

198 Kezhu Road, Scientech Park, Guangzhou Economic & Technological Development District, Guangzhou, China 510663 Telephone: +86 (0) 20 8215555 Fax: +86 (0) 20 82075059 Email: ee.guangzhou@sgs.com FEDERAL COMMUNICATIONS COMMISSION Registration number: 282399

Report No.: GZEM120500151101 Page: 1 of 60 FCC ID: PX8RX-8139

TEST REPORT

Application No.:	GZEM1205001511RF
Applicant:	Comba Telecom Ltd.
FCC ID:	PX8RX-8139
Product Name:	850MHz CDMA and UMTS Dual Mode Wireless Band Selective Repeater
Model No.:	RX-8139
Trade Mark:	Comba
Standards:	FCC Part 22, FCC Part 2
Date of Receipt:	2012-05-08
Date of Test:	2012-05-08 to 2012-05-16
Date of Issue:	2012-06-14
Test Result :	Pass*

* In the configuration tested, the EUT detailed in this report complied with the standards specified above. Please refer to section 3 of this report for further details.

Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: GZEM120500151101 Page: 2 of 60 FCC ID: PX8RX-8139

2 Version

Revision Record								
Version	Chapter	Date	Modifier	Remark				
00		2012-06-14		Original				

Authorized for issue by:		
Tested By	Danzel He (Daniel Hew) /Project Engineer	2012-05-08 to 2012-05-15 Date
Prepared By	Danzel He (Daniel Hew)/Clerk	2012-05-30 Date
Checked By	(Strong Yao)/Reviewer	2012-06-14 Date

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's solve ereponsibility is to its Client and this document does not exercise parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document for 90 days only.

Report No.: GZEM120500151101 Page: 3 of 60 FCC ID: PX8RX-8139

3 Test Summary

Test Item	Test Requirement	Test Method	Result
Output Dowor	ECC part 22 012	FCC part 2.1046	PASS
Output Power	FCC part 22.913	2-11-04/EAB/RF	PASS
Conducted Spurious	ECC part 22 017	FCC part 2.1051	PASS
Emissions	FCC part 22.917	2-11-04/EAB/RF	PA00
Band Edge&	ECC nort 00.017	FCC part 2.1051	
Intermodulation	FCC part 22.917	2-11-04/EAB/RF	PASS
Radiated Spurious	ECC part 22 017	FCC part 2.1053	DACC
Emissions	FCC part 22.917	2-11-04/EAB/RF	PASS
Occupied Developidth	ECC part 0 1040	FCC part 2.1049	
Occupied Bandwidth	FCC part 2.1049	2-11-04/EAB/RF	PASS
Out of Band Rejection	2-11-04/EAB/RF	2-11-04/EAB/RF	PASS
Frequency Stablility	FCC part 22.355	FCC part 2.1055	PASS
Bemerk			

Remark:

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

Report No.: GZEM120500151101 Page: 4 of 60 FCC ID: PX8RX-8139

4 Contents

			Page
1	COVE	ER PAGE	1
2	VERS	SION	2
3	TEST	SUMMARY	
4	CON	rents	4
5	GENE	ERAL INFORMATION	
-	_		
		GENERAL DESCRIPTION OF E.U.T.	
		DETAILS OF E.U.T.	
		PRODUCT DESCRIPTION	
		STANDARDS APPLICABLE FOR TESTING	
		TEST LOCATION	
	5.7	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.8	TEST FACILITY	7
6	EQUI	PMENT USED DURING TEST	
7	TEST	RESULTS	
	7.1	E.U.T. TEST CONDITIONS	
		Test Procedure & M easurement Data	
	7.2.1	RF Output Power	
	7.2.2	Conducted Spurious Emissions	
	7.2.3	Band Edge& Intermodulation	
	7.2.4	Radiated Spurious Emissions	
	7.2.5	Occupied Bandwidth	
	7.2.6 7.2.7	Out of Band Rejection Frequency Stability	
	1.2.1		

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's solve ereponsibility is to its Client and this document does not exercise parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document for 90 days only.

Report No.: GZEM120500151101 Page: 5 of 60 FCC ID: PX8RX-8139

5 General Information

5.1 Client Information

Applicant Name:	Comba Telecom Ltd.
Applicant Address:	611 East Wing, No. 8 Science Park West Avenue, Hong Kong Science Park, Tai Po, Hong Kong
Manufacturer:	Comba Telecom Systems(Guangzhou)Ltd.
Address of Manufacturer:	No.10 Shenzhou Road, Guangzhou Science City,Guangzhou 510663,Guangdong,P.R.China

5.2 General Description of E.U.T.

Product Name:	850MHz CDMA and UMTS Dual Mode Wireless Band Selective Repeater
Model No.:	RX-8139
Power Supply:	AC 100-240V 47 to 63Hz
Test power:	AC 230V
Operating Temperature:	-10 °C to +55°C
Operating Humidity:	≤ 95%

5.3 Details of E.U.T.

Type of Modulation	CDMA & WCDMA
Emission Designator:	F9W(CDMA),
Emission Designator:	F9W (WCDMA)
Froquency Band:	Downlink: 870MHz to 882.5MHz
Frequency Band:	Uplink: 825MHz to 837.5MHz
Opereating Band:	CDMA Band:
	Downlink: 870MHz to 877.5MHz
	Uplink: 825MHz to 832.5MHz
	WCDMA Band:
	Downlink: 877.5MHz to 882.5MHz
	Uplink: 832.5MHz to 837.5MHz
Nominal Power Output:	10Wfor downlink
Nominal System Gain:	90dB for downlink

Report No.: GZEM120500151101 Page: 6 of 60 FCC ID: PX8RX-8139

5.4 Product Description

RX-8139 850MHz CDMA and UMTS Dual Mode Wireless Band Selective Repeater (hereinafter called "RX-8139") is designed for 850MHz network. Working frequency and working system can be customized for flexible configuration..

5.5 Standards Applicable for Testing

The standard used was FCC part 2 & FCC part 22

5.6 Test Location

All tests were performed at: SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory, 198 Kezhu Road, Scientech Park, Guangzhou Economic & Technology Development District, Guangzhou, China 510663 Tel: +86 20 82155555 Fax: +86 20 82075059 No tests were sub-contracted.

5.7 Other Information Requested by the Customer

None.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_edocument.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document for 90 days only.

Report No.: GZEM120500151101 Page: 7 of 60 FCC ID: PX8RX-8139

5.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• NVLAP (Lab Code: 200611-0)

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory is recognized under the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 200611-0.

• ACMA

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our NVLAP accreditation.

• SGS UK(Certificate No.: 32), SGS-TUV SAARLAND and SGS-FIMKO

Have approved SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory as a supplier of EMC TESTING SERVICES and SAFETY TESTING SERVICES.

• CNAS (Lab Code: L0167)

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been assessed and in compliance with CNAS-CL01:2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

• FCC (Registration No.: 282399)

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 282399, May 31, 2002.

• Industry Canada (Registration No.: 4620B-1)

The 3m/10m Alternate Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering of Industry Canada for radio equipment testing with Registration No. 4620B-1.

• VCCI (Registration No.: R-2460, C-2584, G-449 and T-1179)

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2460, C-2584, G-449 and T-1179 respectively.

• CBTL (Lab Code: TL129)

SGS-CSTC Standards Technical Services Co., Ltd., E&E Laboratory has been assessed and fully comply with the requirements of ISO/IEC 17025:2005, the Basic Rules, IECEE 01:2006-10 and Rules of procedure IECEE 02:2006-10, and the relevant IECEE CB-Scheme Operational documents.

