

Compliance Testing, LLC

Previously Flom Test Lab EMI, EMC, RF Testing Experts Since 1963 toll-free: (866)311-3268 fax: (480)926-3598

http://www.ComplanceTesting.com info@ComplanceTesting.com

Test Report

Prepared for: Wilson Electronics, Inc.

Model: 460022

Description: Quint Band Signal Booster

FCC ID: PWO460022

То

FCC Part 20

Date of Issue: December 3, 2014

On the behalf of the applicant:

Wilson Electronics, Inc. 3301 E Deseret Drive St. George, UT 84790

Attention of:

Patrick Cook, Sr Research & Development Engineer Ph: (435) 673-5021 E-Mail: pcook@infowest.com

Prepared By Compliance Testing, LLC 1724 S. Nevada Way Mesa, AZ 85204 (480) 926-3100 phone / (480) 926-3598 fax <u>www.compliancetesting.com</u> Project No: p14b0001

Mike Graffeo Project Test Engineer

This report may not be reproduced, except in full, without written permission from Compliance Testing. All results contained herein relate only to the sample tested.

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	November 7, 2014	Mike Graffeo	Original Document

Table of Contents

Description	<u>Page</u>
Standard Test Conditions and Engineering Practices	5
Test Result Summary	6
Authorized Frequency Band	7
Maximum Power and Gain	13
Intermodulation	15
Out-of-Band Emissions	21
Conducted Spurious Emissions	55
Noise Limits	80
Variable Gain	87
Occupied Bandwidth	92
Oscillation Detection	123
Radiated Spurious	140
Test Equipment Utilized	143

ILAC / A2LA

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to the joint ISO-ILAC-IAF Communiqué dated January 2009).

The tests results contained within this test report all fall within our scope of accreditation, unless noted below.

Please refer to http://www.compliancetesting.com/labscope.html for current scope of accreditation.

Testing Certificate Number: 2152.01

FCC Site Reg. #349717

IC Site Reg. #2044A-2

Non-accredited tests contained in this report:

N/A

Test and Measurement Data Sub-part

2.1033(c)(14):

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Part 2, Subpart J and the following individual Parts: 20.21 in conjunction with latest version of KDB 935210.

Standard Test Conditions and Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI/C63.4-2009, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104°F), unless the particular equipment requirements specified testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Environmental Conditions							
Temp (ºC)	Humidity (%)	Pressure (mbar)					
24.9 – 31.0	33.5 - 63.0	985.5 - 943.0					

Measurement results, unless otherwise noted, are worst-case measurements.

EUT Description

Model: 460022

Description: Quint Band Signal Booster

Firmware:

Software:

Additional Information:

The EUT is an in vehicle, Direct Contact bi-directional amplifier for the boosting of cellular phone signals and data communication devices.

The following frequency bands and emission types are utilized.

Frequency Band (MHz)									
Uplink 698 - 716 776 - 787 824 - 849 1850 - 1915 1710 - 1755									
Downlink	728 - 746	746 - 757	869 - 894	1930 - 1995	2110 - 2155				
Modulation Type	Modulation TypeLTEGSM, CDMA, EDGE, HSPA. EVDO, LTECDMA, HSPA, LTE, EDGE, EVDO								

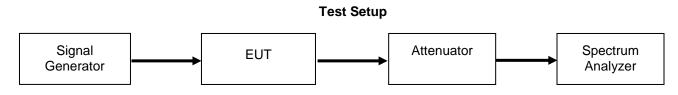
Emission Designators							
CDMA HSPA LTE EVDO EDGE GSM							
F9W F9W G7D F9W G7W GXW							

The modulation types and emission designators listed in the tables represent the modulations that the cell phone providers use for each frequency band. GSM, CDMA, and WCDMA represent all the modulation types (phase and amplitude or a combination thereof) utilized within the industry. EDGE, HSPA, LTE etc. are all protocols or multiplexing techniques using the base modulations.

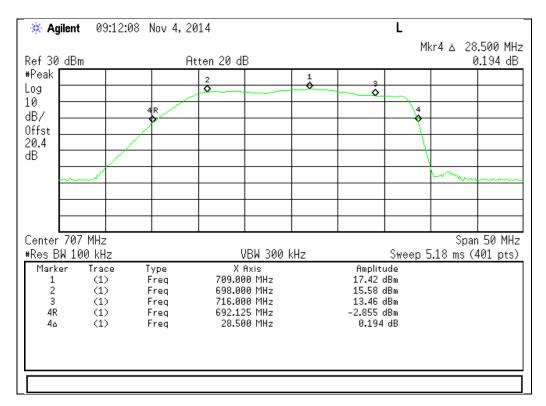
EUT Operation during Tests

The EUT was in a normal operating condition.

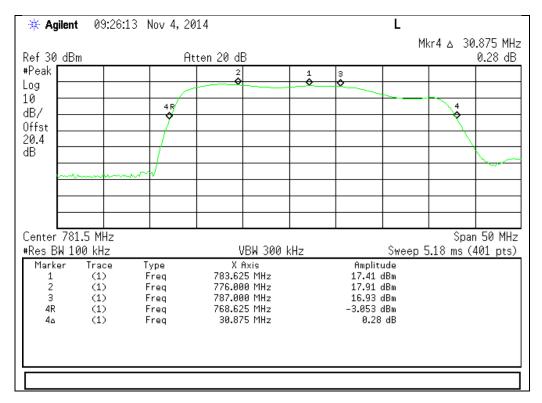
Test Result Summary


Specification	Test Name	Pass, Fail, N/A	Comments
20.21(e)(3)	Authorized Frequency Band	Pass	
20.21(e)(8)(i)(B) 20.21(e)(8)(i)(C) 20.21(e)(8)(i)(D)	Maximum Power and Gain	Pass	
20.21(e)(8)(i)(F)	Intermodulation	Pass	
20.21(e)(8)(i)(E)	Out-of-Band Emissions	Pass	
2.1051 22.917(a) 24.238((a) 27.53(c) 27.53(e) 27.53(f) 27.53(g)	Conducted Spurious Emissions	Pass	
20.21(e)(8)(i)(A)	Noise Limits	Pass	per rule 20.21e if noise is less than -70dBm/MHz ("Transmit Power OFF Mode") then EUT will not shut off, therefore the following tests will not be performed: 1) Variable Uplink Noise Power Tests, 2) Variable Downlink Noise Power Tests, 3) Noise timing test
20.21(e)(8)(i)(l)	Uplink Inactivity	Pass	per rule 20.21e if noise is less than -70dBm/MHz ("Transmit Power OFF Mode") then EUT will not shut off, therefore this test will not be performed
20.21(e)(8)(i)(C)(1) 20.21(e)(8)(i)(H) 20.21(e)(8)(i)(C)(2)(iii) (Mobile)	Variable Gain	Pass	
2.1049	Occupied Bandwidth	Pass	
20.21(e)(8)(ii)(A)	Oscillation Detection	Pass	
2.1053	Radiated Spurious	Pass	
20.21(e)(8)(i)(B)	Spectrum Block Filtering	N/A	This only applies to devices utilizing spectrum block filtering

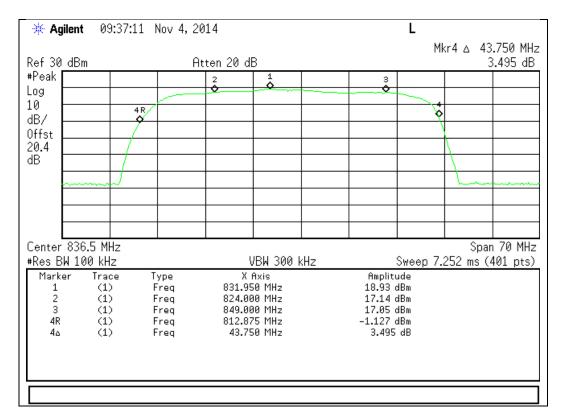
Authorized Frequency Band Engineer: Mike Graffeo Test Date: 11/4/14


Test Procedure

The EUT was connected to a spectrum analyzer through an attenuator with the losses being input into the spectrum analyzer as a combination of reference level offset and correction factor as needed to ensure accurate readings. A signal generator was utilized to produce a CW input signal tuned to the center channel of the operational band. The RF input level was increased to a point just prior to the AGC being in control of the power. The Signal generator was set to sweep across 2X the operational band of the EUT while the spectrum analyzer was set to MAX HOLD. Two markers were placed at the edges of the operational band and a third marker was placed at the highest point within the band no closer than 2.5 MHz from the band edge.

