

Page 1 of 12

Verified code: 048416

Test Report

Report No.: E202207280743-2

Customer:	Comba Telecom Network Systems Limited
Address:	Flat/Rm 10, 3/F, Bio-Informatics Ctr, 2 Science Park West Avenue, HK Science Park, Pak Shek Kok, N.T. Hong Kong
Sample Name:	Public Safety Bi-directional Amplifier
Sample Model:	RX78V2F-B-AC
Receive Sample Date:	Aug.02,2022
Test Date:	Aug.03,2022 ~ Aug.15,2022
Reference Document:	FCC PART 90 §90.223-RF exposure
Test Result:	Pass
FCC ID:	PX8RX78V2F-B
Prepared by: Hua	g lifen J Reviewed by: Whe Harting Approved by: Kiao Liony
	GUANGZHOU GRG METROLOGY & TEST CO., LTD.

Issued Date: 2022-09-06

GUANGZHOU GRG METROLOGY & TEST CO., LTD.

Address: No.163,Pingyun Road, West of Huangpu Avenue, Guangzhou, Guangdong, China Tel: (+86) 400-602-0999 FAX: (+86) 020-38698685 Web: http://www.grgtest.com

Statement

1. The report is invalid without "special seal for inspection and testing"; some copies are invalid; The report is invalid if it is altered or missing; The report is invalid without the signature of the person who prepared, reviewed and approved it.

2. The sample information is provided by the client and responsible for its authenticity; The content of the report is only valid for the samples sent this time.

3. When there are reports in both Chinese and English, the Chinese version will prevail when the language problems are inconsistent.

4. If there is any objection concerning the report, please inform us within 15 days from the date of receiving the report.

5. Without the agreement of the laboratory, the client is not authorized to use the test results for unapproved propaganda.

6. The test report without CMA approval mark is only used for scientific research, teaching, internal quality control and other purposes.

TABLE OF CONTENTS

1.	App	plicant information	4
	1.1.	Client information	4
	1.2.	Manufacturer and Factory	4
2.	Gen	neral description of EUT	4
	2.1.	Basic description of EUT	4
3.	Ass	sessment result summary	5
4.	Lab	boratory	6
/	4.1.	Laboratory	6
(&	4.2.	Accreditations	6
5.	Rad	dio frequency radiation exposure	7
	5.1.	Applicable Standard	7
	5.2.	Limits for Maximum Permissible Exposure (MPE)	7
	5.3.	Test results	7
	5.3.	.1. 700MHz Band:	7
	5.3.	.2. 800MHz Band:	9
	5.4.	Test Results	9
AF	PENI	DIX A. PHOTOGRAPHS OF EUT	10
	A.1	External photos	10

JG

G

1. Applicant information

1.1. Client information

Name:	Comba Telecom Network Systems Limited
Address:	Flat/Rm 10, 3/F, Bio-Informatics Ctr, 2 Science Park West Avenue, HK
	Science Park, Pak Shek Kok, N.T. Hong Kong

1.2. Manufacturer and Factory

Manufacture Name:	Comba Network Systems Company Limited
Address:	No. 10 Shenzhou Road, Guangzhou Science City, Guangzhou 510663, Guangdong, P.R.China
Factory:	Comba Telecom Technology (Guangzhou) Ltd.
Address:	No. 6 Jinbi Road, Economics and Technology Development District, Guangzhou, Guangdong, China

2. General description of EUT

2.1. Basic description of EUT

Product Name:	Public Safety Bi-directional Amplifier	
Product Model:	RX78V2F-B-AC	
Adding Model:		
Trade Name:	Comba	
Power Supply:	Typical working voltage: AC 110V, 50/60Hz	
Power cord:	AC power cord	
Frequency Band:	700MHz Band: Downlink: 758MHz ~ 775MHz, Uplink: 788MHz ~805MHz 800MHz Band: Downlink: 851MHz ~861MHz, Uplink: 806MHz ~ 816MHz	
Nominal Output Power:	Downlink: 33dBm Uplink: 27dBm	
Nominal System	Downlink: 90dB	
Gain:	Uplink: 90dB	
EUT Operating Temperature:	-33 °C to +55 °C	
Operating Humidity:	5% to 95%	
Antenna Type:	N/A [©]	

NOTE 1: This EUT is a Broadband device, which belongs to Class B signal booster.