Report No.: GZEM120500151101 Page: 8 of 60 FCC ID: PX8RX-8139

RE in Cha					Cal.Due date	Calibration
No.	Test Equipment	Manufacturer	Model No.	Serial No.	(YYYY-MM-DD)	Interval
EMC0525	Compact Semi- Anechoic Chamber	ChangZhou ZhongYu	N/A	N/A	2012-09-06	2Y
EMC0522	EMI Test Receiver	Rohde & Schwarz	ESIB26	100283	2012-11-11	1Y
EMC0056	EMI Test Receiver	Rohde & Schwarz	ESCI	10036	2013-03-12	1Y
EMC0528	RI High frequency Cable	SGS	20 m	N/A	2012-06-09	1Y
EMC2025	Trilog Broadband Antenna 30-3000MHz	SCHWARZBECK MESS- ELEKTRONIK	VULB 9163	9163-450	2012-10-20	1Y
EMC0524	Bi-log Type Antenna	Schaffner -Chase	CBL6112B	2966	2012-11-28	1Y
EMC0519	Bilog Type Antenna	Schaffner -Chase	CBL6143	5070	2012-11-28	1Y
EMC2026	Horn Antenna 1-18GHz	R&S	BBHA 9120D	9120D-841	2012-10-20	1Y
EMC0518	Horn Antenna	Rohde & Schwarz	HF906	100096	2012-08-29	1Y
EMC0521	1-26.5 GHz Pre-Amplifier	Agilent	8449B	3008A01649	2012-08-29	1Y
EMC0049	Amplifier	Agilent	8447D	2944A10862	2013-03-12	1Y
EMC0075	310N Amplifier	Sonama	310N	272683	2012-08-29	1Y
EMC0523	Active Loop Antenna	EMCO	6502	42963	2012-11-17	1Y
EMC2041	Broad-Band Horn Antenna (14)15-26.5(40)GHz	SCHWARZBECK MESS- ELEKTRONI	BBHA 9170	9170-375	2014-06-01	3Y
EMC0530	10m Semi- Anechoic Chamber	ETS	N/A	N/A	2014-04-27	2Y

6 Equipment Used during Test

Conducted Emission							
No.	To at Equipment	Manufacturer	Model No.	Serial No.	Cal.Due date	Calibratio	
NO.	Test Equipment	Manufacturer	woder no.	Serial No.	(YYYY-MM-DD)	n Interval	
EMC0306	Shielding Room	Zhong Yu	8 x 3 x 3.8 m ³	N/A	N/A	N/A	
EMC0118	Two-line v-netwok	R&S	ENV216	100359	2012-08-29	1Y	
EMC0102	LISN	SCHAFFNER CHASE	MN2050D/1	1421	2012-11-23	1Y	
EMC2046	Artificial Mains Network (LISN)	AFJ Instruments	LT32C	S.N.320311201 50	2013-03-12	1Y	
EMC0506	EMI Test Receiver	Rohde & Schwarz	ESCS30	100085	2012-11-24	1Y	
EMC0107	Coaxial Cable	SGS	2m	N/A	2012-07-18	1Y	
EMC0106	Voltage Probe	SGS	N/A	N/A	N/A	1Y	
EMC0120	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T8-02	20550	2012-11-11	1Y	
EMC0121	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T4-02	20549	2012-11-11	1Y	
EMC0122	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T2-02	20548	2012-11-11	1Y	
EMC167	Conical metal housing	SGS-EMC	N/A	N/A	2013-02-16	1Y	

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's soft ereponsibility is to its Client is document does not exercise the company's fundings at the time of their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document for 90 days only.

Report No.: GZEM120500151101 Page: 9 of 60 FCC ID: PX8RX-8139

	Other equipment					
No:	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (dd-mm- yy)	Cal. Due Date (dd-mm-yy)
NA	Power Meter	Agilent	E4419B	MY4510085 6	2011.6.12	2012.6.11
NA	Signal Generator	Agilent	E4437B	US39260800	2011.6.17	2012.6.16
NA	Signal Generator	Agilent	E4438C	US39260800	2011.6.14	2012.6.14
NA	Spectrum Analyzer	Agilent	N9020A	MY4801138 5	2011.6.14	2012.6.14
NA	Spectrum Analyzer	Rohde&Schwarz	FSQ 8	SN0805772	2011.6.14	2012.6.14
NA	Attenuator	SHX manufacturer	30dB/50W	09031816		
NA	Attenuator	SHX manufacturer	40dB/50W	09031312		
NA	Attenuator	SHX manufacturer	50dB/50W	09053023		
NA	Signal Generator	Rohde&Schwarz	SMU 200A	08103303	2011.6.12	2012.6.11

General used equipment								
No.	lo. Test Equipment Manufacturer Model No. Serial No.				Cal.Due date	Calibratio		
INO.	Test Equipment	Manufacturer	woder No.	Serial NO.	(YYYY-MM-DD)	n Interval		
EMC0006	DMM	Fluke	73	70681569	2012-11-14	1Y		
EMC0007	DMM	Fluke	73	70671122	2012-11-14	1Y		

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's solve ereponsibility is to its Client and this document does not exercise parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document for 90 days only.

Report No.: GZEM120500151101 Page: 10 of 60 FCC ID: PX8RX-8139

7 Test Results

7.1 E.U.T. test conditions

Input voltage:	AC 230V
Operating Environment:	
Temperature:	22°C ~26°C
Humidity:	46%~56% RH
Atmospheric Pressure:	990~1005mbar
Test Requirement:	The RF output power of the EUT was measured at the antenna port, by adjusting the input power of signal generter to drive the EUT to get to maximum output power point and keep the EUT at maximum gain setteing for all tests. The device should be tested on downlink.
	For detail test Modulation and Frequency, please refer to 7.2.

Remark:

GENERAL DEFINITIONS FOR CERTIFICATION PURPOSES:

The following three general definitions follow from those stated in the Part 22, 24, and 90 rule sections as listed above. Two of the definitions replace previous EAB internal definitions given for booster, repeater and extender. The general term "extender" is the same as booster, but booster should be used rather than extender. The general term "translator" is the same as repeater, but repeater should be used rather than translator.

External radio frequency power amplifier (ERFPA) - any device which, (1) when used in conjunction with a radio transmitter signal source, is capable of amplification of that signal, and (2) is not an integral part of a radio transmitter as manufactured. The EAS equipment class AMP is used only for an ERFPA device inserted between a transmitter (TNB/PCB) and an antenna (has only one antenna port)

Booster is a device that automatically reradiates signals from base transmitters without channel translation, for the purpose of improving the reliability of existing service by increasing the signal strength in dead spots. An "in-building radiation system" is a signal booster. These devices are not intended to extend the size of coverage from the originating base station. A booster can be either single or multiple channels.

Repeater is a device that retransmits the signals of other stations. Repeaters are different from boosters in that they can include frequency translation and can extend coverage beyond the design of the original base station. A repeater is typically single channel but can also be multiple channels.

ERFPA (AMP) and boosters/repeaters (TNB/PCB) can generally be authorized for all rule parts except 15 and 18.

Tests should be done with each typical signal. e.g., for F3E emissions use 2500 Hz with 2.5 or 5 kHz deviation. Use of CW signal for some tests is acceptable in lieu of actual emission, in some cases when CW signal gives worst case.

The EUT is a Repeater and belongs to TNB class.

Report No.: GZEM120500151101 Page: 11 of 60 FCC ID: PX8RX-8139

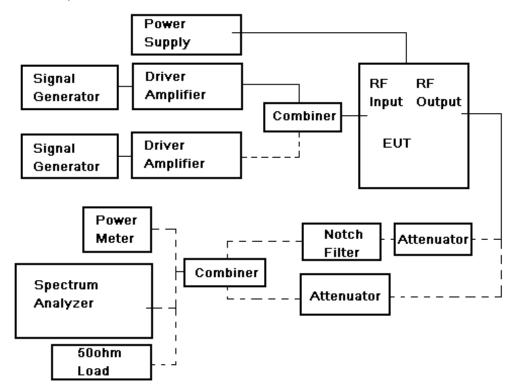
7.2 Test Procedure & Measurement Data

Test Modulation and Frequency CDMA Band

Modulation	Lowest frequency	Middle frequency	Highest frequency		
1)Downlink: 870MHz to 877.5MHz					
CDMA	871.5	873.75	876		
2)Uplink: 825MHz to 832.5MHz					
CDMA	826.5	828.75	831		

WCDMA Band:

Modulation	Lowest frequency	Middle frequency	Highest frequency
1)Downlink: 877.5MHz t	o 882.5MHz		
WCDMA	N/A	880	N/A
2)Uplink: 832.5MHz to 8	37.5MHz	1	1
WCDMA	N/A 835 N/A		
Romark.			


Remark:

 We test the downlink(Input From DT,Output From TX),Uplink(Input From RX,Output From DT) in the lowest band; the middle band; the hightest band for CDMA Band and the middle band for WCDMA.

Report No.: GZEM120500151101 Page: 12 of 60 FCC ID: PX8RX-8139

General Test Setup:

Report No.: GZEM120500151101 Page: 13 of 60 FCC ID: PX8RX-8139

7.2.1 RF Output Power

Test Date:	2012-05-11
Test Requirement:	FCC part 22.913(a)
	22.913(a):Maximum ERP. In general, the effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts.
Test Method:	FCC part 2.1046
EUT Operation:	
Status:	Drive the EUT to maximum output power.
Conditions:	Normal conditions
Application:	Cellular Band RF output ports
Test Configuration:	
Sign	

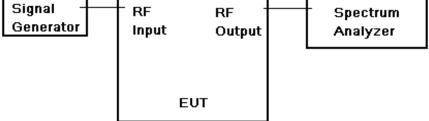


Fig.1 RF Output Power test configuration

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's soft ereponsibility is to its Client is document does not exercise the company's fundings at the time of their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document for 90 days only.