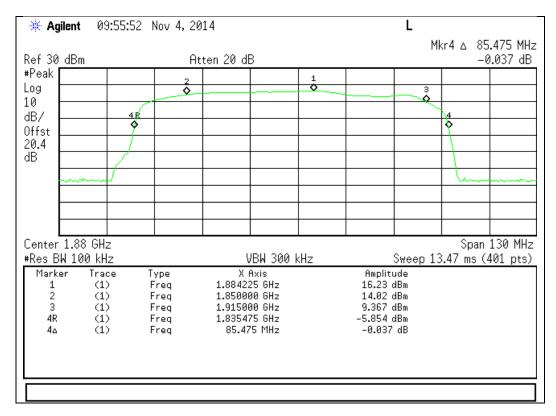


Uplink Test Results



698 - 716 MHz Band

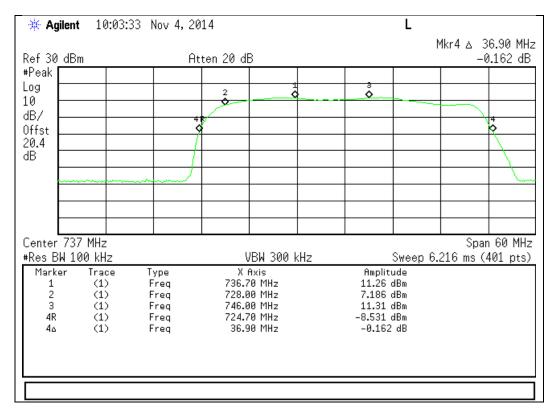
776 - 787 MHz Band

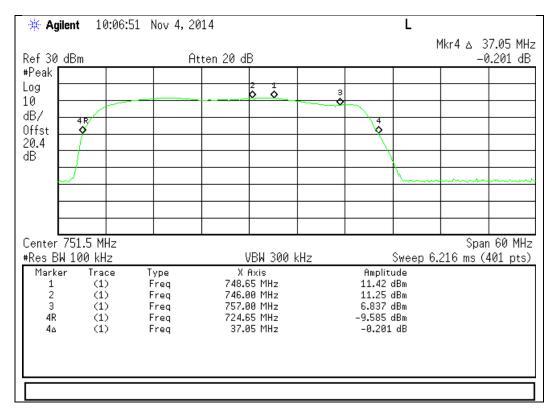


824 - 849 MHz Band

1710 - 1755 MHz Band

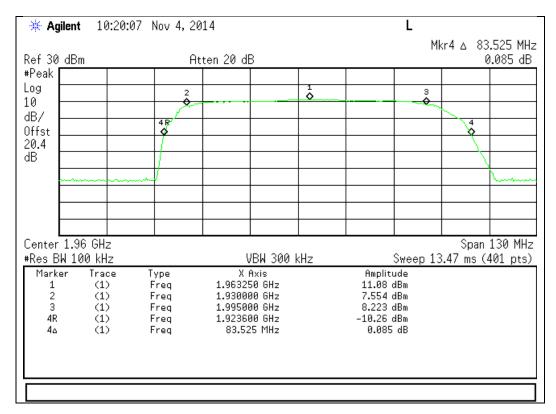
🔆 Ag	jilent (9:49:28	Nov 4, 20	14		L Mkr4 ∆ 90.350 MHz				
Ref 30	dBm		At	ten 20 d	В	_		M		0.350 MHZ 0.751 dB
#Peak Log				2	1 ©		3			
10 dB/		4 R							4	
Offst 20.4									+ [°]	
dB		1/								
		1							\ \	
	1.732 (130 MHz
	W 100 k		_		/BW 300 I	KHZ			3.47 ms (401 pts)
Mark 1			Type Freg	X 1.7204	Axis 7⊑ cu⊐		Amplitu 15.86 d			
1 2 3			Freq	1.7100			13.00 0			
3			Freq	1.7550			15.14 0			
4R			Freq	1.6886			-6.055 (
40	C	1)	Freq	90.35	50 MHz		0.751	dB		




1850 - 1915 MHz Band

Downlink Test Results

728 - 746 MHz Band



746 - 757 MHz Band

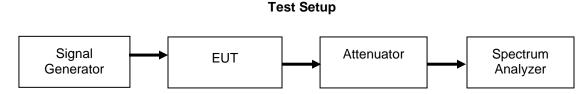
869 - 894 MHz Band

🔆 Ag	j ilent 1	0:15:20	Nov 4, 201	L4		L Mkr4 ∆ 39.90 MHz				
Ref 30	dBm		Att	ten 20 dB					Mkr4 ∆	39.90 MHz 0.044 dB
#Peak Log			2					3		
10 dB/		48							*	
Offst 20.4 dB		ļ)							Ň.	
45										
Contor	881.5 M									an 60 MHz
#Res B	W 100 kł	Ηz			/BW 300	kHz				(401 pts)
Маrk 1 2 3 4R 4A	(1 (1 (1	.) .) .)	Type Freq Freq Freq Freq Freq	879.5 869.8 894.8 859.9	Axis 55 MHz 30 MHz 30 MHz 30 MHz 30 MHz		Amplit 11.6 9.688 8.516 -8.814 0.044	dBm dBm dBm dBm		

1930 - 1995 MHz Band

2110 - 2155 MHz Band

🔆 Ag	jilent 1	0:25:00	Nov 4, 20	14				L		
Ref 30	dBm	_	Att	ten 20 di	В	-		h		55000 GHz .869 dBm
#Peak Log			2					3		
10 dB/		4R	*						5	
Offst 20.4 dB	,	ľ –								
QD.										<u></u>
	2.132 G W 100 kH			l	/BW 300 I	<hz< td=""><td></td><td>Sween</td><td>Span 11.4 ms (</td><td>110 MHz (401 nts)</td></hz<>		Sween	Span 11.4 ms (110 MHz (401 nts)
Mark 1 2 3 4R 4A		ce 1)))	ſype Freq Freq Freq Freq Freq	X 2.1289: 2.1100 2.1550 2.0904:	Axis 25 GHz 00 GHz 00 GHz	11 I	Amplitu 12.34 d 10.15 d 9.869 d -8.144 d 0.692	1de 18m 18m 18m 18m	11.7 m3 ((101 pts)



Maximum Power and Gain Engineer: Mike Graffeo Test Date: 11/4/14

Test Procedure

The EUT was connected to a spectrum analyzer through an attenuator with the losses being input into the spectrum analyzer as a combination of reference level offset and correction factor as needed to ensure accurate readings. The spectrum analyzer and signal generator were tuned to the frequency with the highest power level in the band, as determined by the Authorized Frequency Band test. The RF input level was increased to a point just prior to the AGC being in control of the power for both pulsed single time slot GSM modulation and 4.1 MHz AWGN modulation. The maximum power was measured and verified to meet the minimum and maximum levels allowed, with the maximum gain being computed from these values. The uplink and downlink gain under each condition were verified to be within 9 dB of each other.

For Direct Contact installations the gain is fixed at 23 dB.

