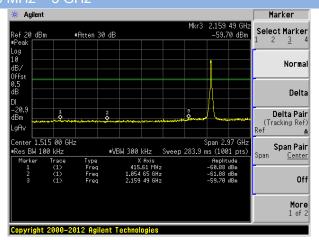


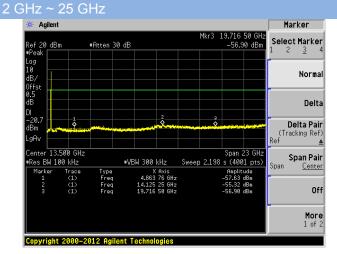
802.11n-20 MHz MIDDLE CHANNEL CARRIER LEVEL

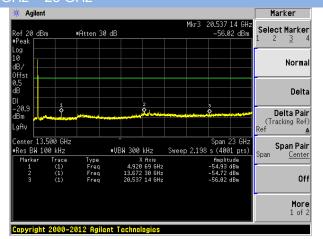


802.11n-20 MHz LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

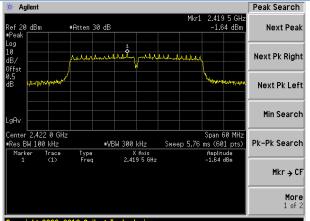



802.11n-20 MHz MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

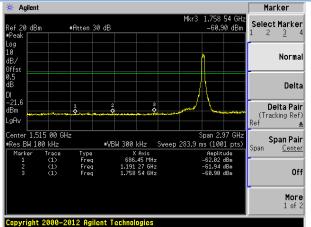

802.11n-20 MHz HIGH CHANNEL CARRIER LEVEL

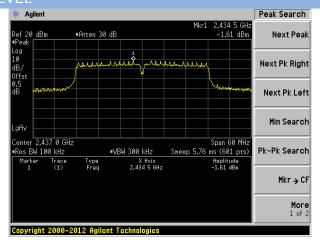

802.11n-20 MHz HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-20 MHz MIDDLE CHANNEL, SPURIOUS

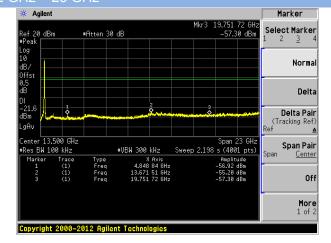


802.11n-20 MHz HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

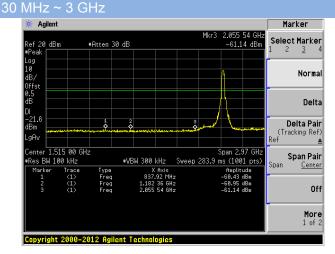

802.11n-40 MHz LOW CHANNEL CARRIER LEVEL


Copyright 2000-2012 Agilent Technologies

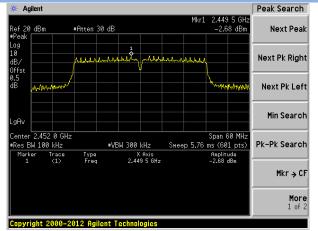
802.11n-40 MHz LOW CHANNEL, SPURIOUS

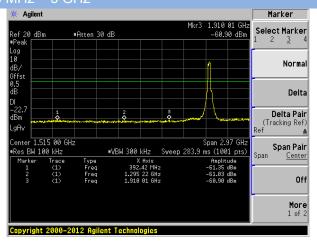


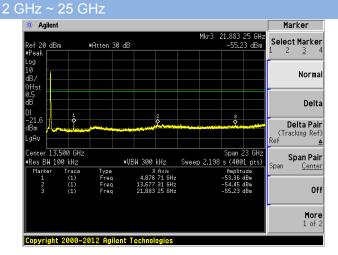
802.11n-40 MHz MIDDLE CHANNEL CARRIER LEVEL

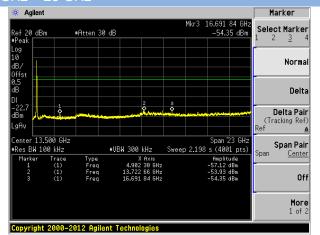


802.11n-40 MHz LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz




802.11n-40 MHz MIDDLE CHANNEL, SPURIOUS


802.11n-40 MHz HIGH CHANNEL CARRIER LEVEL


802.11-n40 MHz HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

802.11n-40 MHz MIDDLE CHANNEL, SPURIOUS

802.11n-40 MHz HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

A.4 Band Edge (Authorized-band band-edge)

Test Data

The lowest and highest channels are tested to verify the band edge emissions. Please refer to the following the plots for emissions values.

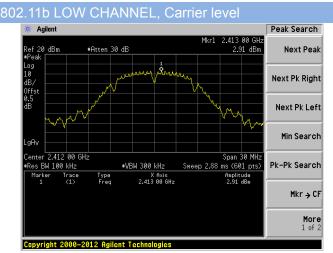
802.11b Mode:

Channel	Measured Max. Band	Limit	(dBm)	
Channel	Edge Emission (dBm)	Carrier Level	evel dBc Limit -16.04	Verdict
Low Channel	-46.24	2.91	-16.04	Pass
High Channel	-56.39	1.36	16.74	Pass

802.11g Mode:

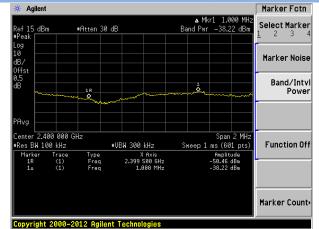
	Measured Max. Band	Limit	(dBm)	
Channel	Edge Emission (dBm)	Carrier Level	Calculated 20 dBc Limit	Verdict
Low Channel	-35.35	-0.76	-18.37	Pass
High Channel	-38.77	-1.07	-19.6	Pass

802.11n-20 MHz Mode:

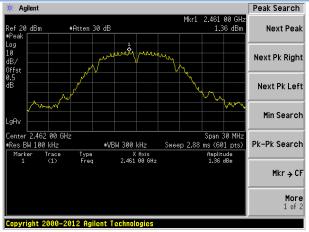

Channel	Measured Max. Band	Limit	(dBm)	
Channel	Edge Emission (dBm)	on (dBm) Carrier Level Calculate	Calculated 20 dBc Limit	Verdict
Low Channel	-34.51	-1.07	-18.44	Pass
High Channel	-35.71	-0.87	-19.44	Pass

802.11n-40 MHz Mode:

	Measured Max. Band	Limit	(dBm)	
Channel	Edge Emission (dBm)	Carrier Level	Calculated 20 dBc Limit	Verdict
Low Channel	-31.70	-1.64	-21.25	Pass
High Channel	-37.94	-2.68	-21.46	Pass