Report No.: GZEM120500151101 Page: 14 of 60 FCC ID: PX8RX-8139

Test Procedure:	RF output power test procedure:
	1.
	a) Connect the equipment as illustrated, when the output power is over the max value of the Spectrum Analyzer, add the attenuator to avoid destroying the facility.
	b) Set the center frequency of the spectrum analyzer to the assigned transmitter frequency, key the transmitter, and set the level of the carrier to the full scale reference line.
	c) do not apply any tone to modulate the EUT.
	d1) Adjust the spectrum analyzer for the following settings:
	1) Resolution Bandwidth >> the carrier bandwidth,
	2) Video Bandwidth refer to standard requirement.
	d2) Use spectrum analyzer channel power measurement function;
	e) Record the frequencies and levels of carrier power;
	f) Calculate the signal link way loss and final power value.
	Or 2.
	a) Connect the equipment as illustrated;
	b) Read the value from the power meter;
	c) Calculate the signal link way loss and final power value.
Remark:	Output power –
	Power on Form 731 should be clearly understood as either composite of multichannels or per carrier. If power is composite include in comments field: "Power output listed is composite for multi-channel operation."
	. Check that the input drive level is at maximum input rating and maximum gain
	settings for all tests. Check both uplink and downlink input levels. See manual or
	brochures/technical description for maximum rating. May need to check FCC
	identifier of transmitter used for tests.
	Confirm device can not operate in saturation. Are there means to control maximum power and to assure linear operation (use in system configuration may be necessary)? How is saturation or over-modulation prevented for pulsed signal inputs?

Report No.: GZEM120500151101 Page: 15 of 60 FCC ID: PX8RX-8139

7.2.1.1 Measurement Record:

CDMA Band:

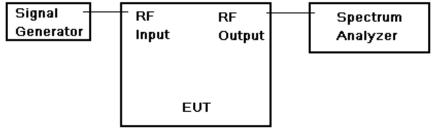
Per channel Power, Input=-3dBm for downlink								
Modulation	Lowest frequency Middle frequency Highest freque							
1)Downlink: Working Band(870MHz ~ 877.5MHz),Measure Maximum Output power								
CDMA	39.61dBm(9.14W)	39.72 dBm(9.38W)	39.81 dBm(9.57W)					
2)Uplink: Working Band(825MHz ~ 832.5MHz),Measure Maximum Output power								
CDMA	24.77dBm(0.30W)	24.56dBm(0.29W)	24.82dBm(0.31W)					

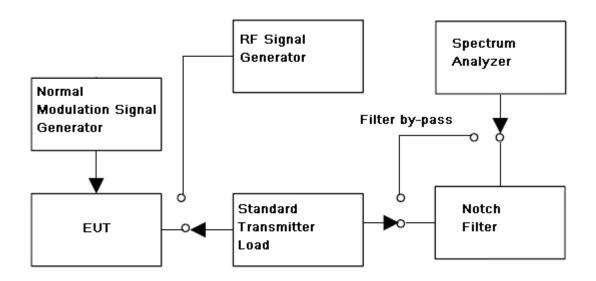
WCDMA Band:

Per channel Power, Input=-5dBm for downlink								
Modulation	Lowest frequency	Highest frequency						
1)Downlink: Working Band(877.5MHz ~ 882.5MHz),Measure Maximum Output power								
WCDMA	WCDMA N/A 40.07 dBm(10.16		N/A					
2)Uplink: Working Band(832.5MHz ~ 837.5MHz),Measure Maximum Output power								
WCDMA	N/A 24.66 dBm(0.29W)		N/A 24.66 dBm(0.29W)		N/A			

Remark: test in single channel status, output power is tested in full amplifying status.

Kept the EUT working in maximum gain, adjusted the input power until to get the EUT to maximum output power.


Note: Conducted output power tested. EIRP was not tested because the amplifier does not come with an antenna.


Report No.: GZEM120500151101 Page: 16 of 60 FCC ID: PX8RX-8139

7.2.2 Conducted Spurious Emissions

Test Date:	2012-05-11
Test Requirement:	FCC part 22.917(a)
	22.917(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.
Test Method:	FCC part 2.1051
EUT Operation:	
Status:	Drive the EUT to maximum output power.
Conditions:	Normal conditions
Application:	Cellular Band RF output ports
Test Configuration:	

Report No.: GZEM120500151101 Page: 17 of 60 FCC ID: PX8RX-8139

Test Procedure: Conducted Emissions test procedure:

a) Connect the equipment as illustrated, with the notch filter by-passed, when the output power is over the max value of the Spectrum Analyzer, add the attenuator to avoid destroying the facility.

b) Set the center frequency of the spectrum analyzer to the assigned transmitter frequency, key the transmitter, and set the level of the carrier to the full scale reference line.

c) do not apply any tone to modulate the EUT.

d) Adjust the spectrum analyzer for the following settings:

1) Resolution Bandwidth, (base the standard, apply the different set), her is 100KHz for frequency band less than 1GHz, 1MHz for frequency over 1GHz;

2) Video Bandwidth refer to standard requirement.

e) Adjust the center frequency of the spectrum analyzer for incremental coverage of the range from:

1) the lowest radio frequency generated in the equipment, it can be 9KHz base the test method, here select 30MHz as lowest frequency start point;

2) the highest radion frequency shall higher than 10 times of carrier frequency;

f) Record the frequencies and levels of spurious emissions from step e) Remark:

The notch filter is used for avoid the EUT fundamental carrier output power making the spectrum overload and the harmonic spurious brought by it.

When the EUT fundamental carrier is not enough to make the status, the notch filter could be not used.

Report No.: GZEM120500151101 Page: 18 of 60 FCC ID: PX8RX-8139

7.2.2.1 Measurement Record:

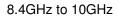
1.Test for CDMA:

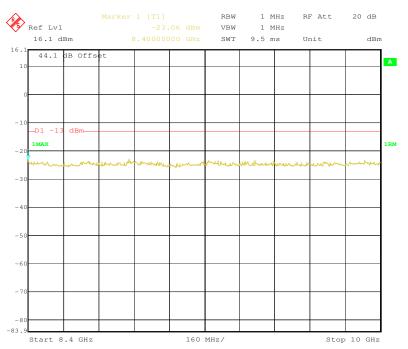
1.1 Downlink: 870MHz ~ 877.5MHz (lowest frequency)

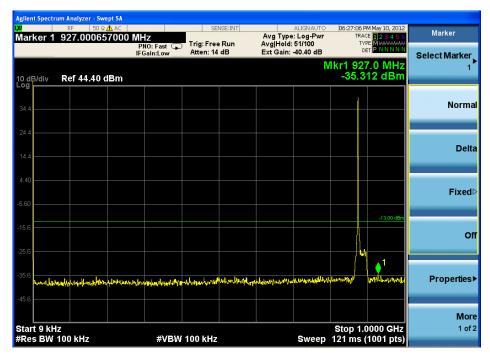
9KHz to 1GHz

	RF 50 Ω 🥂 AC		SENSE:IN		ALIGN AUTO		M May 10, 2012	Marker
arker 1	922.00070200	IO MHZ PNO: Fast G IFGain:Low	Trig: Free Run Atten: 14 dB	Avg	Гуре: Log-Pwr Iold:≻100/100 ain: -40.40 dB	TRAC TYP DR	CE 123456 PE M UMMANN ET P N N N N N	Select Marker
dB/div	Ref 44.40 dBm				IV	lkr1 922 -37.0	2.0 MHz 00 dBm	1
4.4								Norm
4.4								Delt
.40								Fixed
.60							-13.00 dBm	Fixed
5.6						/h.,		C
5.6 Aalimija	harrowww.white	eventhesee had a second	Algerallywayladayaala	allowerkellellerererere	pp-lugp-gevender-spood	urnun	1 Witherstory	Properties
5.6								Мо
tart 9 kHz Res BW 1			/ 100 kHz		Sweep		0000 GHz 1001 pts)	1 of

1GHz to 8.4GHz

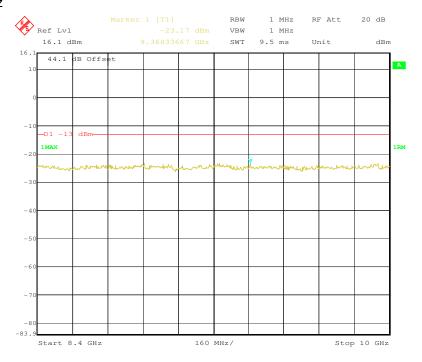

Peak Search	M May 10, 2012		ALIGNAUTO : Log-Pwr	Aug Typ	VSE:INT	SEF	SI I		RF 50 Ω	
	E 123456 E M UNININ T P N N N N N	TYP	26/100	Avg Type Avg Hold Ext Gain:		Trig: Free Atten: 14	NO: Fast 😱 Gain:Low	F	2.5318000	arker 1
NextPe	l 8 GHz 45 dBm	r1 2.53 -23.0	Mk					dBm	Ref 44.40 (dB/div
Next Pk Rig										
										4.4
Next Pk L										1.4
										.4
Marker D										40
	-13.00 dBm									60
Mkr								↓ 1		.6
	Martha Labor Martin	de over the has a full of the	and the start of t	un had been also	and the second sec	Marchardensig	have and the set	hallastaria	the state of the s	.6 with 194
Mkr→Ref										.6
										5.6
M (400 GHz	Stop 8							GH7	art 1.00
10		12.3 ms (Sweep			1.0 MHz	#VBW			ant 1.00 Res BW


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's soft ereponsibility is to its Client is document does not exercise the company's fundings at the time of their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document for 90 days only.


