FCC ID: PWQ-00EFR370000

IEEE C95.1 2005 KDB 447498 D01 V06 47 C.F.R. Part 1, Subpart I, Section 1.1310 47 C.F.R. Part 2, Subpart J, Section 2.1091

Report No.: T170330D06-B-MF

RF EXPOSURE REPORT

For

WLAN USB Module, Ralink IEEE 802.11 b/g/n solution

Model: WN8020-00

Trade Name: Geovision

Issued to

GeoVision Inc. 9F, No. 246, Sec. 1, Neihu Rd., Neihu District, Taipei 114, Taiwan

Issued by

Compliance Certification Services Inc.
Tainan Laboratory

No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.) http://www.ccsrf.com service@ccsrf.com

Issued Date: September 12, 2017

Report No.: T170330D06-B-MF

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	September 12, 2017	Initial Issue	ALL	Vicki Huang

TABLE OF CONTENTS

1.	TEST RESULT CERTIFICATION	4
2.	LIMIT	5
3.	EUT SPECIFICATION	
4.	TEST RESULTS	7
5	MAXIMUM PERMISSIBI E EXPOSURE	Я

1. TEST RESULT CERTIFICATION

We hereby certify that:

The equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirement of the applicable standards. The test record, data evaluation and Equipment under Test (EUT) configurations represented herein are true and accurate accounts of the measurement of the sample's RF characteristics under the conditions specified in this report.

APPLICABLE STANDARDS						
STANDARD	TEST RESULT					
IEEE C95.1 2005 KDB 447498 D03 47 C.F.R. Part 1, Subpart I, Section 1.1310 47 C.F.R. Part 2, Subpart J, Section 2.1091	No non-compliance noted					

Approved by:

Tested by:

Jeter Wu **Assistant Manager** Compliance Certification Services Inc. Vicki Huang Report coordinator Compliance Certification Services Inc.

FCC ID: PWQ-00EFR370000

2. LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

Report No.: T170330D06-B-MF

3. EUT SPECIFICATION

Product	WLAN USB Module, Ralink IEEE 802.11 b/g/n solution				
Model	WN8020-00				
Brand name	Geovision				
Model Discrepancy	N/A				
Frequency band (Operating)					
Device category	□ Portable (<20cm separation)☑ Mobile (>20cm separation)□ Others				
Exposure classification	 ☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²) 				

Antenna Specification	2.4G PIFA Antenna / Gain: 1.8dBi 2.4GHz: Antenna Gain: 1.80 dBi (Numeric gain: 1.51) Worst
Maximum Average output power	IEEE 802.11b Mode: 6.11 dBm (4.083 mW) IEEE 802.11g Mode: 8.83 dBm (7.638 mW) IEEE 802.11n HT 20 Mode: 6.24 dBm (4.207 mW)
Maximum Tune up Power	IEEE 802.11b Mode: 6.50 dBm (4.467 mW) IEEE 802.11g Mode: 9.00 dBm (7.943 mW) IEEE 802.11n HT 20 Mode: 7.50 dBm (5.623 mW)
Evaluation applied	MPE Evaluation*SAR EvaluationN/A

FCC ID: PWQ-00EFR370000

4. TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{377}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = *Distance in meters*

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{377d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{377 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

FCC ID: PWQ-00EFR370000 Report No.: T170330D06-B-MF

5. MAXIMUM PERMISSIBLE EXPOSURE

Substituting the MPE safe distance using d = 20 cm into Equation 1:

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = *Numeric* antenna gain

 $S = Power density in mW / cm^2$

IEEE 802.11b mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
1	2412	4.467	1.51	20	0.0013	1

IEEE 802.11g mode:

	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
ſ	1	2412	7.943	1.51	20	0.0024	1

IEEE 802.11n HT 20 mode:

I	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
I	1	2412	5.623	1.51	20	0.0017	1