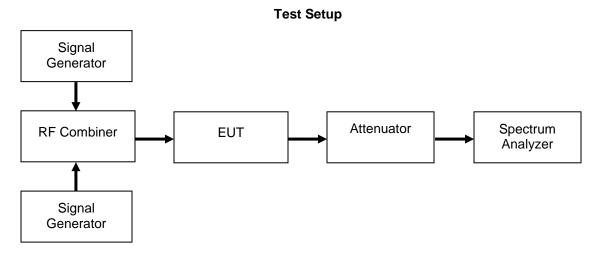
Uplink Power Test Results

Frequency Band (MHz)	Input Level (dBm)	Output Power (dBm)	Lower Limit (dBm)	Upper Limit (dBm)	Result
698 - 716 MHz Pulsed GSM	6.3	24.28	17	30	Pass
698 - 716 MHz AWGN	6.5	23.15	17	30	Pass
776 - 787 MHz Pulsed GSM	7.2	24.35	17	30	Pass
776 - 787 MHz AWGN	5.0	21.67	17	30	Pass
824 - 849 MHz Pulsed GSM	6.4	24.44	17	30	Pass
824 - 849 MHz AWGN	3.0	21.25	17	30	Pass
1710 - 1755 MHz Pulsed GSM	7.9	25.14	17	30	Pass
1710 - 1755 MHz AWGN	6.2	22.09	17	30	Pass
1850 – 1915 MHz Pulsed GSM	8.0	24.25	17	30	Pass
1850 - 1915 MHz AWGN	4.2	20.08	17	30	Pass

Frequency Band (MHz)	Input Level (dBm)	Output Power (dBm)	Upper Limit (dBm)	Result
728 - 746 MHz Pulsed GSM	-8.4	10.84	17	Pass
728 - 746 MHz AWGN	-9.0	10.24	17	Pass
746 - 757 MHz Pulsed GSM	-8.1	11.23	17	Pass
746 - 757 MHz AWGN	-8.8	10.26	17	Pass
869 - 894 MHz Pulsed GSM	-7.5	11.72	17	Pass
869 - 894 MHz AWGN	-7.1	11.31	17	Pass
1930 - 1995 MHz Pulsed GSM	-6.6	10.96	17	Pass
1930 - 1995 MHz AWGN	-6.9	10.27	17	Pass
2110 - 2155 MHz Pulsed GSM	-6.6	12.35	17	Pass
2110 - 2155 MHz AWGN	-7.1	11.13	17	Pass

Downlink Power Test Results

Uplink and Downlink Gain Test Results

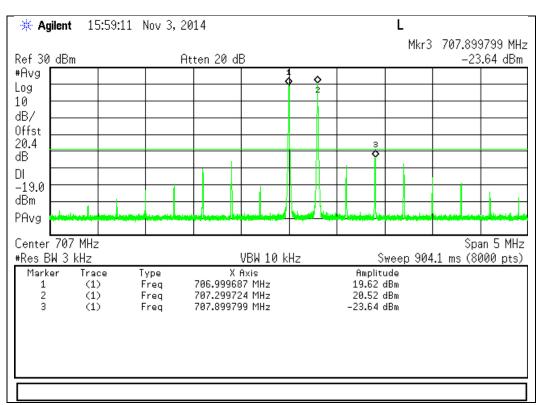

Modulation	Uplink Frequency (MHz)	Downlink Frequency (MHz)	Uplink Gain (dB)	Uplink Limit (dB)	Downlink Gain (dB)	Downlink Limit (dB)	Delta (dB)	Limit (dB)	Margin (dB)
Pulsed GSM	709	736.7	17.98	23	19.2	23	1.26	9	-7.74
AWGN	709	736.7	16.65	23	19.2	23	2.59	9	-6.41
Pulsed GSM	783.63	748.65	17.15	23	19.3	23	2.18	9	-6.82
AWGN	783.63	748.65	16.67	23	19.1	23	2.39	9	-6.61
Pulsed GSM	831.95	879.5	18.04	23	19.2	23	1.18	9	-7.82
AWGN	831.95	879.5	18.25	23	18.4	23	0.16	9	-8.84
Pulsed GSM	1720.5	2128.9	17.24	23	19.0	23	1.71	9	-7.29
AWGN	1720.5	2128.9	15.89	23	18.2	23	2.34	9	-6.66
Pulsed GSM	1884.2	1963.3	16.25	23	17.6	23	1.31	9	-7.69
AWGN	1884.2	1963.3	15.88	23	17.2	23	1.29	9	-7.71

Intermodulation Engineer: Mike Graffeo Test Date: 11/4/14

Test Procedure

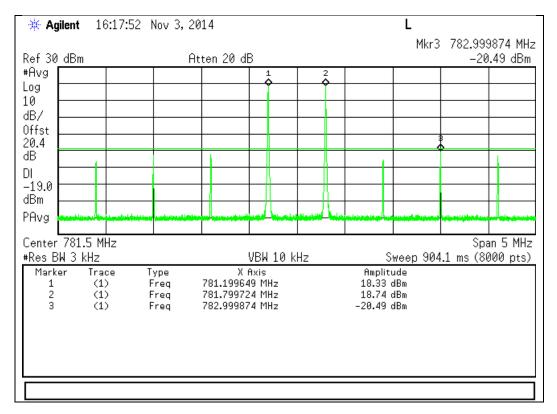
The EUT was connected to a spectrum analyzer through an attenuator. Two signal generators were utilized to produce two CW signals 600 kHz apart and centered in the operational band. Attenuator and cable insertion loss correction factors were input to either the signal generator or the spectrum analyzer as required to ensure that accurate measurements were recorded. The input power was set at the maximum allowable power and the RMS intermodulation products were measured to ensure they were less than -19 dBm in a 3 kHz RBW. The uplink and downlink intermodulation products were plotted, with the levels being listed in the summary tables.

Uplink Test Results

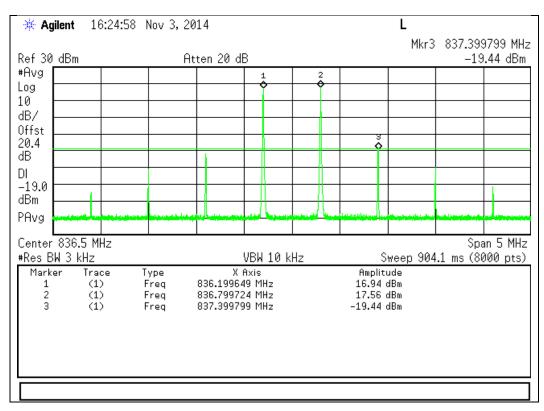

Frequency Band (MHz)	Intermodulation Level (dBm)	Limit (dBm)	Result
698 - 716 MHz	-23.64	-19	Pass
776 - 787 MHz	-20.49	-19	Pass
824 - 849 MHz	-19.44	-19	Pass
1710 - 1755 MHz	-19.16	-19	Pass
1850 - 1915 MHz	-20.46	-19	Pass

Downlink Test Results

Frequency Band (MHz)	Intermodulation Level (dBm)	Limit (dBm)	Result
728 - 746 MHz	-20.66	-19	Pass
746 - 757 MHz	-24.98	-19	Pass
869 - 894 MHz	-22.41	-19	Pass
1930 - 1995 MHz	-20.65	-19	Pass
2110 - 2155 MHz	-20.32	-19	Pass

