

FCC Test Report FCC Part 22 & 24 / RSS 132 & 133

FOR:

Dual-band GSM Mobile Phone

MODEL #: A31a

BENQ MOBILE HAIDENAUPLATZ 1 81667 MUNCHEN GERMANY

FCC ID: PWX-A31a IC ID: 6175C-A31a

TEST REPORT #: EMC_BENQ0-004-05001_FCC22_24 DATE: March 8th, 2006

FCC listed # 101450
IC recognized # 3925

CETECOM Inc.

Table of Contents

Date of Report: 2006-03-08

1	ASSESSMENT	4
2	ADMINISTRATIVE DATA	5
	2.1 IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT	5
	2.2 IDENTIFICATION OF THE CLIENT	
	2.3 IDENTIFICATION OF THE MANUFACTURER	5
3	EQUIPMENT UNDER TEST (EUT)	6
	3.1 IDENTIFICATION OF THE EQUIPMENT UNDER TEST	
4	SUBJECT OF INVESTIGATION	7
5	MEASUREMENTS	8
	5.1 RF POWER OUTPUT	8
	5.1.1 FCC 2.1046 Measurements required: RF power output	
	5.1.2 Limits:	
	5.1.2.1 FCC 22.913 (a) Effective radiated power limits.	
	5.1.2.2 FCC 24.232 (b)(c) Power limits.	
	5.1.3 Radiated Output Power Measurement procedure:	
	5.1.4 ERP Results 800 MHz band:	
	5.1.5 EIRP Results 1900 MHz band:	
	5.2 OCCUPIED BANDWIDTH/EMISSION BANDWIDTH	17
	5.2.1 FCC 2.1049 Measurements required: Occupied bandwidth	17
	5.2.2 Occupied / emission bandwidth measurement procedure:	
	5.2.3 Occupied / Emission bandwidth results 800 MHz band:	
	5.2.4 Occupied / Emission bandwidth results 1900 MHz band:	
	5.2.5 Frequency Stability	
	5.2.6 Limit	
	5.2.7 FREQUENCY STABILITY	
	5.3 Spurious Emissions Conducted	
	5.3.1 FCC 2.1051 Measurements required: Spurious emissions at antenna terminals	
	5.3.2 Limits:	
	5.3.2.1 FCC 22.917 Emission limitations for cellular equipment.	
	5.3.2.2 FCC 24.238 Emission limitations for Broadband PCS equipment.	
	5.3.3 Conducted out of band emissions measurement procedure:	
	5.3.4 Bandedge Results GSM 850	
	5.3.5 Conducted Spurious Results GSM 850	
	5.3.6 Bandedge Results PCS-1900	
	5.3.7 Conducted Spurious Results PCS-1900	
	5.4 Spurious Emissions Radiated	
	5.4.1 FCC 2.1053 Measurements required: Field strength of spurious radiation	
	5.4.2 Limits:	
	5.4.2.1 FCC 22.917 Emission limitations for cellular equipment.	
	FCC 24.238 Emission limitations for Broadband PCS equipment.	
	5.4.3 Radiated out of band measurement procedure:	
	5.5 RECEIVER RADIATED EMISSIONS § 2.1053 / RSS-132 & 133	
	5.5.1 Receiver Spurious on EUT	
	5.6 AC POWERLINE CONDUCTED EMISSIONS § 15.107/207	
	5.6.1 Results EUT	

Test Report #: EMC_BENQ0-004-05001_FCC22_24

Date of Report: 2006-03-08 Page 3 of 88

6	TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	85
7	REFERENCES	86
8	BLOCK DIAGRAMS	87

1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Parts 2, and 24 of Title 47 of the Code of Federal Regulations and in compliance with the applicable criteria specified in Industry Canada rules RSS132 and RSS133.

Company	Description	Model #
BENQ MOBILE	DUAL BAND GSM MOBILE PHONE	A31a

VC 1 1 C :

Midael fp

Michael Grings

Deputy Test Lab Manager

The test results of this test report relate exclusively to the test item specified in Identification of the Equipment under Test. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

Date of Report: 2006-03-08 Page 5 of 88

2 Administrative Data

2.1 <u>Identification of the Testing Laboratory Issuing the EMC Test Report</u>

Company Name: CETECOM Inc.

Department: EMC

Address: 411 Dixon Landing Road

Milpitas, CA 95035

U.S.A.

Telephone: +1 (408) 586 6200 Fax: +1 (408) 586 6299

Responsible Test Lab Manager: Lothar Schmidt

Responsible Project Leader: Pete Krebill

Date of test: 2/7/2006 to 2/21/2006

2.2 Identification of the Client

Applicant's Name:	BENQ MOBILE
Street Address:	HAIDENAUPLATZ 1
City/Zip Code	81667 MUNCHEN
Country	GERMANY
Contact Person:	MARTIN WEINBERGER
Phone No.	+49.89.722.37148
Fax:	+49.89.722.24799
e-mail:	Martin.weinberger@benq.com

2.3 Identification of the Manufacturer

Manufacturer's Name:	BENQ SHA MOBILE
Manufacturers Address:	CHUAN QIAO RD. 777, PUDONG
City/Zip Code	SHANGHAI 201206
Country	CHINA

Page 6 of 88

3 Equipment under Test (EUT)

Date of Report: 2006-03-08

3.1 Identification of the Equipment under Test

Marketing Name: A31a

Description: DUAL-BAND GSM MOBILE PHONE

Model No: A31a

FCC ID: PWX-A31a

IC ID: 6175C-A31a

Frequency Range: 824.2 MHz – 848.8 MHz

1850.2 MHz – 1909.8 MHz

Type(s) of Modulation: GMSK

Number of Channels: 124 for 850 band

298 for 1900 band

Antenna Type: INTERNAL

Output Power: 1.016 ERP@ MHz for 850 band

0.895W EIRP@ MHz for 1900 band

Test Report #: EMC_BENQ0-004-05001_FCC22_24

Date of Report: 2006-03-08 Page 7 of 88

4 Subject of Investigation

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in FCC rules Parts 2, 22 and 24 of Title 47 of the Code of Federal Regulations and Industry Canada rules RSS132 and RSS133.

5 Measurements

5.1 RF Power Output

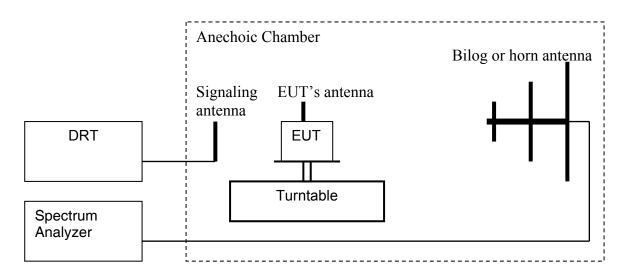
5.1.1 FCC 2.1046 Measurements required: RF power output.

Power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on circuit elements as specified. The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

5.1.2 Limits:

5.1.2.1 FCC 22.913 (a) Effective radiated power limits.

The effective radiated power (ERP) of mobile transmitters must not exceed 7 Watts.


5.1.2.2 FCC 24.232 (b)(c) Power limits.

- (b) Mobile/portable stations are limited to 2 Watts effective isotropic radiated power (EIRP).
- (c) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms equivalent voltage. The measurement results shall be properly adjusted for any limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement over the full bandwidth of the channel.

5.1.3 Radiated Output Power Measurement procedure:

Based on TIA-603B November 2002

2.2.17.2 Effective Radiated Power (ERP) or Effective Isotropic Radiated Power (EIRP)

1. Connect the equipment as shown in the above diagram with the EUT's antenna in a vertical orientation.

Date of Report: 2006-03-08 Page 9 of 88

2. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.

- 3. Set the spectrum analyzer to the channel frequency. Set the analyzer to measure peak hold with the required settings.
- 4. Rotate the EUT 360°. Record the peak level in dBm (LVL).
- 5. Replace the EUT with a vertically polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
- 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (**LOSS**). **LOSS** = Generator Output Power (dBm) Analyzer reading (dBm).
- 7. Determine the ERP using the following equation: ERP (dBm) = LVL (dBm) + LOSS (dB)
- 8. Determine the EIRP using the following equation: EIRP (dBm) = ERP (dBm) + 2.15 (dB)
- 9. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

(**note:** Steps 5 and 6 above are performed prior to testing and **LOSS** is recorded by test software. Steps 3, 4, 7 and 8 above are performed with test software.)

Spectrum analyzer settings:

Res B/W: 3 MHz Vid B/W: 3 MHz

Date of Report: 2006-03-08 Page 10 of 88

5.1.4 ERP Results 800 MHz band:

Frequency (MHz)	Effective Radiated Power (dBm)	
824.2	27.81	
836.6	29.17	
848.8	30.07	

5.1.5 EIRP Results 1900 MHz band:

Frequency (MHz)	Effective Isotropic Radiated Power (dBm)
1850.2	29.42
1880.0	29.52
1909.8	28.19

Date of Report: 2006-03-08 Page 11 of 88

EIRP (GSM 850) CHANNEL 128 CETECOM Inc. §22.913(a)

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: af31a Customer: BENQ Operating Mode: tx 128

Antenna: V EUT: V

Test operator: NEELESH Voltage: NORMAL Comment: eirp

SWEEP TABLE: "EIRP 850 CH 128 V"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw. 819.2 MHz 829.2 MHz MaxPeak Coupled 3 MHz DUMMY-DBM

MaxPeak Marker: 824.08978 MHz Level [dBm] 40 30 20 10 -10 -20 819.2M 822M 824M 826M 829.2M Frequency [Hz]

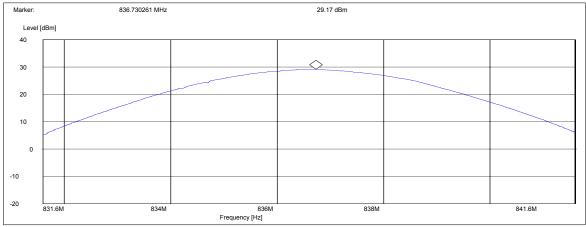
Page 12 of 88

EIRP (GSM 850) CHANNEL 190 CETECOM Inc.