Report No.: GZEM120500151101

Page: 19 of 60 FCC ID: PX8RX-8139

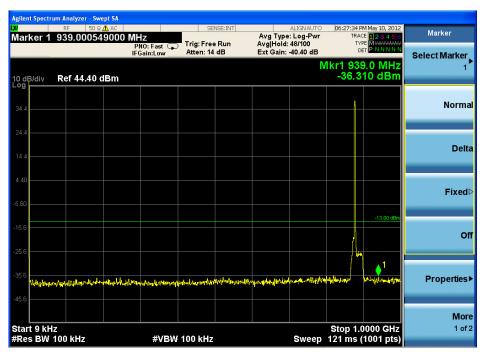
1.2 Downlink: 870MHz ~ 877.5MHz (Middle frequency) 9KHz to 1GHz



Report No.: GZEM120500151101 Page: 20 of 60 FCC ID: PX8RX-8139

1GHz to 8.4GHz

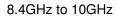
8.4GHz to 10GHz

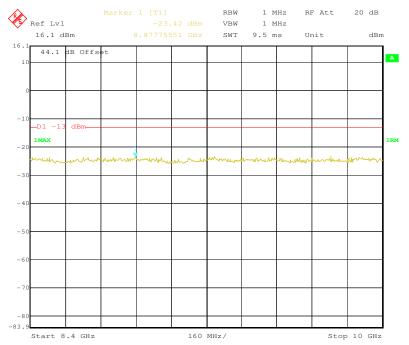


Report No.: GZEM120500151101 Page: 21 of 60 FCC ID: PX8RX-8139

1.3 Downlink: 870MHz ~ 877.5MHz (highest frequency)

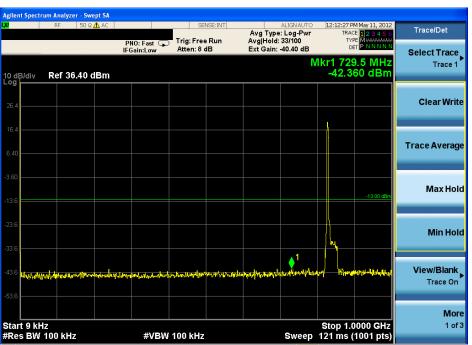
9KHz to 1GHz


1GHz to 8.4GHz



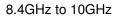
Report No.: GZEM120500151101

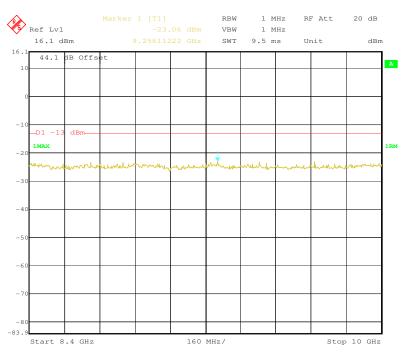
Page: 22 of 60 FCC ID: PX8RX-8139


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's soft ereponsibility is to its Client is document does not exercise the company's fundings at the time of their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document for 90 days only.

Report No.: GZEM120500151101 Page: 23 of 60 FCC ID: PX8RX-8139

1.4 Uplink: 825MHz ~ 832.5MHz (lowest frequency) 9KHz to 1GHz

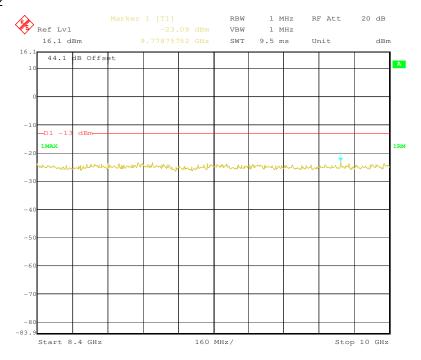

1GHz to 8.4GHz



Report No.: GZEM120500151101

Page: 24 of 60 FCC ID: PX8RX-8139

1.5 Uplink: 825MHz ~ 832.5MHz (Middle frequency) 9KHz to 1GHz



Report No.: GZEM120500151101 Page: 25 of 60 FCC ID: PX8RX-8139

1GHz to 8.4GHz

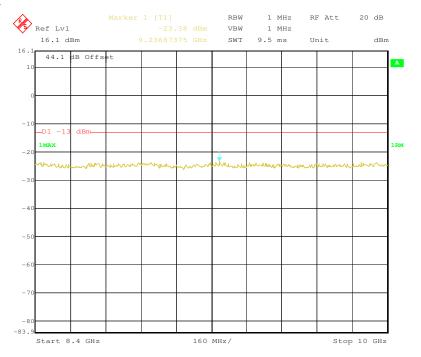
8.4GHz to 10GHz

Report No.: GZEM120500151101 Page: 26 of 60 FCC ID: PX8RX-8139

1.6 Uplink: 825MHz ~ 832.5MHz (highest frequency)

9KHz to 1GHz

1GHz to 8.4GHz

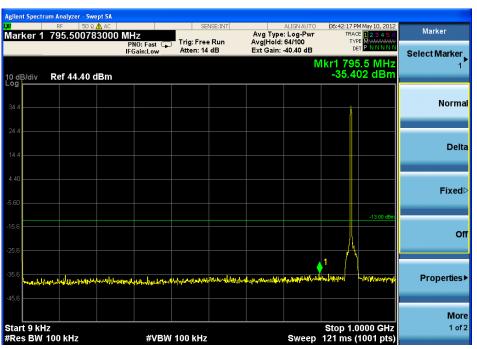


Report No.: GZEM120500151101 Page: 27 of 60

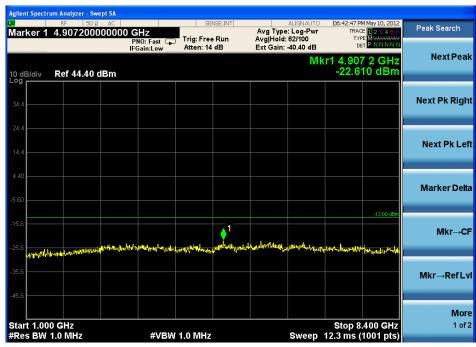
FCC ID: PX8RX-8139

8.4GHz to 10GHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's soft ereponsibility is to its Client is document does not exercise the company's fundings at the time of their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document for 90 days only.



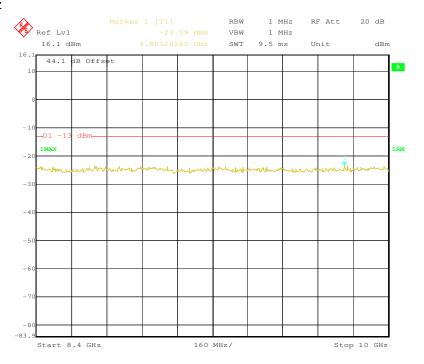
Report No.: GZEM120500151101 Page: 28 of 60 FCC ID: PX8RX-8139

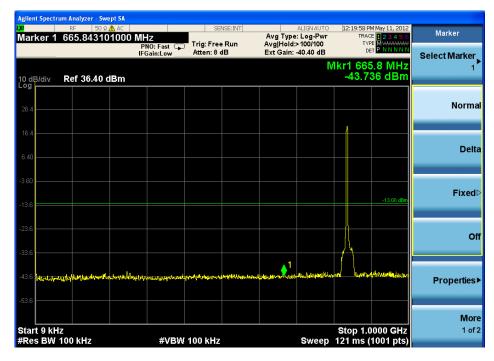

2.Test for WCDMA:

2.1 Downlink: 877.5MHz \sim 882.5MHz (Middle frequency)

9KHz to 1GHz

1GHz to 8.4GHz

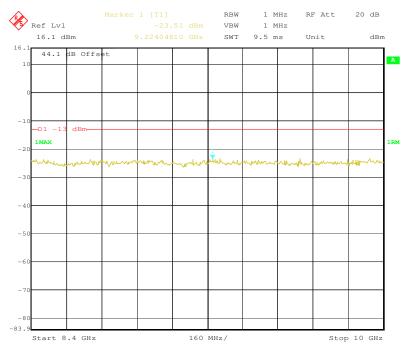



Report No.: GZEM120500151101

Page: 29 of 60 FCC ID: PX8RX-8139

8.4GHz to 10GHz

2.2 Uplink: 832.5MHz ~ 837.5MHz (Middle frequency) 9KHz to 1GHz



Report No.: GZEM120500151101 Page: 30 of 60 FCC ID: PX8RX-8139

1GHz to 8.4GHz

8.4GHz to 10GHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exercise parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document for 90 days only.

