

ADDENDUM TO WILSON ELECTRONICS TEST REPORT FC05-017

FOR THE

MOBILE WIRELESS DUAL BAND CELLULAR/ PCS SMART TECHNOLOGY AMPLIFIER, 801201

FCC PART 24 & RSS-131

COMPLIANCE

DATE OF ISSUE: MAY 3, 2005

PREPARED FOR:

Wilson Electronics 3301 East Deseret Drive St. George, UT 84790

P.O. No.: DBW801201-1

W.O. No.: 83305

PREPARED BY:

Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Date of test: March 21 – May 2, 2005

Report No.: FC05-017A

This report contains a total of 107 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
FCC to Canada Standard Correlation Matrix	4
Conditions for Compliance	
Approvals	
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	
Temperature and Humidity During Testing	6
FCC 2.1033(c)(3) User's Manual	
FCC 2.1033(c)(4) Type of Emissions	6
FCC 2.1033(c)(5) Frequency Range	
FCC 2.1033(c)(6) Operating Power	
FCC 2.1033(c)(7) Maximum Power Rating	
FCC 2.1033(c)(8) DC Voltages	
FCC 2.1033(c)(9) Tune-Up Procedure	
FCC 2.1033(c)(10) Schematics and Circuitry Description	
FCC 2.1033(c)(11) Label and Placement	
FCC 2.1033(c)(12) Submittal Photos	
FCC 2.1033(c)(13) Modulation Information	
FCC 2.1033(c)(14)/2.1046/24.232 - RF Power Output	
FCC 2.1033(c)(14)/2.1047(b) - Audio Frequency Response	
FCC 2.1033(c)(14)/2.1047(b) - Modulation Limiting Response	
FCC 2.1033(c)(14)/2.1049(i) - Occupied Bandwidth	
FCC 2.1051 Downlink Block Edge	
FCC 2.1033(c)(14)/2.1051/24.238 - Spurious Emissions at Antenna Terminal	
FCC 2.1051 - Intermodulation Attenuation	
FCC 2.1051 - Self-Collocation Intermodulation	
FCC 2.1033(c)(14)/2.1053/24.238 - Field Strength of Spurious Radiation	
Input Downlink	
Input Uplink	
Output Downlink	
Output Uplink	
RSS-131 Downlink Passband Gain	
RSS-131 Uplink Passband Gain	
RSS-131 Downlink Passbandwidth	
RSS-131 Uplink Passbandwidth	106

Page 2 of 107 Report No.: FC05-017A

ADMINISTRATIVE INFORMATION

DATE OF TEST: March 21 – May 2, 2005

DATE OF RECEIPT: March 21, 2005

FREQUENCY RANGE TESTED: 30MHz-20GHz

Wilson Electronics **MANUFACTURER:**

> 3301 East Deseret Drive St. George, UT 84790

REPRESENTATIVE: Riki Kline

TEST LOCATION: CKC Laboratories, Inc.

> 5046 Sierra Pines Drive Mariposa, CA 95338

TEST METHOD: FCC Part 24, TIA/EIA 603 & RSS-131

PURPOSE OF TEST: To demonstrate the compliance of the Mobile

Wireless Dual Band Cellular/PCS Smart

Technology Amplifier, 801201 with the

requirements for FCC Part 24 & RSS-131 devices. **Addendum A** is to revise the data sheet on page 54 and add self collocation intermodulation data on

page 80.

FCC TO CANADA STANDARD CORRELATION MATRIX

Canadian	Canadian	FCC	FCC	
Standard	Section	Standard	Section	Test Description
RSS-131	5.4	N/A	N/A	External Controls
RSS-131	5.5	47 CFR	1.1307	RF Exposure
RSS-131	6.1	N/A	N/A	Passband Gain and Bandwidth
RSS-131	6.2	47 CFR	24.232	RF Power Output
RSS-131	6.3	TIA/EIA	603	Non-Linearity (Intermodulation Attenuation)
RSS-131	6.4	47 CFR	24.238	Spurious Emissions Limitations
RSS-131	6.5	N/A	N/A	Frequency Stability (Band Translators)
IC 3082-D		784962		Site Filing No.

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

TEST PERSONNEL:

Joyce Walker, Quality Assurance Administrative Manager

Mike Wilkinson, Lab Manager

Page 4 of 107 Report No.: FC05-017A

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit

The following eqipment name has been used during testing by CKC Laboratories:

In Vehicle Wireless Dual Band Smart Amplifier

Since the time of testing the manufacturer has chosen to use the following equipment name in its place. Any differences between the names does not affect their EMC characteristics and therefore complies to the level of testing equivalent to the tested model name shown on the data sheets:

Mobile Wireless Dual Band Cellular/PCS Smart Technology Amplifier

EQUIPMENT UNDER TEST

Mobile Wireless Dual Band Cellular/PCS Smart

Technology Amplifier

Manuf: Wilson Electronics

Model: 801201

Serial: 8012010000006

FCC ID: PWO8012SM (pending)

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Signal Generator		DC Power	Supply -
Manuf:	HP	Manuf:	Topward
Model:	E4433B	Model:	TPS-2000
Serial:	US38440697	Serial:	920035
FCC ID:	DoC	FCC ID:	NA

Signal Generator Load

Manuf:	HP	Manuf:	JFW
Model:	E4432B	Model:	50T-022
Serial:	MY41000298	Serial:	P04243
FCC ID:	DoC	FCC ID:	DoC

Page 5 of 107 Report No.: FC05-017A

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

FCC 2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

FCC 2.1033 (c)(4) TYPE OF EMISSIONS

GXW, G7X, F9W

FCC 2.1033 (c)(5) FREQUENCY RANGE

Downlink 1930-1990MHz, Uplink 1850-1910MHz

FCC 2.1033 (c)(6) OPERATING POWER

Downlink, 8.31 mWatts (EIRP), Uplink, 1.862 Watts (EIRP)

FCC 2.1033 (c)(7) MAXIMUM POWER RATING

Downlink 15 mW, Uplink 2 Watts EIRP

FCC 2.1033 (c)(8) DC VOLTAGES

The necessary information is contained in a separate document.

FCC 2.1033 (c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

FCC 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

FCC 2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

FCC 2.1033 (c)(13) MODULATION INFORMATION

GSM, EDGE, CDMA

Page 6 of 107 Report No.: FC05-017A

FCC 2.1033(c)(14)/2.1046/24.232 - RF POWER OUTPUT

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz

RF Power Output Test:

Only one signal is input to the amplifier. The input from the signal generator is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Minimum RF output power of 0.00 Watts is achieved with a 0.00 Watt RF input signal.

Uplink Output Ratings:

CDMA and TDMA (EDGE & GSM) formats: 2Watts EIRP

Downlink Output Ratings:

All: 15mW

RF power output of the amplifier is routed to a spectrum analyzer through suitable attenuation.

Downlink - Conducted Power

Frequency	Modulation	Power Output
(MHz)		(milliWatts)
1931.25	CDMA	6.60
1960.0	CDMA	9.77
1988.75	CDMA	8.71
1930.28	GSM	6.30
1960.0	GSM	9.77
1989.72	GSM	8.51
1930.28	EDGE	6.30
1960.0	EDGE	9.12
1989.72	EDGE	8.51

Page 7 of 107 Report No.: FC05-017A

Downlink - EIRP Power

Frequency	Modulation	Power Output
(MHz)		(milliWatts)
1931.25	CDMA	5.62
1960.0	CDMA	8.31
1988.75	CDMA	7.41
1930.28	GSM	5.37
1960.0	GSM	8.31
1989.72	GSM	7.24
1930.3	EDGE	5.37
1960.0	EDGE	7.76
1989.7	EDGE	6.91

Note: Downlink EIRP calculated using $3.2~\mathrm{dBi}$ gain antenna $-3.9~\mathrm{dB}$ coax loss = -0.7 dBi as declared by Wilson Electronics.

Uplink – Conducted Power

<u> </u>	202000 2 0 11 0 2	
Frequency	Modulation	Power Output
(MHz)		(Watts)
1851.25	CDMA	.776
1880.0	CDMA	1.122
1908.75	CDMA	.363
1850.28	GSM	.547
1880.0	GSM	.933
1909.72	GSM	.363
1850.28	EDGE	.912
1880.0	EDGE	1.071
1909.72	EDGE	.363

Page 8 of 107 Report No.: FC05-017A

Uplink – EIRP Power

Frequency	Modulation	Power Output
(MHz)		(Watts)
1851.25	CDMA	1.288
1880.0	CDMA	1.862
1908.75	CDMA	.602
1850.28	GSM	.954
1880.0	GSM	1.548
1909.72	GSM	.602
1850.28	EDGE	1.513
1880.0	EDGE	1.778
1909.72	EDGE	.602

Note: Uplink EIRP calculated using 5.12 dBi gain antenna -3.9 dB coax loss = 2.2 dBi as declared by Wilson Electronics.

Test Equipment:

I est Equipment.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP

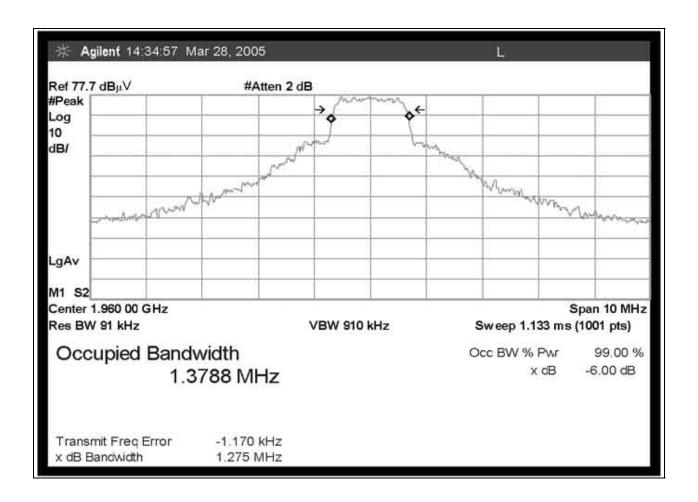
Page 9 of 107 Report No.: FC05-017A

FCC 2.1033(c)(14)/2.1047(a) - MODULATION CHARACTERISTICS - AUDIO FREQUENCY RESPONSE

Not applicable to this unit.

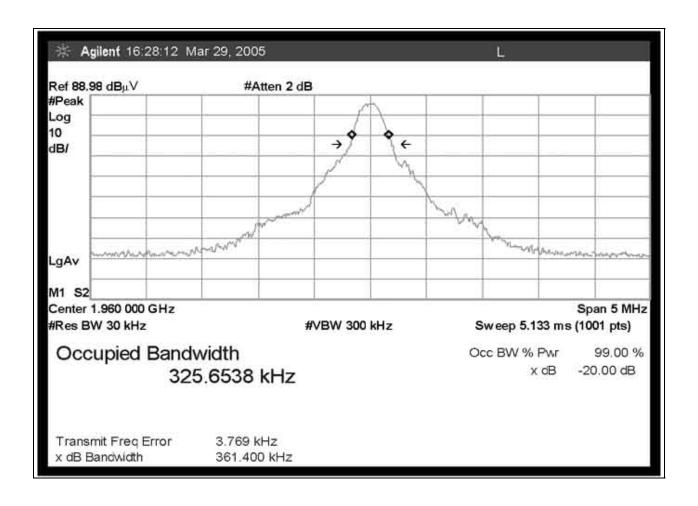
FCC 2.1033(c)(14)/2.1047(b) MODULATION CHARACTERISTICS—Modulation Limiting Response

Not applicable to this unit.

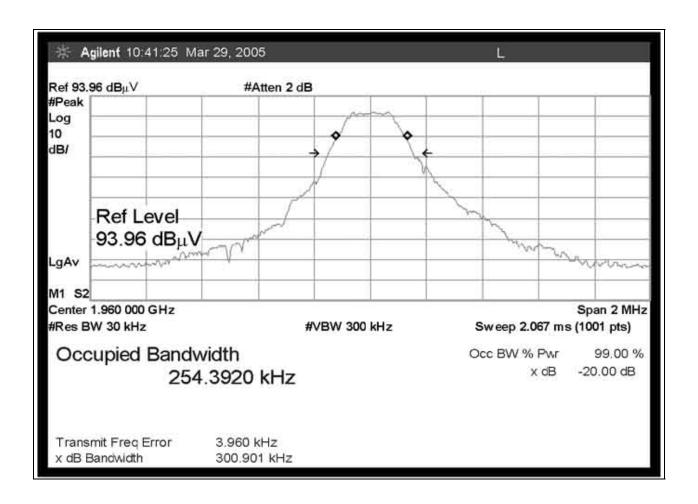

FCC 2.1033(c)(14)/2.1049(i)- OCCUPIED BANDWIDTH

Test Conditions: EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Frequency Range Investigated: 30MHz to 20GHz.