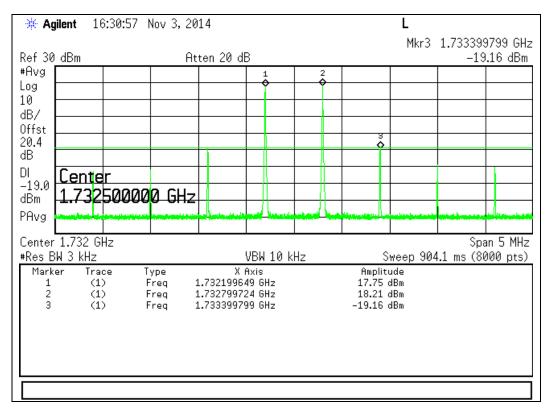


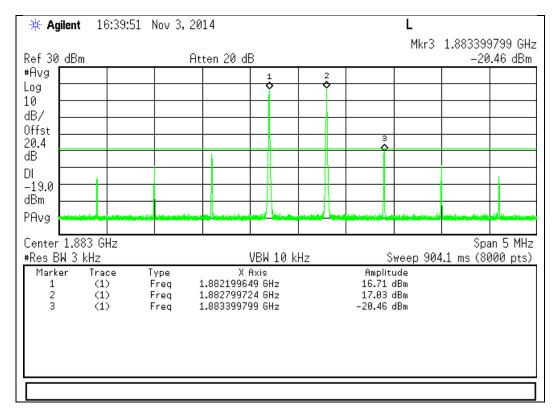
Uplink Test Results



698 - 716 MHz Band

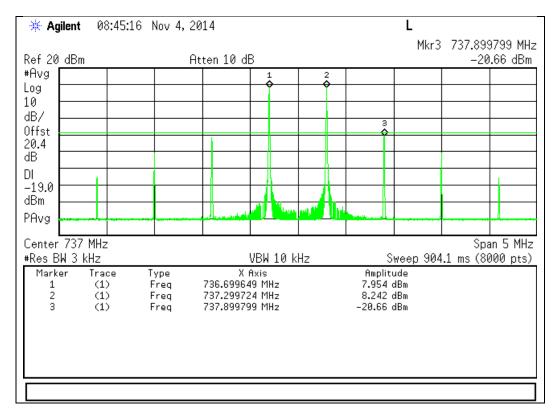
776 - 787 MHz Band

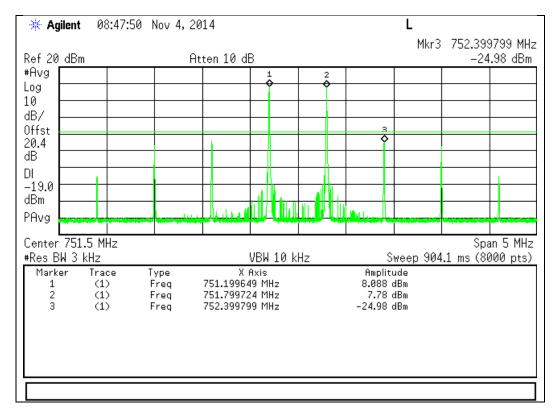




824 - 849 MHz Band

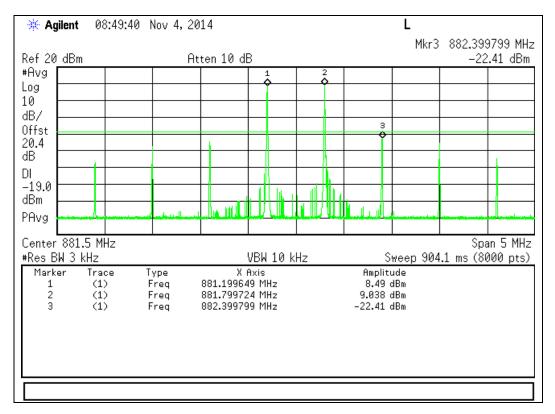
1710 - 1755 MHz Band

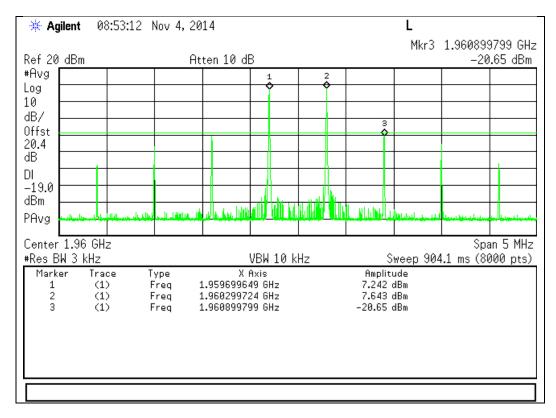



1850 - 1915 MHz Band

Downlink Test Results

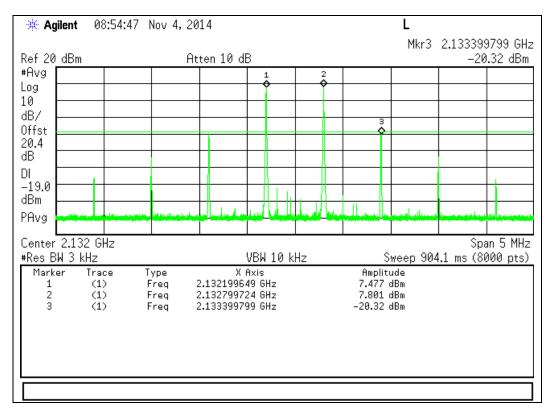
728 - 746 MHz Band





746 - 757 MHz Band

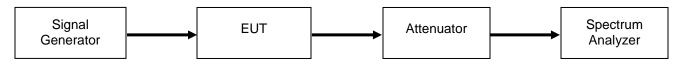
869 - 894 MHz Band



1930 - 1995 MHz Band

2110 - 2155 MHz Band

Out-of-Band Emissions Engineer: Mike Graffeo Test Date: 11/4/14


Test Procedure

The EUT was connected to a spectrum analyzer through an attenuator with the losses being input into the spectrum analyzer as a combination of reference level offset and correction factor in order to ensure accurate readings. A signal generator was utilized to produce the following signals: GSM, CDMA, and WCDMA. The signal generator was tuned to the lowest allowable lower channel and highest allowable upper channel within the EUT operational band for each respective modulation type. The RF input level was increased to a point just prior to the AGC being in control of the power. For each modulation type the Out of Band Emissions were measured to ensure they met the limits.

The following formula was used for calculating the limits:

Limit = P1 - 6 - (43+10Log(P2)) = -19dBmP1 = power in dBm P2 = power in Watts

Frequency Band (MHz)	Band Edge	Measured Level (dBm)	Limit (dBm)	Result
698 - 716	Lower	-21.15	-19	Pass
698 - 716	Upper	-23.33	-19	Pass
776 - 787	Lower	-21.07	-19	Pass
776 - 787	Upper -23.01		-19	Pass
824 - 849	Lower	-31.27	-19	Pass
824 - 849	Upper	-36.21	-19	Pass
1710 - 1755	Lower	-41.12	-19	Pass
1710 - 1755	Upper	-35.67	-19	Pass
1850 - 1915	Lower	-51.77	-19	Pass
1850 - 1915	Upper	-40.49	-19	Pass

GSM Uplink Test Results

CDMA Uplink Test Results

Frequency Band (MHz)	Band Edge	Measured Level (dBm)	Limit (dBm)	Result
698 - 716	Lower	-38.30	-19	Pass
698 - 716	Upper	-42.45	-19	Pass
776 - 787	Lower	-37.62	-19	Pass
776 - 787	Upper	-36.04	-19	Pass
824 - 849	Lower	-38.62	-19	Pass
824 - 849	Upper	-39.47	-19	Pass
1710 - 1755	Lower	-37.50	-19	Pass
1710 - 1755	Upper	-37.95	-19	Pass
1850 - 1915	Lower	-38.42	-19	Pass
1850 - 1915	Upper	-47.21	-19	Pass

Frequency Band (MHz)	Band Edge	Measured Level (dBm)	Limit (dBm)	Result
698 - 716	Lower	-45.74	-19	Pass
698 - 716	Upper	-45.59	-19	Pass
776 - 787	Lower	-41.60	-19	Pass
776 - 787	Upper	-38.89	-19	Pass
824 - 849	Lower	-39.94	-19	Pass
824 - 849	Upper	-38.17	-19	Pass
1710 - 1755	Lower	-33.25	-19	Pass
1710 - 1755	Upper	-33.76	-19	Pass
1850 - 1915	Lower	-34.53	-19	Pass
1850 - 1915	Upper	-42.32	-19	Pass