Report No.: GZEM120500151101 Page: 31 of 60 FCC ID: PX8RX-8139

7.2.3 Band Edge& Intermodulation

Test Date:	2012-05-16
Test Requirement:	FCC part 22.917(b) 22.917(b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one
	above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
Test Method:	FCC part 2.1051&2-11-04/EAB/RF
EUT Operation:	
Status: Conditions: Application: Test Configuration:	Drive the EUT to maximum output power. Normal conditions Cellular Band RF output ports

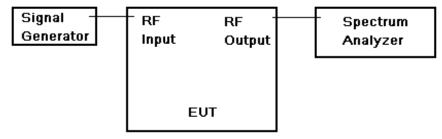
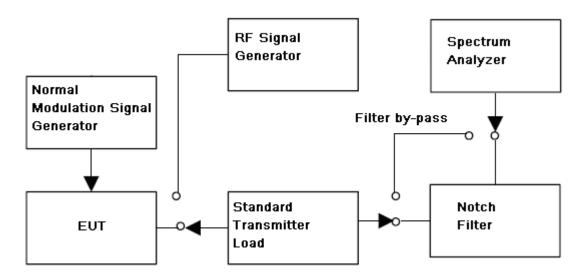



Fig.3. Band edge and Intermodulation test configuration

Report No.: GZEM120500151101 Page: 32 of 60 FCC ID: PX8RX-8139

Test Procedure:

Conducted Emissions test procedure:

a) Connect the equipment as illustrated, with the notch filter by-passed, when the output power is over the max value of the Spectrum Analyzer, add the attenuator to avoid destroying the facility.

b) Set the center frequency of the spectrum analyzer to the assigned transmitter frequency, key the transmitter, and set the level of the carrier to the full scale reference line.

- c) do not apply any tone to modulate the EUT.
- d) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth,(base the standard, apply the different set),here is 100KHz for frequency band less than 1GHz, 1MHz for frequency over 1GHz;
 - 2) Video Bandwidth refer to standard requirement.

e) Adjust the center frequency of the spectrum analyzer for incremental coverage of the range from:

1) the lowest radio frequency generated in the equipment, it can be 9KHz base the test method, here select 30MHz as lowest frequency start point;

2) the highest radion frequency shall higher than 10 times of carrier frequency;

f) Record the frequencies and levels of spurious emissions from step e) Remark:

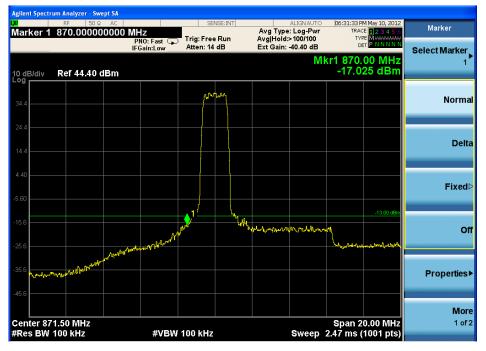
The notch filter is used for avoid the EUT fundamental carrier output power

making the spectrum overload and the harmonic spurious brought by it.

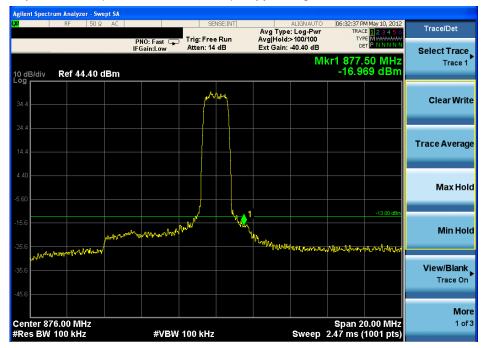
When the EUT fundamental carrier is not enough to make the status, the notch filter could be not used.

Report No.: GZEM120500151101 Page: 33 of 60 FCC ID: PX8RX-8139

ntermodulation	1. Connect the equipment as illustrated;
Test Procedure:	2. Test the background noise level with all the test facilities;
	Keep one transmitting path, all other connectors shall be connected by normal power or RF leads;
	 Select the attenuator to avoid the test receiver or spectrum analyzer being destroied;
	5. Keep the EUT continuously transmitting in max power;
	6. Keep two signals are same in modulation type and level;
	7. Measure the 3 order intermodulated product by the EUT(the sum of the two unwanted signal should be rated power);
	8. Correct for all losses in the RF path;
	9. Read the conducted spurious emissioins of the EUT antenna port.
	Remark:
	 At maximum drive level, for each modulation: one test with three tones, or two tests (high-, low-band edge) with two tones
	Limit usually is -13dBm conducted.
	Not needed for Single Channel systems.

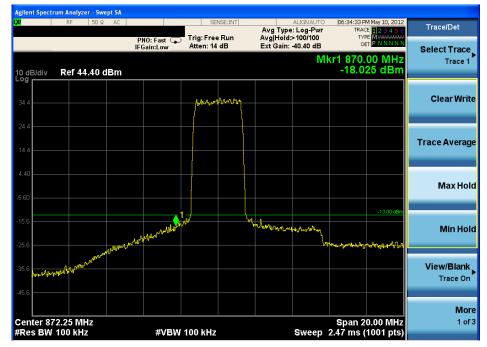


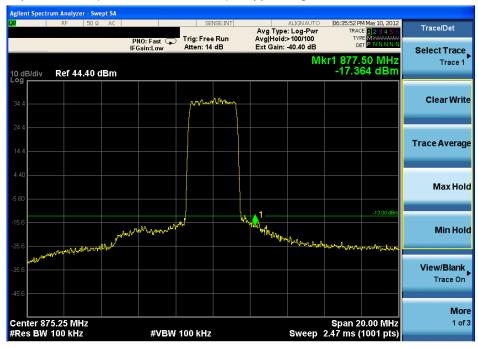
Report No.: GZEM120500151101 Page: 34 of 60 FCC ID: PX8RX-8139


7.2.3.1 Measurement Record:

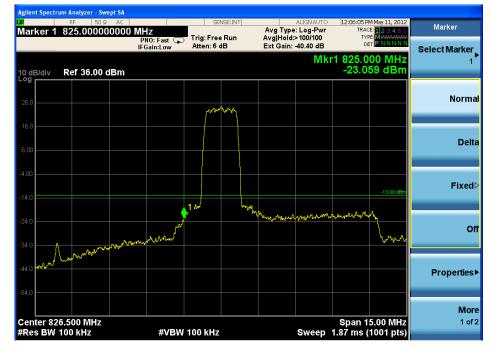
1.Test for CDMA:

1.1 one signal input downlink(870MHz ~ 877.5MHz)- Lower Edge

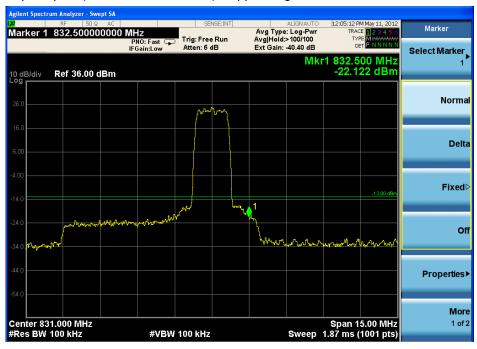

1.2 one signal input downlink(870MHz ~ 877.5MHz)- Upper Edge



Report No.: GZEM120500151101 Page: 35 of 60 FCC ID: PX8RX-8139



^{1.4} two signal input downlink(870MHz ~ 877.5MHz)—Upper Edge



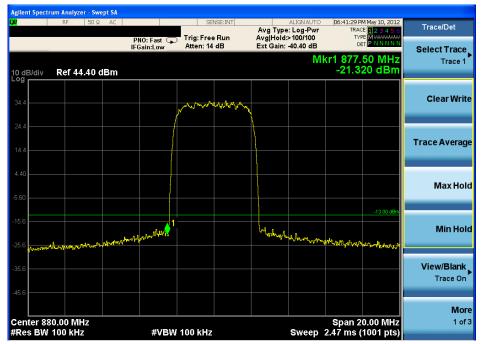
Report No.: GZEM120500151101 Page: 36 of 60 FCC ID: PX8RX-8139

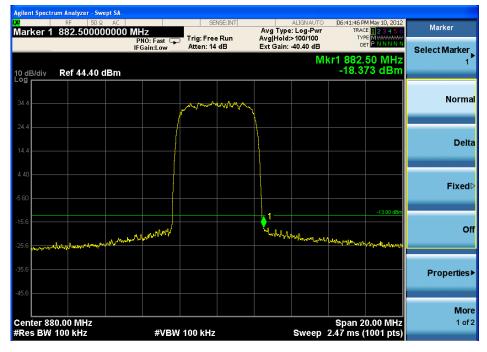
2.1 one signal input Uplink(825MHz ~ 832.5MHz)- Lower Edge