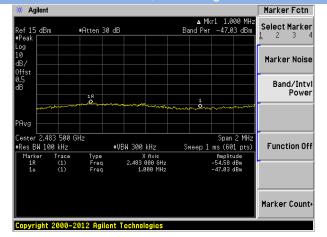
Test Plots

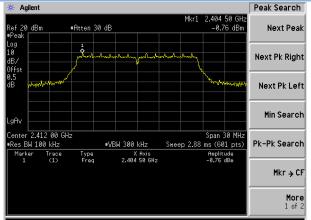


🔆 Agilent

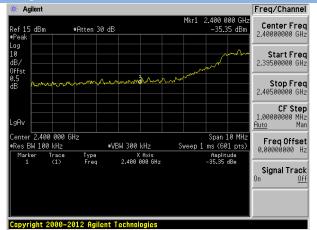


802.11b HIGH CHANNEL, Carrier level

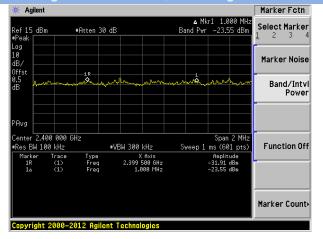



802.11b HIGH CHANNEL, Reference level

802.11b HIGH CHANNEL, Band Edge

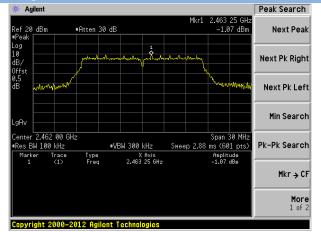


802.11g LOW CHANNEL, Carrier level



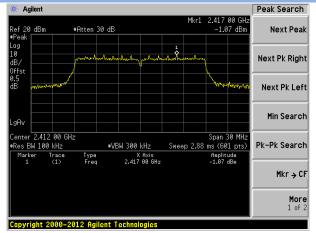
. Copyright 2000-2012 Agilent Technologies

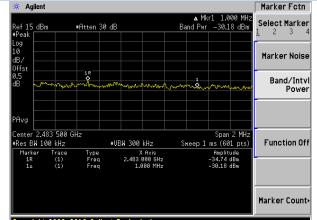
802.11g LOW CHANNEL, Reference level



802.11g LOW CHANNEL, Band Edge

802.11g HIGH CHANNEL, Carrier level

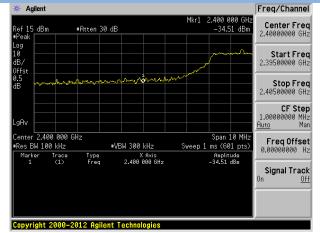


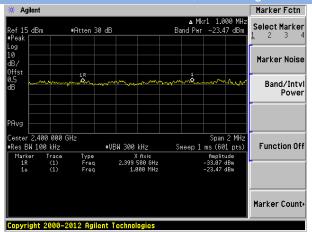

802.11g HIGH CHANNEL, Reference level

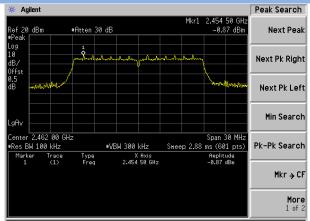
🔆 Aailent Freq/Channel 2.483 500 GHz -38.77 dBm Mkr1 Center Freq 2.48350000 GHz Ref 15_dBm #Atten 30 dB Log 10 dB/ Start Freq 2.47850000 GHz Offst 0.5 dB Stop Freq 2.48850000 GHz CF Step 1.00000000 MHz <u>Auto</u> Man gAv Auto Center 2.483 500 GHz •Res BW 100 kHz Marker Trace 1 (1) Span 10 MHz Sweep 1 ms (601 pts) Freq Offset 0.00000000 Hz ∎VBW 300 kHz Type Freq X Axis 2.483 500 GHz Amplitude -38.77 dBm Signal Track Off

Copyright 2000-2012 Agilent Technologies

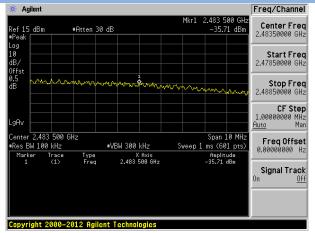
802.11n-20 MHz LOW CHANNEL, Carrier level



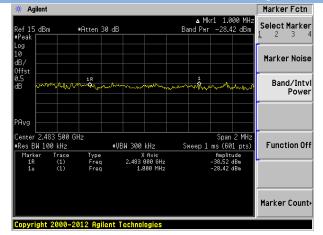

Copyright 2000–2012 Agilent Technologies


Report No.: BL-SZ1640251-601

802.11n-20 MHz LOW CHANNEL, Reference level

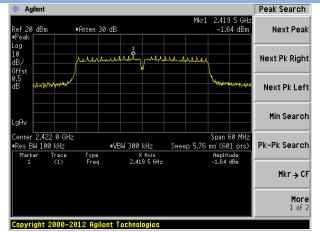


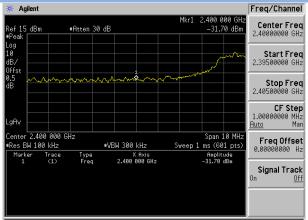
802.11n-20 MHz HIGH CHANNEL, Carrier level



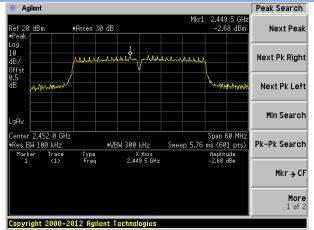
Copyright 2000-2012 Agilent Technologies

802.11n-20 MHz HIGH CHANNEL, Reference level

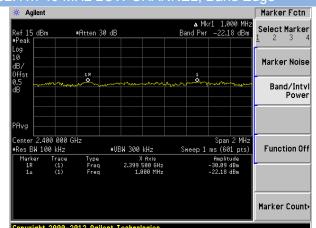

802.11n-20 MHz HIGH CHANNEL, Band Edge


802.11n-20 MHz LOW CHANNEL, Band Edge

802.11n-40 MHz LOW CHANNEL, Carrier level



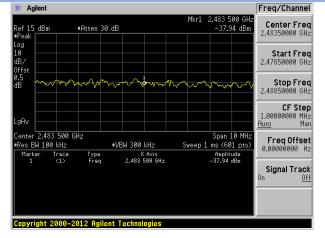
802.11n-40 MHz LOW CHANNEL, Reference level



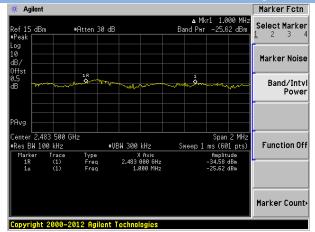
Copyright 2000-2012 Agilent Technologies

802.11n-40 MHz HIGH CHANNEL, Carrier level

802.11n-40 MHz LOW CHANNEL, Band Edge



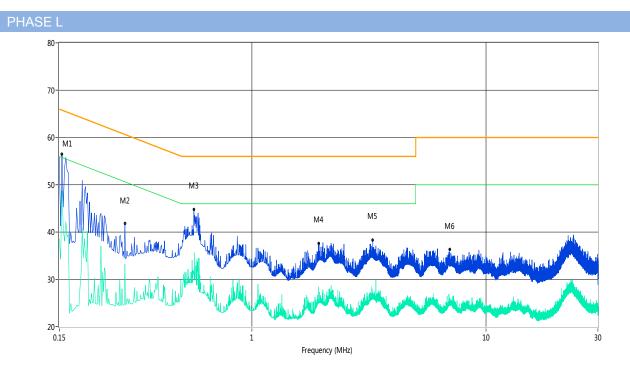
Copyright 2000-2012 Agilent Technologies