§22.913(a)

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: af31a Customer: Operating Mode: tx 192


Antenna: V EUT:

NEELESH Test operator: Voltage: **NORMAL** Comment: eirp

SWEEP TABLE: "EIRP 850 CH 190 V"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw. 831.6 MHz 841.6 MHz MaxPeak Coupled 3 MHz **DUMMY-DBM**

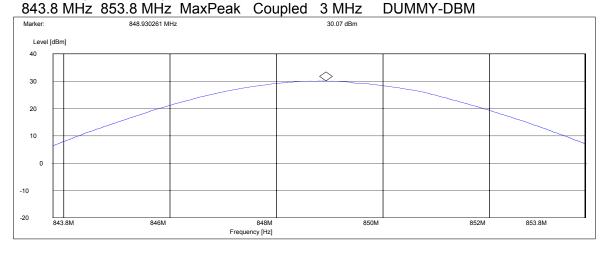
MaxPeak 836.730261 MHz

Date of Report: 2006-03-08 Page 13 of 88

EIRP (GSM 850) CHANNEL 251 §22.913(a)

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: af31a Customer: BENQ Operating Mode: tx 251


Antenna: V EUT: V

CETECOM Inc.

Test operator: NEELESH Voltage: NORMAL Comment: eirp

SWEEP TABLE: "EIRP 850 CH 251 V"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

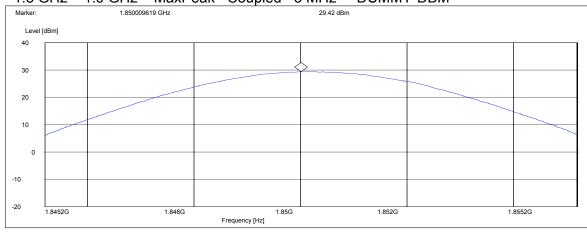
Page 14 of 88

EIRP (PCS-1900) CHANNEL 512 CETECOM Inc. §24.232(b)

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: af31a Customer: BENQ Operating Mode: tx 512

Antenna: V EUT: V


Test operator: NEELESH Voltage: NORMAL Comment: eirp

SWEEP TABLE: "EIRP 1900 CH512"

Short Description: EIRP PCS 1900 for channel-512 Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.8 GHz 1.9 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

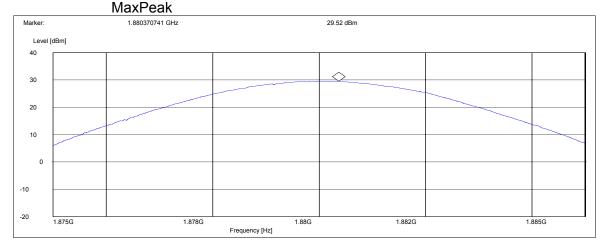
Page 15 of 88

EIRP (PCS-1900) CHANNEL 661 CETECOM Inc. §24.232(b)

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: af31a Customer: BENQ Operating Mode: tx 661

Antenna: V EUT: V


Test operator: NEELESH Voltage: NORMAL Comment: eirp

SWEEP TABLE: "EIRP 1900 CH661"

Short Description: EIRP PCS 1900 for channel-661 Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.9 GHz 1.9 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

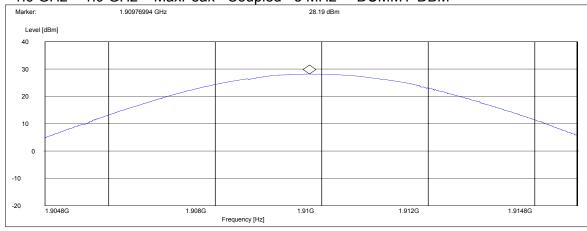
Page 16 of 88

EIRP (PCS-1900) CHANNEL 810 CETECOM Inc. §24.232(b)

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: af31a Customer: BENQ Operating Mode: tx 810

Antenna: V EUT: V

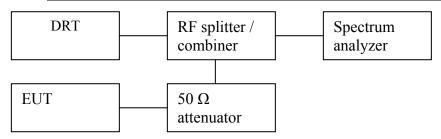

Test operator: NEELESH Voltage: NORMAL Comment: eirp

SWEEP TABLE: "EIRP 1900 CH810"

Short Description: EIRP PCS 1900 for channel-810 Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.9 GHz 1.9 GHz MaxPeak Coupled 3 MHz DUMMY-DBM


5.2 Occupied Bandwidth/Emission Bandwidth

5.2.1 FCC 2.1049 Measurements required: Occupied bandwidth

The occupied bandwidth, that is the frequency bandwidth such that below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable.

(h) Transmitters employing digital modulation techniques-when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated.

5.2.2 Occupied / emission bandwidth measurement procedure:

- 1. Connect the equipment as shown in the above diagram.
- 2. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to measure the 99% (-20 dB) occupied bandwidth. Record the value.
- 4. Set the spectrum analyzer to measure the 99.5% (-26 dB) emission bandwidth. Record the value
- 5. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

Date of Report: 2006-03-08 Page 18 of 88

5.2.3 Occupied / Emission bandwidth results 800 MHz band:

Frequency (MHz)	Occupied B/W -20 dB	Emission B/W -26 dB
824.2	278.587	314.629
836.6	284.569	316.633
848.8	264.529	310.621

5.2.4 Occupied / Emission bandwidth results 1900 MHz band:

Frequency	Occupied B/W -20 dB	Emission B/W -26 dB
(MHz)	(KHz)	(KHz)
1850.2	278.557	308.617
1880.0	282.565	314.629
1909.8	274.549	314.629

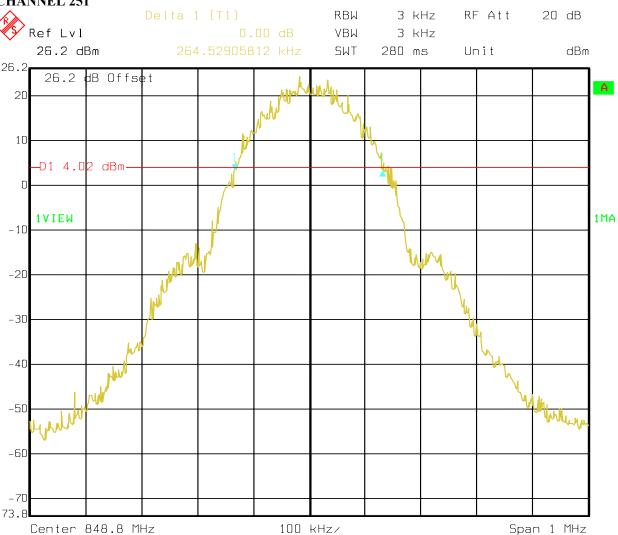
Date of Report: 2006-03-08 Page 19 of 88