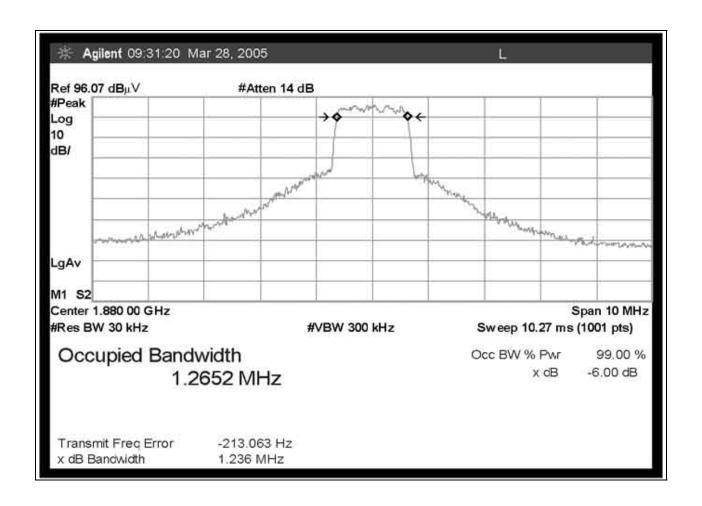
Page 10 of 107 Report No.: FC05-017A


FCC 2,1049 DOWNLINK OCCUPIED BANDWIDTH CDMA - PCS BAND

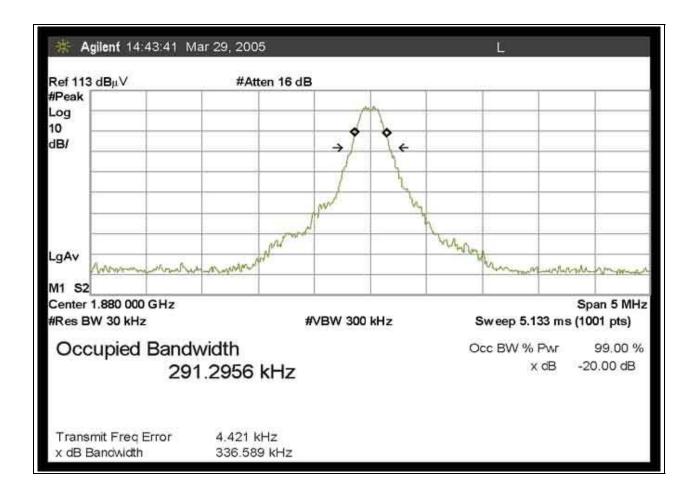
Page 11 of 107 Report No.: FC05-017A


FCC 2.1049 DOWNLINK OCCUPIED BANDWIDTH EDGE - PCS BAND

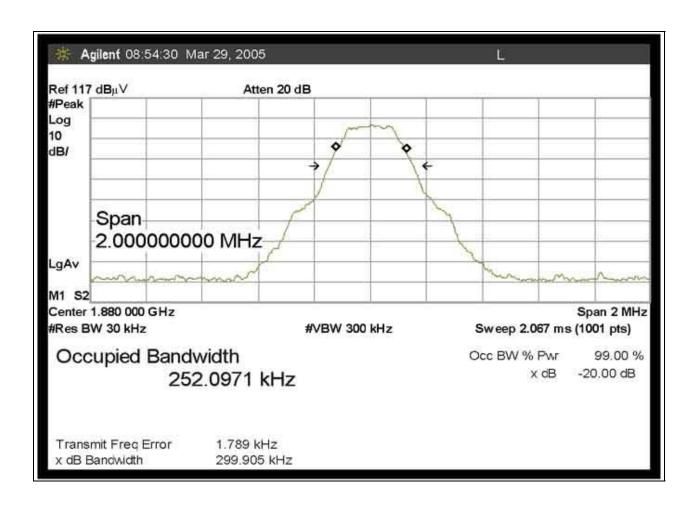
Page 12 of 107 Report No.: FC05-017A


FCC 2,1049 DOWNLINK OCCUPIED BANDWIDTH GSM - PCS BAND

Page 13 of 107 Report No.: FC05-017A


FCC 2.1049 UPLINK OCCUPIED BANDWIDTH CDMA - PCS BAND

Page 14 of 107 Report No.: FC05-017A


FCC 2.1049 UPLINK OCCUPIED BANDWIDTH EDGE - PCS BAND

Page 15 of 107 Report No.: FC05-017A

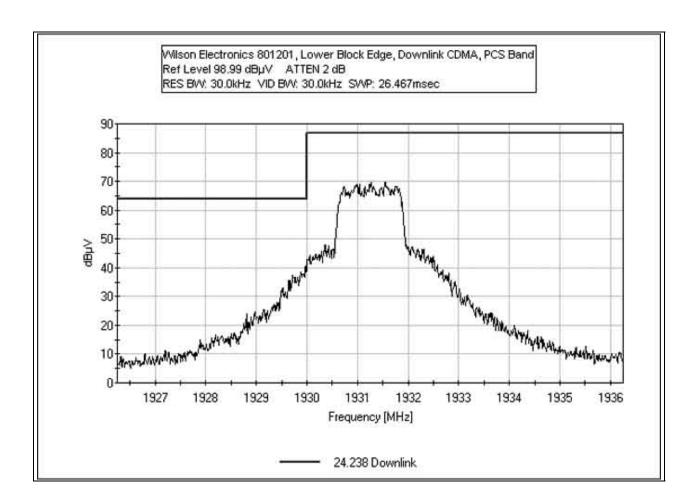
FCC 2.1049 UPLINK OCCUPIED BANDWIDTH GSM - PCS BAND

Page 16 of 107 Report No.: FC05-017A

Test Equipment:

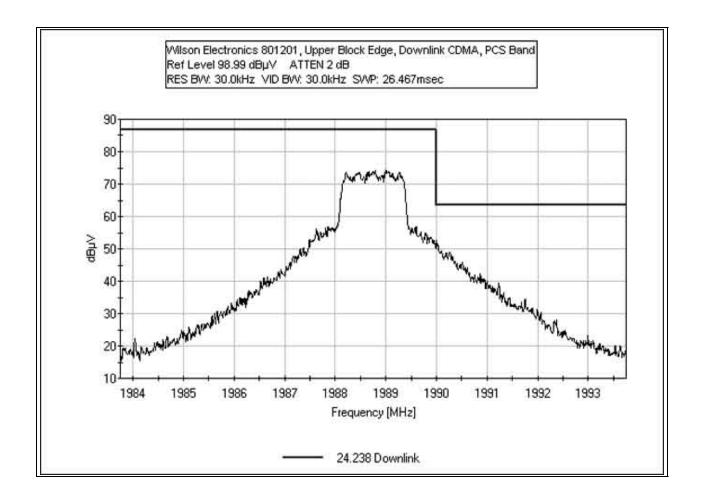
Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird 25-A-MFN-30	9949	05/09/2003	05/09/2005	P01572

PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP

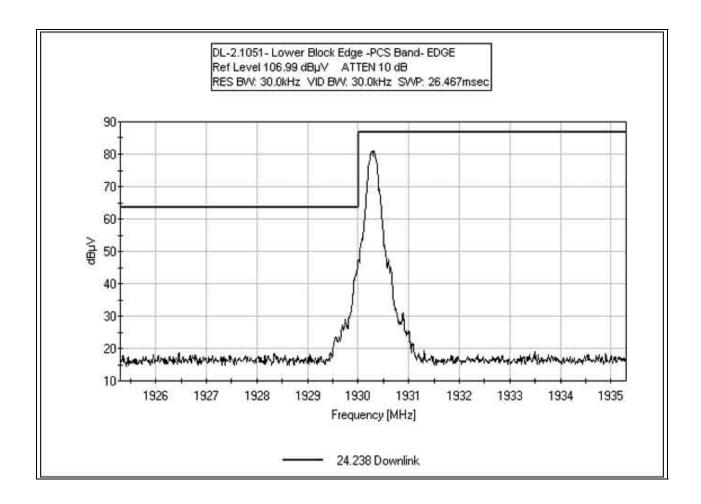


Page 17 of 107 Report No.: FC05-017A

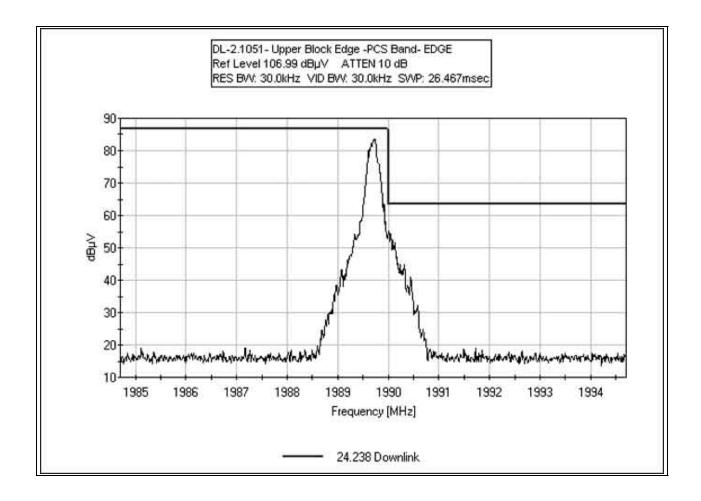
FCC 2.1051 DOWNLINK LOWER BLOCK EDGE CDMA - PCS BAND


Test Conditions: EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Frequency Range Investigated: 30MHz to 20GHz.