WCDMA Uplink Test Results

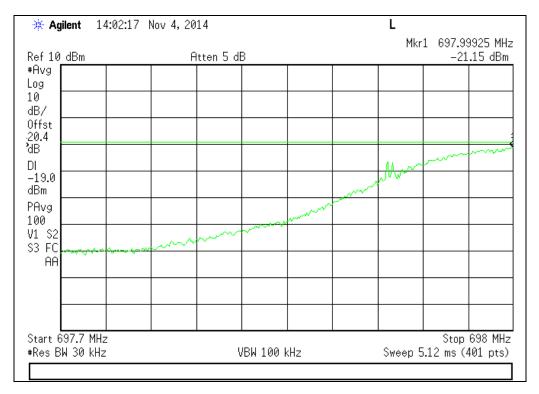
GSM Downlink Test Results

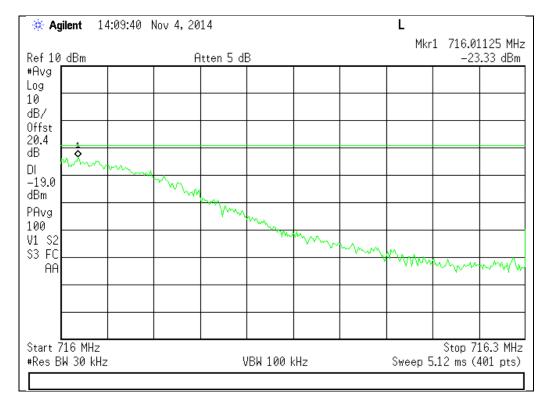
Frequency Band (MHz)	Band Edge	Measured Level (dBm)	Limit (dBm)	Result
728 - 746	Lower	-35.91	-19	Pass
728 - 746	Upper	-29.10	-19	Pass
746 - 757	Lower	-31.60	-19	Pass
746 - 757	Upper	-35.54	-19	Pass
869 - 894	Lower	-41.99	-19	Pass
869 - 894	Upper	-39.75	-19	Pass
1930 - 1995	Lower	-44.83	-19	Pass
1930 - 1995	Upper	-43.64	-19	Pass
2110 - 2155	Lower	-42.43	-19	Pass
2110 - 2155	Upper	-42.54	-19	Pass

Frequency Band (MHz)	Band Edge	Measured Level (dBm)	Limit (dBm)	Result
728 - 746	Lower	-43.42	-19	Pass
728 - 746	Upper	-39.43	-19	Pass
746 - 757	Lower	-37.77	-19	Pass
746 - 757	Upper	-47.67	-19	Pass
869 - 894	Lower	-52.62	-19	Pass
869 - 894	Upper	-43.89	-19	Pass
1930 - 1995	Lower	-49.30	-19	Pass
1930 - 1995	Upper	-48.75	-19	Pass
2110 - 2155	Lower	-44.93	-19	Pass
2110 - 2155	Upper	-45.42	-19	Pass

CDMA Downlink Test Results

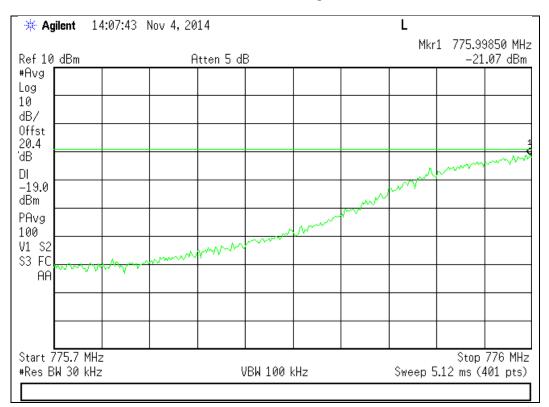
WCDMA Downlink Test Results

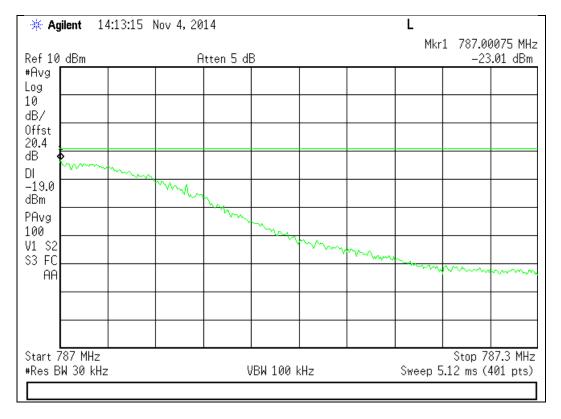

Frequency Band (MHz)	Band Edge	Measured Level (dBm)	Limit (dBm)	Result
728 - 746	Lower	-37.91	-19	Pass
728 - 746	Upper	-33.51	-19	Pass
746 - 757	Lower	-43.55	-19	Pass
746 - 757	Upper	Upper -49.66 -19		Pass
869 - 894	Lower	-48.28	-19	Pass
869 - 894	Upper	-43.35	-19	Pass
1930 - 1995	Lower	-43.74	-19	Pass
1930 - 1995	Upper	-41.98	-19	Pass
2110 - 2155	Lower	-39.27	-19	Pass
2110 - 2155	Upper	-39.65	-19	Pass