NOTE 2: ⁽¹⁾ It's an indoor device, the EUT does not provide antenna by manufacturer's statement, but it is required that the sum of antenna gain and cable loss shall not exceed 3dBi for downlink and 9 dBi for uplink when the project is used by manufacturer's statement.

GI

3. Assessment result summary

Item	Assessment Requirement	Assessment Method
RF exposure	FCC PART 90 §90.223	FCC PART 1.1307(b) FCC PART 2.1091 FCC PART 2.1093

4. Laboratory

4.1. Laboratory

The tests & measurements refer to this report were performed by Shenzhen EMC Laboratory of Guangzhou GRG Metrology & Test Co., Ltd.

Testing Certificate Number: 2861.01

Add.	:	No.1301 Guanguang Road Xinlan Community, Guanlan Street, Longhua District Shenzhen, 518110, People's Republic of China.
P.C.	:	518110
Tel	:	0755-61180008

Fax : 0755-61180008

4.2. Accreditations

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USAA2LA(Certificate #2861.01)The measuring facilityof laboratories has been authorized or registered by the following approval agencies.CanadaISED (Company Number: 24897, CAB identifier:CN0069)USAFCC (Registration Number: 759402, Designation Number:CN1198)

Copies of granted accreditation certificates are available for downloading from our web site, <u>http://www.grgtest.com</u>

5. Radio frequency radiation exposure

5.1. Applicable Standard

According to the requirements of FCC PART 90 § 90.223, the test method of RF exposure is based on FCC PART 1.1307(b), FCC PART 2.1091 and FCC PART 2.1093, so RF exposure is calculated.

5.2. Limits for Maximum Permissible Exposure (MPE)

The limits are shown in Table 4-1.

	.	<u> </u>		AT 1	1.
Table 4-1	I imits to	• (i eneral	Population	/Lincontrol	led Exposure
1 abic + 1	Linnus 101	General	i i opulation		icu Exposure

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m2)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ₂)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

Note: f=frequency in MHz; *=Plane-wave equivalent power density

Prediction of MPE limit at given distance, equations from OET Bulletin 65, Edition 97 - 01:

 $S = (P * G) / (4 * \pi * R^2)$ (where PG = EIRP) Where:

S = power density

P= power input to antenna

G= numeric gain of the antenna

R= distance to the center of radiation of the antenna

5.3. Test results

Devices that operate under CFR47 Part 90 are subject to routine environmental evaluation for RF exposure prior to equipment authorization or use if they operate at frequencies of 1.5 GHz or below and limit for power density for general population/uncontrolled exposure is f/1500 W/m². The maximum output power by manufacturer statement is not more than 34dBm for Downlink and 28dBm for Uplink, the sum of antenna gain shall not exceed 3dBi for downlink and 9 dBi for uplink by manufacturer's statement, therefore, in this report, MPE adopts the maximum output power evaluation, so it has the following assessment:

5.3.1. 700MHz Band:

5.5.1.1. Frequency range: /58MHZ~/68MHZ//88MHZ ~/98MHZ	
5.3.1.1.1. Downlink(758MHz~768MHz)	
Prediction frequency (MHz):	763.0
Maximum peak output power at antenna input terminal (dBm):	34.0
Maximum peak output power at antenna input terminal (W):	2.5
Maximum antenna gain (dBi):	3.0
Maximum RF output power (W):	5.0
MPE limit for uncontrolled exposure at predication frequency (W/ m $\frac{3}{2}$: S = f/1500=763/1500	0.51

R1=
$$\sqrt{\frac{PG}{4\pi S}} = \sqrt{\frac{5.0}{0.51*4*3.14}} \approx 0.89 \text{m}$$

0.51

0G

Conversely, when R>0.89m, and S<
$$\frac{PG}{4\pi R^2} = \frac{5.0}{4*3.14*0.89^2} \approx 0.51 (W/m^2)$$

5.3.1.1.2. Uplink (788MHz ~798MHz)

Prediction frequency (MHz):	793.0
Maximum peak output power at antenna input terminal (dBm):	28.0
Maximum peak output power at antenna input terminal (W):	0.63
Maximum antenna gain (dBi):	9.0
Maximum RF output power (W):	5.0
MPE limit for uncontrolled exposure at predication frequency (W/ m $\frac{3}{5}$: S= f/1500=793.0/1500	0.53