Report No.: BL-SZ1640251-601

802.11n-40 MHz HIGH CHANNEL, Reference level

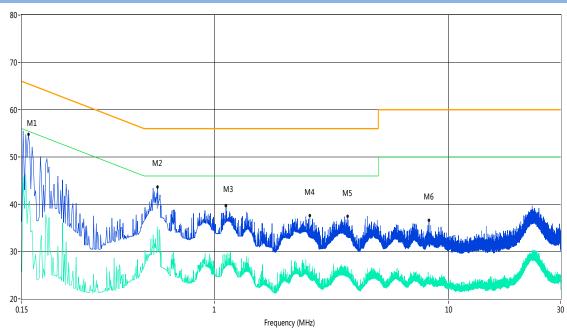
802.11n-40 MHz HIGH CHANNEL, Band Edge



A.5 Conducted Emissions

Note 1: The EUT is working in the Normal link mode.

Note 2: Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.


Test Data and Plots

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Line	Verdict
	(MHz)	(dBuV)		(dBuV)	(dB)			
1	0.15	56.5	13.00	65.9	9.40	Peak	L Line	Pass
1**	0.15	48.7	13.00	55.9	7.20	AV	L Line	Pass
2	0.29	41.8	13.00	62.1	20.30	Peak	L Line	Pass
2**	0.29	33.3	13.00	52.1	18.80	AV	L Line	Pass
3	0.56	44.8	13.00	56.0	11.20	Peak	L Line	Pass
3**	0.56	31.2	13.00	46.0	14.80	AV	L Line	Pass
4	1.93	37.7	13.00	56.0	18.30	Peak	L Line	Pass
4**	1.93	25.4	13.00	46.0	20.60	AV	L Line	Pass
5	3.28	38.4	13.00	56.0	17.60	Peak	L Line	Pass
5**	3.28	28.0	13.00	46.0	18.00	AV	L Line	Pass
6	6.99	36.4	13.00	60.0	23.60	Peak	L Line	Pass
6**	6.99	25.2	13.00	50.0	24.80	AV	L Line	Pass

PHASE N

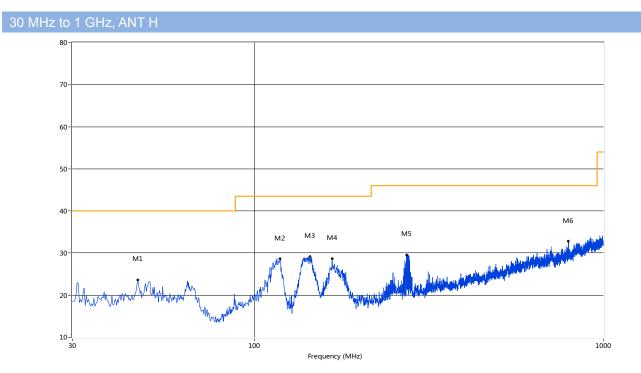
No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Line	Verdict
	(MHz)	(dBuV)		(dBuV)	(dB)			
1	0.16	54.8	13.00	65.7	10.90	Peak	N Line	Pass
1**	0.16	40.0	13.00	55.7	15.70	AV	N Line	Pass
2	0.57	43.7	13.00	56.0	12.30	Peak	N Line	Pass
2**	0.57	34.4	13.00	46.0	11.60	AV	N Line	Pass
3	1.12	39.8	13.00	56.0	16.20	Peak	N Line	Pass
3**	1.12	29.3	13.00	46.0	16.70	AV	N Line	Pass
4	2.55	37.6	13.00	56.0	18.40	Peak	N Line	Pass
4**	2.55	27.5	13.00	46.0	18.50	AV	N Line	Pass
5	3.70	37.4	13.00	56.0	18.60	Peak	N Line	Pass
5**	3.70	26.2	13.00	46.0	19.80	AV	N Line	Pass
6	8.23	36.7	13.00	60.0	23.30	Peak	N Line	Pass
6**	8.23	24.7	13.00	50.0	25.30	AV	N Line	Pass

A.6 Radiated Spurious Emission

Note 1: The symbol of "--" in the table which means not application.

Note 2: For the test data above 1 GHz, According the ANSI C63.10-2013, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

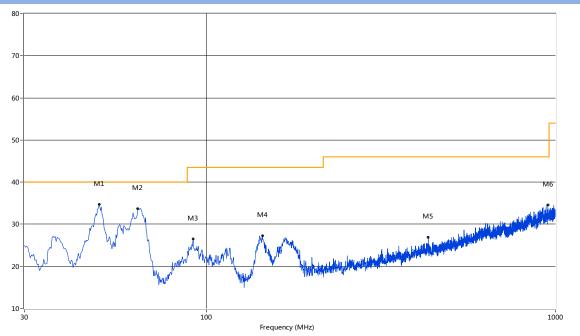
Note 3: The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


Note 4: Below 1 GHz, the configuration is normal link mode.

Note 5: Above 1GHz the marked spikes near 2400 MHz with circle should be ignored because they are Fundamental signal and test highest frequency is (1 GHz ~ 10th Harmonic).

Below 1G

The worst test Data and plots



No.	Frequency	Results	Factor	Limit	Margin	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	46.24	23.63	-18.70	40.0	16.37	Peak	3.30	100	Horizontal	Pass
2	118.25	28.65	-21.45	43.5	14.85	Peak	223.60	100	Horizontal	Pass
3	143.95	29.15	-23.56	43.5	14.35	Peak	360.00	100	Horizontal	Pass
4	166.74	28.66	-22.85	43.5	14.84	Peak	223.60	100	Horizontal	Pass
5	272.68	29.51	-18.46	46.0	16.49	Peak	183.70	100	Horizontal	Pass
6	794.17	32.77	-7.46	46.0	13.23	Peak	208.40	100	Horizontal	Pass

30 MHz to 1 GHz, ANT V

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(o)	(cm)		
1	49.15	34.69	-18.67	40.0	5.31	Peak	77.90	100	Vertical	Pass
2	63.46	33.74	-20.31	40.0	6.26	Peak	93.10	100	Vertical	Pass
3	91.58	26.47	-21.61	43.5	17.03	Peak	259.90	100	Vertical	Pass
4	144.67	27.24	-23.63	43.5	16.26	Peak	353.10	100	Vertical	Pass
5	432.21	26.93	-14.61	46.0	19.07	Peak	304.80	100	Vertical	Pass
6	951.75	34.61	-5.21	46.0	11.39	Peak	57.50	100	Vertical	Pass

Above 1G

Test data:

1 GHz to 25 GHz, ANT V 802.11b Low Channel

No.	Frequency	Results	Factor	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	1276.43	45.09	-4.88	74.0	28.91	Peak	149.90	100	Vertical	Pass
2	2024.74	48.19	-2.20	74.0	25.81	Peak	131.40	100	Vertical	Pass
3	2453.14	94.69	-0.48	74.0	-20.69	Peak	17.20	100	Vertical	N/A
4	2844.04	50.64	1.93	74.0	23.36	Peak	360.00	100	Vertical	Pass
5	4730.57	52.14	13.62	74.0	21.86	Peak	175.30	100	Vertical	Pass
6	5649.09	51.72	15.66	74.0	22.28	Peak	287.10	100	Vertical	Pass

1 GHz to 25 GHz, ANT H 802.11b Low Channel

No.	Frequency	Results	Factor	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	1377.91	44.63	-4.56	74.0	29.37	Peak	360.10	100	Horizontal	Pass
2	1788.80	44.86	-3.70	74.0	29.14	Peak	292.10	100	Horizontal	Pass
3	2413.15	101.99	-0.05	74.0	-27.99	Peak	336.30	100	Horizontal	N/A
4	2989.50	50.71	2.47	74.0	23.29	Peak	234.90	100	Horizontal	Pass
5**	4824.39	49.11	13.76	54.0	4.89	AV	184.20	150.30	Horizontal	Pass
5	4824.39	55.66	13.76	74.0	18.34	Peak	184.20	150.30	Horizontal	Pass
6	5649.09	52.28	15.66	74.0	21.72	Peak	296.10	100	Horizontal	Pass

1 GHz to 25 GHz, ANT V 802.11b Middle Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1395.90	44.22	-4.58	74.0	29.78	Peak	118.60	100	Vertical	Pass
2	1851.29	45.97	-3.11	74.0	28.03	Peak	80.40	100	Vertical	Pass
3	2438.14	95.56	-0.49	74.0	-21.56	Peak	6.50	100	Vertical	N/A
4	2998.50	51.69	2.40	74.0	22.31	Peak	334.50	100	Vertical	Pass
5	4496.63	51.82	12.70	74.0	22.18	Peak	110.80	100	Vertical	Pass
6	5677.58	51.76	15.45	74.0	22.24	Peak	334.40	100	Vertical	Pass

1 GHz to 25 GHz, ANT H 802.11b Middle Channel

No.	Frequency	Results	Factor	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(0)	(cm)		
1	1385.90	44.57	-4.54	74.0	29.43	Peak	211.20	100	Horizontal	Pass
2	1751.81	44.28	-3.77	74.0	29.72	Peak	141.30	100	Horizontal	Pass
3	2228.19	49.61	-0.35	74.0	24.39	Peak	343.40	100	Horizontal	Pass
4	2438.14	103.09	-0.49	74.0	-29.09	Peak	337.10	100	Horizontal	N/A
5	2809.55	51.20	1.86	74.0	22.80	Peak	14.90	100	Horizontal	Pass
6**	4873.98	53.51	13.66	54.0	0.49	AV	225.20	199.40	Horizontal	Pass
6	4873.98	57.18	13.66	74.0	16.82	Peak	225.20	199.40	Horizontal	Pass

1 GHz to 25 GHz, ANT V 802.11b High Channel

No.	Frequency	Results	Factor	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(0)	(cm)		
1	1181.95	43.70	-5.53	74.0	30.30	Peak	232.90	100	Vertical	Pass
2	2126.22	48.81	-1.01	74.0	25.19	Peak	23.70	100	Vertical	Pass
3	2463.63	96.62	-0.55	74.0	-22.62	Peak	17.40	100	Vertical	N/A
4	2688.58	50.77	1.28	74.0	23.23	Peak	92.60	100	Vertical	Pass
5	2855.54	50.70	2.04	74.0	23.30	Peak	29.90	100	Vertical	Pass
6	4847.54	52.44	13.62	74.0	21.56	Peak	31.00	100	Vertical	Pass

1 GHz to 25 GHz, ANT H 802.11b High Channel

No.	Frequency	Results	Factor	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	1398.90	44.90	-4.61	74.0	29.10	Peak	170.70	100	Horizontal	Pass
2	1824.29	45.47	-3.43	74.0	28.53	Peak	0.20	100	Horizontal	Pass
3	2463.13	104.15	-0.56	74.0	-30.15	Peak	336.30	100	Horizontal	N/A
4	2835.04	51.76	1.85	74.0	22.24	Peak	50.60	100	Horizontal	Pass
5	3200.20	47.23	9.22	74.0	26.77	Peak	206.80	100	Horizontal	Pass
6**	4924.12	49.23	13.86	54.0	4.77	AV	155.10	174.80	Horizontal	Pass
6	4924.12	55.07	13.86	74.0	18.93	Peak	155.10	174.80	Horizontal	Pass

1 GHz to 25 GHz, ANT V 802.11g Low Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1333.92	45.23	-4.76	74.0	28.77	Peak	94.50	100	Vertical	Pass
2	1730.32	45.94	-3.97	74.0	28.06	Peak	359.50	100	Vertical	Pass
3	1947.76	47.33	-2.39	74.0	26.67	Peak	62.30	100	Vertical	Pass
4	2419.15	94.34	-0.07	74.0	-20.34	Peak	17.60	100	Vertical	N/A
5	2905.02	50.82	2.62	74.0	23.18	Peak	177.60	100	Vertical	Pass
6	3602.85	48.87	9.95	74.0	25.13	Peak	71.10	100	Vertical	Pass

1 GHz to 25 GHz, ANT H 802.11g Low Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1283.43	44.18	-4.91	74.0	29.82	Peak	142.10	100	Horizontal	Pass
2	1641.34	43.62	-4.23	74.0	30.38	Peak	110.20	100	Horizontal	Pass
3	2252.69	51.40	-0.36	74.0	22.60	Peak	337.80	100	Horizontal	Pass
4	2419.15	104.37	-0.07	74.0	-30.37	Peak	331.50	100	Horizontal	N/A
5	2944.01	50.40	2.39	74.0	23.60	Peak	167.60	100	Horizontal	Pass
6**	4826.04	40.76	13.77	54.0	13.24	AV	177.50	191.20	Horizontal	Pass
6	4826.04	54.84	13.77	74.0	19.16	Peak	177.50	191.20	Horizontal	Pass
7	5649.09	52.35	15.66	74.0	21.65	Peak	327.30	100	Horizontal	Pass

1 GHz to 25 GHz, ANT V 802.11g Middle Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1206.45	44.34	-5.15	74.0	29.66	Peak	140.20	100	Vertical	Pass
2	1833.29	46.52	-3.36	74.0	27.48	Peak	51.30	100	Vertical	Pass
3	2444.14	98.80	-0.39	74.0	-24.80	Peak	4.00	100	Vertical	N/A
4	2959.01	51.31	2.50	74.0	22.69	Peak	114.70	100	Vertical	Pass
5	4136.72	49.75	11.41	74.0	24.25	Peak	225.30	100	Vertical	Pass
6	4852.79	51.39	13.60	74.0	22.61	Peak	359.20	100	Vertical	Pass