-20dB (GSM 850) CHANNEL 128


Date: 14.FEB.2006 12:18:24

Page 20 of 88

-20dB (GSM 850) CHANNEL 190


Date of Report: 2006-03-08

Date of Report: 2006-03-08 Page 21 of 88

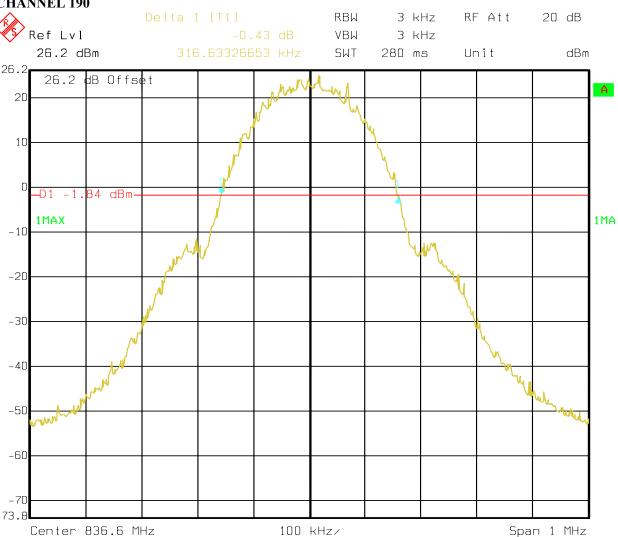
CETECOM

-20dB (GSM 850) CHANNEL 251



Page 22 of 88

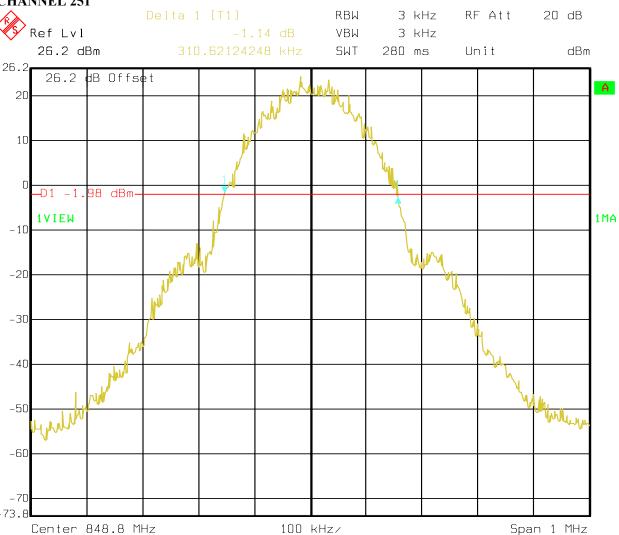
-26dB (GSM 850) CHANNEL 128


Date of Report: 2006-03-08

Date of Report: 2006-03-08 Page 23 of 88

CETECOM

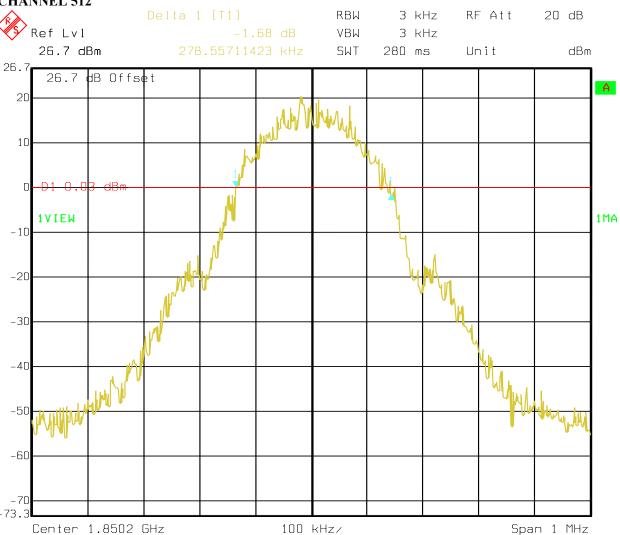
-26dB (GSM 850) CHANNEL 190



Page 24 of 88

-26dB (GSM 850) CHANNEL 251

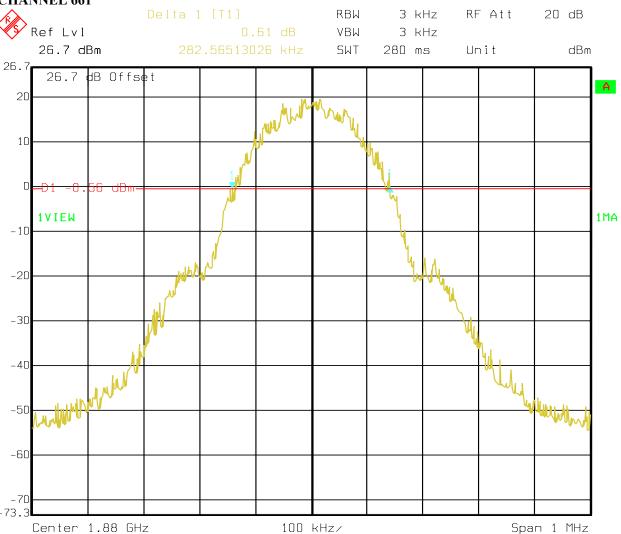
Date of Report: 2006-03-08



Date: 14.FEB.2006 12:15:41

Date of Report: 2006-03-08 Page 25 of 88

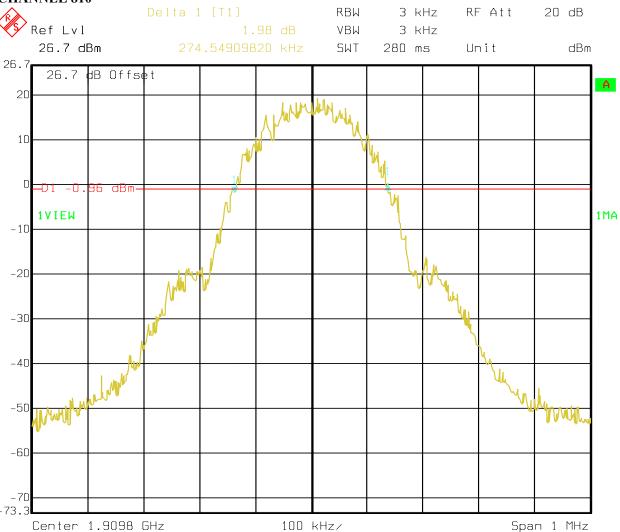
-20dB (PCS-1900) CHANNEL 512


Date: 14.FEB.2006 13:57:54

Page 26 of 88

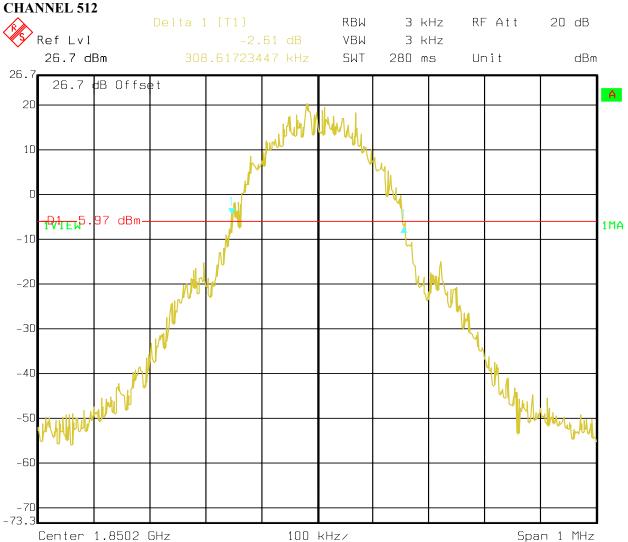
-20dB (PCS-1900) CHANNEL 661

Date of Report: 2006-03-08



Page 27 of 88

-20dB (PCS-1900) CHANNEL 810


Date of Report: 2006-03-08

Date of Report: 2006-03-08 Page 28 of 88

CETECOM

-26dB (PCS-1900)

Page 29 of 88

CETECOM

-26dB (PCS-1900) CHANNEL 661

Date of Report: 2006-03-08

Date: 14.FEB.2006 14:02:15

Page 30 of 88

-26dB (PCS-1900) CHANNEL 810

Date of Report: 2006-03-08

Date: 14.FEB.2006 14:04:43

5.2.5 Frequency Stability

5.2.6 **Limit**

For Hand carried battery powered equipment:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.6VDC and 4.5VDC, with a nominal voltage of 3.7VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of –2.7% and +21.62%. For the purposes of measuring frequency stability these voltage limits are to be used.

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU 200 UNIVERSAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30 C.
- 3. With the EUT, powered via nominal voltage, connected to the CMU 200 and in a simulated call on mid channel (190 for GSM 850 & 661 for PCS-1900), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10 C increments from -30 C to +50 C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50 C.
- 7. With the EUT, powered via nominal voltage, connected to the CMU 200 and in a simulated call on mid channel (190 for GSM 850 & 661 for PCS-1900), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 C increments from +50 C to -30 C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

For equipment powered by primary supply voltage:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

For this EUT section 2.1055(d)(1) applies. This requires to vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

Page 32 of 88

5.2.7 FREQUENCY STABILITY

Date of Report: 2006-03-08

850 Band AFC FREQ ERROR vs. VOLTAGE

Voltage	Frequency Error	Frequency Error
(VDC)	(Hz)	(ppm)
3.6	-11	.013
4.5	-14	.017

AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	-11	.013
-20	-11	.013
-10	-11	.013
0	-11	.013
+10	-11	.013
+20	-9	.011
+30	-10	.012
+40	-10	.012
+50	-9	.011

1900 Band AFC FREQ ERROR vs. VOLTAGE

Voltage (VDC)	Frequency Error (Hz)	Frequency Error (ppm)
3.6	-10	0.005
4.5	-13	0.007

AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	-17	0.009
-20	-11	0.006
-10	-11	0.006
0	-11	0.006
+10	-11	0.006
+20	-10	0.005
+30	-10	0.005
+40	-10	0.005
+50	-11	0.006

5.3 **Spurious Emissions Conducted**

5.3.1 FCC 2.1051 Measurements required: Spurious emissions at antenna terminals.

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in FCC 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

5.3.2 **Limits**:

5.3.2.1 FCC 22.917 Emission limitations for cellular equipment.

The rules in this section govern the spectral characteristics of emissions in the Cellular Radiotelephone Service.

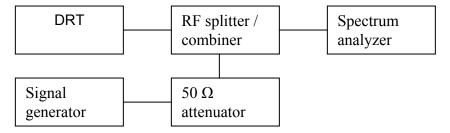
- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.
- (b) *Measurement procedure*. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.3.2.2 FCC 24.238 Emission limitations for Broadband PCS equipment.

The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service.

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.
- (b) *Measurement procedure*. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required

Page 34 of 88



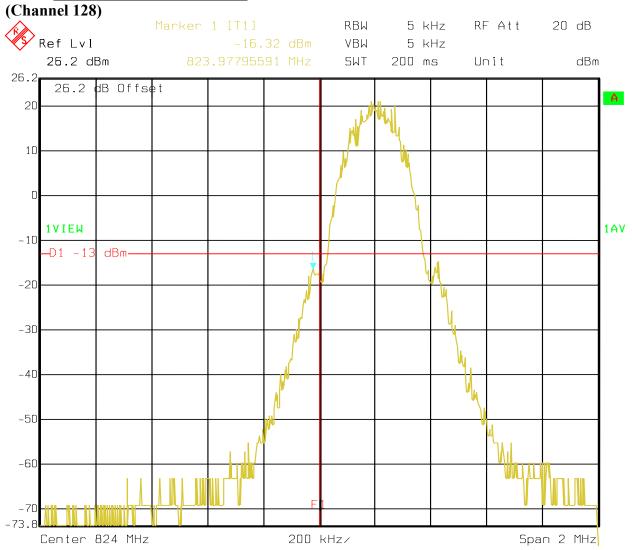
measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.3.3 Conducted out of band emissions measurement procedure:

Based on TIA-603B November 2002

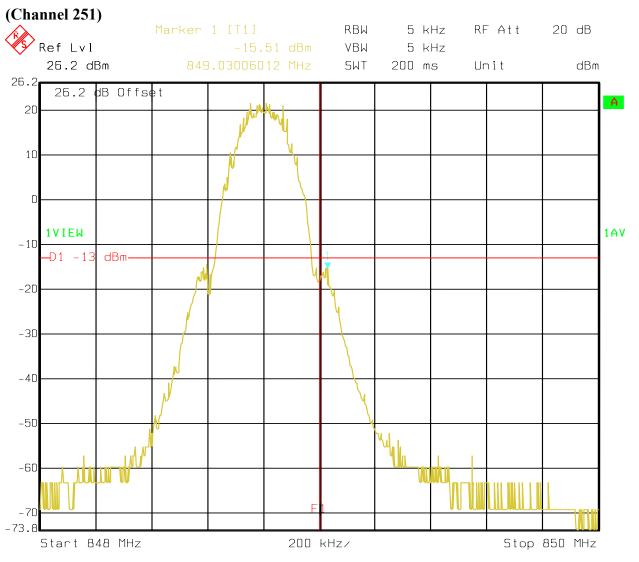
2.2.13 Unwanted Emissions: Conducted Spurious

- 1. Connect the equipment as shown in the above diagram.
- 2. Set the spectrum analyzer to measure peak hold with the required settings.
- 3. Set the signal generator to a known output power and record the path loss in dB (**LOSS**) for frequencies up to the tenth harmonic of the EUT's carrier frequency. **LOSS** = Generator Output Power (dBm) Analyzer reading (dBm).
- 4. Replace the signal generator with the EUT.
- 5. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 6. Set the spectrum analyzer to measure peak hold with the required settings. Offset the spectrum analyzer reference level by the path loss measured above.
- 7. Measure and record all spurious emissions up to the tenth harmonic of the carrier frequency.
- 8. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.
- 9. If necessary steps 6 and 7 may be performed with the spectrum analyzer set to average detector.