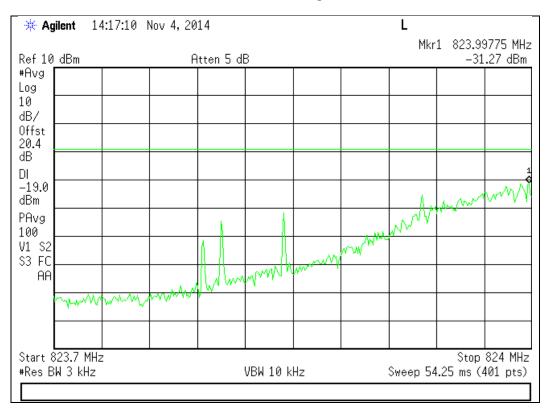
GSM Uplink Test Plots

698 - 716 MHz Band

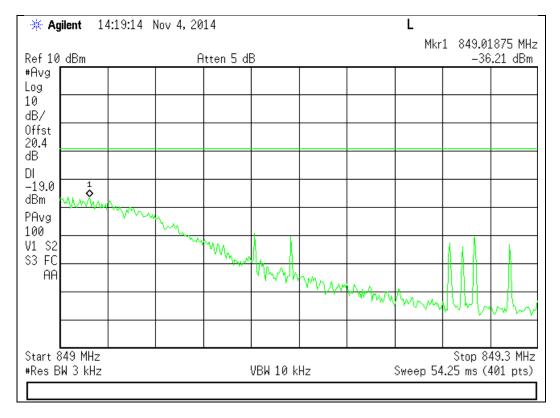

Lower Band Edge



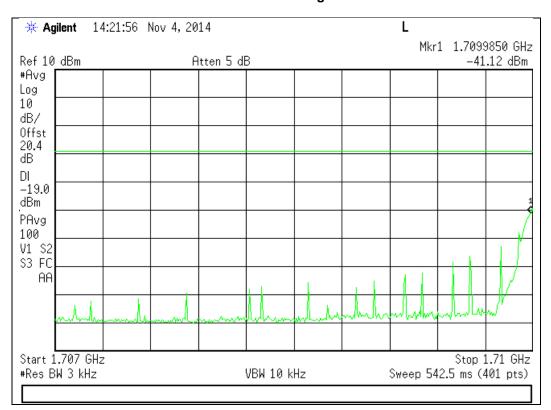
776 - 787 MHz Band


Lower Band Edge

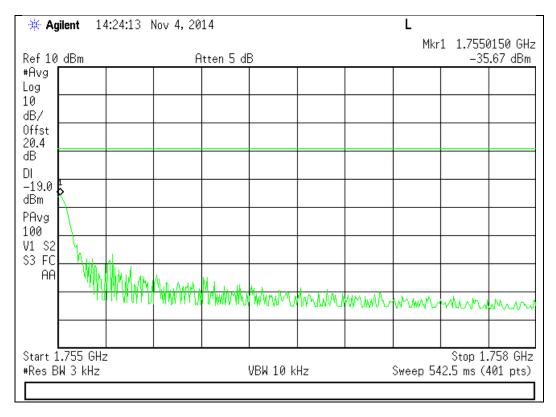
Upper Band Edge



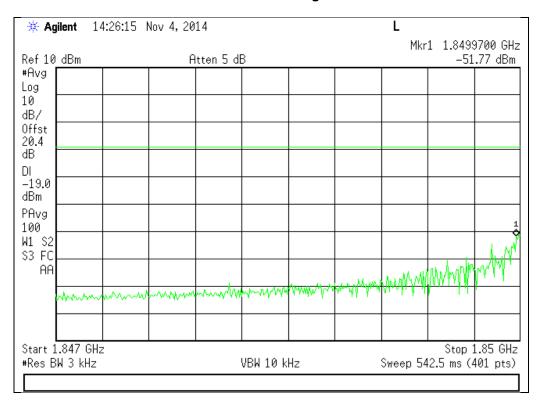
824 - 849 MHz Band


Lower Band Edge

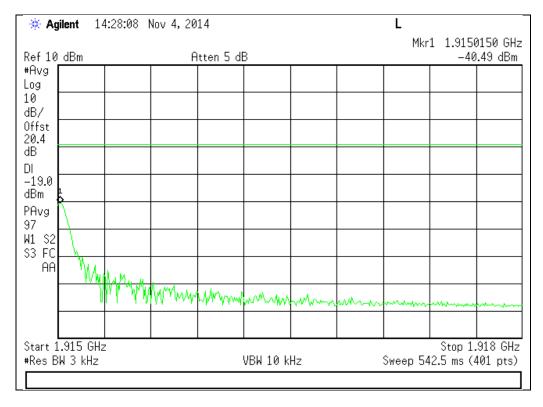
Upper Band Edge



1710 - 1755 MHz Band

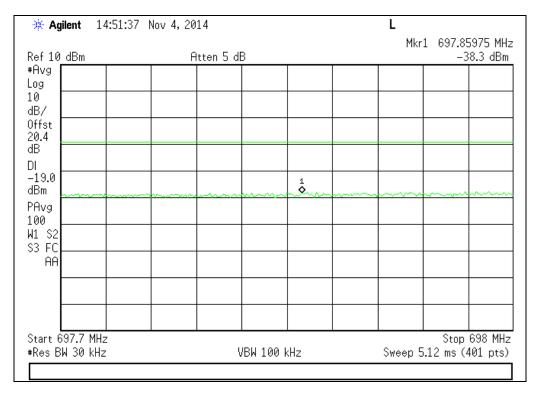

Lower Band Edge

Upper Band Edge



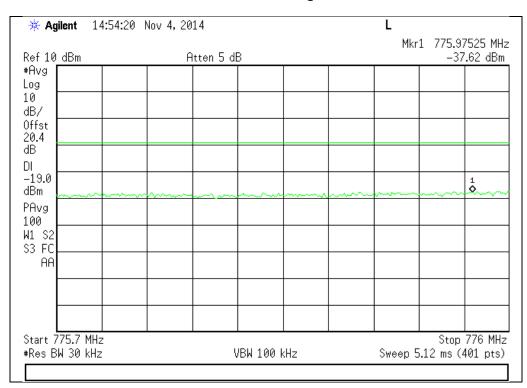
1850 - 1915 MHz Band

Lower Band Edge



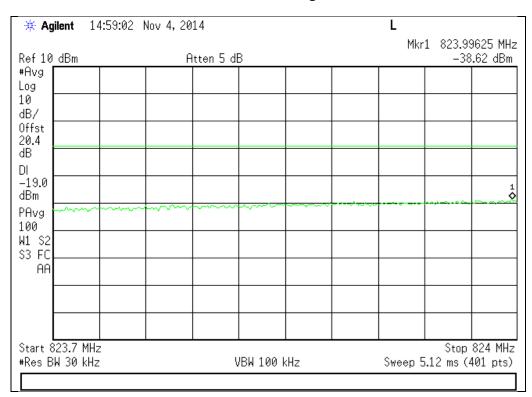
CDMA Uplink Test Plots

698 - 716 MHz Band


Lower Band Edge

₩ Agilent 14:52:52 Nov 4, 2	014		L	
	Atten 5 dB		Mkr1	716.11025 MHz -42.45 dBm
#Avg Log				
10 dB/				
Offst 20.4				
dB				
DI -19.0 dBm				
PAvg	1 ••••••••••••••••••••••••••••••••••••	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
100 W1 S2				
S3 FC				
Start 716 MHz				Stop 716.3 MHz
#Res BW 30 kHz	VBW 100 kHz	2	Sweep 5.1	.2 ms (401 pts)

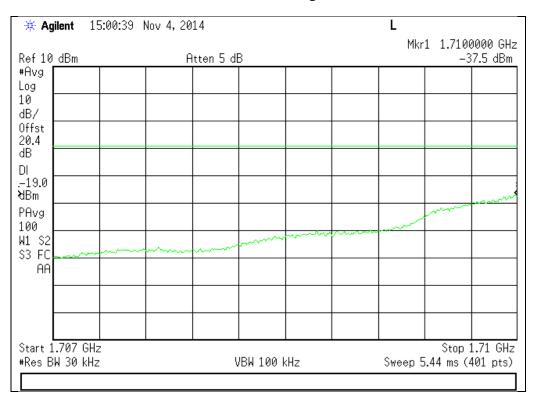
776 - 787 MHz Band



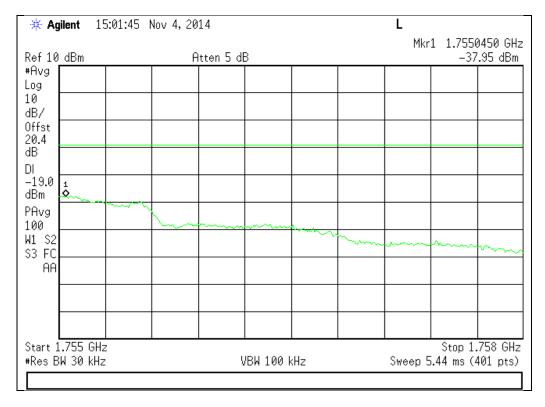
Lower Band Edge

🔆 Agilent	14:55:16	lov 4, 2014				L	1 707 00	
Ref 10_dBm		Atten 5 (dB			Mkr)150 MHz .04 dBm
#Avg Log								
10 dB/								
Offst								
20.4								
DI								
dBm K~~~~					~~~~	·····	······	~~~~
PAvg 100								
W1 S2								
S3 FC								
							Star 74	7.2 MIL-
Start 787 MH #Res BW 30			VBW 100 H	кНz		Sweep 5	Stop /≀ 12 ms (4	37.3 MHz 401 pts)