R1= $\sqrt{\frac{PG}{4\pi S}} = \sqrt{\frac{5.0}{0.53*4*3.14}} \approx 0.87 \text{m}$

Conversely, when R>0.87m, and S<
$$\frac{PG}{4\pi R^2} = \frac{5.0}{4*3.14*0.87^2} \approx 0.53 (W/m^2)$$

5.3.1.2. Frequency range: 768MHz~775MHz/798MHz ~805MHz5.3.1.2.1. Downlink (768MHz~775MHz)

Prediction frequency (MHz):	768
Maximum peak output power at antenna input terminal (dBm):	34.0
Maximum peak output power at antenna input terminal (W):	2.5
Maximum antenna gain (dBi):	3.0
Maximum RF output power (W):	5.0

MPE limit for uncontrolled exposure at predication frequency (W/ m $\frac{3}{2}$: S= f/1500=768/1500

R1=
$$\sqrt{\frac{PG}{4\pi S}} = \sqrt{\frac{4.90}{0.51*4*3.14}} \approx 0.87 \text{m}$$

Conversely, when R>0.87m, and S<
$$\frac{PG}{4\pi R^2} = \frac{4.9}{4*3.14*0.87^2} \approx 0.51 (W/m^2)$$

5.3.1.2.2. Uplink (798MHz ~805MHz)

Prediction frequency (MHz):	798.0
Maximum peak output power at antenna input terminal (dBm):	28.0
Maximum peak output power at antenna input terminal (W):	0.63
Maximum antenna gain (dBi):	9.0
Maximum RF output power (W):	5.0

MPE limit for uncontrolled exposure at predication frequency (W/ m $\frac{3}{2}$: S= f/1500=798.0/1500

R1=
$$\sqrt{\frac{PG}{4\pi S}} = \sqrt{\frac{5.0}{0.53*4*3.14}} \approx 0.87 \text{m}$$

Conversely, when R>0.87m

Prediction frequency (MHz):

h, and S<
$$\frac{PG}{4\pi R^2} = \frac{5.0}{4*3.14*0.87^2} \approx 0.53 (W/m^2)$$

5.3.2. 800MHz Band:

5.3.2.1. Downlink (851MHz~861MHz)

Maximum peak output power at antenna input terminal (dBm):	34.0
Maximum peak output power at antenna input terminal (W):	2.5
Maximum antenna gain (dBi):	3.0
Maximum RF output power (W):	5.0
MPE limit for uncontrolled exposure at predication frequency (W/ m $\frac{3}{1500}$: S= f/1500=851/1500	0.57

R1=
$$\sqrt{\frac{PG}{4\pi S}} = \sqrt{\frac{5.0}{0.57*4*3.14}} \approx 0.84$$
m

Conversely, when R>0.84m, and S<
$$\frac{10}{4\pi R^2} = \frac{4.79}{4*3.14*0.84^{\circ}2} \approx 0.57 (W/m^2)$$

DC

5.3.2.2. Uplink (806MHz~816MHz)

~ -

Prediction frequency (MHZ):	806
Maximum peak output power at antenna input terminal (dBm):	28.0
Maximum peak output power at antenna input terminal (W):	0.63
Maximum antenna gain (dBi):	9.0
Maximum RF output power (W):	5.0
MPE limit for uncontrolled exposure at predication frequency (W/ m $\frac{3}{5}$: S = f/1500=806/1500	0.54

R1= $\sqrt{\frac{PG}{4\pi S}} = \sqrt{\frac{5.0}{0.54*4*3.14}} \approx 0.86m$

Conversely, when R>0.86m, and S< $\frac{PG}{4\pi R^2} = \frac{5.0}{4*3.14*0.86^2} \approx 0.54 (W/m^2)$

5.4. Test Results

The above all, when the Maximum antenna gain is 3dBi for downlink and the shortest distance from the human specific is 0.87m, the device is compliant with the requirement MPE limit for uncontrolled exposure.

851

ES

APPENDIX A. PHOTOGRAPHS OF EUT

A.1 External photos

Top surface

CO_X

Side surface-1

Side surface-2

í I

Bottom surface

----- End of Report -----