2.2 one signal input Uplink(825MHz ~ 832.5MHz)- Upper Edge

Report No.: GZEM120500151101 Page: 37 of 60 FCC ID: PX8RX-8139

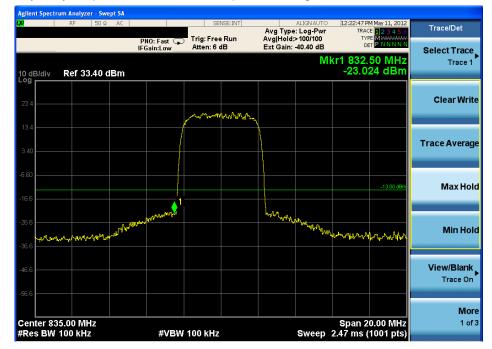
2.4 two signal input Uplink(825MHz ~ 832.5MHz)—Upper Edge




Report No.: GZEM120500151101 Page: 38 of 60 FCC ID: PX8RX-8139

2.Test for WCDMA:

2.1 one signal input downlink(877.5MHz ~ 882.5MHz)- Lower Edge



2.2 one signal input downlink(877.5MHz ~ 882.5MHz)- Upper Edge

Report No.: GZEM120500151101 Page: 39 of 60 FCC ID: PX8RX-8139

2.3 one signal input Uplink(832.5MHz ~ 837.5MHz)- Lower Edge

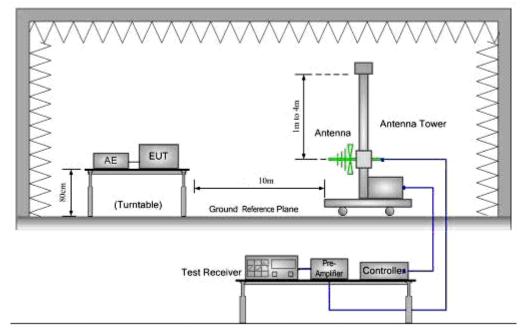
2.4 one signal input Uplink (832.5MHz ~ 837.5MHz)- Upper Edge

Report No.: GZEM120500151101 Page: 40 of 60 FCC ID: PX8RX-8139

Remark:

For the test in two signal input or intermodulation, test input signal f1 and f2 will consider as follows conditions:

- 1) EUT frequency band span and the amount of channels;
- 2) f1 is the frequency lower, f2 is the frequency higher, $\triangle f$ is the channel spacing;
- in lower edge test, f1 is the lower edge frequency +1 channel frequency, and f2 is +2 channel frequency;
- in higher edge test, f1 is the higher edge frequency -2 channel frequency, and f2 is -1 channel frequency;
- 5) according to the amplifier characteristic, the 3rd product will appear when two signals input;
- 6) base the 3rd product frequency F1= 2f1-f2 and F2=2f2-f1, when the f1 and f2 frequency select above,
 - a) in lower edge test, F1=2f1-(f1+ \triangle f)=f1- \triangle f=lower edge frequency;
 - b) in higher edge test, F2=2f2-(f2- $\triangle f$)=f2+ $\triangle f$ =higher edge frequency.

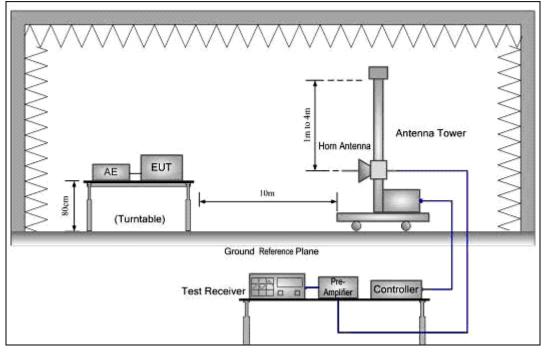


Report No.: GZEM120500151101 Page: 41 of 60 FCC ID: PX8RX-8139

7.2.4 Radiated Spurious Emissions

Test Date:	2012-05-09
Test Requirement:	FCC part 22.917(a)
	22.917(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.
Test Method:	FCC part 2.1053
	ANSI/TIA-603-C-2004
EUT Operation:	
Status:	Drive the EUT to maximum output power.
Conditions:	Normal conditions
Application:	Enclosure
Test Configuration:	

30MHz to 1GHz emissions:



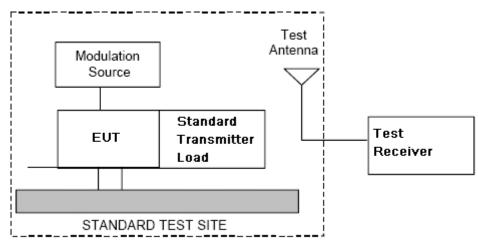
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's soft ereponsibility is to its Client is document does not exercise the company's fundings at the time of their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document for 90 days only.

Report No.: GZEM120500151101 Page: 42 of 60 FCC ID: PX8RX-8139

1GHz to 40GHz emissions:

Test Procedure:

1. Test the background noise level with all the test facilities;


2. Keep one transmitting path, all other connectors shall be connected by normal power or RF leads;

3. Select the suitable RF notch filter to avoid the test receiver or spectrum analyzer produce unwanted spurious emissions;

4. Keep the EUT continuously transmitting in max power;

5. Read the radiated emissioins of the EUT enclosure.

Radiated Emissions Test Procedure:

Report No.: GZEM120500151101 Page: 43 of 60 FCC ID: PX8RX-8139

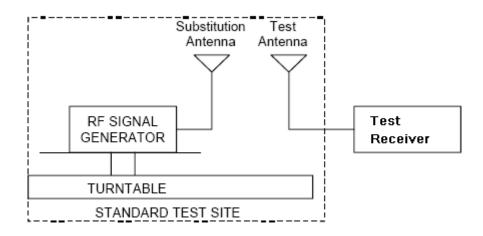
- a) Connect the equipment as illustrated.
- b) Adjust the spectrum analyzer for the following settings:

1) Resolution Bandwidth = 100 kHz for spurious emissions below 1 GHz, and 1 MHz for spurious emissions above 1GHz.

2) Video Bandwidth = 300 kHz for spurious emissions below 1 GHz, and 3 MHz for spurious emissions above 1 GHz.

3) Sweep Speed slow enough to maintain measurement calibration.

4) Detector Mode = Positive Peak.


c) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a nonradiating load that is placed on the turntable. The RF cable to this load should be of minimum length.

d) Measurements shall be made from 30 MHz to 10 tims of fundamental carrier, except for the region close to the carrier equal to \pm the carrier bandwidth.

e) Key the transmitter without modulation or normal modulation base the standard.

f) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Then the turntable should be rotated 360° to determine the maximum reading. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.

g) Repeat step f) for each spurious frequency with the test antenna polarized vertically.

Report No.: GZEM120500151101 Page: 44 of 60 FCC ID: PX8RX-8139

h) Reconnect the equipment as illustrated.

i) Keep the spectrum analyzer adjusted as in step b).

j) Remove the transmitter and replace it with a substitution antenna (the antenna should be halfwavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where

the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.

k) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends horizontally polarized, and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to

obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.

I) Repeat step k) with both antennas vertically polarized for each spurious frequency.

m) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps k) and l) by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole

antenna by the following formula:

Pd(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dB)

where:

Pd is the dipole equivalent power and

Pg is the generator output power into the substitution antenna.

NOTE: It is permissible to use other antennas provided they can be referenced to a dipole. NOTE: Effective radiated power (e.r.p) refers to the radiation of a half wave tuned dipole instead of an isotropic antenna. There is a constant difference of 2.15 dB between e.i.r.p. and e.r.p. e.r.p (dBm) = e.i.r.p. (dBm) - 2.15

Report No.: GZEM120500151101 Page: 45 of 60 FCC ID: PX8RX-8139

7.2.4.1 Measurement Record:

No emissions were detected within 20dB below the limit for the Downlink direction.

Remark:

The cabinet radiation was measured with the equipment transmitting a CW signal into a non-radiating 50 Ohm load at maximum output power on a signal frequency .

Measured were performed in the lowest, middle and hightest frequency for : the Downlink.