1 GHz to 25 GHz, ANT H 802.11g Middle Channel

No.	Frequency	Results	Factor	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	1218.95	44.73	-5.08	74.0	29.27	Peak	355.50	100	Horizontal	Pass
2	1554.36	44.45	-4.07	74.0	29.55	Peak	162.80	100	Horizontal	Pass
3	2065.23	46.98	-1.87	74.0	27.02	Peak	225.60	100	Horizontal	Pass
4	2443.14	103.74	-0.38	74.0	-29.74	Peak	345.90	100	Horizontal	N/A
5	2824.04	50.42	2.06	74.0	23.58	Peak	231.90	100	Horizontal	Pass
6	4486.88	51.45	12.67	74.0	22.55	Peak	166.20	100	Horizontal	Pass
7	4727.57	52.31	13.65	74.0	21.69	Peak	360.30	100	Horizontal	Pass

1 GHz to 25 GHz, ANT V 802.11g High Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1159.46	44.44	-5.81	74.0	29.56	Peak	57.90	100	Vertical	Pass
2	2000.25	47.57	-2.44	74.0	26.43	Peak	70.40	100	Vertical	Pass
3	2465.13	98.16	-0.61	74.0	-24.16	Peak	19.70	100	Vertical	N/A
4	2995.00	50.40	2.37	74.0	23.60	Peak	1.10	100	Vertical	Pass
5	4686.33	51.75	13.20	74.0	22.25	Peak	323.90	100	Vertical	Pass
6	5370.16	52.89	14.64	74.0	21.11	Peak	58.90	100	Vertical	Pass

1 GHz to 25 GHz, ANT H 802.11g High Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1408.40	44.27	-4.66	74.0	29.73	Peak	3.60	100	Horizontal	Pass
2	1868.28	45.91	-3.01	74.0	28.09	Peak	353.50	100	Horizontal	Pass
3	2148.21	48.85	-1.16	74.0	25.15	Peak	322.80	100	Horizontal	Pass
4	2468.63	106.66	-0.49	74.0	-32.66	Peak	348.30	100	Horizontal	N/A
5	2761.56	50.95	1.90	74.0	23.05	Peak	99.30	100	Horizontal	Pass
6	4614.35	51.68	12.94	74.0	22.32	Peak	228.40	100	Horizontal	Pass
7	4925.52	51.94	13.90	74.0	22.06	Peak	153.20	100	Horizontal	Pass

1 GHz to 25 GHz, ANT V 802.11n20 Low Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1208.45	44.31	-5.11	74.0	29.69	Peak	171.00	100	Vertical	Pass
2	2126.72	47.81	-0.98	74.0	26.19	Peak	349.30	100	Vertical	Pass
3	2418.15	93.49	-0.05	74.0	-19.49	Peak	19.20	100	Vertical	N/A
4	2806.55	51.77	1.65	74.0	22.23	Peak	359.00	100	Vertical	Pass
5	4417.90	51.47	12.53	74.0	22.53	Peak	238.80	100	Vertical	Pass
6	5671.58	51.67	15.37	74.0	22.33	Peak	11.10	100	Vertical	Pass

1 GHz to 25 GHz, ANT H 802.11n20 Low Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1330.42	45.06	-4.83	74.0	28.94	Peak	324.20	100	Horizontal	Pass
2	1863.78	45.62	-3.03	74.0	28.38	Peak	152.80	100	Horizontal	Pass
3	2419.15	103.02	-0.07	74.0	-29.02	Peak	336.70	100	Horizontal	N/A
4	2901.52	50.27	2.61	74.0	23.73	Peak	64.00	100	Horizontal	Pass
5**	4838.64	38.05	13.63	54.0	15.95	AV	158.50	200.00	Horizontal	Pass
5	4838.64	52.15	13.63	74.0	21.85	Peak	158.50	200.00	Horizontal	Pass
6	5940.76	52.62	15.72	74.0	21.38	Peak	20.00	100	Horizontal	Pass

1 GHz to 25 GHz, ANT V 802.11n20 Middle Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1333.42	44.46	-4.78	74.0	29.54	Peak	115.00	100	Vertical	Pass
2	1649.84	44.83	-4.05	74.0	29.17	Peak	89.80	100	Vertical	Pass
3	2445.14	96.72	-0.44	74.0	-22.72	Peak	2.30	100	Vertical	N/A
4	2819.05	50.61	2.13	74.0	23.39	Peak	8.00	100	Vertical	Pass
5	3580.35	48.59	9.92	74.0	25.41	Peak	0.90	100	Vertical	Pass
6	4477.88	51.52	12.63	74.0	22.48	Peak	360.00	100	Vertical	Pass

1 GHz to 25 GHz, ANT H 802.11n20 Middle Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1318.92	44.41	-4.76	74.0	29.59	Peak	226.50	100	Horizontal	Pass
2	1592.85	44.47	-4.28	74.0	29.53	Peak	6.20	100	Horizontal	Pass
3	2254.69	49.44	-0.47	74.0	24.56	Peak	341.00	100	Horizontal	Pass
4	2444.14	103.33	-0.39	74.0	-29.33	Peak	347.30	100	Horizontal	N/A
5	2908.52	50.40	2.58	74.0	23.60	Peak	347.30	100	Horizontal	Pass
6	4733.57	52.18	13.61	74.0	21.82	Peak	58.90	100	Horizontal	Pass

1 GHz to 25 GHz, ANT V 802.11n20 High Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1208.45	44.48	-5.11	74.0	29.52	Peak	12.60	100	Vertical	Pass
2	1707.32	44.44	-4.11	74.0	29.56	Peak	228.10	100	Vertical	Pass
3	2050.74	47.28	-1.99	74.0	26.72	Peak	330.00	100	Vertical	Pass
4	2467.63	97.66	-0.51	74.0	-23.66	Peak	12.60	100	Vertical	N/A
5	2851.54	51.30	1.94	74.0	22.70	Peak	330.00	100	Vertical	Pass
6	4474.13	51.47	12.56	74.0	22.53	Peak	308.20	100	Vertical	Pass

1 GHz to 25 GHz, ANT H 802.11n20 High Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1501.37	43.91	-4.32	74.0	30.09	Peak	269.00	100	Horizontal	Pass
2	2112.22	48.77	-1.35	74.0	25.23	Peak	182.00	100	Horizontal	Pass
3	2239.19	50.15	-0.18	74.0	23.85	Peak	203.00	100	Horizontal	Pass
4	2467.13	105.13	-0.47	74.0	-31.13	Peak	221.00	100	Horizontal	N/A
5	2914.52	50.22	2.34	74.0	23.78	Peak	302.00	100	Horizontal	Pass
6	4936.77	51.50	14.11	74.0	22.50	Peak	113.00	100	Horizontal	Pass