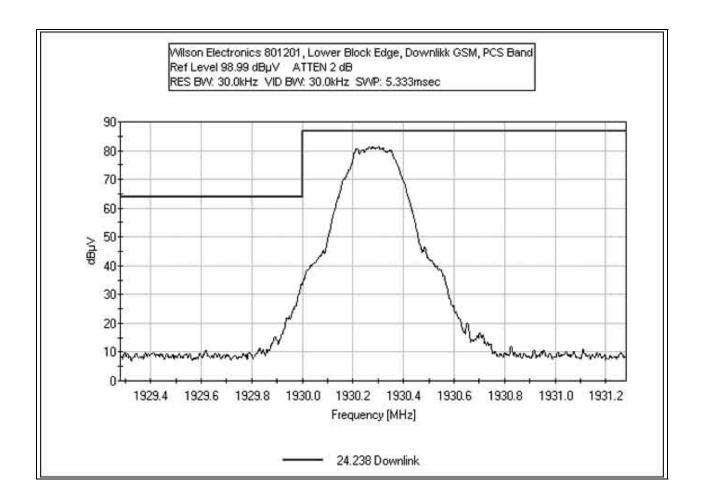
Page 18 of 107 Report No.: FC05-017A


FCC 2.1051 DOWNLINK UPPER BLOCK EDGE CDMA - PCS BAND

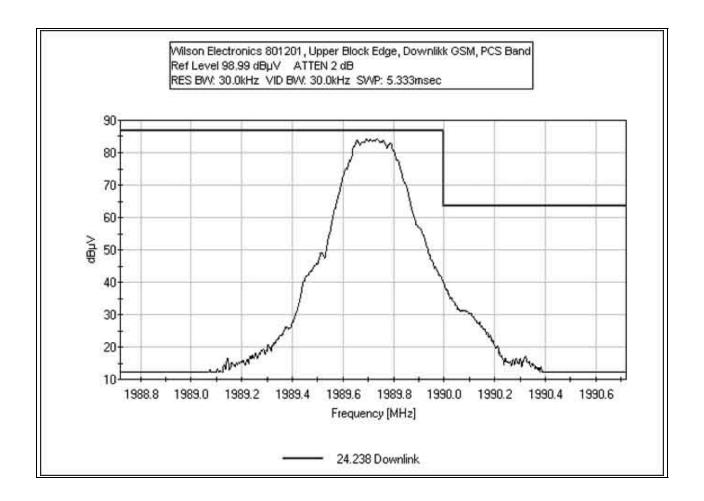
Page 19 of 107 Report No.: FC05-017A


FCC 2.1051 DOWNLINK LOWER BLOCK EDGE EDGE - PCS BAND

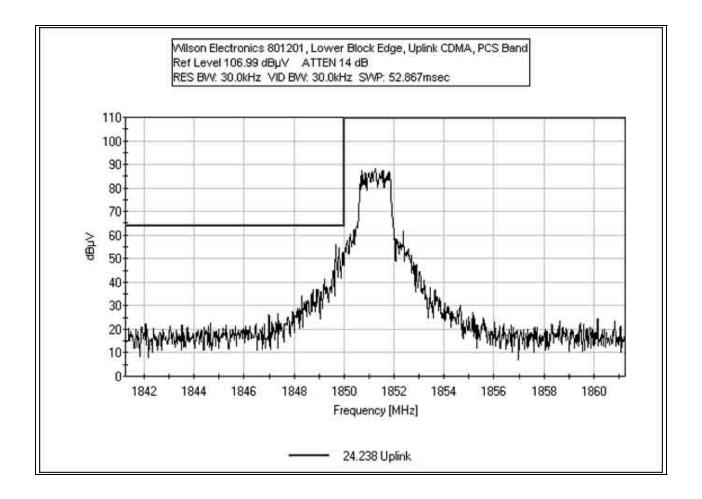
Page 20 of 107 Report No.: FC05-017A


FCC 2.1051 DOWNLINK UPPER BLOCK EDGE EDGE - PCS BAND

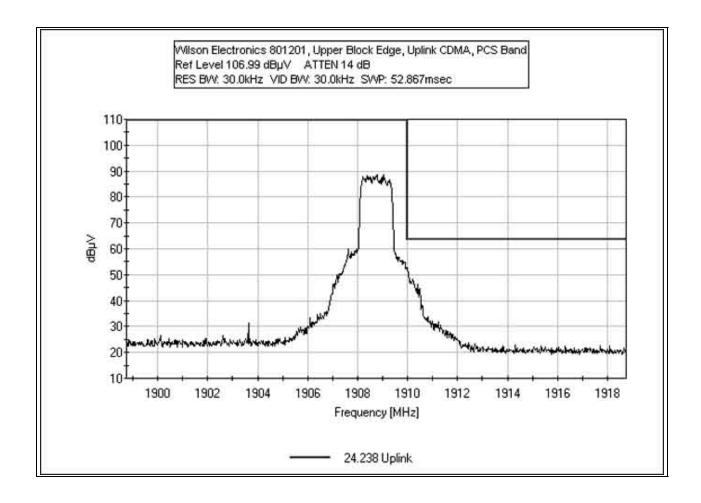
Page 21 of 107 Report No.: FC05-017A


FCC 2.1051 DOWNLINK LOWER BLOCK EDGE GSM - PCS BAND

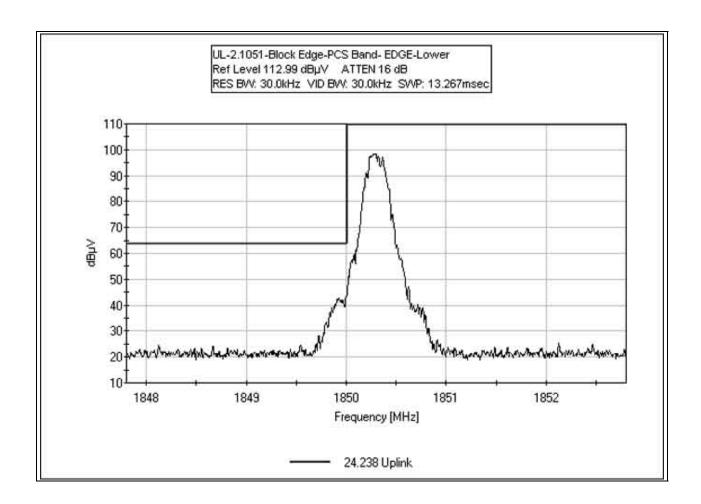
Page 22 of 107 Report No.: FC05-017A


FCC 2.1051 DOWNLINK UPPER BLOCK EDGE GSM - PCS BAND

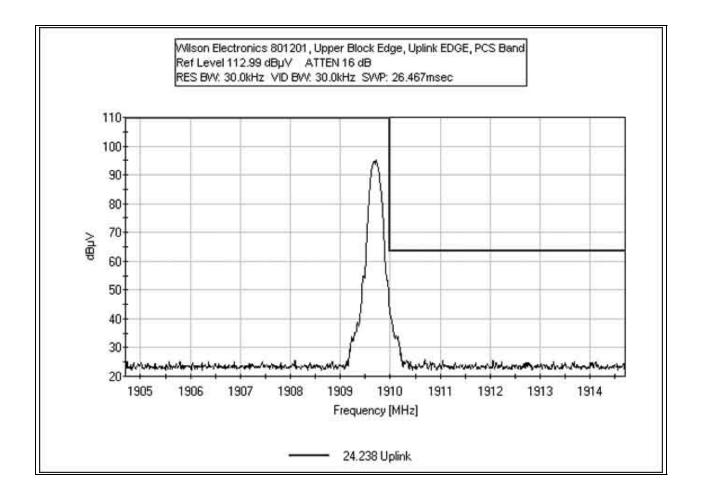
Page 23 of 107 Report No.: FC05-017A


FCC 2.1051 UPLINK LOWER BLOCK EDGE CDMA - PCS BAND

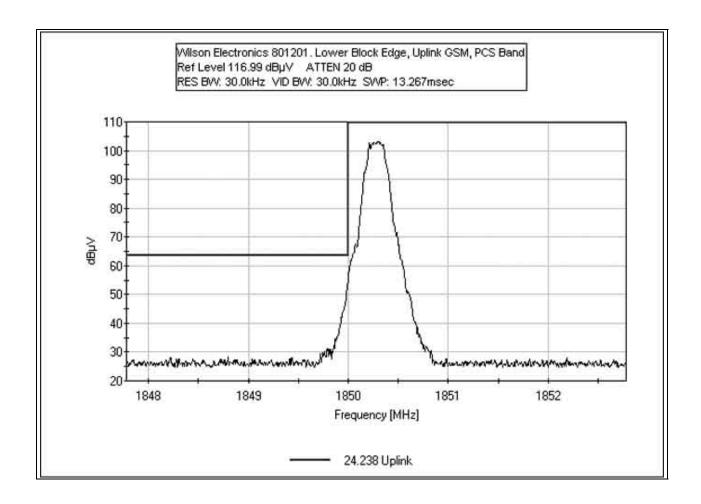
Page 24 of 107 Report No.: FC05-017A


FCC 2.1051 UPLINK UPPER BLOCK EDGE CDMA - PCS BAND

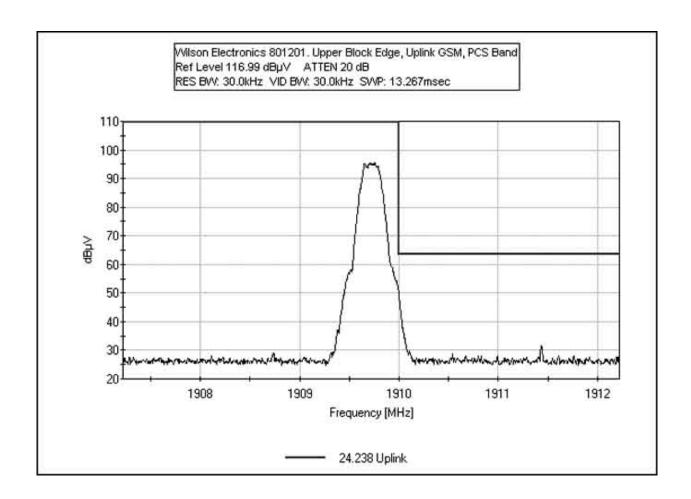
Page 25 of 107 Report No.: FC05-017A


FCC 2.1051 UPLINK LOWER BLOCK EDGE EDGE - PCS BAND

Page 26 of 107 Report No.: FC05-017A


FCC 2.1051 UPLINK UPPER BLOCK EDGE EDGE - PCS BAND

Page 27 of 107 Report No.: FC05-017A


FCC 2.1051 UPLINK LOWER BLOCK EDGE GSM - PCS BAND

Page 28 of 107 Report No.: FC05-017A

FCC 2.1051 UPLINK UPPER BLOCK EDGE GSM - PCS BAND

Page 29 of 107 Report No.: FC05-017A

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP

Page 30 of 107 Report No.: FC05-017A

FCC 2.1033(c)(14)/2.1051/24.238 - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE					
TEST BEGINNING FREQUENCY ENDING FREQUENCY BANDWIDTH SETTING					
RADIATED EMISSIONS	30MHz	1000MHz	10 kHz		
RADIATED EMISSIONS	1000MHz	20GHz	100 kHz		

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Wilson Electronics
Specification: 24.238 Downlink

Work Order #: 83305 Date: 03/28/2005
Test Type: Antenna Terminals Time: 15:23:53
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 52

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

TIP TO THE TOTAL				
Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4433B	US38440697	
DC Power Supply	Topward	TPS-2000	920035	

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: CDMA. Frequencies Tested: Downlink Mid - 1960.0MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

Γ1=Pad 30dB	ı
	-

1	Measurement Data: Reading		eading lis	ted by r	nargin.		Te	st Distanc	e: None			
	#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V$	$dB\mu V$	dB	Ant
	1	1960.020M	86.6	+30.3				+0.0	116.9	117.0	-0.1	None
										Fundamen	tal	

Page 31 of 107 Report No.: FC05-017A

2 3920.150M	35.8	+29.6	+0.0	65.4	94.0	-28.6	None
3 7840.000M	28.1	+24.9	+0.0	53.0	94.0	-41.0	None
4 5880.170M	21.3	+27.8	+0.0	49.1	94.0	-44.9	None
5 9800.020M	16.1	+23.7	+0.0	39.8	94.0	-54.2	None

Page 32 of 107 Report No.: FC05-017A

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Wilson Electronics
Specification: 24.238 Downlink

Work Order #: 83305 Date: 03/28/2005
Test Type: Antenna Terminals Time: 15:15:14
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 51

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

Equipment Under Test (* = EUT):

1 1	,		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: CDMA. Frequencies Tested: Downlink Low - 1931.25MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measurement Data: Reading listed by margin. Test Distance: None

#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	1931.250M	84.9	+30.3				+0.0	115.2	117.0	-1.8	None
									Fundamen	ıtal	
2	1929.990M	44.4	+30.3				+0.0	74.7	94.0	-19.3	None
3	3862.790M	28.1	+29.7				+0.0	57.8	94.0	-36.2	None
4	7725.290M	16.7	+25.2				+0.0	41.9	94.0	-52.1	None
5	5794.040M	12.5	+27.8				+0.0	40.3	94.0	-53.7	None
6	9656.540M	15.2	+24.2				+0.0	39.4	94.0	-54.6	None

Page 33 of 107 Report No.: FC05-017A

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Wilson Electronics
Specification: 24.238 Downlink

Work Order #: 83305 Date: 03/28/2005
Test Type: Antenna Terminals Time: 15:29:55
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 53

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660	
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572	
25-A-MFN-30					

Equipment Under Test (* = EUT):

(
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: CDMA. Frequencies Tested: Downlink High - 1988.75MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measurement Data: Reading listed by margin. Test Distance: None

Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1988.690M	86.1	+30.3				+0.0	116.4	117.0	-0.6	None
								Fundamen	ıtal	
3977.470M	33.1	+29.6				+0.0	62.7	94.0	-31.3	None
5966.510M	20.7	+27.8				+0.0	48.5	94.0	-45.5	None
7954.960M	23.1	+24.5				+0.0	47.6	94.0	-46.4	None
11932.620M	18.1	+19.9				+0.0	38.0	94.0	-56.0	None
9943.650M	14.3	+23.2				+0.0	37.5	94.0	-56.5	None
	MHz 1988.690M 3977.470M 5966.510M 7954.960M 11932.620M	MHz dBμV 1988.690M 86.1 3977.470M 33.1 5966.510M 20.7 7954.960M 23.1 11932.620M 18.1	MHz dBμV dB 1988.690M 86.1 +30.3 3977.470M 33.1 +29.6 5966.510M 20.7 +27.8 7954.960M 23.1 +24.5 11932.620M 18.1 +19.9	MHz dBμV dB dB 1988.690M 86.1 +30.3 3977.470M 33.1 +29.6 5966.510M 20.7 +27.8 7954.960M 23.1 +24.5 11932.620M 18.1 +19.9	MHz dBμV dB dB dB 1988.690M 86.1 +30.3 3977.470M 33.1 +29.6 5966.510M 20.7 +27.8 7954.960M 23.1 +24.5 11932.620M 18.1 +19.9	MHz dBμV dB dB dB dB dB dB 1988.690M 86.1 +30.3 3977.470M 33.1 +29.6 5966.510M 20.7 +27.8 7954.960M 23.1 +24.5 11932.620M 18.1 +19.9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\text{MHz}}{1988.690\text{M}}$ $\frac{\text{dB}\mu\text{V}}{86.1}$ $\frac{\text{dB}}{+30.3}$ $\frac{\text{dB}}{+0.0}$ $\frac{\text{dB}\mu\text{V}}{116.4}$ $\frac{\text{dB}\mu\text{V}}{117.0}$ $\frac{\text{B}\mu\text{V}}{116.4}$ $\frac{\text{B}\mu\text{V}}{117.0}$ $\frac{\text{Sundamer}}{116.4}$ $\frac{117.0}{116.4}$ $\frac{117.0}{1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Page 34 of 107 Report No.: FC05-017A

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Wilson Electronics
Specification: 24.238 Downlink

Work Order #: 83305 Date: 03/30/2005
Test Type: Antenna Terminals Time: 08:07:37
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 70

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

Equipment Under Test (* = EUT):

1:1	- /:		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Zirr zit = zittezzi				
Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4433B	US38440697	
DC Power Supply	Topward	TPS-2000	920035	

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: EDGE. Frequencies Tested: Downlink Low - 1930.3MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measurement Data: Reading listed by margin. Test Distance: None

meusi	iremeni Daia.	170	taumg ns	icu by n	naigin.		1 0	si Distanc	c. None		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	$dB\mu V$	dB	Ant
1	1930.320M	84.7	+30.3				+0.0	115.0	117.0	-2.0	None
									Fundamen	ıtal	
2	1929.980M	58.3	+30.3				+0.0	88.6	94.0	-5.4	None
3	3860.510M	43.7	+29.7				+0.0	73.4	94.0	-20.6	None
4	5790.950M	34.2	+27.8				+0.0	62.0	94.0	-32.0	None
5	7721.270M	34.9	+25.2				+0.0	60.1	94.0	-33.9	None
6	9651.670M	25.3	+24.2				+0.0	49.5	94.0	-44.5	None

Page 35 of 107 Report No.: FC05-017A

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Wilson Electronics 24.238 Downlink Specification:

Work Order #: Date: 03/30/2005 83305 Time: 08:14:46 Test Type: **Antenna Terminals** In Vehicle Wireless Dual Band Smart Equipment: Sequence#: 71

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660	
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572	
25-A-MFN-30					

Equipment Under Test (* = EUT):

1 1	,		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: EDGE. Frequencies Tested: Downlink Mid -1960.0MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measur	ement Data:]	Reading li	isted by 1	margin.	Te	Test Distance: None			
#	Freq	Rdng	T1			Dist	Corr	Spec		

#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	1960.040M	86.3	+30.3				+0.0	116.6	117.0	-0.4	None
									Fundamen	ıtal	
2	3920.000M	44.4	+29.6				+0.0	74.0	94.0	-20.0	None
3	7840.190M	47.2	+24.9				+0.0	72.1	94.0	-21.9	None
4	5879.820M	35.8	+27.8				+0.0	63.6	94.0	-30.4	None
5	9800.230M	30.6	+23.7				+0.0	54.3	94.0	-39.7	None
6	11760.270M	26.1	+20.1	•			+0.0	46.2	94.0	-47.8	None

Page 36 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Downlink

Work Order #: 83305 Date: 03/30/2005
Test Type: Antenna Terminals Time: 08:23:26
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 72

Amplifier

Manufacturer: Wilson Electronics

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird 25-A-MFN-30	9949	05/09/2003	05/09/2005	P01572

Tested By: Mike Wilkinson

Equipment Under Test (* = EUT):

1 1	,		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: EDGE. Frequencies Tested: Downlink High - 1989.7MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad	30dB
i i i au	Juan

Measu	rement Data:	Re	eading lis	ted by m	nargin.		Те	st Distanc	e: None		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1989.720M	86.0	+30.3				+0.0	116.3	117.0	-0.7	None
									Fundamen	ıtal	
2	1990.090M	59.6	+30.3				+0.0	89.9	94.0	-4.1	None
3	3979.570M	40.3	+29.6				+0.0	69.9	94.0	-24.1	None
4	7958.820M	35.1	+24.5				+0.0	59.6	94.0	-34.4	None
5	5969.140M	27.6	+27.8				+0.0	55.4	94.0	-38.6	None
6	9948.520M	24.6	+23.2				+0.0	47.8	94.0	-46.2	None
7	11938.220M	23.1	+19.9				+0.0	43.0	94.0	-51.0	None

Page 37 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Downlink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 11:11:57
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 60

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660	
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572	
25-A-MFN-30					

Equipment Under Test (* = EUT):

(
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: GSM. Frequencies Tested: Downlink Low - 1930.28MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measurement Data: Reading listed by margin. Test Distance: None

Freq	Rdng	T1	•			Dist	Corr	Spec	Margin	Polar
MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	$dB\mu V$	dB	Ant
1930.282M	84.7	+30.3				+0.0	115.0	117.0	-2.0	None
								Fundamen	ıtal	
3860.700M	46.6	+29.7				+0.0	76.3	94.0	-17.7	None
1929.998M	35.2	+30.3				+0.0	65.5	94.0	-28.5	None
5790.640M	30.0	+27.8				+0.0	57.8	94.0	-36.2	None
7721.376M	27.1	+25.2				+0.0	52.3	94.0	-41.7	None
9651.654M	14.7	+24.2				+0.0	38.9	94.0	-55.1	None
	MHz 1930.282M 3860.700M 1929.998M 5790.640M 7721.376M	MHz dBμV 1930.282M 84.7 3860.700M 46.6 1929.998M 35.2 5790.640M 30.0 7721.376M 27.1	$\begin{array}{c cccc} MHz & dB\mu V & dB \\ \hline 1930.282M & 84.7 & +30.3 \\ \hline 3860.700M & 46.6 & +29.7 \\ \hline 1929.998M & 35.2 & +30.3 \\ \hline 5790.640M & 30.0 & +27.8 \\ \hline 7721.376M & 27.1 & +25.2 \\ \hline \end{array}$	MHz dBμV dB dB 1930.282M 84.7 +30.3 3860.700M 46.6 +29.7 1929.998M 35.2 +30.3 5790.640M 30.0 +27.8 7721.376M 27.1 +25.2	MHz dBμV dB dB dB 1930.282M 84.7 +30.3 3860.700M 46.6 +29.7 1929.998M 35.2 +30.3 5790.640M 30.0 +27.8 7721.376M 27.1 +25.2	MHz dBμV dB dB dB dB dB 1930.282M 84.7 +30.3 3860.700M 46.6 +29.7 1929.998M 35.2 +30.3 5790.640M 30.0 +27.8 7721.376M 27.1 +25.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MHz dBμV dB dB dB dB dB dB dB dB $\frac{1}{2}$ Table dBμV dBμ	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Page 38 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Downlink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 11:17:23
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 61