(**note:** Step 3 above is performed prior to testing and **LOSS** is recorded by test software. Steps 2, 6, and 7 above are performed with test software.)

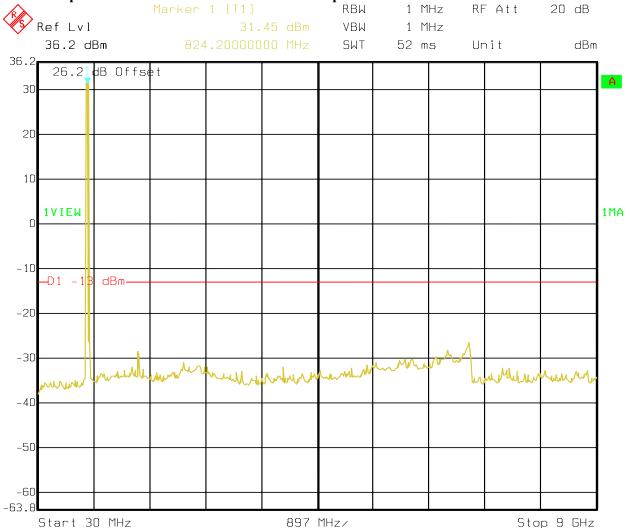
Page 35 of 88

Date of Report: 2006-03-08



5.3.4 Bandedge Results GSM 850

Page 36 of 88

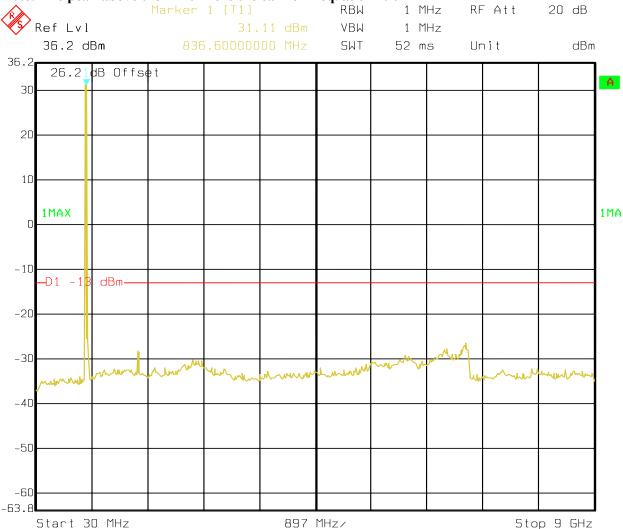


5.3.5 Conducted Spurious Results GSM 850

CHANNEL 128 30 MHz – 9 GHz

Date of Report: 2006-03-08

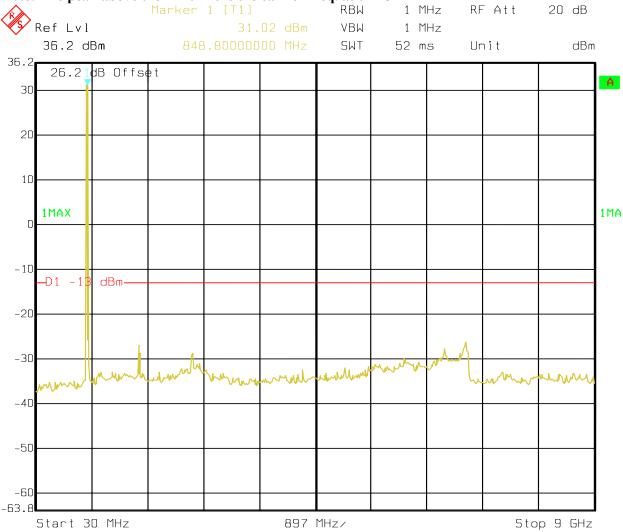
Note: The peak above the limit line is the carrier freq. at ch-128


Page 38 of 88

CHANNEL 190 30MHz – 9GHz

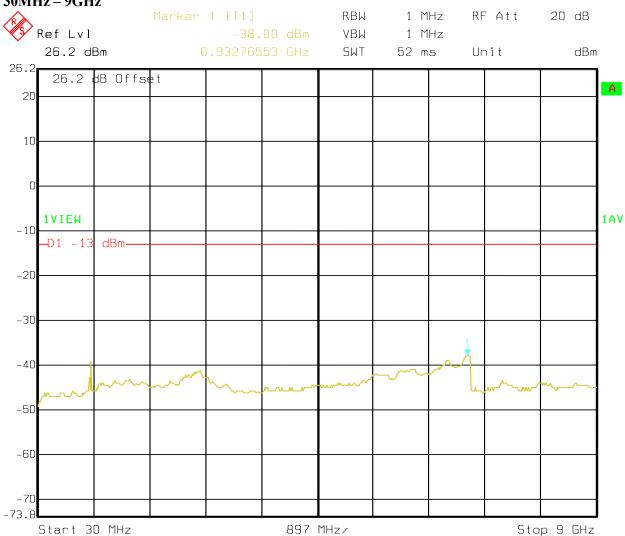
Date of Report: 2006-03-08

Note: The peak above the limit line is the carrier freq. at ch-190


Page 39 of 88

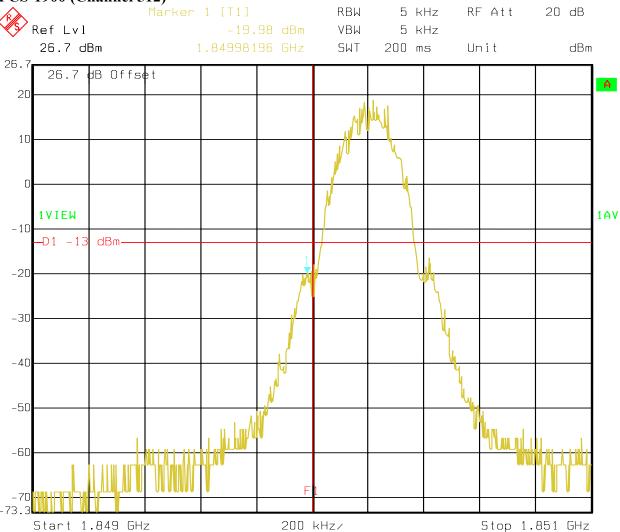
CHANNEL 251 30MHz – 9GHz

Date of Report: 2006-03-08


Note: The peak above the limit line is the carrier freq. at ch-251

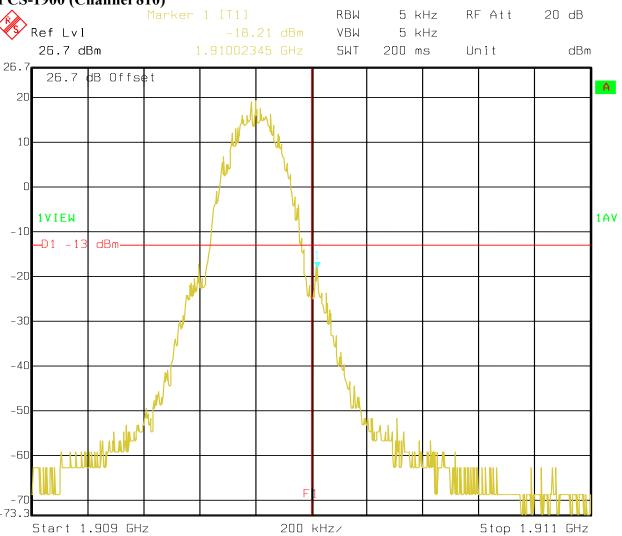
Date of Report: 2006-03-08 Page 40 of 88

IDLE (GSM 850) 30MHz – 9GHz



Date of Report: 2006-03-08

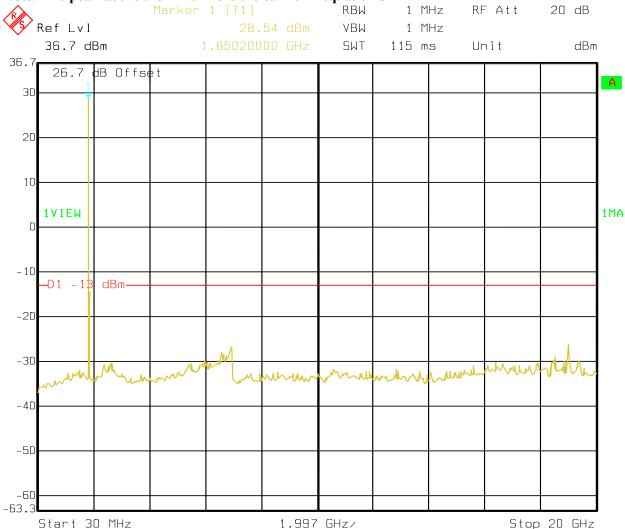
5.3.6 Bandedge Results PCS-1900


Date: 14.FEB.2006 14:08:02

Page 42 of 88

PCS-1900 (Channel 810)