1 GHz to 25 GHz, ANT V 802.11n40 Low Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1362.41	44.44	-4.41	74.0	29.56	Peak	244.00	100	Vertical	Pass
2	1715.32	45.01	-4.07	74.0	28.99	Peak	105.00	100	Vertical	Pass
3	2258.19	49.48	-0.48	74.0	24.52	Peak	131.00	100	Vertical	Pass
4	2419.65	92.14	-0.08	74.0	-18.14	Peak	122.00	100	Vertical	N/A
5	2860.53	51.29	2.01	74.0	22.71	Peak	352.00	100	Vertical	Pass
6	4682.58	51.51	13.17	74.0	22.49	Peak	243.00	100	Vertical	Pass

1 GHz to 25 GHz, ANT H 802.11n40 Low Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1364.91	44.95	-4.47	74.0	29.05	Peak	355.00	100	Horizontal	Pass
2	2139.22	49.29	-1.18	74.0	24.71	Peak	163.00	100	Horizontal	Pass
3	2420.64	100.19	-0.11	74.0	-26.19	Peak	161.00	100	Horizontal	N/A
4	2851.04	50.67	1.95	74.0	23.33	Peak	247.00	100	Horizontal	Pass
5	4843.79	52.71	13.59	74.0	21.29	Peak	228.00	100	Horizontal	Pass
6	5650.59	52.27	15.71	74.0	21.73	Peak	231.00	100	Horizontal	Pass

1 GHz to 25 GHz, ANT V 802.11n40 Middle Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1300.42	44.06	-4.71	74.0	29.94	Peak	202.00	100	Vertical	Pass
2	1852.79	45.93	-3.16	74.0	28.07	Peak	281.00	100	Vertical	Pass
3	2438.64	95.79	-0.48	74.0	-21.79	Peak	170.00	100	Vertical	N/A
4	2899.03	50.69	2.61	74.0	23.31	Peak	191.00	100	Vertical	Pass
5	4612.10	51.91	12.94	74.0	22.09	Peak	102.00	100	Vertical	Pass
6	5744.31	52.28	15.54	74.0	21.72	Peak	264.00	100	Vertical	Pass

1 GHz to 25 GHz, ANT H 802.11n40 Middle Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1207.45	44.76	-5.28	74.0	29.24	Peak	309.00	100	Horizontal	Pass
2	1415.40	44.68	-4.60	74.0	29.32	Peak	318.00	100	Horizontal	Pass
3	1887.78	45.86	-2.98	74.0	28.14	Peak	184.00	100	Horizontal	Pass
4	2444.64	101.14	-0.42	74.0	-27.14	Peak	46.00	100	Horizontal	N/A
5	2825.04	51.52	2.03	74.0	22.48	Peak	142.00	100	Horizontal	Pass
6	4612.85	51.42	12.94	74.0	22.58	Peak	234.00	100	Horizontal	Pass

GHz to 25 GHz, ANT V 802.11n40 High Channel

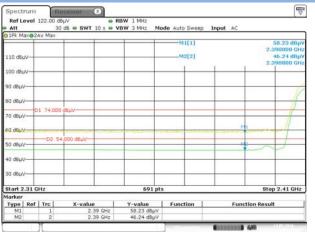
No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1187.95	44.38	-5.45	74.0	29.62	Peak	346.00	100	Vertical	Pass
2	1579.36	44.27	-4.23	74.0	29.73	Peak	328.00	100	Vertical	Pass
3	2000.25	46.81	-2.44	74.0	27.19	Peak	227.00	100	Vertical	Pass
4	2454.64	95.37	-0.52	74.0	-21.37	Peak	192.00	100	Vertical	N/A
5	2734.57	51.66	1.75	74.0	22.34	Peak	161.00	100	Vertical	Pass
6	5824.54	52.47	15.52	74.0	21.53	Peak	169.00	100	Vertical	Pass

1 GHz to 25 GHz, ANT H 802.11n40 High Channel

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1359.41	43.91	-4.42	74.0	30.09	Peak	54.80	100	Horizontal	Pass
2	2252.69	49.58	-0.36	74.0	24.42	Peak	17.00	100	Horizontal	Pass
3	2453.64	102.39	-0.48	74.0	-28.39	Peak	351.90	100	Horizontal	N/A
4	2731.07	50.92	1.81	74.0	23.08	Peak	136.80	100	Horizontal	Pass
5	4698.33	52.47	13.28	74.0	21.53	Peak	359.50	100	Horizontal	Pass
6	5720.32	51.75	15.32	74.0	22.25	Peak	190.00	100	Horizontal	Pass

A.7 Band Edge (Restricted-band band-edge)

Test Data


Note 1: The lowest and highest channels are tested to verify the band edge emissions. Please refer to the following the plots for emissions values.

Note 2: The test data all are tested in the vertical and horizontal antenna which the trace is max hold. So these plots have shown the worst case.

Test Mode	Test Channel	Frequency (MHz)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Remark	Verdict
	Low	2390	58.23	74	15.77	PEAK	Pass
802.11b	Low	2390	46.24	54	7.76	AVERAGE	Pass
002.11D		2483.5	60.65	74	13.35	PEAK	Pass
	HIGH	2483.5	50.29	54	3.71	AVERAGE	Pass
	Low	2390	61.57	74	12.43	PEAK	Pass
<u>802 11 a</u>	Low	2390	47.07	54	6.93	AVERAGE	Pass
802.11g		2483.5	70.69	74	3.31	PEAK	Pass
	HIGH	2483.5	50.37	54	3.63	AVERAGE	Pass
	Low	2390	61.81	74	12.19	PEAK	Pass
902 11-20	Low	2390	47.09	54	6.91	AVERAGE	Pass
802.11n20	HIGH	2483.5	71.51	74	2.49	PEAK	Pass
	пібп	2483.5	51.82	54	2.18	AVERAGE	Pass
	Low	2390	68.03	74	5.97	PEAK	Pass
802 11-10	Low	2390	49.80	54	4.2	AVERAGE	Pass
802.11n40	шен	2483.5	71.10	74	2.9	PEAK	Pass
	HIGH	2483.5	51.93	54	2.07	AVERAGE	Pass

802.11b Mode:

LOW CHANNEL, PEAK, AV

Date: 24.MAY.2016 16:19:48

HIGH CHANNEL, PEAK, AV

Att) dB 🖷 SWT 10 s	 RBW 1 MHz VBW 3 MHz 	Mode Auto Sweep	Input AC	
01Pk Maxo	2Av Max					50.29 dBuV
110 dBµV—				M2[2]		2,4835000 GHz 60,65 dBpV 2,4835000 GHz
100 dBµV-						
90 dBµV						
80 dBµV			_			
70 dBuV	01 74.000	dBµV				
60 dBuV			741			
oo aopr	-02 5	+.000 dBuV	M2			
50 dBµV		1		-		
40 dBµV						
30 dBµV						
Start 2.47	GHz		691	ots		Stop 2.5 GHz
Marker Type Re	Trc	X-value	Y-value	Function	Eunetle	n Result
M1	1	2,4835 GH			Functio	in Nesun