The spectrum was searched from 30MHz to 10GHz (10th Harmonic) for downlink;

Report No.: GZEM120500151101 Page: 46 of 60 FCC ID: PX8RX-8139

7.2.5 Occupied Bandwidth

Test Date:	2012-05-08 to 2012-05-12
Test Requirement:	2-11-04/EAB/RF
Test Method:	FCC part 2.1049, 2-11-04/EAB/RF
	The spectral shape of the output should look similar to input for all modulations.
EUT Operation:	

Status: Conditions: Application:

Drive the EUT to maximum output power. . Normal conditions Cellular Band RF output ports

Test Configuration:

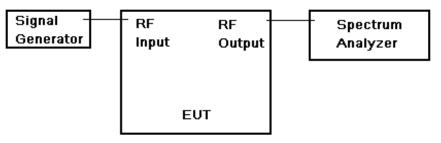
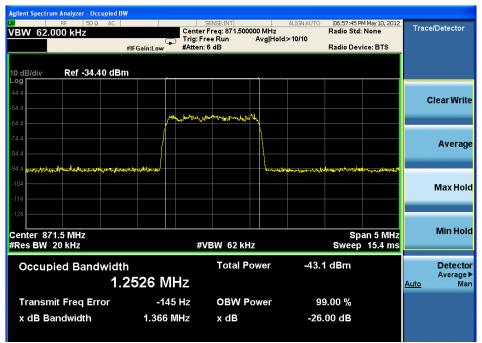


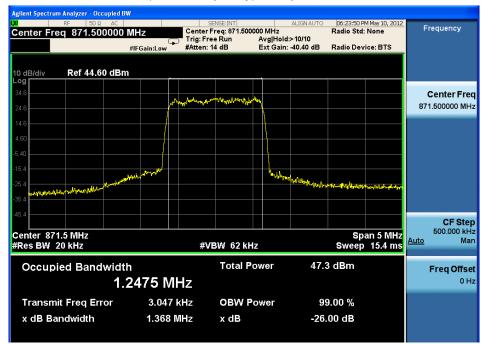
Fig.2. Conducted Spurious Emissions test configuration

Test Procedure:

- a) Set the spectrum analyzer RBW 300 Hz or >1%&<2% emission bandwidth of carrier.
- b) Capture the trace of input signal;
- c) Connect the equipment as illustrated;
- d) Capture the trace of output signal;

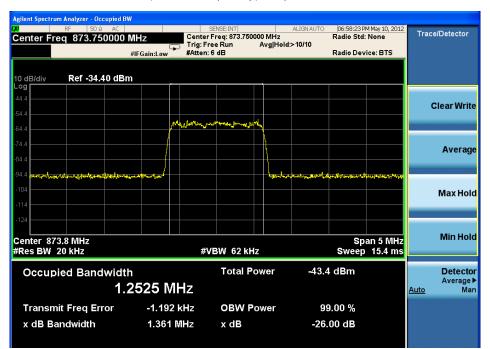


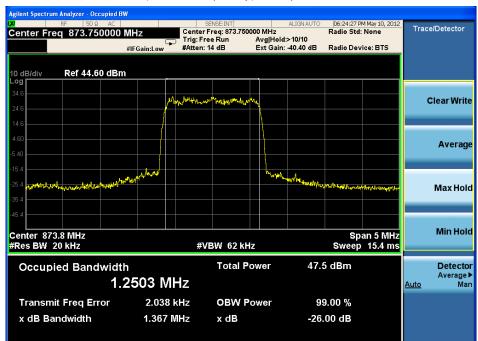
Report No.: GZEM120500151101 Page: 47 of 60 FCC ID: PX8RX-8139


7.2.5.1 Measurement Record:

1.Test for CDMA:

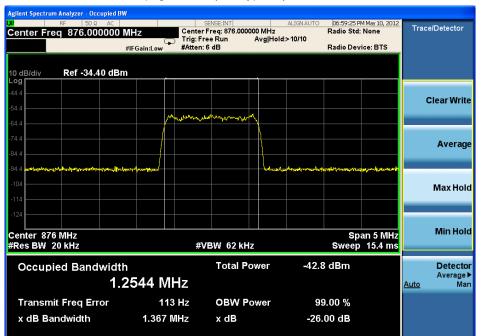
1.1 Downlink: 870MHz ~ 877.5MHz (lowest frequency) – Input


1.2 Downlink: 870MHz ~ 877.5MHz (lowest frequency)-- Output



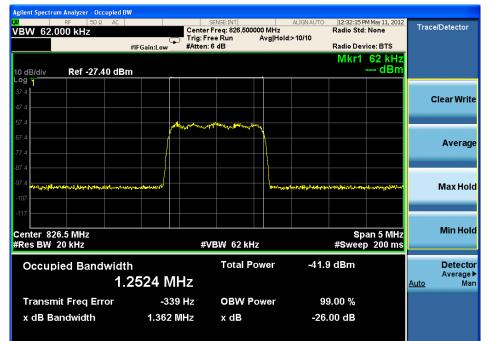
Report No.: GZEM120500151101 Page: 48 of 60 FCC ID: PX8RX-8139

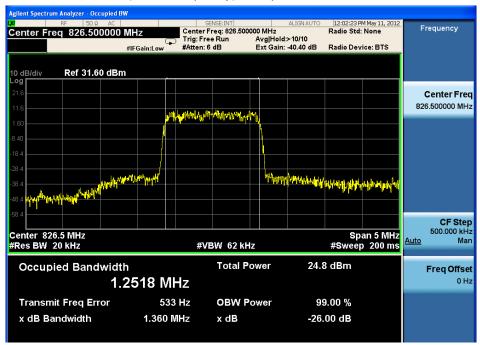
1.3 Downlink: 870MHz ~ 877.5MHz (middle frequency)-- Input


1.4 Downlink: 870MHz ~ 877.5MHz (middle frequency)-- Output

Report No.: GZEM120500151101 Page: 49 of 60 FCC ID: PX8RX-8139

1.5 Downlink: 870MHz ~ 877.5MHz (highest frequency)-Input

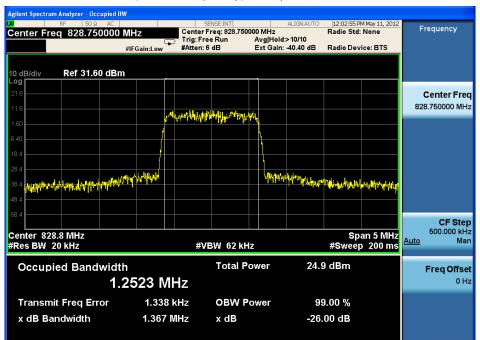

1.6 Downlink: 870MHz ~ 877.5MHz (highest frequency)--Output



Report No.: GZEM120500151101 Page: 50 of 60 FCC ID: PX8RX-8139

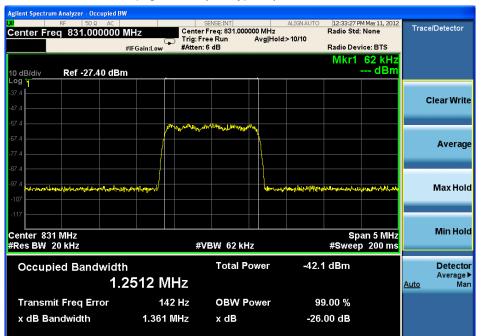
1.7 Uplink: 825MHz ~ 832.5MHz (lowest frequency) - Input

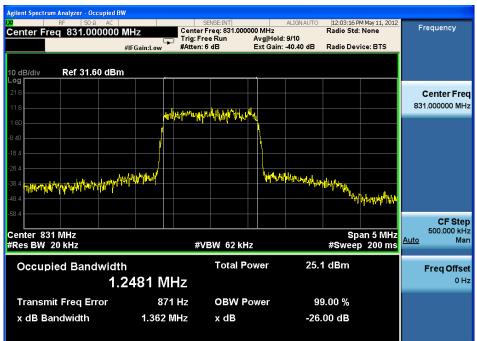
1.8 Uplink: 825MHz ~ 832.5MHz (lowest frequency)-- Output



Report No.: GZEM120500151101 Page: 51 of 60 FCC ID: PX8RX-8139

1.9 Uplink: 825MHz ~ 832.5MHz (middle frequency)-- Input

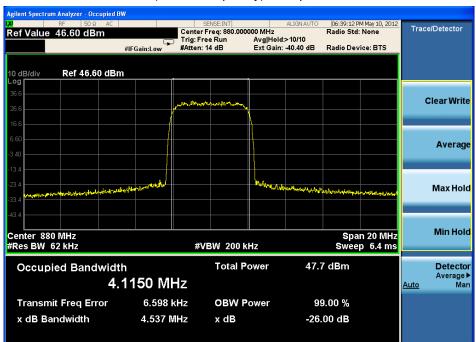

1.10 Uplink: 825MHz ~ 832.5MHz (middle frequency)-- Output



Report No.: GZEM120500151101 Page: 52 of 60 FCC ID: PX8RX-8139

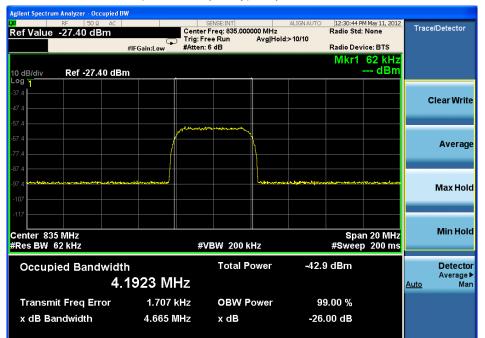
1.11 Uplink: 825MHz ~ 832.5MHz (highest frequency)-Input