Date of Report: 2006-03-08


Date of Report: 2006-03-08

5.3.7 Conducted Spurious Results PCS-1900

CHANNEL 512 (PCS-1900) 30MHz – 20GHz

Note: The peak above the limit line is the carrier freq. at ch-512

Date: 14.FEB.2006 13:54:23

Page 44 of 88

Date of Report: 2006-03-08

Stop 20 GHz

CHANNEL 661 (PCS-1900) 30MHz – 20GHz

Note: The peak above the limit line is the carrier freq. at ch-661 RBW 1 MHz RF Att 20 dB Ref Lvl VBW 1 MHz 36.7 dBm SWT 115 ms Un i t dBm 26.7 dB Offset Α 30 20 10 **1VIEW** 1MA -10 dBm -D1 -20 -30 -40 -50

1.997 GHz/

Date: 14.FEB.2006 13:53:28

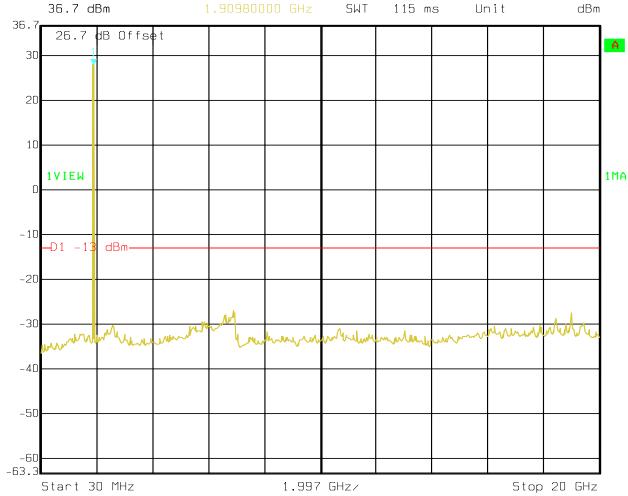
Start 30 MHz

-60 -63.3

Page 45 of 88

Date of Report: 2006-03-08

CHANNEL 810 (PCS-1900) 30MHz – 20GHz

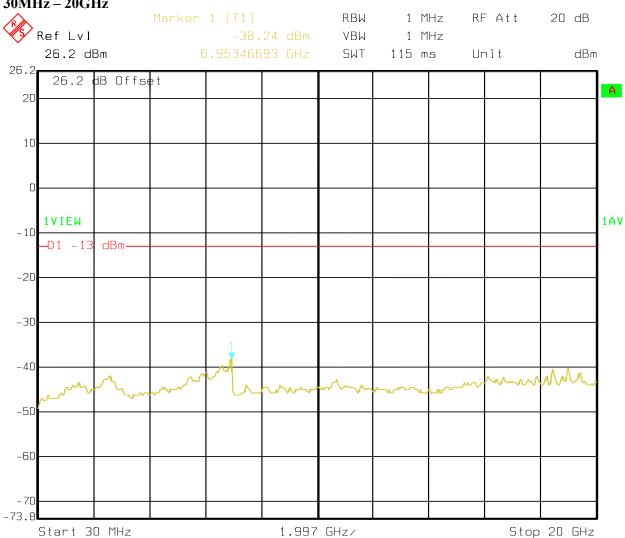

Note: The peak above the limit line is the carrier freq. at ch-810

Marker 1 [T1] RBW 1 MHz RF Att 20 dB

Ref Lvl 27.93 dBm VBW 1 MHz

36.7 dBm 1.90980000 GHz SWT 115 ms Unit dBm

36.7 26.7 dB Offset



Date: 14.FEB.2006 13:55:34

Date of Report: 2006-03-08 Page 46 of 88

IDLE (PCS-1900) 30MHz – 20GHz

Spurious Emissions Radiated

Date of Report: 2006-03-08

5.4.1 FCC 2.1053 Measurements required: Field strength of spurious radiation.

(a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission.

5.4.2 Limits:

5.4.2.1 FCC 22.917 Emission limitations for cellular equipment.

The rules in this section govern the spectral characteristics of emissions in the Cellular Radiotelephone Service.

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.
- (b) Measurement procedure. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

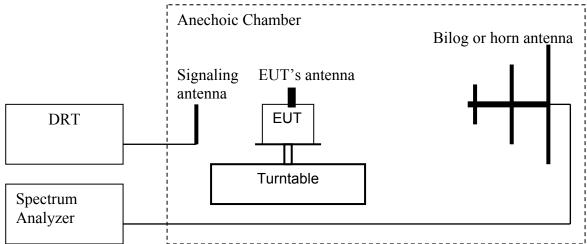
FCC 24.238 Emission limitations for Broadband PCS equipment.

The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service.

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.
- (b) Measurement procedure. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required

Date of Report: 2006-03-08 Page 48 of 88

measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.


Date of Report: 2006-03-08

5.4.3 Radiated out of band measurement procedure:

Based on TIA-603B November 2002

2.2.12 Unwanted emissions: Radiated Spurious

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a horizontal orientation.
- 2. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to measure peak hold with the required settings.
- 4. Place the measurement antenna in a horizontal orientation. Rotate the EUT 360°. Raise the measurement antenna up to 4 meters in 0.5 meters increments and rotate the EUT 360° at each height to maximize all emissions. Measure and record all spurious emissions (LVL) up to the tenth harmonic of the carrier frequency.
- 5. Replace the EUT with a horizontally polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
- 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (LOSS). LOSS = Generator Output Power (dBm) Analyzer reading (dBm).
- 7. Determine the level of spurious emissions using the following equation: **Spurious** (dBm) = **LVL** (dBm) + **LOSS** (dB):
- 8. Repeat steps 4, 5 and 6 with all antennas vertically polarized.
- 9. Determine the level of spurious emissions using the following equation: **Spurious** (dBm) = **LVL** (dBm) + **LOSS** (dB):
- 10. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

(**note:** Steps 5 and 6 above are performed prior to testing and **LOSS** is recorded by test software. Steps 3, 4 and 7 above are performed with test software.)

Spectrum analyzer settings:

Res B/W: 1 MHz Vid B/W: 1 MHz

Measurement Survey:

Date of Report: 2006-03-08

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the GSM-850 & PCS-1900 bands. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the GSM-850 & PCS-1900 band into any of the other blocks respectively. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

RESULTS OF RADIATED TESTS GSM-850:

Harmonics	Tx ch-128 Freq. (MHz)	Level (dBm)	Tx ch-190 Freq. (MHz)	Level (dBm)	Tx ch-251 Freq. (MHz)	Level (dBm)	
2	1648.4	NF	1673.2	NF	1697.6	NF	
3	2472.6	NF	2509.8	NF	2546.4	NF	
4	3296.8	-52.63	3346.4	-50.51	3395.2	-52.57	
5	4121	-55.36	4183	-55.48	4244	-52.47	
6	4945.2	NF	5019.6	NF	5092.8	NF	
7	5769.4	NF	5856.2	NF	5941.6	NF	
8	6593.6	NF	6692.8	NF	6790.4	NF	
9	7417.8	NF	7529.4	-46.16	7639.2	-45.10	
10	8242	NF	8366	-48.54	8488	NF	
NF = NOISE FLOOR							

Date of Report: 2006-03-08 Page 51 of 88

RADIATED SPURIOUS EMISSIONS (GSM-850)

TX: 30MHz - 1GHz

Spurious emission limit –13dBm

Antenna: vertical

SWEEP TABLE: "FCC 22 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz

Note:

1. The peak above the limit line is the carrier freq.

2. This plot is valid for low, mid & high channels (worst-case plot)

CETECOM Inc.

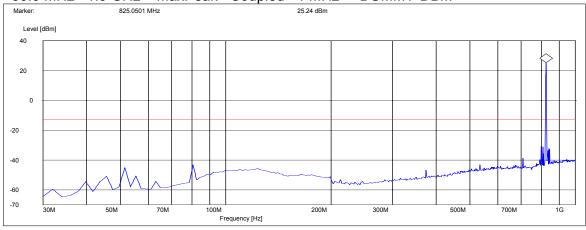
411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a Customer: BenQ Mobile

Operating Mode: TX Ch 128 GSM 850

Antenna: v EUT: v Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 24 Spur 30M-1G_V"

Short Description: FCC 24 30MHz-1GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 52 of 88

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 824.2MHz: 1GHz – 1.58GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 1-1.58G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	1.58GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

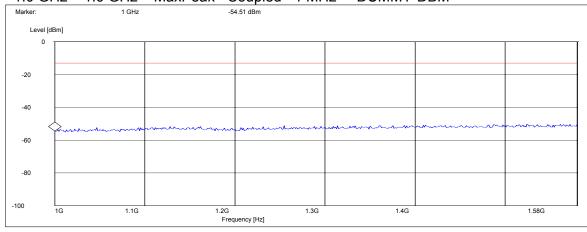
EUT / Description: A31a Customer: BenQ Mobile

Operating Mode: TX Ch 128 GSM 850

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 22Spuri 1-1.58G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 1.6 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 53 of 88

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 824.2MHz: 1.58GHz – 3GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 1.58-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1.58GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

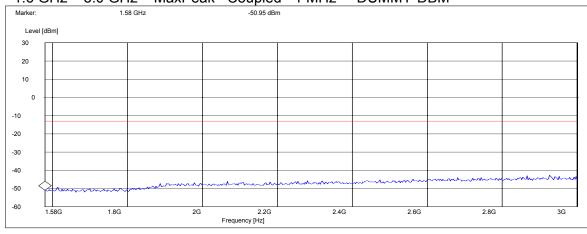
EUT / Description: A31a Customer: BenQ Mobile