Date: 24.HAY.2016 16:43:24

802.11g Mode:

LOW CHANNEL, PEAK, AV

Att			βµV d8 ● SWT		BW 1 MHz BW 3 MHz	Mod	le Auto	Sweep	Input	AC			
01Pk Ma	bx 0 2/	Av Max	12										
110 dBµ	v							1[1] 2[2]				61.57 2.39000 47.07 2.39000	dBµV
100 dBµ	v				-	+		-	-	-	-	-	0.0058
90 d8µV	+		-		-	-	_		-	_		1	-
80 dBµV	+				-	-			_	_			-
70 dBµV		1 74.000	dBµV			-			-		1,000		
60 deuv	_									N	1 Alan		
50 dBuV			.000 dBµ//							N	2	1	
o noha	-						_		_	_	-		
40 dBµV	+		1			-	-		+	-		+	
30 dBhA	+		-		-	+	-		-	_		+	
Start 2	.31 G	Hz			69	1 pts	5				S	top 2.41	GHz
Marker													
Type	Ref		X-value		Y-value		Func	tion		Fund	tion Res	ult	
M1 M2	_	2		39 GHz 39 GHz	61.57 dB 47.07 dB								

Date: 24.MAY.2016 16:21:20

802.11n-20 MHz Mode:

Low CHANNEL, PEAK,

Att		122.00 d 3	0 dB 🖷 SWT	10 s 🖷 V	BW 3 MHz N	lode Auto S	weep In	nput AC		
01Pk M	BX(02)	Av Max						12		
	-					-M2[2]			7.09 dBµ\
										0000 GH
110 dB	N-					M1[11			1.81 dBp/
			1 1		1 1			. I	2.01	ruuuu an.
100 dBj	N-						1			
										1 miles
90 dBhV	-									1
80 d8µA					-					1-
so ash/	8 L.									11
70 dBµN		1 74.000) qBhA							11
/u aph/			-					MI	Alder	1
60 dBul			-						PT	1
00 000	-						and the state			1
50 dBul	-	-02 5	4.000 dBµV					MP		1
oo oopi								-		
40 dBul	-									
ie ospi										
30 d8µA	-				+ +					
					1 1					
Start 2	.31 G	Hz		0	691 p	its			Stop	2.41 GHz
Marker	-									
Type	Ref	Trc	X-value	1	Y-value	Functio	n	Functi	ion Result	
M1		1		9 GHz	61.81 dBµV					
M2		2	2.3	9 GHz	47.09 dBuV	/				

Date: 24.MAY.2016 16:29:06

HIGH CHANNEL, PEAK, AV

Att		0 dB 🖷 SWT 10 s 🕯	VBW	3 MHz Mo	de Auto	Sweep	Input AC		
01Pk Max02	Av Max			-	- M	2[2]		5	0.37 dBµ
110 dBµV-			-			1[1]		2.48	35000 GH 0.69 dBµ
100 dBµV-						1	1	2.48	35000 GH
TOO OPHA-									
90 dButy-		+ +							
80 dBuV	industrial and	1.11					-		
70 dBuy	1 74.000	D deputie and the	Adden	M1					
				HOWALL W	Auro				
50 dBuV						1100000	and the state	distantion of the	and the second second
50 dBuV	-02 5	4.000 dBµV	-	M2		1			
								-	
40 dBµV							-		
30 dBLV									
00000									
Start 2.47 (Hz	* *	<u></u>	691 pts		10	С	Sto	2.5 GHz
larker									
	Trc	X-value		value	Func	tion	Fund	ction Result	
M1 M2	2	2.4835 GH		0.69 dBµV 0.37 dBµV					

Date: 24.MAY.2016 17:00:26

HIGH CHANNEL, PEAK, AV

	lovol	122.00 d	Bull		BW 1 MHz					
Att	ever					lode Auto	Sweep	Input AC		
D1Pk M	ax 02									
	T				+ +		2[2]			51.82 dBµ
						100			2.4835000 GH	
110 dB	.v-		+			M	1[1]			71.51 dBµ
	· · ·							2	2.48	35000 GH
100 dB	-VL		+		-				+	
_										
90 dBu	V			<u> </u>	-		<u> </u>	-	-	
80 dBu	/	all a design								
1	0	1 74.000	dBµV	pinel il	MI			_		
70 dBu					and the second s	A. C		-	-	
						Bulant make	and any			
60 dBµ	1		+				Callen and the second			and a plant of
		-02 5	4.000 dBuV-		M2		-	_	_	
	1		-					-	-	
50 dBµ	- I -			1						
50 d8µ			1							
			_		+ +			-	-	
50 dBµ' 40 dBµ'	v			-						
40 dBµ	v									
40 dBu 30 dBu	v									
40 dBµ' 30 dBµ' Start 2	V	Hz			691 p	ts			Sto	p 2.5 GHz
40 dBµ 30 dBµ Start 2 1arker	V									p 2.5 GHz
40 dBµ 30 dBµ Start 2 1arker Type	V	Trc	X-value		Y-value	Func	tion	Fu	Sto nction Result	
40 dBµ 30 dBµ Start 2 1arker	V		2.48	e 35 GHz 35 GHz		Func	tion	Fu		

Date: 24.MAY.2016 16:57:54

802.11n-40 MHz Mode:

Low CHANNEL, PEAK, AV

01Pk Max02		d8 🖷 SWT 10 s	VBW 3 MHz	Mode Auto Sweep	Input AC
110 dBµV				M2[2]	49.80 dBµ 2.390000 GH 68.03 dBµ 2.390000 GH
100 dBµV-			-		
90 d8µV-			-		
80 dBµV					
70 dBuV	1 74.000	dBµV	_		MI MARKER
					and the state of t
	-02 54	.000 dBuV	and the second		M2
50 d8µV-			_		
40 dBµV			-		
30 dBµV					
Start 2.31 G	Hz		69	1 pts	Stop 2.41 GHz
Marker Type Ref	Tec	X-value	Y-value	Function	Function Result
M1 M2	1 2	2.39 GF	iz 68.03 di	βμV	r unstroll Result

Date: 24.MAY.2016 17:03:11

HIGH CHANNEL, PEAK, AV

Att	evel 1	22.00 d	dB 🖷 SWT		BW 1 MHz BW 3 MHz N	lode Auto Swe	ep Input	AC	
01Pk M	ax o 2A	v Max	32	94. 	(S) (S)				
110 dB						M2[2] M1[1]		1	51.93 dBµ 2.4835000 GH 71.10 dBµ 2.4835000 GH
100 dBj									
90 dBµ	v		-	-				-	
80 dBu									
an nati		74.000	dBull		MI				
70 dBu		11.000	Contraction and and and and and and and and and an	and y le	1 Andrew Manutaker	the second particular			
							and and an other		
60 dBu	-							marganal	o sustant and the second
60 dB)	-	-D2 5	4.000 dBulV-		M2			Antropola	0
60 dBµ 50 dBµ	-	-02 5	4.000 d8µV—		M2			harroand	0 sunte érrés er
	v	-D2 5	4.000 d8µV—		M2			harrand	0
50 dBµ1 40 dBµ1	v	-D2 5	4,000 d8µV—		M2			haritanai	0
50 dBµ	v		4.000 dBµV—		M2			harrist	0 und nonences
50 dBµ1 40 dBµ1	v		4.000 dBµV		M2			North Service	
50 dBµ ¹ 40 dBµ ¹ 30 dBµ ¹ Start 2 Marker	V	iz			691 p	ts			Stop 2.5 GHz
50 dBµ ¹ 40 dBµ ¹ 30 dBµ ¹ Start 2 Marker	V	iz	X-valu	0 35 GHz	M2	ts		Function	Stop 2.5 GHz