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660	
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572	
25-A-MFN-30					

Equipment Under Test (* = EUT):

(
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: GSM. Frequencies Tested: Downlink Mid - 1960.0MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measurement Data: Reading listed by margin. Test Distance: None

#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dΒ	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	1959.934M	86.6	+30.3				+0.0	116.9	117.0	-0.1	None
									Fundamen	ntal	
2	3920.132M	39.4	+29.6				+0.0	69.0	94.0	-25.0	None
3	7840.286M	41.7	+24.9				+0.0	66.6	94.0	-27.4	None
4	5879.796M	35.7	+27.8				+0.0	63.5	94.0	-30.5	None
5	9799.710M	21.7	+23.7				+0.0	45.4	94.0	-48.6	None
6	11759.290M	16.9	+20.1				+0.0	37.0	94.0	-57.0	None

Page 39 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Downlink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 11:24:30
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 62

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

Equipment Under Test (* = EUT):

1:1	-).		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: GSM. Frequencies Tested: Downlink High-1989.72MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measurement Data: Reading listed by margin Test Distance: None

meusu	remeni Duiu.	1//	ading no	icu by n	iai giii.		10	ot Distanc	C. INDIIC		
#	Freq	Rdng	T1	•			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	1989.736M	86.0	+30.3				+0.0	116.3	117.0	-0.7	None
									Fundamen	tal	
2	1990.002M	36.1	+30.3	•			+0.0	66.4	94.0	-27.6	None
3	3979.584M	34.1	+29.6				+0.0	63.7	94.0	-30.3	None
4	7959.164M	35.0	+24.5	•			+0.0	59.5	94.0	-34.5	None
5	5968.956M	29.4	+27.8	•			+0.0	57.2	94.0	-36.8	None
6	9949.446M	18.5	+23.2				+0.0	41.7	94.0	-52.3	None

Page 40 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Uplink

Work Order #: 83305 Date: 03/28/2005
Test Type: Antenna Terminals Time: 10:38:56
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 48

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660	
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572	
25-A-MFN-30					

Equipment Under Test (* = EUT):

(
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: CDMA. Frequencies Tested: Uplink Mid - 1880.0MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

 Measurement Data:
 Reading listed by margin.
 Test Distance: None

 # Freq Rdng T1
 Dist Corr Spec

#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dΒ	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
	1 1880.040M	107.2	+30.3				+0.0	137.5	140.0	-2.5	None
									Fundamen	ıtal	
	2 3760.120M	28.1	+29.7				+0.0	57.8	94.0	-36.2	None
	3 7520.200M	28.6	+25.8				+0.0	54.4	94.0	-39.6	None
	4 9400.240M	28.9	+24.8				+0.0	53.7	94.0	-40.3	None
	5 5640.160M	24.0	+27.9				+0.0	51.9	94.0	-42.1	None

Page 41 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Uplink

Work Order #: 83305 Date: 03/28/2005
Test Type: Antenna Terminals Time: 10:30:04
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 47

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

Equipment Under Test (* = EUT):

(
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Zirr zit = zittezzi				
Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4433B	US38440697	
DC Power Supply	Topward	TPS-2000	920035	

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: CDMA. Frequencies Tested: Uplink Low - 1851.25MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measurement Data: Reading listed by margin. Test Distance: None

#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dΒ	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	1851.110M	105.6	+30.3				+0.0	135.9	140.0	-4.1	None
									Fundamen	ıtal	
2	1849.970M	58.3	+30.3				+0.0	88.6	94.0	-5.4	None
3	1847.150M	29.2	+30.3				+0.0	59.5	94.0	-34.5	None
4	3702.220M	28.5	+29.7				+0.0	58.2	94.0	-35.8	None
5	7404.620M	25.2	+26.1				+0.0	51.3	94.0	-42.7	None
6	5549.370M	19.4	+27.9				+0.0	47.3	94.0	-46.7	None

Page 42 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Uplink

Work Order #: 83305 Date: 03/28/2005
Test Type: Antenna Terminals Time: 10:45:46
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 49

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

Equipment Under Test (* = EUT):

1:1	-).		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Zirr att = tittest				
Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4433B	US38440697	
DC Power Supply	Topward	TPS-2000	920035	

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: CDMA. Frequencies Tested: Uplink High - 1908.75MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measurement Data:Reading listed by margin.Test Distance: None# Freq Rdng T1Dist Corr Spec

#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	$dB\mu V$	dB	Ant
1	1908.830M	102.3	+30.3				+0.0	132.6	140.0	-7.4	None
									Fundamen	ıtal	
2	1910.030M	47.7	+30.3				+0.0	78.0	94.0	-16.0	None
3	3818.740M	29.6	+29.7				+0.0	59.3	94.0	-34.7	None
4	7636.400M	29.1	+25.5				+0.0	54.6	94.0	-39.4	None
5	9545.230M	28.5	+24.5				+0.0	53.0	94.0	-41.0	None
6	11454.060M	29.1	+20.6	<u> </u>	•		+0.0	49.7	94.0	-44.3	None

Page 43 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Uplink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 15:25:23
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 65

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

Equipment Under Test (* = EUT):

1.1	- /-		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: EDGE. Frequencies Tested: Uplink Low - 1850.3MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measurement Data: Reading listed by margin Test Distance: None

meusu	nemeni Duia.	10	caumig ns	icu by n	naigin.		10	st Distant	c. None		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	dΒμV	$dB\mu V$	dB	Ant
1	1850.290M	106.3	+30.3				+0.0	136.6	140.0	-3.4	None
									Fundamen	ıtal	
2	1849.995M	45.6	+30.3				+0.0	75.9	94.0	-18.1	None
3	3700.650M	31.0	+29.7				+0.0	60.7	94.0	-33.3	None
4	7401.300M	31.1	+26.1				+0.0	57.2	94.0	-36.8	None
5	5550.975M	26.3	+27.9				+0.0	54.2	94.0	-39.8	None
6	9251.625M	29.2	+24.9				+0.0	54.1	94.0	-39.9	None

Page 44 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Uplink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 15:31:01
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 66

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660	
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572	
25-A-MFN-30					

Equipment Under Test (* = EUT):

(
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: EDGE. Frequencies Tested: Uplink Mid - 1880.0MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measurement Data: Reading listed by margin. Test Distance: None

meusu	nemeni Daia.	170	taumg ns	icu by n	nai giii.		1 0	si Distanc	c. None		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	dΒμV	$dB\mu V$	dB	Ant
1	1880.025M	107.0	+30.3				+0.0	137.3	140.0	-2.7	None
									Fundamen	ıtal	
2	3760.050M	30.7	+29.7				+0.0	60.4	94.0	-33.6	None
3	7520.100M	30.1	+25.8				+0.0	55.9	94.0	-38.1	None
4	11280.150M	33.6	+20.9				+0.0	54.5	94.0	-39.5	None
5	5640.075M	26.4	+27.9				+0.0	54.3	94.0	-39.7	None
6	9400.125M	29.1	+24.8				+0.0	53.9	94.0	-40.1	None

Page 45 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Uplink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 15:36:37
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 67

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

Equipment Under Test (* = EUT):

1:1	-).		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: EDGE. Frequencies Tested: Uplink High - 1909.7MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measurement Data: Reading listed by margin Test Distance: None

meusi	nemem Dam.	10	caumig ms	ica by i	margini.		10	st Distant	c. Indic		
#	Freq	Rdng	T1	•			Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dΒ	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	1909.690M	102.3	+30.3				+0.0	132.6	140.0	-7.4	None
									Fundamen	ıtal	
2	1910.005M	42.5	+30.3				+0.0	72.8	94.0	-21.2	None
3	3819.430M	25.6	+29.7				+0.0	55.3	94.0	-38.7	None
4	7638.910M	27.8	+25.5				+0.0	53.3	94.0	-40.7	None
5	5729.045M	25.1	+27.9				+0.0	53.0	94.0	-41.0	None
6	9548.625M	25.0	+24.5				+0.0	49.5	94.0	-44.5	None

Page 46 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Uplink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 09:38:51
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 56

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

Equipment Under Test (* = EUT):

1.1	- /-		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: GSM. Frequencies Tested: Uplink Mid - 1880.0MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measurement Data: Reading listed by margin Test Distance: None

meusu	remem Dam.	17.0	Laumg ns	icu by n	nai giii.		10	st Distanc	C. INDIIC		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	1879.990M	106.4	+30.3				+0.0	136.7	140.0	-3.3	None
									Fundamen	ıtal	
2	3759.980M	32.9	+29.7				+0.0	62.6	94.0	-31.4	None
3	7519.960M	33.5	+25.8				+0.0	59.3	94.0	-34.7	None
4	9399.950M	33.6	+24.8				+0.0	58.4	94.0	-35.6	None
5	5639.970M	28.9	+27.9				+0.0	56.8	94.0	-37.2	None
6	11279.940M	34.2	+20.9				+0.0	55.1	94.0	-38.9	None

Page 47 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Uplink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 09:26:46
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 55

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660	
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572	
25-A-MFN-30					

Equipment Under Test (* = EUT):

1.1	- /-		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: GSM. Frequencies Tested: Uplink Low - 1850.28MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measurement Data: Reading listed by margin. Test Distance: None

#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	1850.225M	104.3	+30.3				+0.0	134.6	140.0	-5.4	None
									Fundamen	ıtal	
2	1849.985M	51.6	+30.3				+0.0	81.9	94.0	-12.1	None
3	7401.070M	38.8	+26.1				+0.0	64.9	94.0	-29.1	None
4	3700.520M	34.0	+29.7				+0.0	63.7	94.0	-30.3	None
5	5550.730M	35.7	+27.9				+0.0	63.6	94.0	-30.4	None

Page 48 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Uplink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 09:44:08
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 57

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson Model: 801201 S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird 25-A-MFN-30	9949	05/09/2003	05/09/2005	P01572

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Spurious Emissions Test: One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: GSM. Frequencies Tested: Uplink High - 1880.0MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measu	rement Data:	Re	eading lis	ted by m	nargin.		Те	st Distanc	e: None		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1909.710M	102.3	+30.3				+0.0	132.6	140.0	-7.4	None
									Fundamen	ıtal	
2	1910.020M	44.2	+30.3				+0.0	74.5	94.0	-19.5	None
3	3819.490M	32.8	+29.7				+0.0	62.5	94.0	-31.5	None
4	7638.980M	35.0	+25.5				+0.0	60.5	94.0	-33.5	None
5	9548.725M	35.1	+24.5				+0.0	59.6	94.0	-34.4	None
6	5729.235M	31.0	+27.9				+0.0	58.9	94.0	-35.1	None
7	19097.450M	33.8	+22.2				+0.0	56.0	94.0	-38.0	None

Page 49 of 107 Report No.: FC05-017A

FCC 2.1051 - INTERMODULATION ATTENUATION

ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
RADIATED EMISSIONS	30MHz	1000MHz	10 kHz					
RADIATED EMISSIONS	1000MHz	20GHz	100 kHz					

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Wilson Electronics
Specification: 24.238 Downlink

Work Order #: 83305 Date: 03/28/2005
Test Type: Antenna Terminals Time: 15:48:54
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 54

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Intermodulation Attenuation and Spurious Emissions Test: Three signals are input to the amplifier through a combining network. The first two input signals are provided by the HP E4432B ESG. The input signals are set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: CDMA. Frequencies Tested: Downlink 1931.25MHz, 1933.75MHz, 1988.75MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB			
Magsuramant Data	Reading listed by margin	Test Distance: None	

1	Measurement Data:		N	Reading listed by margin.			Test Distance. None					
ſ	#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
		MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	$dB\mu V$	dB	Ant
Ī	1	1934.200M	69.8	+30.3				+0.0	100.1	117.0	-16.9	None
										Fundamen	tal	

Page 50 of 107 Report No.: FC05-017A

2	1988.600M	69.0	+30.3	+0.0	99.3	117.0	-17.7	None
						Fundament	al	
3	1931.800M	66.2	+30.3	+0.0	96.5	117.0	-20.5	None
						Fundament	al	
4	1929.200M	42.3	+30.3	+0.0	72.6	94.0	-21.4	None
5	1991.400M	39.8	+30.3	+0.0	70.1	94.0	-23.9	None
6	3868.400M	26.0	+29.7	+0.0	55.7	94.0	-38.3	None
7	3977.450M	23.9	+29.6	+0.0	53.5	94.0	-40.5	None
8	1936.800M	44.0	+30.3	+0.0	74.3	117.0	-42.7	None
9	1986.000M	42.7	+30.3	+0.0	73.0	117.0	-44.0	None
10	5966.350M	18.2	+27.8	+0.0	46.0	94.0	-48.0	None

Page 51 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Downlink

Work Order #: 83305 Date: 03/30/2005
Test Type: Antenna Terminals Time: 08:36:04
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 73

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660	
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572	
25-A-MFN-30					

Equipment Under Test (* = EUT):

1:1	-).		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Intermodulation Attenuation and Spurious Emissions Test: Two signals are input to the amplifier through a combining network. The input signals are set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: EDGE. Frequencies Tested: Downlink 1930.3MHz, 1930.9MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Meas	urement Data:	Re	eading lis	ted by n	nargin.		Te	st Distanc	e: None		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1930.920M	81.7	+30.3				+0.0	112.0	117.0	-5.0	None
									Fundamen	ıtal	
2	2 1930.300M	81.0	+30.3				+0.0	111.3	117.0	-5.7	None
									Fundamen	ıtal	
3	1929.980M	46.0	+30.3				+0.0	76.3	94.0	-17.7	None
4	3860.640M	42.6	+29.7				+0.0	72.3	94.0	-21.7	None
5	3861.860M	41.9	+29.7				+0.0	71.6	94.0	-22.4	None

Page 52 of 107 Report No.: FC05-017A

6 1931.160M	49.7	+30.3	+0.0	80.0	117.0	-37.0	None
7 5792.720M	26.5	+27.8	+0.0	54.3	94.0	-39.7	None
8 5790.820M	25.9	+27.8	+0.0	53.7	94.0	-40.3	None
9 7720.860M	24.2	+25.2	+0.0	49.4	94.0	-44.6	None
10 9655 420M	22.5	+24.2	+0.0	46.7	94.0	-47 3	None
10 9655.420M	22.5	+24.2	+0.0	46.7	94.0	-47.3	Non

Customer: Wilson Electronics
Specification: 24.238 Downlink

Work Order #: 83305 Date: 05/02/2005
Test Type: Antenna Terminals Time: 16:56:48
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 74

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660	
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572	
25-A-MFN-30					

Equipment Under Test (* = EUT):

1:1	-).		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Intermodulation Attenuation and Spurious Emissions Test: Two signals are input to the amplifier through a combining network. The input signals are set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: EDGE Frequencies Tested: Downlink 1989.1 MHz 1989.7 MHz Frequency Range Investigated: 30 MHz to 20 GHz.