Operating Mode: TX Ch 128 GSM 850

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 22Spuri 1.58-3G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.6 GHz 3.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 54 of 88

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 824.2MHz: 3GHz – 9GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 3-9G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	9GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

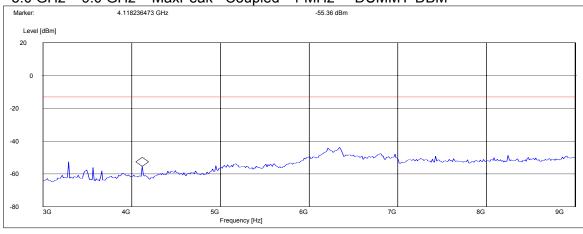
EUT / Description: A31a Customer: BenQ Mobile

Operating Mode: TX Ch 128 GSM 850

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 22Spuri 3-9G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3.0 GHz 9.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 55 of 88

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 836.6MHz: 1GHz – 1.58GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 1-1.58G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	1.58GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

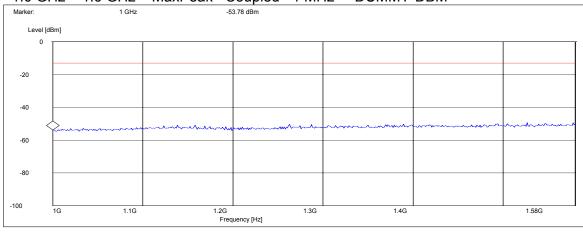
EUT / Description: A31a Customer: BenQ Mobile

Operating Mode: TX Ch 190 GSM 850

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 22Spuri 1-1.58G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 1.6 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 56 of 88

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 836.6MHz: 1.58GHz – 3GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 1.58-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1.58GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

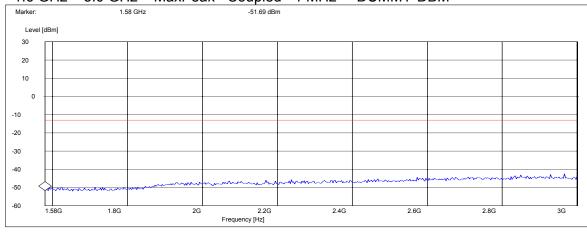
EUT / Description: A31a Customer: BenQ Mobile

Operating Mode: TX Ch 190 GSM 850

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 22Spuri 1.58-3G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.6 GHz 3.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 57 of 88

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 836.6MHz: 3GHz – 9GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 3-9G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	9GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

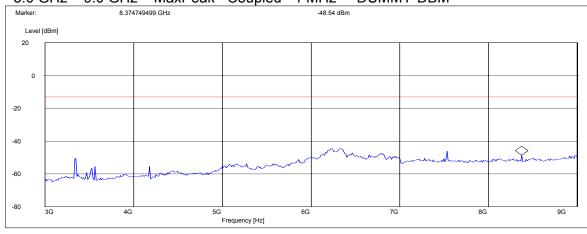
EUT / Description: A31a Customer: BenQ Mobile

Operating Mode: TX Ch 190 GSM 850

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 22Spuri 3-9G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3.0 GHz 9.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 58 of 88

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 848.8MHz: 1GHz – 1.58GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 1-1.58G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	1.58GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

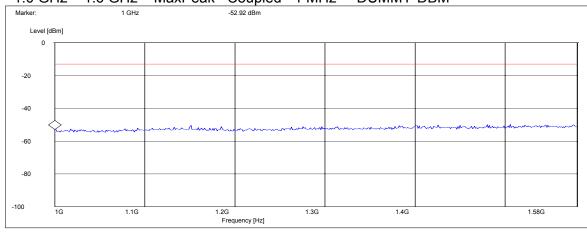
EUT / Description: A31a Customer: BenQ Mobile

Operating Mode: TX Ch 251 GSM 850

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 22Spuri 1-1.58G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 1.6 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 59 of 88

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 848.8MHz: 1.58GHz – 3GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 1.58-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1.58GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

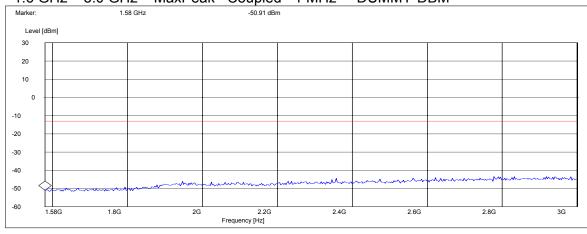
EUT / Description: A31a Customer: BenQ Mobile

Operating Mode: TX Ch 251 GSM 850

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 22Spuri 1.58-3G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.6 GHz 3.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 60 of 88

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 848.8MHz: 3GHz – 9GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 3-9G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	9GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

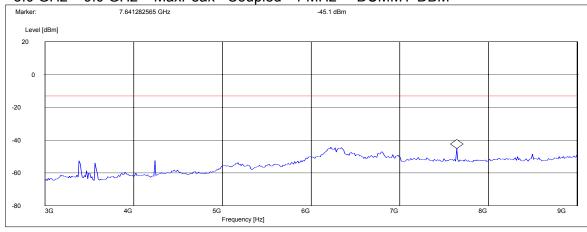
EUT / Description: A31a Customer: BenQ Mobile

Operating Mode: TX Ch 251 GSM 850

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 22Spuri 3-9G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3.0 GHz 9.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 61 of 88

RADIATED SPURIOUS EMISSIONS (GSM-850)

IDLE: 30MHz - 1GHz

Spurious emission limit -13dBm

Antenna: vertical

SWEEP TABLE: "FCC 22 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

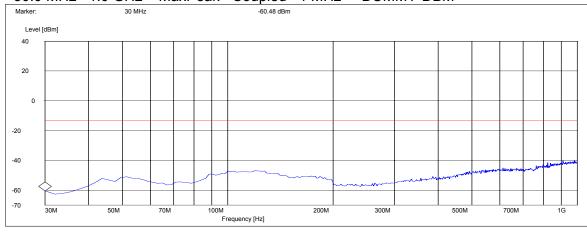
411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a
Customer: BenQ Mobile
Operating Mode: Idle GSM 850

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 24 Spur 30M-1G_V"

Short Description: FCC 24 30MHz-1GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 62 of 88

RADIATED SPURIOUS EMISSIONS (GSM-850)

IDLE: 1GHz – 3GHz

Spurious emission limit -13dBm

SWEEP TABLE: "FCC 22 Spur 1-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

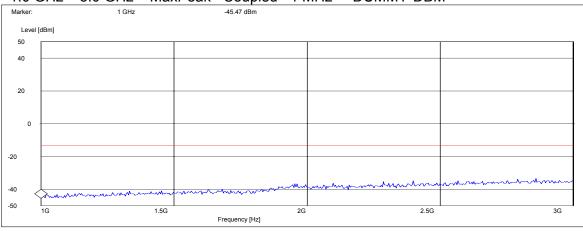
411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a Customer: BenQ Mobile Operating Mode: Idle GSM 850

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 24Spuri 1-3G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 63 of 88

RADIATED SPURIOUS EMISSIONS (GSM-850)

IDLE: 3GHz – 9GHz

SWEEP TABLE: "FCC 22 Spur 3-9G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	9GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a
Customer: BenQ Mobile
Operating Mode: Idle GSM 850

Antenna: v
EUT: v
Test operator: Pete
Voltage: normal

Comment:

-80

SWEEP TABLE: "FCC 22Spuri 3-9G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

8G

9G

5G Frequency [Hz]

Date of Report: 2006-03-08 Page 64 of 88

RESULTS OF RADIATED TESTS PCS-1900:

Harmonic	Tx ch-512 Freq.(MHz)	Level (dBm)	Tx ch-661 Freq. (MHz)	Level (dBm)	Tx ch-810 Freq. (MHz)	Level (dBm)		
2	3700.4	-41.20	3760	-43.29	3819.6	-45.91		
3	5550.6	-43.77	5640	-44.65	5729.4	-49.41		
4	7400.8	NF	7520	NF	7639.2	NF		
5	9251	-35.52	9400	-31.38	9549	-28.79		
6	11101.2	-29.99	11280	-31.07	11458.8	-29.91		
7	12951.4	NF	13160	NF	13368.6	NF		
8	14801.6	NF	15040	NF	15278.4	NF		
9	16651.8	NF	16920	NF	17188.2	NF		
10	18502	NF	18800	NF	19098	NF		
	NF = NOISE FLOOR							

Date of Report: 2006-03-08 Page 65 of 88

RADIATED SPURIOUS EMISSIONS(PCS 1900)

TX: 30MHz - 1GHz

Spurious emission limit –13dBm

Antenna: vertical

SWEEP TABLE: "FCC 24 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: This plot is valid for low, mid & high channels (worst-case plot)

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a

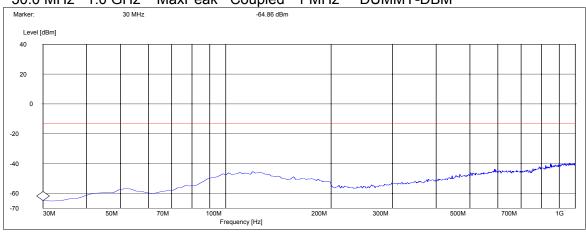
Customer: BenQ Mobile

Operating Mode: TX Ch 661 GSM 1900

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 24 Spur 30M-1G_V"

Short Description: FCC 24 30MHz-1GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 66 of 88

RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1850.2MHz: 1GHz – 3GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC Spuri 1-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: The peak above the limit line is the carrier freq. at ch-512. *CETECOM Inc.*