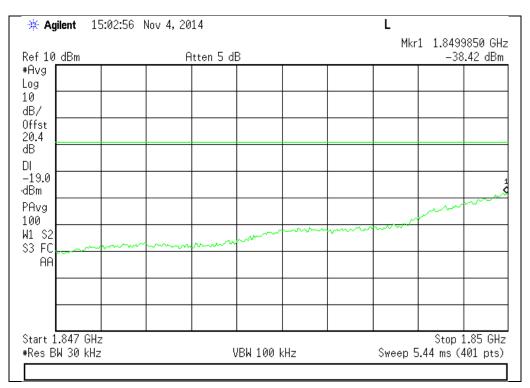
824 - 849 MHz Band



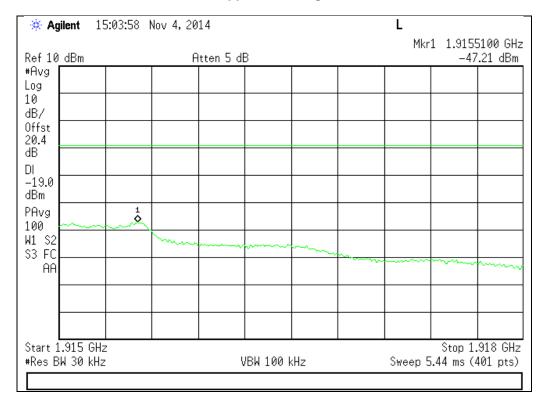
Lower Band Edge


🔆 Ag	₩ Agilent 14:57:56 Nov 4, 2014							L	1 0/0 0	0450 MHz
Ref 10	dBm		A	tten 5 di	В			PIKI		1.47 dBm
#Avg Log										
10										
dB/ Offst										
20.4 dB										
DI										
-19.0 dBm	1 ◊									
PAvg	×	(~~~~~	~~~~~	~~~~~			
100 W1 S2										
S3 FC										
AA										
Start 8			1				I			49.3 MHz
#Res B	W 30 k	:Hz		(/BW 100 H	(Hz		Sweep 5	5.12 ms (4	401 pts)

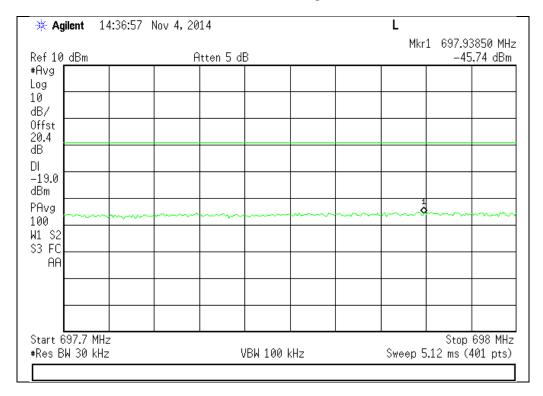
1710 - 1755 MHz Band



Lower Band Edge

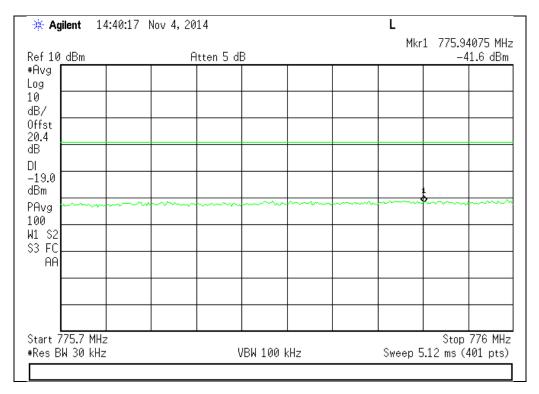


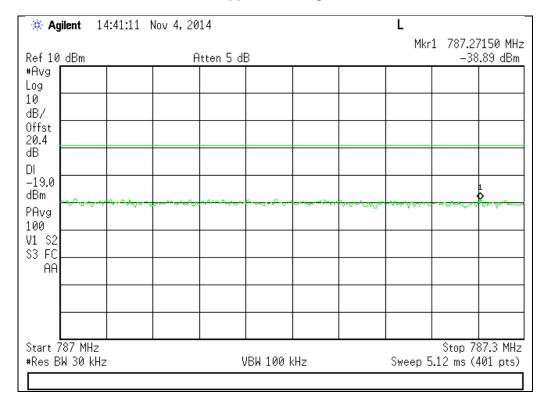
1850 - 1915 MHz Band



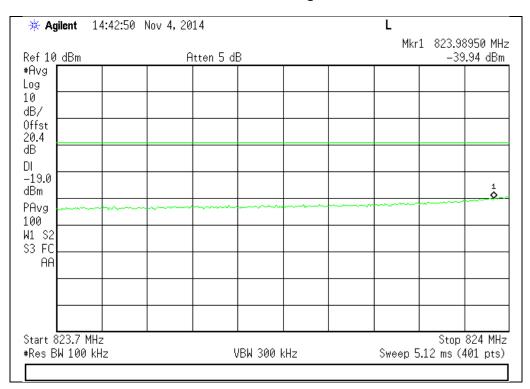
Lower Band Edge

WCDMA Uplink Test Plots 698 - 716 MHz Band Lower Band Edge

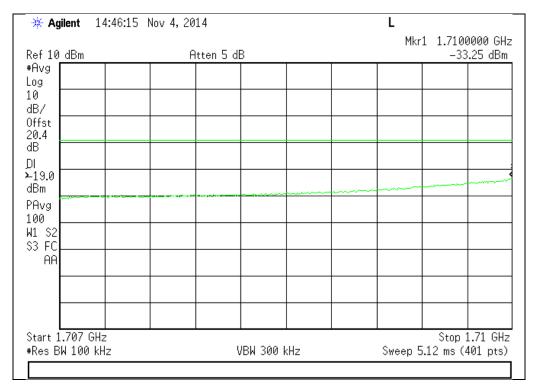



i∰ Ag		4:38:38 1	Nov 4, 20					L Mkr		5900 MHz
Ref 10	dBm		A	tten 5 di	3				-45	59 dBm
#Avg										
Log										
10										
dB/										
Offst 20.4										
20.4 dB										
DI										
-19.0										
dBm										
PAvg										
100										
W1 S2										
S3 FC										
AA										
	716 MHz								Stop 73	16.3 MHz
#Res B	#Res BW 30 kHz VBW 100 kHz Sweep 5.12 ms (401 pts)									

776 - 787 MHz Band

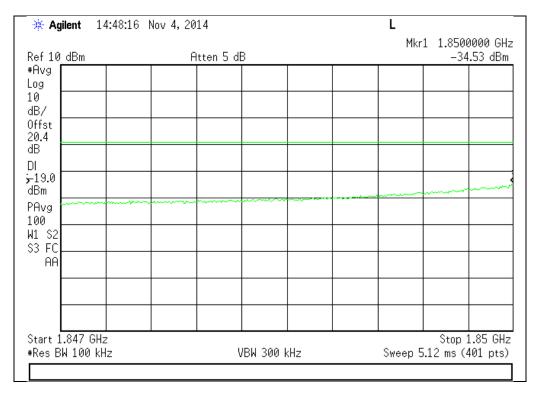

Lower Band Edge

824 - 849 MHz Band

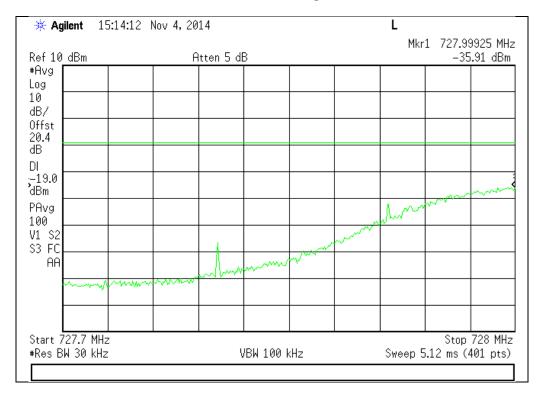

Lower Band Edge

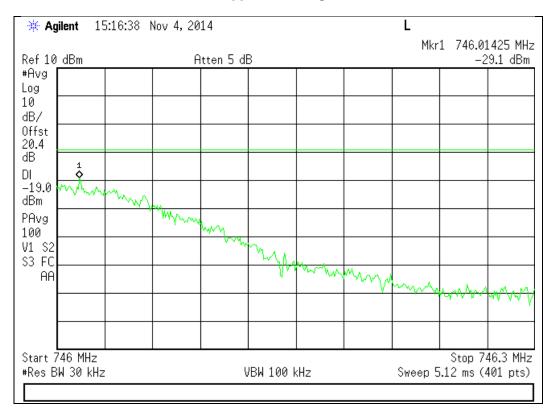
₩ Agilent 14:44:14 N	Nov 4, 2014		L	
Ref 10_dBm	Atten 5 dB		Mkrl 84	9.00000 MHz -38.17 dBm
#Avg Log				
10 dB/				
Offst 20.4				
dB DI				
-19.0 dBm •				
PAvg				
100 W1 S2				
S3 FC				
Start 849 MHz			0+2	p 849.3 MHz
#Res BW 100 kHz	VBW 300 H	(Hz	Sweep 5.12 m	