Transducer Legend:

T1=Pad 30dB

Mea	surement Data:	Re	eading lis	ted by r	nargin.		Te	st Distance	e: None		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
	1 1990.000M	57.1	+30.3				+0.0	87.4	94.0	-6.6	None
	2 1990.158M	51.1	+30.3				+0.0	81.4	94.0	-12.6	None
	3 1990.444M	43.7	+30.3				+0.0	74.0	94.0	-20.0	None

Page 54 of 107 Report No.: FC05-017A

4 3979.450M	35.8	+29.6	+0.0	65.4	94.0	-28.6	None
5 3978.000M	34.6	+29.6	+0.0	64.2	94.0	-29.8	None
6 5967.410M	22.4	+27.8	+0.0	50.2	94.0	-43.8	None
7 5968.930M	20.6	+27.8	+0.0	48.4	94.0	-45.6	None

Page 55 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Downlink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 12:03:44
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 63

Amplifier

Manufacturer:Wilson ElectronicsTested By:Mike WilkinsonModel:801201S/N:8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird 25-A-MFN-30	9949	05/09/2003	05/09/2005	P01572

Equipment Under Test (* = EUT):

1:1	- /:		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4433B	US38440697	
DC Power Supply	Topward	TPS-2000	920035	

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Intermodulation Attenuation and Spurious Emissions Test: Two signals are input to the amplifier through a combining network. The input signals are set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: GSM. Frequencies Tested: Downlink 1930.28MHz, 1930.81MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

70.1	D 1	20 ID
	=Pad	30dB

Measu	rement Data:	Re	eading lis	ted by n	nargin.		Te	st Distan	ce: None		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dΒ	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	1930.270M	80.2	+30.3				+0.0	110.5	117.0	-6.5	None
									Fundamen	ıtal	
2	1930.830M	78.1	+30.3				+0.0	108.4	117.0	-8.6	None
									Fundamen	ıtal	
3	3860.690M	36.5	+29.7				+0.0	66.2	94.0	-27.8	None
4	1929.980M	27.9	+30.3				+0.0	58.2	94.0	-35.8	None
5	3861.610M	26.5	+29.7				+0.0	56.2	94.0	-37.8	None
6	5790.840M	18.4	+27.8				+0.0	46.2	94.0	-47.8	None
7	9651.960M	9.9	+24.2		•	•	+0.0	34.1	94.0	-59.9	None

Page 56 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Downlink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 13:01:07
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 64

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660	
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572	
25-A-MFN-30					

Equipment Under Test (* = EUT):

1:1	-).		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Intermodulation Attenuation and Spurious Emissions Test: Two signals are input to the amplifier through a combining network. The input signals are set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: GSM. Frequencies Tested: Downlink 1989.16MHz, 1989.72MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measu	rement Data:	Re	eading lis	ted by r	nargin.		Te	st Distance	e: None		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1989.170M	83.5	+30.3				+0.0	113.8	117.0	-3.2	None
2	1989.720M	82.7	+30.3				+0.0	113.0	117.0	-4.0	None
3	1990.010M	39.1	+30.3				+0.0	69.4	94.0	-24.6	None
4	3979.490M	37.5	+29.6				+0.0	67.1	94.0	-26.9	None
5	3978.180M	36.8	+29.6				+0.0	66.4	94.0	-27.6	None

Page 57 of 107 Report No.: FC05-017A

6 5967.300M	24.2	+27.8	+0.0	52.0	94.0	-42.0	None
7 5969.330M	22.9	+27.8	+0.0	50.7	94.0	-43.3	None
8 7956.630M	21.3	+24.5	+0.0	45.8	94.0	-48.2	None
9 7959.150M	19.5	+24.5	+0.0	44.0	94.0	-50.0	None
10 9948.600M	11.0	+23.2	+0.0	34.2	94.0	-59.8	None

Page 58 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Uplink

Work Order #: 83305 Date: 03/28/2005
Test Type: Antenna Terminals Time: 16:17:38
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 50

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660	
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572	
25-A-MFN-30					

Equipment Under Test (* = EUT):

1.1	- /-		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Intermodulation Attenuation and Spurious Emissions Test: Three signals are input to the amplifier through a combining network. The first two input signals are provided by the HP E4432B ESG. The input signals are set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: CDMA. Frequencies Tested: Uplink 1851.25MHz, 1853.75MHz, 1908.75MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measurement Data:	Reading listed by margin.	Test Distance: None

111000	2			tea of man	8						
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	$dB\mu V$	dB	Ant
1	1848.500M	37.5	+30.3				+0.0	67.8	94.0	-26.2	None
2	1853.800M	80.5	+30.3				+0.0	110.8	140.0	-29.2	None
									Fundamen	tal	
3	1911.000M	33.7	+30.3				+0.0	64.0	94.0	-30.0	None
4	1851.500M	79.2	+30.3				+0.0	109.5	140.0	-30.5	None
									Fundamen	tal	
5	1908.500M	78.4	+30.3				+0.0	108.7	140.0	-31.3	None
									Fundamen	tal	

Page 59 of 107 Report No.: FC05-017A

6 1831.600M	13.4	+30.3	+0.0	43.7	94.0	-50.3	None
7 3705.400M	10.9	+29.7	+0.0	40.6	94.0	-53.4	None
8 3817.900M	10.4	+29.7	+0.0	40.1	94.0	-53.9	None
9 1906.000M	35.5	+30.3	+0.0	65.8	140.0	-74.2	None
10 1856.200M	34.5	+30.3	+0.0	64.8	140.0	-75.2	None
11 1876.000M	22.7	+30.3	+0.0	53.0	140.0	-87.0	None

Page 60 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Uplink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 15:52:03
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 68

Amplifier

Manufacturer:Wilson ElectronicsTested By:Mike WilkinsonModel:801201S/N:8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird 25-A-MFN-30	9949	05/09/2003	05/09/2005	P01572

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4433B	US38440697	
DC Power Supply	Topward	TPS-2000	920035	

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Intermodulation Attenuation and Spurious Emissions Test: Two signals are input to the amplifier through a combining network. The input signals are set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: EDGE. Frequencies Tested: Uplink 1850.3MHz, 1850.9MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measu	rement Data:	Re	eading lis	ted by n	nargin.		Te	st Distanc	e: None		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1850.925M	103.0	+30.3				+0.0	133.3	140.0	-6.7	None
									Fundamen	ıtal	
2	1849.995M	56.8	+30.3				+0.0	87.1	94.0	-6.9	None
3	1850.285M	102.5	+30.3				+0.0	132.8	140.0	-7.2	None
									Fundamen	ıtal	
4	3701.180M	24.8	+29.7				+0.0	54.5	94.0	-39.5	None
5	5551.770M	21.7	+27.9				+0.0	49.6	94.0	-44.4	None
6	7402.360M	23.0	+26.1				+0.0	49.1	94.0	-44.9	None
7	9252.950M	21.2	+24.9	•	•	•	+0.0	46.1	94.0	-47.9	None

Page 61 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Uplink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 16:13:35
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 69

Amplifier

Manufacturer:Wilson ElectronicsTested By:Mike WilkinsonModel:801201S/N:8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird 25-A-MFN-30	9949	05/09/2003	05/09/2005	P01572

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Intermodulation Attenuation and Spurious Emissions Test: Two signals are input to the amplifier through a combining network. The input signals are set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: EDGE. Frequencies Tested: Uplink 1909.1MHz, 1909.7MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measi	ırement Data:	R	eading lis	ted by n	nargin.		Te	st Distand	ce: None		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	1909.130M	97.4	+30.3				+0.0	127.7	140.0	-12.3	None
									Fundamen	ıtal	
2	1909.720M	95.8	+30.3				+0.0	126.1	140.0	-13.9	None
									Fundamen	ıtal	
3	1910.010M	49.6	+30.3				+0.0	79.9	94.0	-14.1	None
4	3818.800M	31.1	+29.7				+0.0	60.8	94.0	-33.2	None
5	5728.470M	29.5	+27.9				+0.0	57.4	94.0	-36.6	None
6	7637.870M	28.8	+25.5				+0.0	54.3	94.0	-39.7	None
7	9547.220M	28.7	+24.5	•	•	•	+0.0	53.2	94.0	-40.8	None

Page 62 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Uplink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 10:11:59
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 58

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson Model: 801201 S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird 25-A-MFN-30	9949	05/09/2003	05/09/2005	P01572

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4433B	US38440697	
DC Power Supply	Topward	TPS-2000	920035	

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Intermodulation Attenuation and Spurious Emissions Test: Two signals are input to the amplifier through a combining network. The input signals are set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: GSM. Frequencies Tested: Uplink 1850.28MHz, 1850.81MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

T1=Pad 30dB

Measu	irement Data:	Re	eading lis	ted by n	nargin.		Те	st Distanc	e: None		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dΒ	dB	dB	Table	dΒμV	$dB\mu V$	dB	Ant
1	1850.330M	98.4	+30.3				+0.0	128.7	140.0	-11.3	None
									Fundamen	ıtal	
2	1850.820M	98.0	+30.3				+0.0	128.3	140.0	-11.7	None
									Fundamen	ıtal	
3	1849.990M	47.7	+30.3				+0.0	78.0	94.0	-16.0	None
4	3701.120M	33.6	+29.7				+0.0	63.3	94.0	-30.7	None
5	7402.240M	34.8	+26.1				+0.0	60.9	94.0	-33.1	None
6	9252.800M	33.5	+24.9				+0.0	58.4	94.0	-35.6	None
7	11103.360M	34.8	+21.1		•	•	+0.0	55.9	94.0	-38.1	None

Page 63 of 107 Report No.: FC05-017A

Customer: Wilson Electronics
Specification: 24.238 Uplink

Work Order #: 83305 Date: 03/29/2005
Test Type: Antenna Terminals Time: 10:21:33
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 59

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson Model: 801201 S/N: 8012010000006

Test Equipment:

1_1				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird 25-A-MFN-30	9949	05/09/2003	05/09/2005	P01572

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

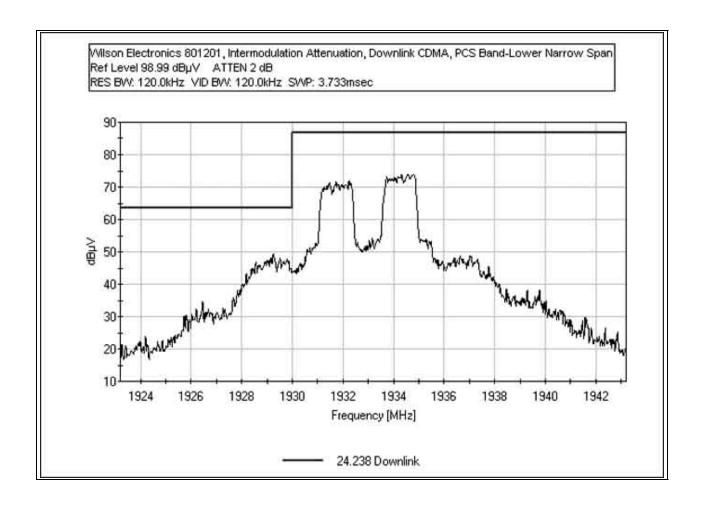
Support Devices:

Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4433B	US38440697	
DC Power Supply	Topward	TPS-2000	920035	

Test Conditions / Notes:

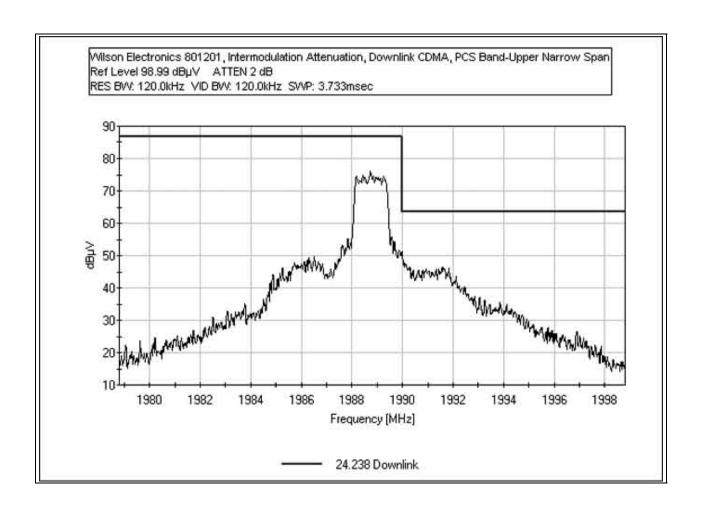
EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Intermodulation Attenuation and Spurious Emissions Test: Two signals are input to the amplifier through a combining network. The input signals are set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: GSM. Frequencies Tested: Uplink 1909.16MHz, 1909.72MHz. Frequency Range Investigated: 30MHz to 20GHz.