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a

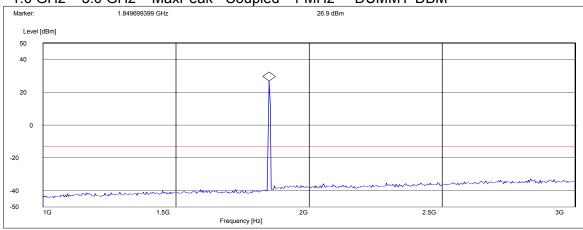
Customer: BenQ Mobile

Operating Mode: TX Ch 512 GSM 1900

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 24Spuri 1-3G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 67 of 88

RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1850.2MHz: 3GHz – 18GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC Spuri 3-18G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

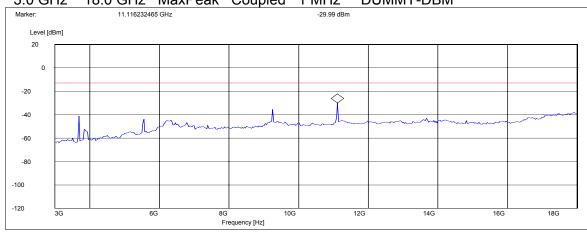
411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a

Customer: BenQ Mobile

Operating Mode: TX Ch 512 GSM 1900

Antenna: v EUT: v


Test operator: Pete Voltage: normal

Comment:

SWEEP TABLE: "FCC 24Spuri 3-18G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 68 of 88

RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1880.0MHz: 1GHz – 3GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC Spuri 1-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: The peak above the limit line is the carrier freq. at ch-661. *CETECOM Inc.*

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a

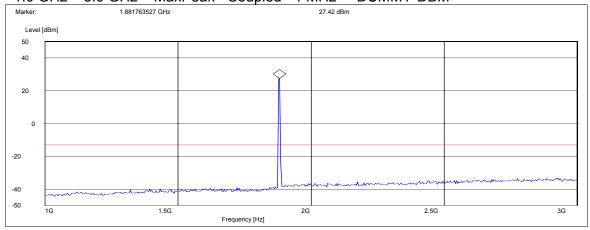
Customer: BenQ Mobile

Operating Mode: TX Ch 661 GSM 1900

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 24Spuri 1-3G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 69 of 88

RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1880.0MHz: 3GHz – 18GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC Spuri 3-18G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a Customer: BenQ Mobile

Operating Mode: TX Ch 661 GSM 1900

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:

SWEEP TABLE: "FCC 24Spuri 3-18G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

Date of Report: 2006-03-08 Page 70 of 88

RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1909.8MHz: 1GHz – 3GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC Spuri 1-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: The peak above the limit line is the carrier freq. at ch-810. *CETECOM Inc.*

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a

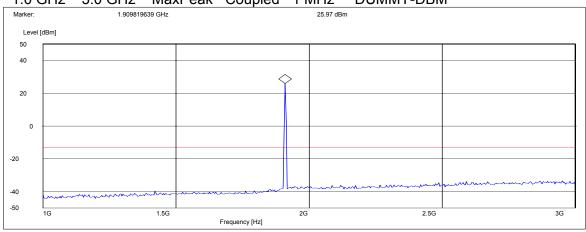
Customer: BenQ Mobile

Operating Mode: TX Ch 810 GSM 1900

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 24Spuri 1-3G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 71 of 88

RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1909.8MHz: 3GHz – 18GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC Spuri 3-18G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

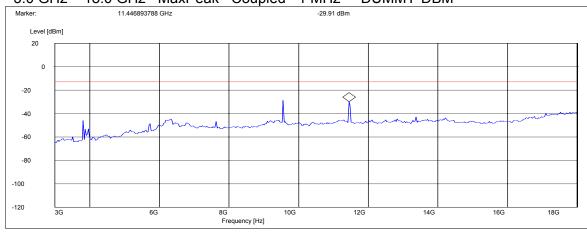
EUT / Description: A31a

Customer: BenQ Mobile

Operating Mode: TX Ch 810 GSM 1900

Antenna: v

Test operator: Pete Voltage: normal


Comment:

SWEEP TABLE: "FCC 24Spuri 3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 72 of 88

RADIATED SPURIOUS EMISSIONS(PCS 1900)

18GHz – 19.1GHz

Spurious emission limit –13dBm

SWEEP TABLE: "FCC 24 spuri 18-19.1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
18GHz	19.1GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: This plot is valid for low, mid & high channels (worst-case plot) **CETECOM Inc.**

411 Dixon Landing Road, Milpitas CA 95035, USA

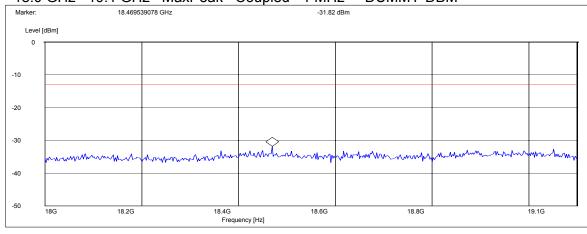
EUT / Description: A31a

Customer: BenQ Mobile

Operating Mode: TX Ch 512 GSM 1900

Antenna: v EUT: v

Test operator: Pete Voltage: normal


Comment:

SWEEP TABLE: "FCC 24spuri 18-19.1G"

Short Description: FCC 24 18GHz-19.1GHz Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

18.0 GHz 19.1 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 73 of 88

RADIATED SPURIOUS EMISSIONS (IDLE MODE)

EUT in Idle Mode: 30MHz – 1GHz Spurious emission limit –13dBm

Antenna: vertical

SWEEP TABLE: "FCC 22 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

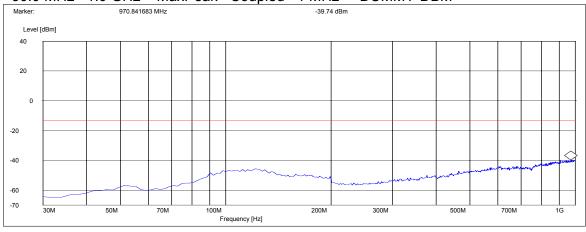
411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a
Customer: BenQ Mobile
Operating Mode: Idle GSM 1900

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 24 Spur 30M-1G_V"

Short Description: FCC 24 30MHz-1GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 74 of 88

RADIATED SPURIOUS EMISSIONS (IDLE MODE)

EUT in Idle Mode: 1GHz – 3GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC Spuri 1-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

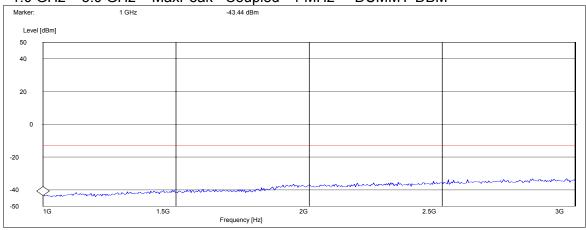
411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a
Customer: BenQ Mobile
Operating Mode: Idle GSM 1900

Antenna: v EUT: v

Test operator: Pete Voltage: normal

Comment:


SWEEP TABLE: "FCC 24Spuri 1-3G"

Short Description: FCC 24 1GHz-8GHz

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 75 of 88

RADIATED SPURIOUS EMISSIONS (IDLE MODE)

EUT in Idle Mode: 3GHz – 18GHz Spurious emission limit –13dBm

SWEEP TABLE: "FCC 24 spuri 3-18G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz

CETECOM Inc.

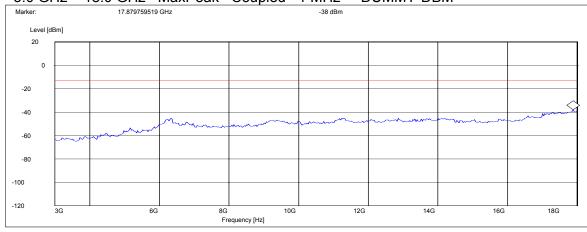
411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a

Customer: BenQ Mobile Operating Mode: Idle GSM 1900

Antenna: v EUT: v

Test operator: Pete Voltage: normal


Comment:

SWEEP TABLE: "FCC 24Spuri 3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08 Page 76 of 88

RADIATED SPURIOUS EMISSIONS (IDLE MODE)

EUT in Idle Mode: 18GHz – 19.1GHz

Spurious emission limit -13dBm

SWEEP TABLE: "FCC 24 spuri 18-19.1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
18GHz	19.1GHz	Max Peak	Coupled	1 MHz	1 MHz

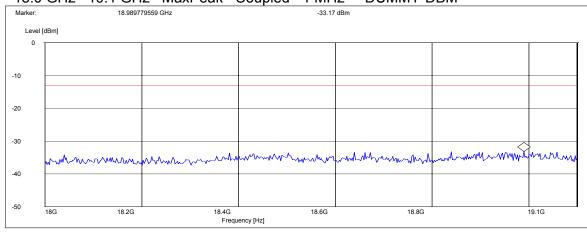
CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a
Customer: BenQ Mobile
Operating Mode: Idle GSM 1900

Antenna: v EUT: v

Test operator: Pete Voltage: normal


Comment:

SWEEP TABLE: "FCC 24spuri 18-19.1G"

Short Description: FCC 24 18GHz-19.1GHz Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

18.0 GHz 19.1 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2006-03-08

Page 77 of 88

5.5 <u>RECEIVER RADIATED EMISSIONS</u>

§ 2.1053 / RSS-132 & 133

NOTE:

1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3GHz and 26.5GHz very short cable connections to the antenna was used to minimize the noise level.

Limits

SUBCLAUSE § RSS-133

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

5.5.1 Receiver Spurious on EUT

RECEIVER RADIATED EMISSIONS EUT in Idle Mode: 30MHz – 1GHz

Antenna: vertical

SWEEP TABLE: "FCC Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	100 KHz	100 KHz

Note: Peak Reading Vs. Quasi-Peak Limit.