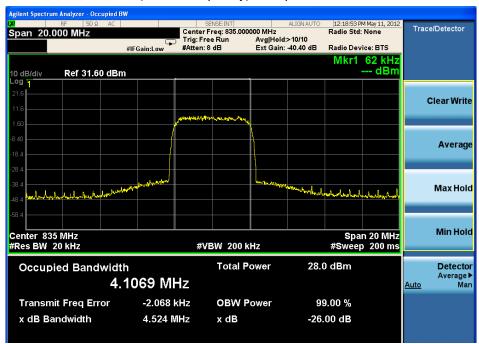
1.12 Uplink: 825MHz ~ 832.5MHz (highest frequency)--Output


Report No.: GZEM120500151101 Page: 53 of 60 FCC ID: PX8RX-8139

2.Test for WCDMA:

2.3 Downlink: 877.5MHz ~ 882.5MHz (middle frequency)-- Input


2.4 Downlink: 877.5MHz ~ 882.5MHz (middle frequency)-- Output



Report No.: GZEM120500151101 Page: 54 of 60 FCC ID: PX8RX-8139

2.5 Uplink: 832.5MHz ~ 837.5MHz (middle frequency)-- Input

2.6 Uplink: 832.5MHz ~ 837.5MHz (middle frequency)-- Output

Report No.: GZEM120500151101 Page: 55 of 60 FCC ID: PX8RX-8139

7.2.6 Out of Band Rejection

Test Date:	2012-05-10
Test Requirement:	2-11-04/EAB/RF
	Test for rejection of out of band signals. Filter freq. response plots are acceptable.
Test Method:	2-11-04/EAB/RF
EUT Operation:	
Status:	Drive the EUT to maximum output power.
Conditions:	Normal conditions
Application:	Cellular Band RF output ports
Test Configuration:	
Sig	nal RF RF Spectrum nerator Input Output Analyzer

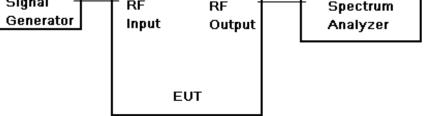


Fig.4. Out of Band rejection test configuration

Test Procedure:

1. Connect the equipment as illustrated;

2. Test the background noise level with all the test facilities;

3. Keep one transmitting path, all other connectors shall be connected by normal power or RF leads;

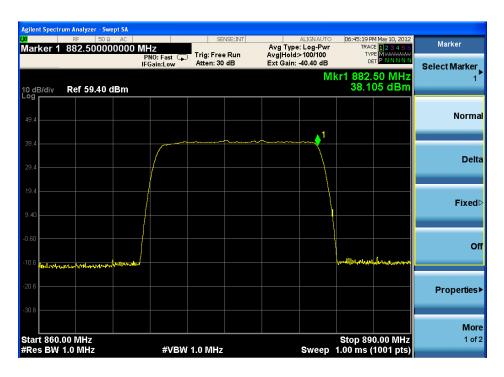
4. Select the attenuator to avoid the test receiver or spectrum analyzer being destroied;

5. Keep the EUT continuously transmitting in max power;

6. Signal generator sweep from the frequency more lower than the product frequency to the frequency more higher than it, find the product band filter characteristic;

· CW signal rather than typical signal is acceptable (for FM).

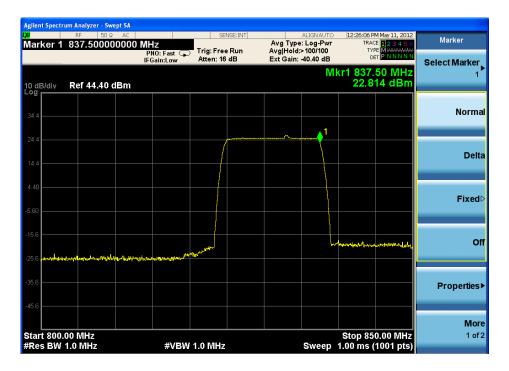
· Multiple band filter will need test each other.



Report No.: GZEM120500151101 Page: 56 of 60 FCC ID: PX8RX-8139

7.2.6.1 Measurement Record:

1.Test for Downlink:870MHz to 882.5MHz



Report No.: GZEM120500151101 Page: 57 of 60 FCC ID: PX8RX-8139

2.Test for Uplink:825MHz to 832.5MHz

Report No.: GZEM120500151101 Page: 58 of 60 FCC ID: PX8RX-8139

7.2.7 Frequency Stability

	•
Test Date:	2012-05-12
Test Requirement:	FCC part 22.355
	The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.
Test Method:	FCC part 2.1055
EUT Operation:	
Status:	Drive the EUT to maximum output power.
Conditions:	Temperature conditions, voltage conditions
Application:	Cellular Band RF output ports
Test Procedure:	1. Temperature conditions:
	 The RF output port of the EUT was connected to Frequency Meter;
	b) Set the working Frequency in the middle channel;
	c) record the 20 °C and norminal voltage frequency value as reference point;
	d) vary the temperature from -10 $^{\circ}$ C to 55 $^{\circ}$ C with step 10 $^{\circ}$ C
	 e) when reach a temperature point, keep the temperature banlance at least 1 hour to make the product working in this status;
	f) read the frequency at the relative temperature.
	2. Voltage conditions:
	 a) record the 20 °C and norminal voltage frequency value as reference point;
	b) vary the voltage from -15% norminal voltage to +15% voltage;
	c) read the frequency at the relative voltage.

Report No.: GZEM120500151101 Page: 59 of 60 FCC ID: PX8RX-8139

7.2.7.1 Measurement Record:

Frequency Stability vs temperature:

1.Test for Downlink: 870~877.5MHz (middle channel 873.75MHz)

Temperature(℃)	Frequency(MHz)	Tolerance(ppm)
55	873.7500341	0.014535
40	873.7500369	0.017739
30	873.7500349	0.015451
20	873.7500214	Reference
10	873.7500641	0.048869
0	873.7500348	0.015336
-10	873.7500345	0.149928

2.Test for Uplink: 825~832.5MHz (middle channel 828.75MHz)

Temperature(°C)	Frequency(MHz)	Tolerance(ppm)
55	828.7500389	0.009291
40	828.7500431	0.014359
30	828.7500369	0.006877
20	828.7500312	Reference
10	828.7500432	0.014479
0	828.7500396	0.010136
-10	828.7500478	0.020030

3.Test for Downlink: 877.5~882.5MHz (middle channel 880MHz)

Temperature(℃)	Frequency(MHz)	Tolerance(ppm)
55	880.0000325	0.009318
40	880.0000412	0.019205
30	880.0000258	0.001705
20	880.0000243	Reference
10	880.0000241	-0.000227
0	880.0000352	0.012386
-10	880.000416	0.445114

4.Test for Uplink: 832.5~837.5MHz (middle channel 835MHz)

Temperature(°C)	Frequency(MHz)	Tolerance(ppm)
55	835.0000235	-0.000119
40	835.0000278	0.005029
30	835.0000742	0.060599
20	835.0000236	Reference
10	835.0000369	0.015928
0	835.0000471	0.028144
-10	835.0000125	-0.0132934

Report No.: GZEM120500151101 Page: 60 of 60 FCC ID: PX8RX-8139

Frequency Stability vs voltage:

5.Test for Downlink: 870~877.5MHz (middle channel 873.75MHz)

Voltage(V AC)	Frequency(MHz)	Tolerance(ppm)
195.5 (230*0.85)	873.7500324	0.012589
230	873.7500214	Reference
264.5 (230*1.15)	873.7500478	0.030215

6. Test for Uplink: 825~832.5MHz (middle channel 828.75MHz)

Voltage(V AC)	Frequency(MHz)	Tolerance(ppm)
195.5 (230*0.85)	828.7500343	0.003741
230	828.7500312	Reference
264.5 (230*1.15)	828.7500324	0.001448

7.Test for Downlink:877.5~882.5MHz (middle channel 880MHz)

Voltage(V AC)	Frequency(MHz)	Tolerance(ppm)
195.5 (230*0.85)	880.0000287	0.005000
230	880.0000243	Reference
264.5 (230*1.15)	880.0000389	0.016591

8. 4.Test for Uplink: 832.5~837.5MHz (middle channel 835MHz)

Voltage(V AC)	Frequency(MHz)	Tolerance(ppm)
195.5 (230*0.85)	835.0000247	0.0013174
230	835.0000236	Reference
264.5 (230*1.15)	835.0000189	-0.0056287

--The End of Report--