Transducer Legend:

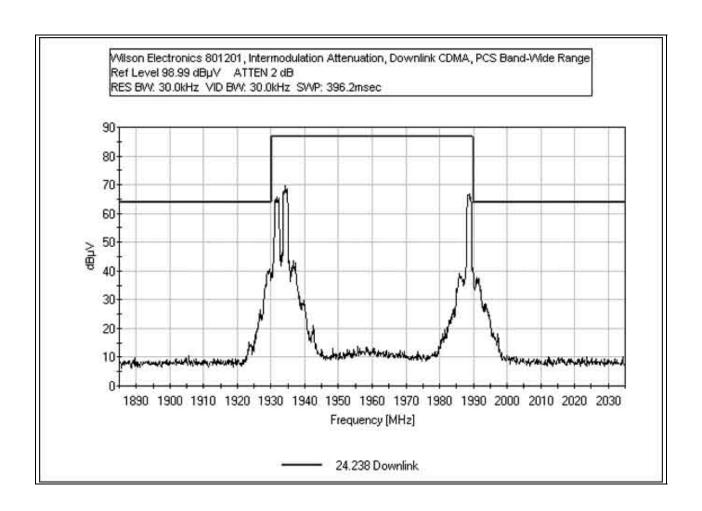

T1=Pad 30dB

Measu	irement Data:	Re	eading lis	ted by n	nargin.		Те	st Distanc	e: None		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1909.170M	95.7	+30.3				+0.0	126.0	140.0	-14.0	None
									Fundamen	tal	
2	1909.740M	93.3	+30.3				+0.0	123.6	140.0	-16.4	None
									Fundamen	tal	
3	1910.010M	42.6	+30.3				+0.0	72.9	94.0	-21.1	None
4	3818.860M	33.5	+29.7				+0.0	63.2	94.0	-30.8	None
5	5728.290M	33.8	+27.9				+0.0	61.7	94.0	-32.3	None
6	7637.720M	36.1	+25.5				+0.0	61.6	94.0	-32.4	None
7	9547.150M	35.1	+24.5		•	•	+0.0	59.6	94.0	-34.4	None

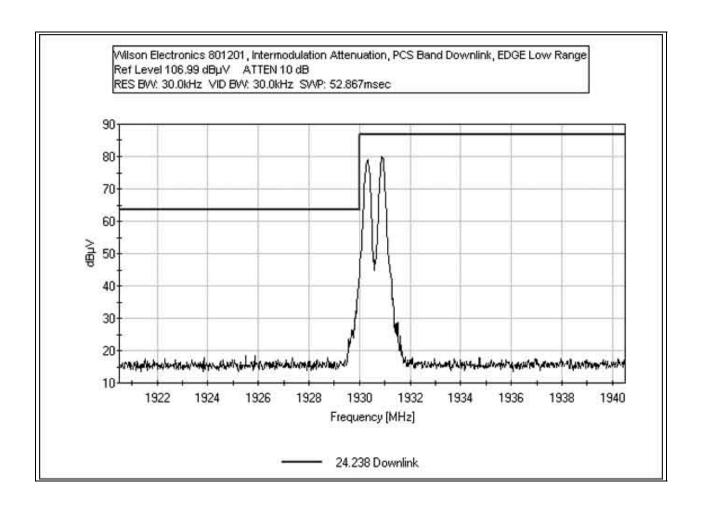
Page 64 of 107 Report No.: FC05-017A


INTERMODULATION ATTENUATION DOWNLINK CDMA - PCS BAND LOWER NARROW SPAN

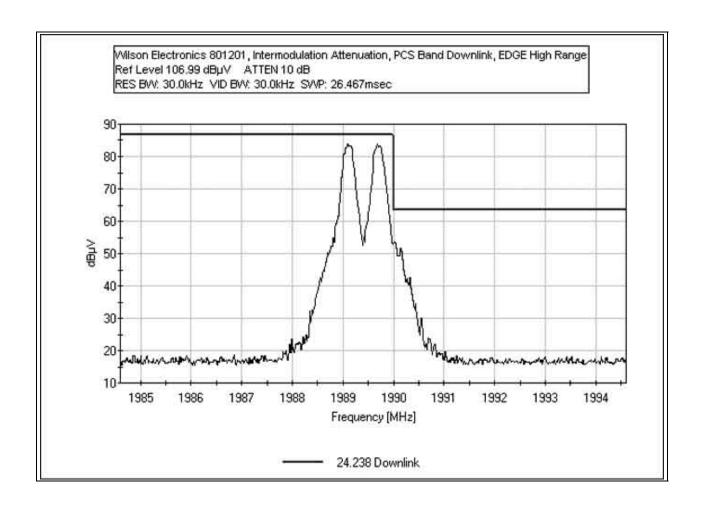
Page 65 of 107 Report No.: FC05-017A


INTERMODULATION ATTENUATION DOWNLINK CDMA - PCS BAND UPPER NARROW SPAN

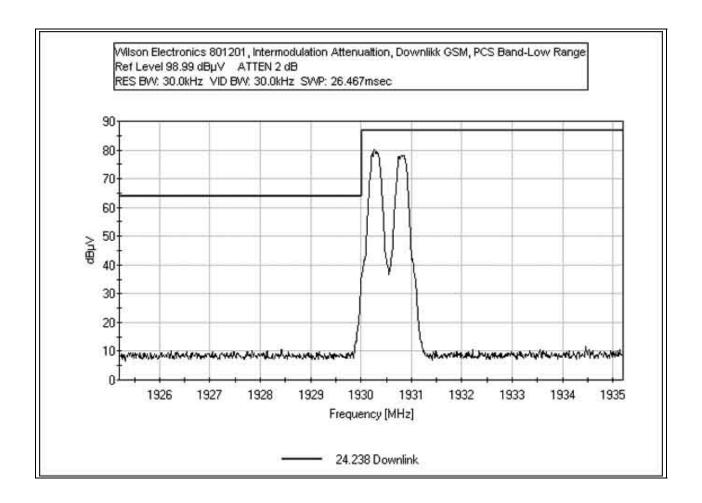
Page 66 of 107 Report No.: FC05-017A


INTERMODULATION ATTENUATION DOWNLINK CDMA - PCS BAND WIDE RANGE

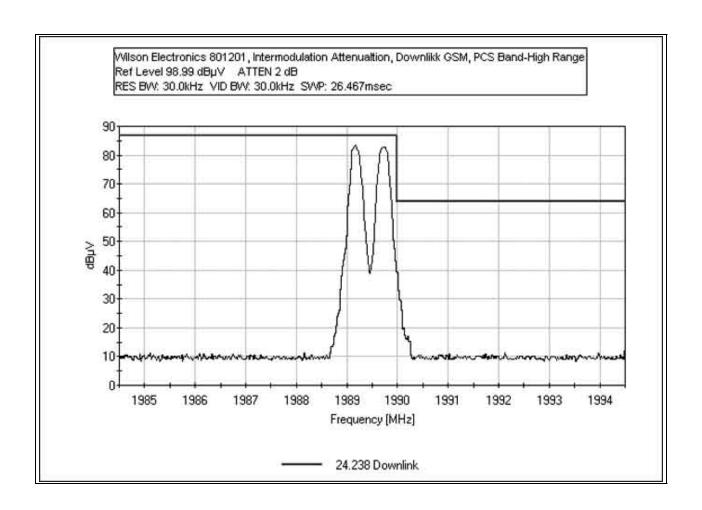
Page 67 of 107 Report No.: FC05-017A


INTERMODULATION ATTENUATION DOWNLINK EDGE - PCS BAND LOW RANGE

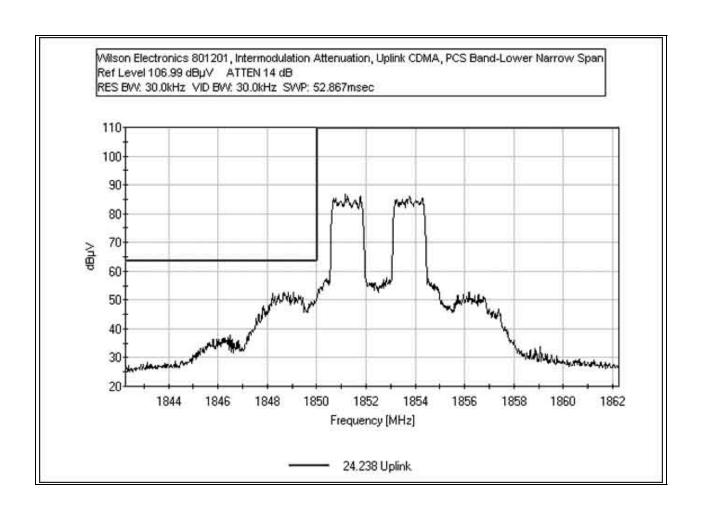
Page 68 of 107 Report No.: FC05-017A


INTERMODULATION ATTENUATION DOWNLINK EDGE - PCS BAND HIGH RANGE

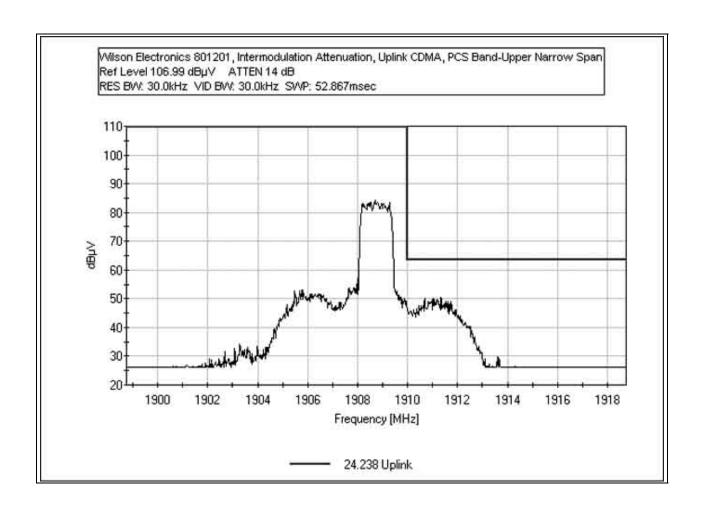
Page 69 of 107 Report No.: FC05-017A


INTERMODULATION ATTENUATION DOWNLINK GSM - PCS BAND LOW RANGE

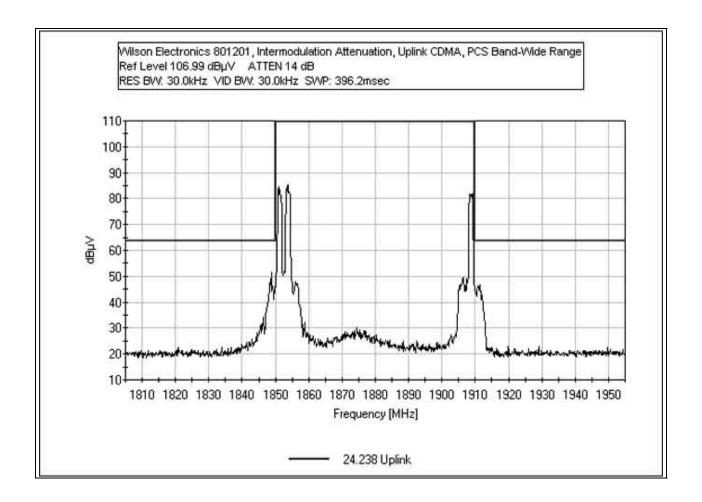
Page 70 of 107 Report No.: FC05-017A


INTERMODULATION ATTENUATION DOWNLINK GSM - PCS BAND HIGH RANGE

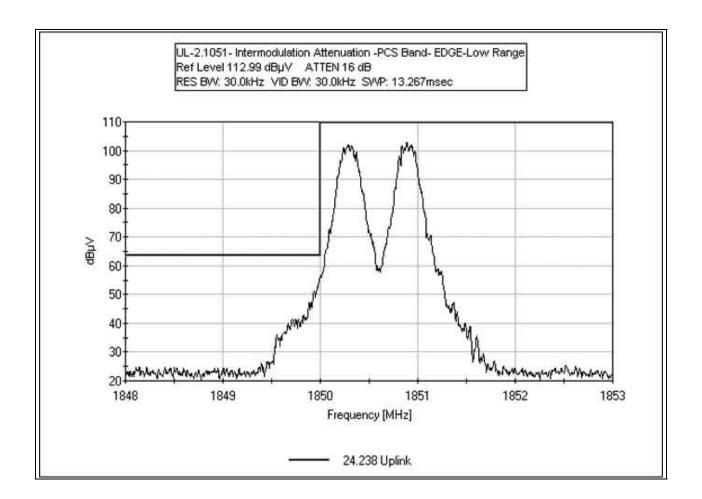
Page 71 of 107 Report No.: FC05-017A


INTERMODULATION ATTENUATION UPLINK CDMA - PCS BAND LOWER NARROW SPAN

Page 72 of 107 Report No.: FC05-017A


INTERMODULATION ATTENUATION UPLINK CDMA - PCS BAND UPPER NARROW SPAN

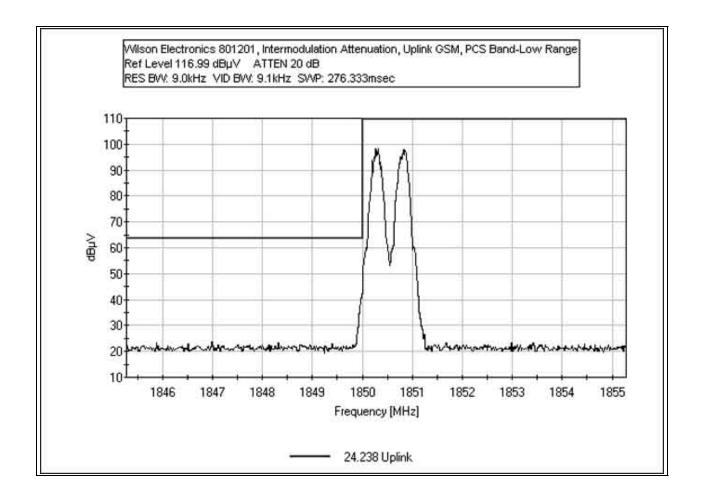
Page 73 of 107 Report No.: FC05-017A


INTERMODULATION ATTENUATION UPLINK CDMA - PCS BAND WIDE RANGE

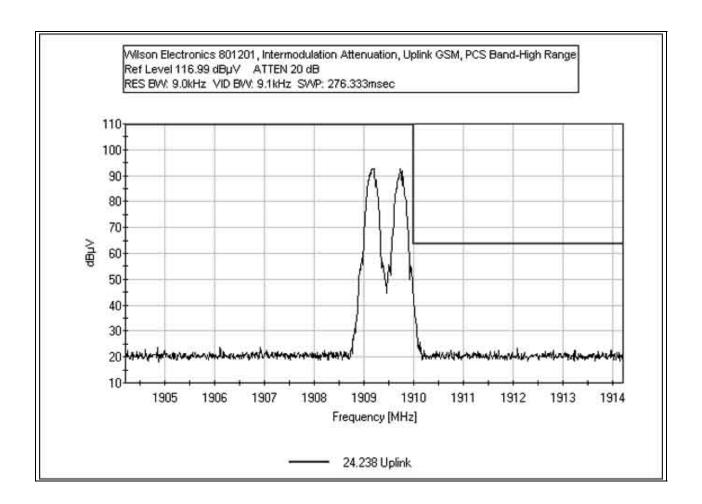
Page 74 of 107 Report No.: FC05-017A

INTERMODULATION ATTENUATION UPLINK EDGE - PCS BAND LOW RANGE

Page 75 of 107 Report No.: FC05-017A


INTERMODULATION ATTENUATION UPLINK EDGE - PCS BAND HIGH RANGE

Page 76 of 107 Report No.: FC05-017A


INTERMODULATION ATTENUATION UPLINK GSM - PCS BAND LOW RANGE

Page 77 of 107 Report No.: FC05-017A

INTERMODULATION ATTENUATION UPLINK GSM - PCS BAND HIGH RANGE

Page 78 of 107 Report No.: FC05-017A

PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP

Page 79 of 107 Report No.: FC05-017A

FCC 2.1051 – SELF-COLLOCATION INTERMODULATION

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Wilson Electronics

Specification: FCC 2.1051

Work Order #: 83305 Date: 05/02/2005
Test Type: Antenna Terminals Time: 16:45:04
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 93

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660	
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572	
25-A-MFN-30					

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

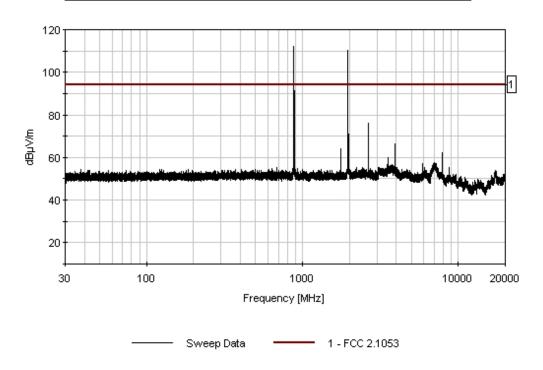
Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a dual band bidirectional amplifier for the 824 to 894MHz and the 1850 to 1990MHz bands. Uplink frequency range 824 - 849MHz and 1850 - 1910MHz. Downlink frequency range 869 - 894MHz and 1930 - 1990MHz. Intermodulation Attenuation and Spurious Emissions Test: Two signals are input to the amplifier through a combining network. The input signals are set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: CDMA. Frequencies Tested: Downlink 1960MHz and 881.5MHz. This mode represents the worst case of emissions. Frequency Range Investigated: 30 MHz to 20 GHz.

