RF Exposure Compliance Requirement

1. Standard requirement

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radia frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.
(a) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|E\|^{2},\|H\|^{2}$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100000			5	6

(b) Limits for General Population I Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|E\|^{2},\|H\|^{2}$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/500	30
1500-100000			1.0	30

Note: $\mathrm{f}=$ frequency in MHz; *Plane-wave equivalent power density

2. MPE Calculation Method

$\mathrm{S}\left(\mathrm{mW} / \mathrm{cm}^{2}\right)=\mathrm{P}^{*} \mathrm{G} / 4 \mathrm{Pi}^{*} \mathrm{R}^{2}$
$\mathrm{S}=$ Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$
$\mathrm{P}=$ Peak RF conducted output Power (mW)
$\mathrm{G}=E \mathrm{EUT}$ Antenna numeric gain (numeric)
$\mathrm{R}=$ Separation distance between radiator and human body (cm);
$\mathrm{R}=\sqrt{\left(P^{*} G\right) / 4 P i^{*} S}$

From the maximum EUT RF output power, as well as the gain of the used antenna, according to the RF power density limit above, the minimum distance between the antenna and human body will be calculated.

3. Calculated Result

Frequency (MHz) F	Maximum Antenna Gain (dBi)	Maximum Antenna Gain (Numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Limit of Power Density (S) (mW/cm $)$	Minimum Distance to human body (cm)
881.5	21	125	54.0	251000	$\mathrm{~F} / 300$	922
881.5	21	125	54.0	251000	$\mathrm{~F} / 500$	1190

