

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to \$15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See \$1.1307(b)(1) of this chapter.

EUT Specification

EUT	IC WLAN USB Module
Frequency band	WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz
(Operating)	WLAN: 5.745GHz ~ 5.825GHz
	Others
Device category	Portable (<20cm separation)
	Mobile (>20cm separation)
	Others
	Occupational/Controlled exposure ($S = 5mW/cm^2$)
Exposure classification	General Population/Uncontrolled exposure
	$(S=1mW/cm^2)$
Antenna diversity	Single antenna
	Multiple antennas
	Tx diversity
	Rx diversity
	Tx/Rx diversity
Max. output power	IEEE 802.11b mode: 12.26 dBm (16.82mW)
	IEEE 802.11g mode: 18.66 dBm (73.45 mW)
	IEEE 802.11n HT 20 MHz mode: 19.65 dBm (92.25 mW)
	IEEE 802.11n HT 40 MHz mode: 18.97 dBm (78.88 mW)
Antenna gain (Max)	2.5 dBi (Numeric gain: 1.77)
Evaluation applied	MPE Evaluation
	SAR Evaluation
	□ N/A
Remark:	

The maximum output power is <u>19.65 dBm (92.25mW)</u> at <u>2442MHz (with 1.77numeric antenna gain.)</u>

TEST RESULTS

No non-compliance noted.

MPE EVALUATION

No non-compliance noted.

Calculation

Given

 $E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$ Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and
 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1
Where $d = Distance$ in cm
 $P = Power$ in mW
 $G = Numeric$ antenna gain
 $S = Power$ density in mW/cm^2

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

IEEE 802.11b mode:

EUT output power = 16.82mW Numeric Antenna gain = 1.77

 \rightarrow Power density = 0.005925 mW/cm²

IEEE 802.11g mode:

EUT output power = 73.45 mW

Numeric Antenna gain = 1.77

 \rightarrow Power density = 0.025871 mW/cm²

IEEE 802.11n HT 20 MHz mode:

EUT output power =92.25 mW Numeric Antenna gain = 1.77

 \rightarrow Power density = 0.032493mW/cm²

IEEE 802.11n HT 40 MHz mode:

EUT output power = 78.88mW

Numeric Antenna gain = 1.77

 \rightarrow Power density = 0.027784 mW/cm²

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm^2 even if the calculation indicates that the power density would be larger.)