Date: 24.MAY.2016 17:02:09

A.8 Power Spectral Density (PSD)

Test Data

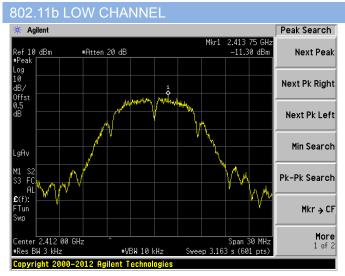
802.11b Mode:

Channel	Spectral power density (dBm/3kHz)	Limit (dBm/3kHz)
Low	-11.30	8
Middle	-12.80	8
High	-12.98	8

802.11g Mode:

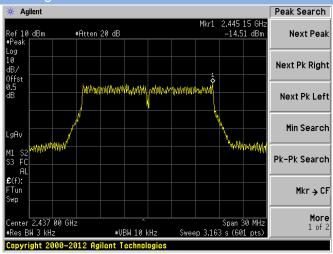
Channel	Spectral power density (dBm/3kHz)	Limit (dBm/3kHz)
Low	-15.60	8
Middle	-14.51	8
High	-15.18	8

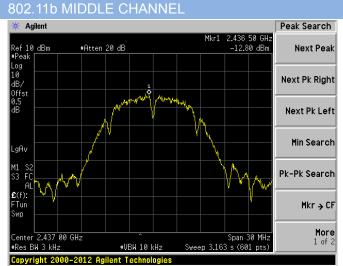
802.11n-20 MHz Mode:

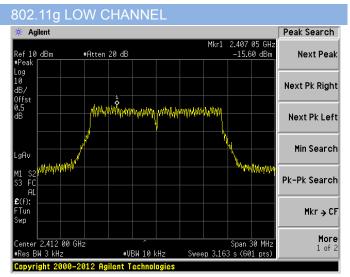

Channel	Spectral power density (dBm/3kHz)	Limit (dBm/3kHz)
Low	-15.46	8
Middle	-15.07	8
High	-15.05	8

802.11n-40 MHz Mode:

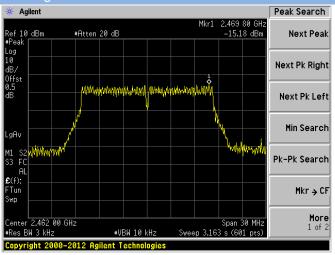
Channel	Spectral power density (dBm/3kHz)	Limit (dBm/3kHz)
Low	-16.61	8
Middle	-16.09	8
High	-18.01	8




Test plots



802.11b HIGH CHANNEL 🔆 Agilent Peak Search Mkr1 2.463 85 GHz -12.98 dBm Ref 10 dBm #Peak #Atten 20 dB Next Peak Log 10 Next Pk Right dB/ Offst 0.5 dB 1 Next Pk Left Min Search .gAv s2 FC Al M1 \$3 Pk-Pk Search £(f): Tun Mkr→CF ίwη More 1 of 2 Span 30 MHz Sweep 3.163 s (601 pts) 2.462 00 GHz enter #Res BW <u>3 kHz</u> #VBW 10 kHz Copyright 2000-2012 Agilent Tech


802.11g MIDDLE CHANNEL

302.11g HIGH CHANNEL

68 / 70

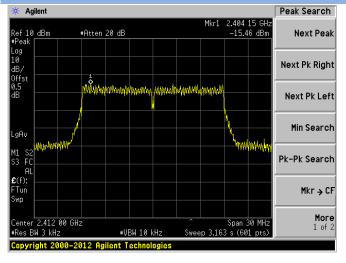
Peak Search

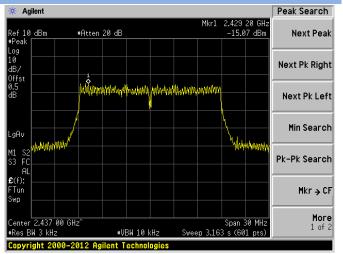
Next Pk Right

Next Pk Left

Min Search

Mkr → CF

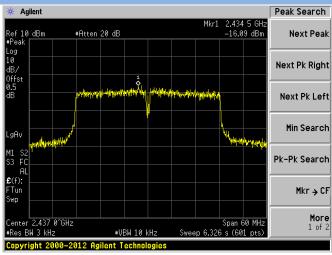

More 1 of 2


Pk-Pk Search

Next Peak

802.11n-20 MHz LOW CHANNEL

10


Mkr1

Span 60 MHz Sweep 6.326 s (601 pts)

2.424 5 GHz -16.61 dBm

802.11n-20 MHz HIGH CHANNEL 🔆 Agilent Peak Search Mkr1 2.467 65 GHz -15.05 dBm Ref 10 dBm #Peak #Atten 20 dB Next Peak Log 10 Next Pk Right dB/ Offst 0.5 dB Next Pk Left Min Search .gAv M1 \$3 Pk-Pk Search **£**(f): Tun Mkr→CF ίwη More 1 of 2 Span 30 MHz Sweep 3.163 s (601 pts) 2.462 00 GHz Center #Res BW <u>3 kHz</u> #VBW 10 kHz pyright 2000–2012 Agilent Techn Co

802.11n-40 MHz MIDDLE CHANNEL

802.11n-40 MHz HIGH CHANNEL

Copyright 2000-2012 Agilent Technologies

#VBW 10 kHz

802.11n-40 MHz LOW CHANNEL

#Atten 20 dB

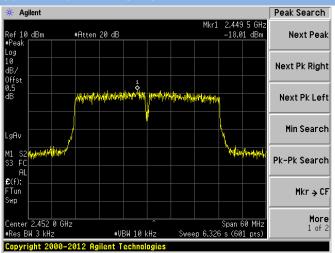
🔆 Agilent

Ref 10 dBm #Peak ∣

+reak Log 10 dB/ Offst 0.5

.gAv

M1 S2 S3 FC AL


£(f):

Tun

wn

enter 2.422 0^GHz

#Res BW 3 kHz

802.11 n-20 MHz MIDDLE CHANNEL

ANNEX B TEST SETUP PHOTOS

Please refer the document "BL-SZ1640251-AR.pdf".

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ1640251-AW.pdf".

ANNEX D EUT INTERNAL PHOTOS

Please refer the document "BL-SZ1640251-AI.pdf".

--END OF REPORT--