Transducer Legend:

T1=Pad 30dB


_	Measurement Data:		Re	Reading listed by margin.			Test Distance: None					
	#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
		MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1	881.432M	81.8	+30.3				+0.0	112.1	117.0	-4.9	None
										Carrier		
Ī	2	1959.641M	79.8	+30.3				+0.0	110.1	117.0	-6.9	None
										Carrier		
Ī	3	2644.350M	46.8	+29.9				+0.0	76.7	94.0	-17.3	None

Page 80 of 107 Report No.: FC05-017A

4 3920.080M	39.3	+29.6	+0.0	68.9	94.0	-25.1	None
5 7839.978M	41.1	+24.9	+0.0	66.0	94.0	-28.0	None
6 1762.664M	34.6	+30.3	+0.0	64.9	94.0	-29.1	None
7 5879.230M	30.5	+27.8	+0.0	58.3	94.0	-35.7	None

CKC Laboratories Date: 05/02/2005 Time: 16:45:04 Wilson Electronics WO#: 83305 FCC 2.1053 Test Distance: None Sequence#: 93 Wilson Electronics M/N 801201

Page 81 of 107 Report No.: FC05-017A

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Wilson Electronics
Specification: FCC 2.10531

Work Order #: 83305 Date: 05/02/2005
Test Type: Antenna Terminals Time: 16:24:36
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 92

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660	
Attenuator 30dB, Bird	1 9949	05/09/2003	05/09/2005	P01572	
25-A-MFN-30					

Equipment Under Test (* = EUT):

1:1	-).		
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

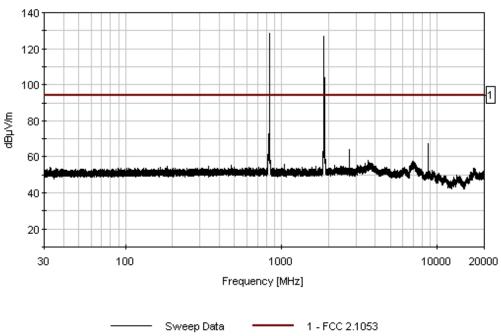
Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035

Test Conditions / Notes:

EUT is a dual band bidirectional amplifier for the 824 to 894MHz and the 1850 to 1990MHz bands. Uplink frequency range 824 - 849MHz and 1850 - 1910MHz. Downlink frequency range 869 - 894MHz and 1930 - 1990MHz. Intermodulation Attenuation and Spurious Emissions Test: Two signals are input to the amplifier through a combining network. The input signals are set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Input Modulation: CDMA. Frequencies Tested: Uplink 1880MHz and 836.5MHz. This mode represents the worst case of emissions. Frequency Range Investigated: 30 MHz to 20 GHz.

Transducer Legend:

T1=Pad 30dB


_	Measu	rement Data:	R	eading lis	ted by 1	margin.		Τe	est Distance	e: None		
Ī	#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
Ī	1	836.496M	98.1	+30.4				+0.0	128.5	140.0	-11.5	None
										Carrier		
Ī	2	1879.816M	96.5	+30.3				+0.0	126.8	140.0	-13.2	None
										Carrier		
Ī	3	1883.680M	42.4	+30.3				+0.0	72.7	94.0	-21.3	None
Ī	4	1885.270M	39.3	+30.3				+0.0	69.6	94.0	-24.4	None

Page 82 of 107 Report No.: FC05-017A

5 8765.240M	43.4	+24.4	+	-0.0	67.8	94.0	-26.2	None
6 2716.385M	36.6	+29.8	+	-0.0	66.4	94.0	-27.6	None
7 830.350M	34.8	+30.4	+	-0.0	65.2	94.0	-28.8	None
8 818.280M	32.7	+30.4	+	-0.0	63.1	94.0	-30.9	None

CKC Laboratories Date: 05/02/2005 Time: 16:24:36 Wilson Electronics WO#: 83305 FCC 2.1053 Test Distance: None Sequence#: 92 Wilson Electronics M/N 801201

PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP

Page 84 of 107 Report No.: FC05-017A

FCC 2.1033(c)(14)/2.1053/24.238 - FIELD STRENGTH OF SPURIOUS RADIATION

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Wilson Electronics

Specification: 24.238
Work Order #: 83305

Work Order #: 83305 Date: 03/31/2005
Test Type: Antenna Terminals Time: 10:10:20
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 88

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
HP 8447D Preamp	1937A02604	03/11/2005	03/11/2007	00099
Chase CBL6111C Bilog	2456	06/26/2003	06/26/2005	01991
EMCO 3115 Horn Antenna	9006-3413	03/08/2005	03/08/2007	327
HP 8449B Preamp	3008A00301	12/14/2004	12/14/2006	2010
ARA MWH-1826/B Horn Antenna	1005	11/05/2004	11/05/2006	02046

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035
Signal Generator	HP	E4432B	MY41000298
Load	JFW	50T-022	P04243

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Radiated Intermodulation /Spurious Emissions Test: Two signals are input to the amplifier through a combining network. The input signals are set such that the maximum output per channel is provided at the antenna terminals. The internal ALC of the amplifier limits the combined maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Test setup is in accordance with TIA/EIA 603. Signal generators were remotely located under the ground plane. Two input frequency configurations were investigated as follows, 1930.28 & 1930.84MHz and then 1989.16 & 1989.72MHz. Data represents measured worst care and represents all modulation types. Input Modulation:GSM. Frequencies Tested: Downlink Frequency Range Investigated: 30MHz to 10GHz. Measurement Bandwidth Settings: 10MHz to 1000MHz - RBW=VBW=10kHz, 1000MHz to 10000MHz - RBW=VBW=1MHz. No EUT Emissions detected within 20dBc of the limit.

Transducer Legend:

Measurement Data:		Reading listed by margin.			margin.		Test Distance: 3 Meters					
ĺ	#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
		MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant

Page 85 of 107 Report No.: FC05-017A

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Wilson Electronics

Specification: 24.238

Work Order #: 83305 Date: 03/31/2005
Test Type: Antenna Terminals Time: 10:04:08
Equipment: In Vehicle Wireless Dual Band Smart Sequence#: 87

Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 801201

S/N: 8012010000006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
HP 8447D Preamp	1937A02604	03/11/2005	03/11/2007	00099
Chase CBL6111C Bilog	2456	06/26/2003	06/26/2005	01991
EMCO 3115 Horn Antenna	9006-3413	03/08/2005	03/08/2007	327
HP 8449B Preamp	3008A00301	12/14/2004	12/14/2006	2010
ARA MWH-1826/B Horn	1005	11/05/2004	11/05/2006	02046
Antenna				

Equipment Under Test (* = EUT):

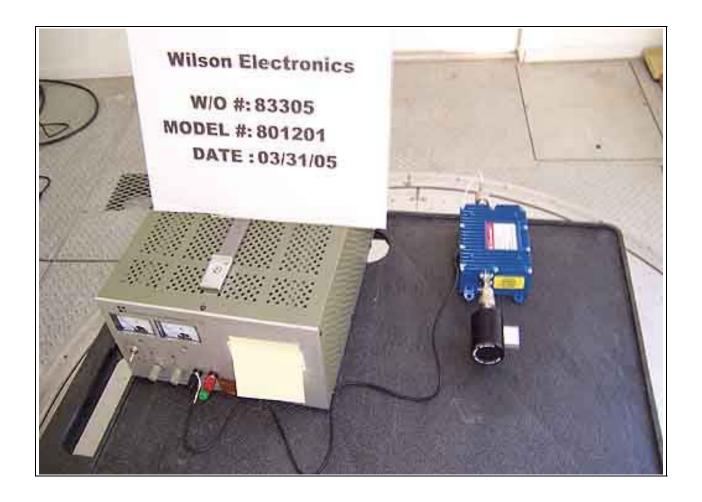
Function	Manufacturer	Model #	S/N
In Vehicle Wireless Dual	Wilson Electronics	801201	8012010000006
Band Smart Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4433B	US38440697
DC Power Supply	Topward	TPS-2000	920035
Signal Generator	HP	E4432B	MY41000298
Load	JFW	50T-022	P04243

Test Conditions / Notes:

EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. Radiated Intermodulation /Spurious Emissions Test: Two signals are input to the amplifier through a combining network. The input signals are set such that the maximum output per channel is provided at the antenna terminals. The internal ALC of the amplifier limits the combined maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Test setup is in accordance with TIA/EIA 603. Signal generators were remotely located under the ground plane. Two input frequency configurations were investigated as follows, 1850.28 & 1850.84MHz and then 1909.16 & 1909.72MHz. Data represents measured worst care and represents all modulation types. Input Modulation:GSM. Frequencies Tested: Uplink. Frequency Range Investigated: 30MHz to 10GHz. Measurement Bandwidth Settings: 10MHz to 1000MHz - RBW=VBW=10kHz, 1000MHz to 10000MHz - RBW=VBW=1MHz. No EUT Emissions detected within 20dBc of the limit.


Transducer Legend:

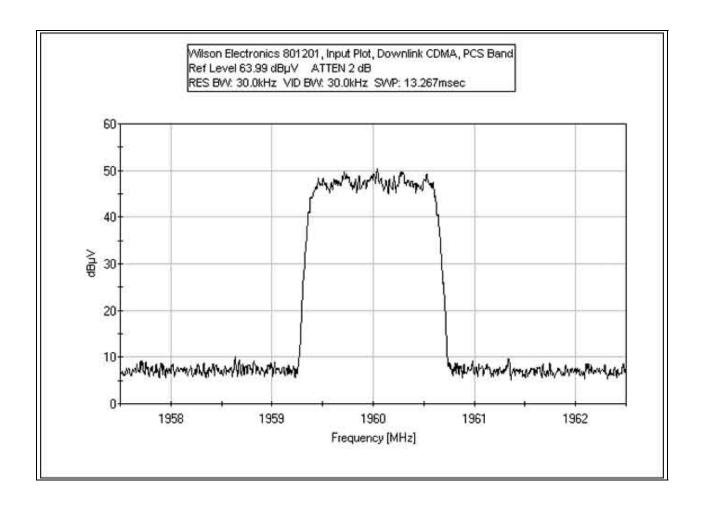
Measurement Data:			Reading li	sted by n	nargin.		Te	est Distance	e: 3 Meters	}	
#	Freq	Rdng		•	•		Dist	Corr	Spec	Margin	Polar
	MHz	dBuV	dB	dB	dB	dB	Table	dBuV/m	dBuV/m	dΒ	Ant

Page 86 of 107 Report No.: FC05-017A

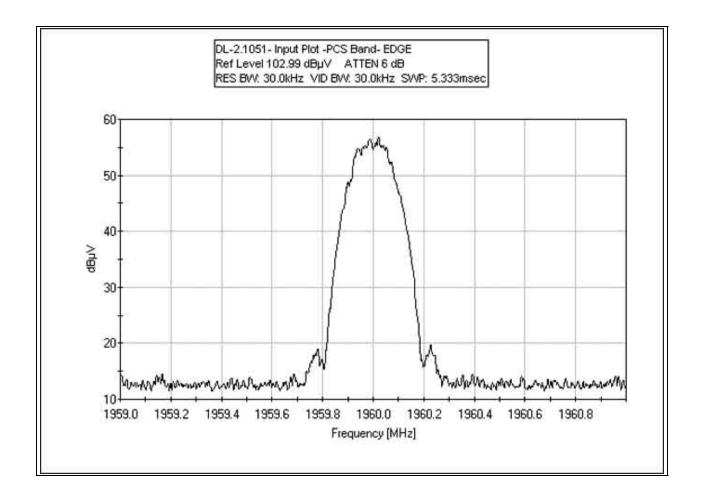
PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