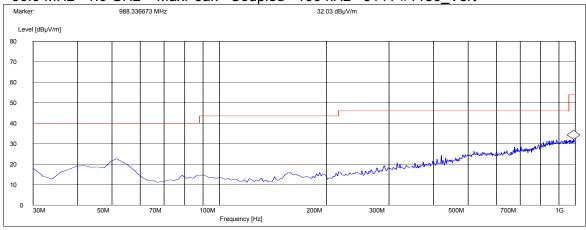
CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a Customer: BenQ Mobile Operating Mode: RX GSM 1900

Antenna: v EUT: v

Test operator: Pete Voltage: normal


Comment:

SWEEP TABLE: "CANADA RE_30M-1G_Ver"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186 Vert

Date of Report: 2006-03-08 Page 79 of 88

RECEIVER RADIATED EMISSIONS RECEIVER RADIATED EMISSIONS EUT in Idle Mode: 1GHz – 3GHz

SWEEP TABLE: "FCC Spuri 1-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

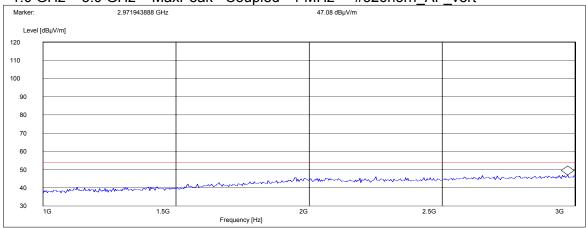
Note: Peak Reading Vs. Average Limit.

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a Customer: BenQ Mobile

Operating Mode: RX GSM 1900 Antenna: v


EUT: v
Test operator: Pete
Voltage: normal

Comment:

SWEEP TABLE: "CANADA RE_1-3G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz #326horn AF vert

Date of Report: 2006-03-08 Page 80 of 88

RECEIVER RADIATED EMISSIONS **EUT in Idle Mode: 3GHz – 18GHz**

SWEEP TABLE: "FCC spuri 3-18G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: Peak Reading Vs. Average Limit.

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA


EUT / Description: A31a Customer: BenQ Mobile Operating Mode: RX GSM 1900

Antenna: EUT: Test operator: Pete Voltage: normal

Comment:

SWEEP TABLE: "CANADA RE_3-18G"

Transducer Start Stop Detector Meas. Frequency Frequency Time Bandw.

Date of Report: 2006-03-08 Page 81 of 88

RECEIVER RADIATED EMISSIONS EUT in Idle Mode: 18GHz – 19.1GHz

SWEEP TABLE: "FCC spuri 18-19.1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
18GHz	19.1GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: Peak Reading Vs. Average Limit.

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description: A31a Customer: BenQ Mobile Operating Mode: RX GSM 1900

Antenna: v
EUT: v
Test operator: Pete
Voltage: normal

Comment:

SWEEP TABLE: "CANADA RE_18-26.5G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

18.0 GHz 26.5 GHz MaxPeak Coupled 1 MHz 3160 Horn 18-26.5G

Level [dBµV/m]

70

60

40

40

20

18G 19G 20G 21G 22G 23G 24G 25G 26.5G

Date of Report: 2006-03-08 Page 82 of 88

5.6 AC POWERLINE CONDUCTED EMISSIONS

§ 15.107/207

Measured with AC/DC power adapter Siemens model#A5BHTHN00102612 Technical specification: 15.107 / 15.207 (Revised as of August 20, 2002) Limit

Frequency of Emission (MHz)	Conducted Limit (dBμV)			
	Quasi-Peak	Average		
0.15 - 0.5	66 to 56*	56 to 46*		
0.5 – 5	56	46		
5 – 30	60	50		
* Decreases with logarithm of the frequency				

ANALYZER SETTINGS: RBW = 10KHz

VBW = 10KHz

5.6.1 Results EUT

LISN LISN

411 Dixon Landing Road, CA 95035

EUT / Description: A31a Manufacturer: BenQ Test mode: tx Test Engineer: Pete Phase: I+n

Comment: 120vac

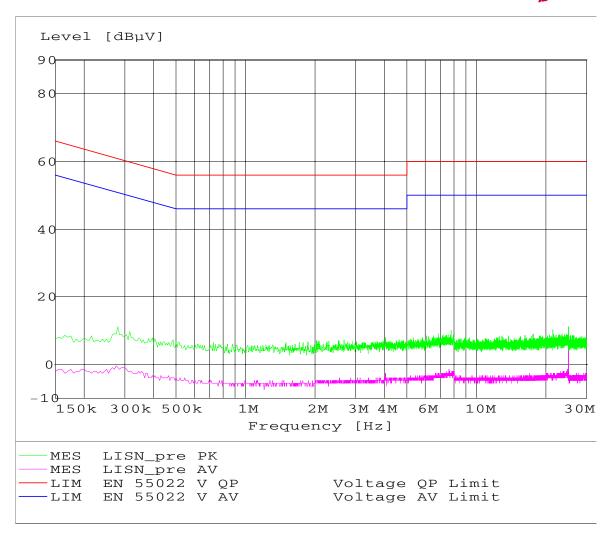
Start of Test: 2/21/2006 / 4:33:07PM

SCAN TABLE: "EN 55022 Voltage"

Short Description: EN 55022 Voltage

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.


150.0 kHz 30.0 MHz 5.0 kHz MaxPeak 10.0 ms 9 kHz None

Average

Date of Report: 2006-03-08

Page 84 of 88

Date of Report: 2006-03-08 Page 85 of 88

6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No	Instrument/Ancill	Type	Manufacturer	Serial No.	Cal Due	Interval
	ary					
01	Spectrum Analyzer	ESIB 40	Rohde & Schwarz	100107	May 2006	1 year
02	Spectrum Analyzer	FSEM 30	Rohde & Schwarz	100017	August 2006	1 year
03	Signal Generator	SMY02	Rohde & Schwarz	836878/01 1	May 2006	1 year
04	Power-Meter	NRVD	Rohde & Schwarz	0857.8008 .02	May 2006	1 year
05	Biconilog Antenna	3141	EMCO	0005-1186	June 2006	1 year
06	Horn Antenna (1-	SAS-200/571	AH Systems	325	June 2006	1 year
	18GHz)	21.50.00	77.600	1010	7 000	
07	Horn Antenna (18- 26.5GHz)	3160-09	EMCO	1240	June 2006	1 year
08	Power Splitter	11667B	Hewlett Packard	645348	n/a	n/a
09	Climatic Chamber	VT4004	Voltsch	G1115	May 2006	1 year
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a	n/a
12	Pre-Amplifier	JS4- 00102600	Miteq	00616	May 2006	1 year
13	Power Sensor	URV5-Z2	Rohde & Schwarz	DE30807	May 2006	1 year
14	Digital Radio Comm. Tester	CMD-55	Rohde & Schwarz	847958/00 8	May 2006	1 year
15	Universal Radio Comm. Tester	CMU 200	Rohde & Schwarz	832221/06	May 2006	1 year

Date of Report: 2006-03-08

Page 86 of 88

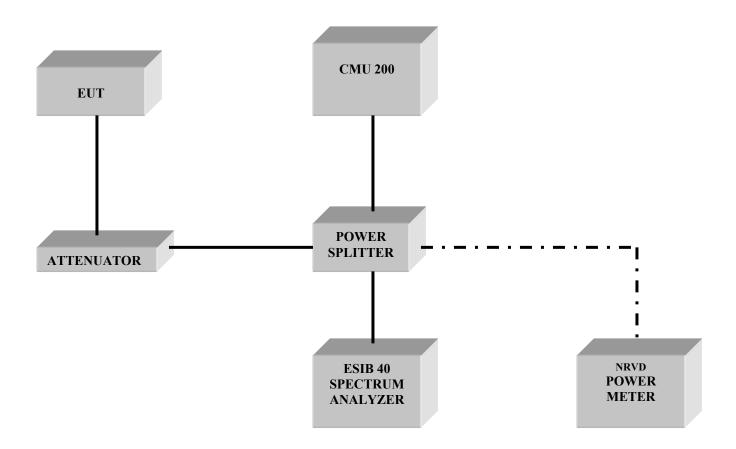
7 References

Title 47—Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION,

PART 2--FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS October 1, 2001.

FCC Report and order 02-229 September 24, 2002.

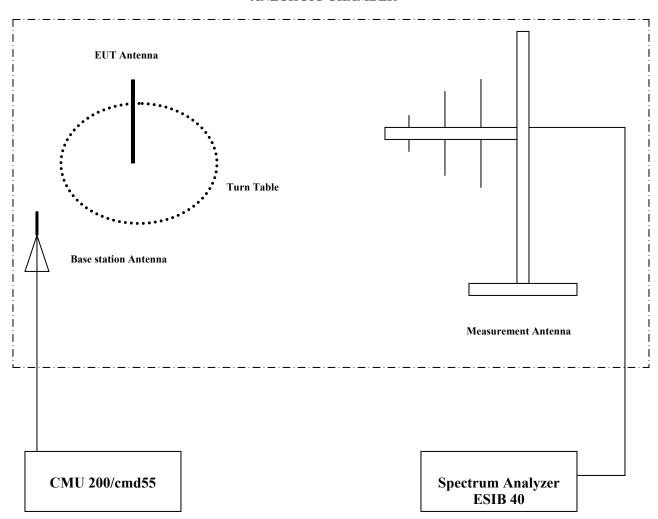
Title 47—Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION,


PART 24 PERSONAL COMMUNICATIONS SERVICES October 1, 1998.

ANSI / TIA-603-B-2003 Land Mobile FM or PM Communications Equipment Measurement and Performance Standard November 7, 2002.

8 BLOCK DIAGRAMS Conducted Testing

Date of Report: 2006-03-08



Date of Report: 2006-03-08

Radiated Testing

ANECHOIC CHAMBER