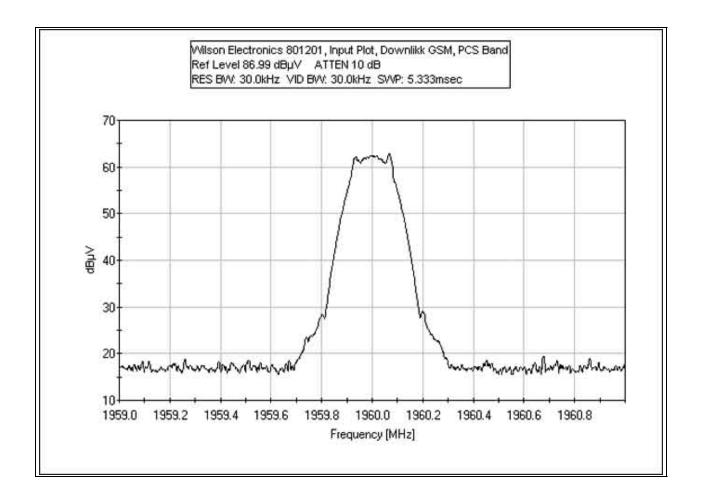
Page 87 of 107 Report No.: FC05-017A


PHOTOGRAPH SHOWING RADIATED EMISSIONS

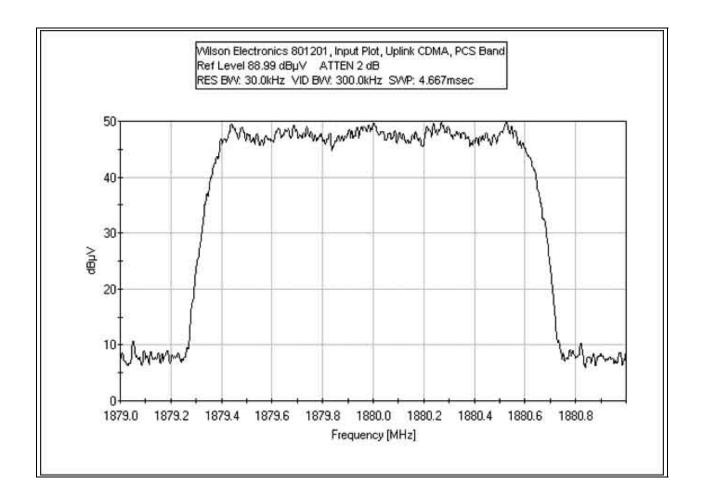
Radiated Emissions - Back View


INPUT DOWNLINK CDMA

Page 89 of 107 Report No.: FC05-017A


INPUT DOWNLINK EDGE

Page 90 of 107 Report No.: FC05-017A


INPUT DOWNLINK GSM

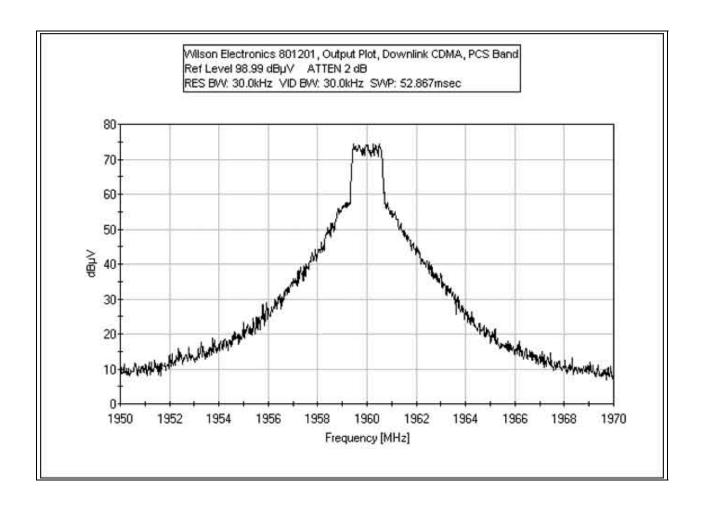
Page 91 of 107 Report No.: FC05-017A

INPUT UPLINK CDMA

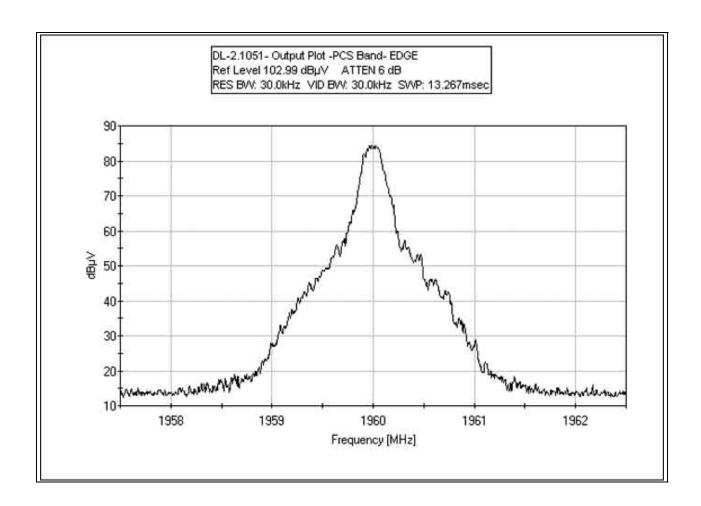
Page 92 of 107 Report No.: FC05-017A


INPUT UPLINK EDGE

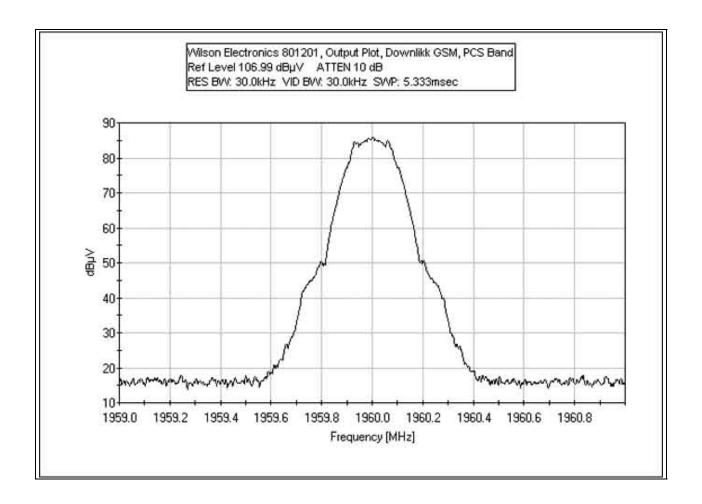
Page 93 of 107 Report No.: FC05-017A


INPUT UPLINK GSM

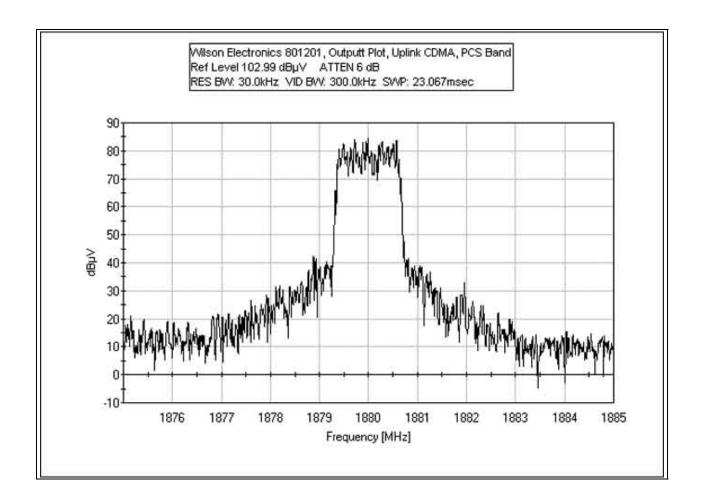
Page 94 of 107 Report No.: FC05-017A


OUTPUT DOWNLINK CDMA

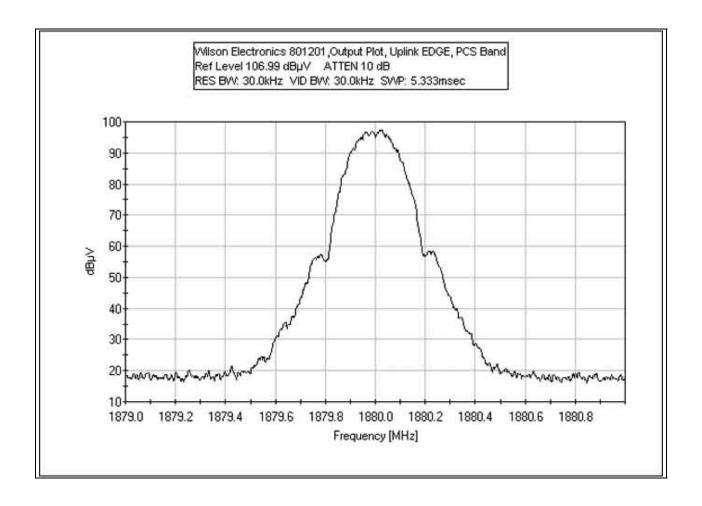
Page 95 of 107 Report No.: FC05-017A


OUTPUT DOWNLINK EDGE

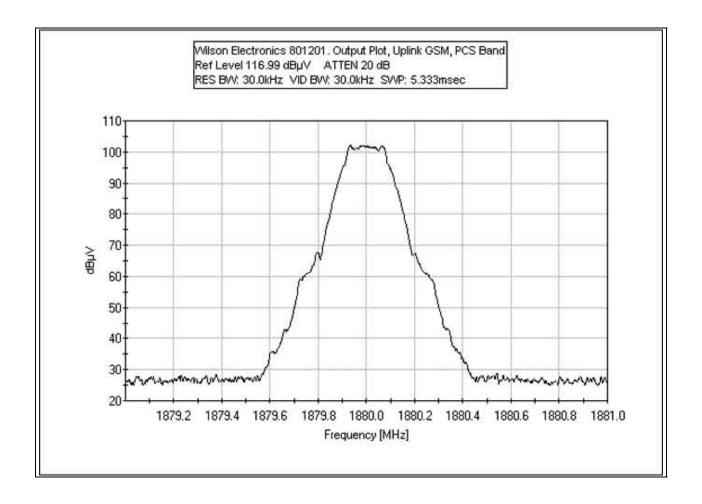
Page 96 of 107 Report No.: FC05-017A


OUTPUT DOWNLINK GSM

Page 97 of 107 Report No.: FC05-017A


OUTPUT UPLINK CDMA

Page 98 of 107 Report No.: FC05-017A


OUTPUT UPLINK EDGE

Page 99 of 107 Report No.: FC05-017A

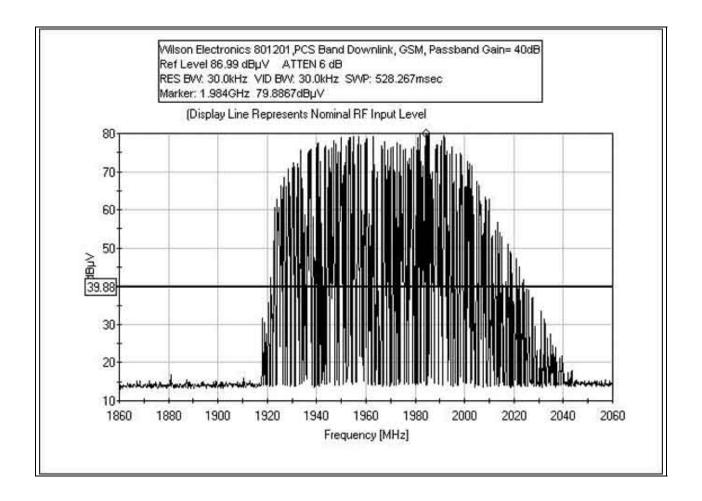
OUTPUT UPLINK GSM

Page 100 of 107 Report No.: FC05-017A

Test Equipment:

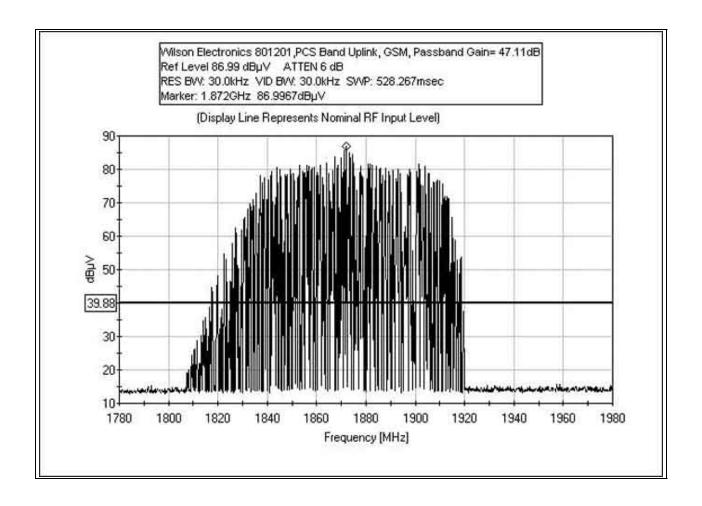
Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP



Page 101 of 107 Report No.: FC05-017A

RSS-131 DOWNLINK PASSBAND GAIN GSM


Test Conditions: EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Frequency Range Investigated: 30MHz to 20GHz.

Page 102 of 107 Report No.: FC05-017A

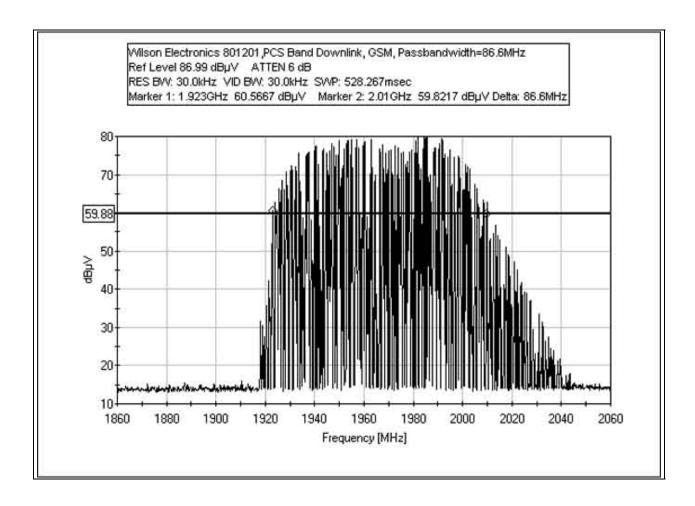
RSS-131 UPLINK PASSBAND GAIN GSM

Page 103 of 107 Report No.: FC05-017A

Test Equipment:

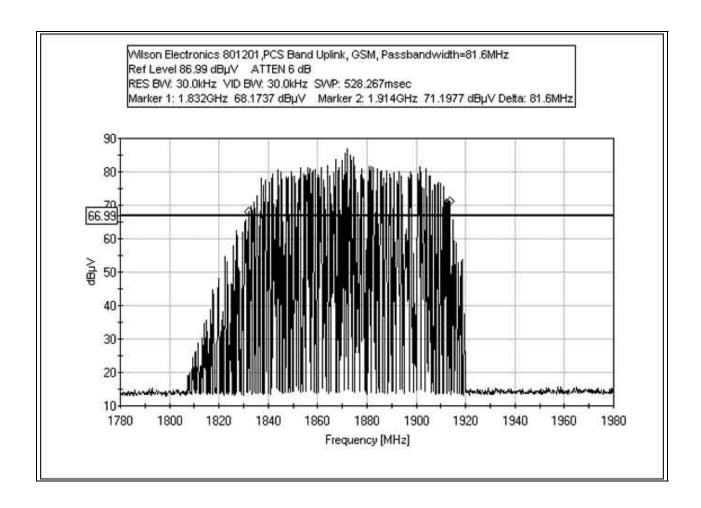
Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP



Page 104 of 107 Report No.: FC05-017A

RSS-131 DOWNLINK PASSBANDWIDTH GSM


Test Conditions: EUT is a bidirectional amplifier for the 1850 to 1990MHz band. Uplink frequency range 1850 - 1910MHz. Downlink frequency range 1930 - 1990MHz. One signal is input to the amplifier. The input signal is set such that the maximum output is provided at the antenna terminals. The internal ALC of the amplifier limits the maximum power output to a factory set level. Power output is continuously variable and directly proportional to the supplied RF input. Frequency Range Investigated: 30MHz to 20GHz.

Page 105 of 107 Report No.: FC05-017A

RSS-131 UPLINK PASSBANDWIDTH GSM

Page 106 of 107 Report No.: FC05-017A

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
Attenuator 30dB, Bird	9949	05/09/2003	05/09/2005	P01572
25-A-MFN-30				

PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP

Page 107 of 107 Report No.: FC05-017A