1710 - 1755 MHz Band

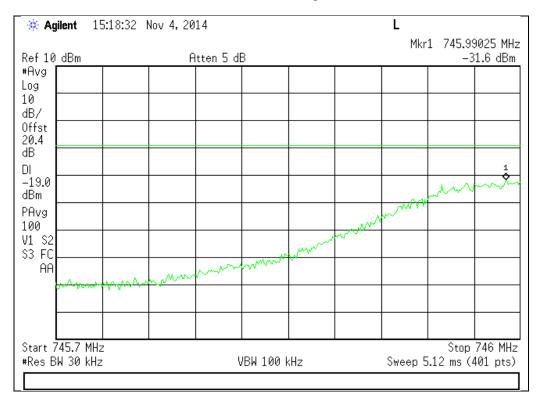

Lower Band Edge

🔆 Agilent 14:47:05	Nov 4, 2014	L
Ref 10 dBm	Atten 5 dB	Mkr1 1.7550000 GHz –33.76 dBm
#Avg Log		
10 dB/		
Offst 20.4		
dB		
DI -19.0		
dBm PAvg		
100 W1 S2		
\$3 FC		
AA		
Start 1.755 GHz #Res BW 100 kHz	VBW 300 kHz	Stop 1.758 GHz z Sweep 5.12 ms (401 pts)

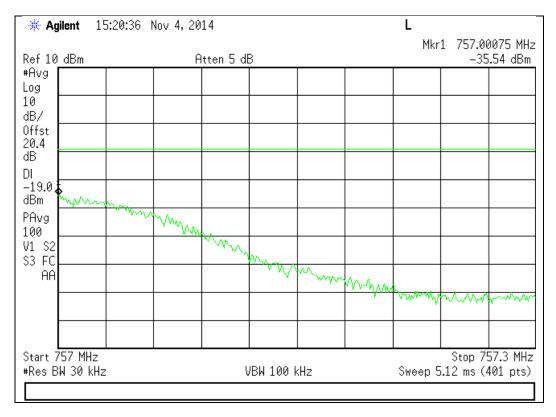

Lower Band Edge


🔆 🔆 Agilent 14:49:03 Nov	4,2014		L	-
Ref 10_dBm	Atten 5 dB		Mkr1	1.9150300 GHz -42.32 dBm
#Avg Log				
10 dB/				
Offst 20.4				
dB DI				
-19.0				
PAvg 100				
W1 S2		·····	**************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
S3 FC				
Start 1.915 GHz #Res BW 100 kHz	VBW 300 1	r r	Sweep 5.	Stop 1.918 GHz 12 ms (401 pts)

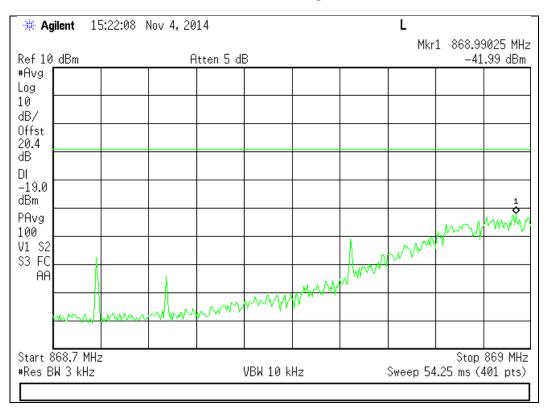
GSM Downlink Test Plots 728 - 746 MHz Band Lower Band Edge



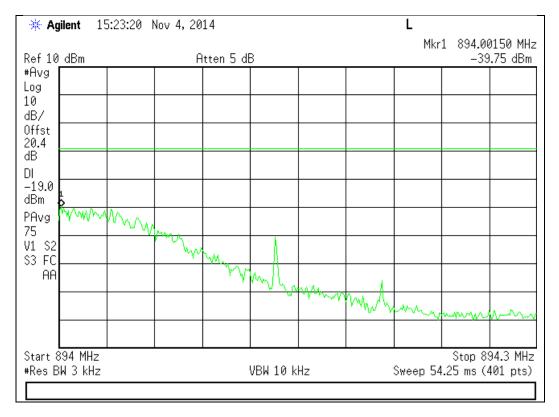
Upper Band Edge



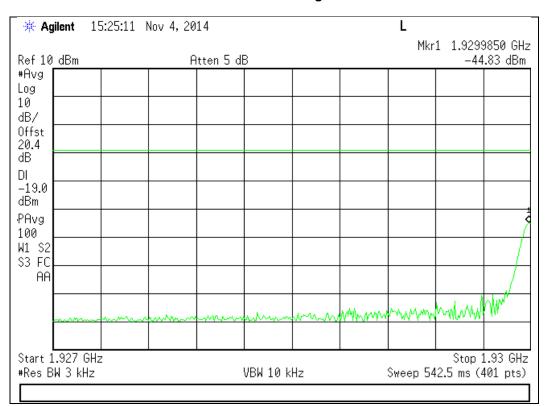
746 - 757 MHz Band


Lower Band Edge

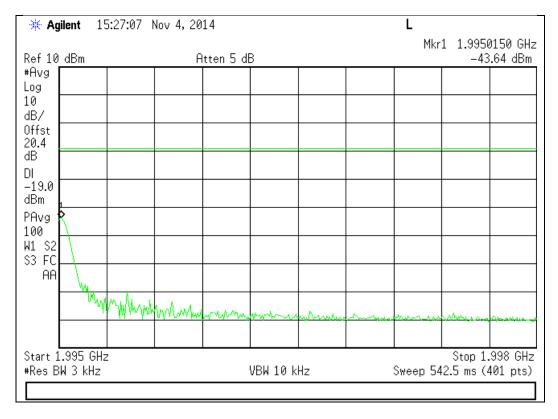
Upper Band Edge



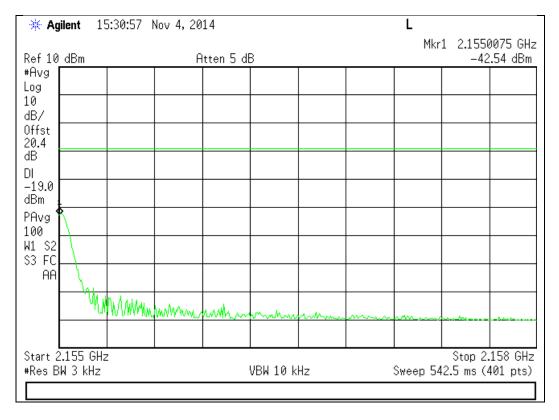
869 - 894 MHz Band



Lower Band Edge

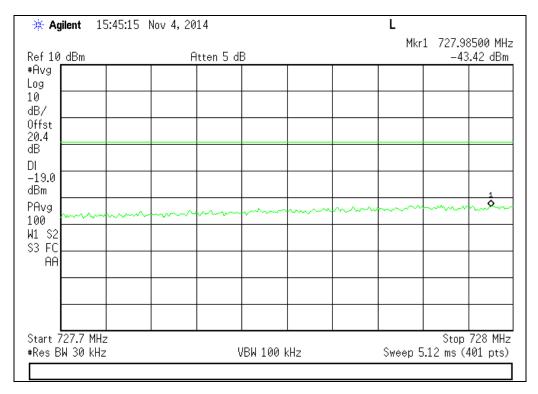

Upper Band Edge

Lower Band Edge



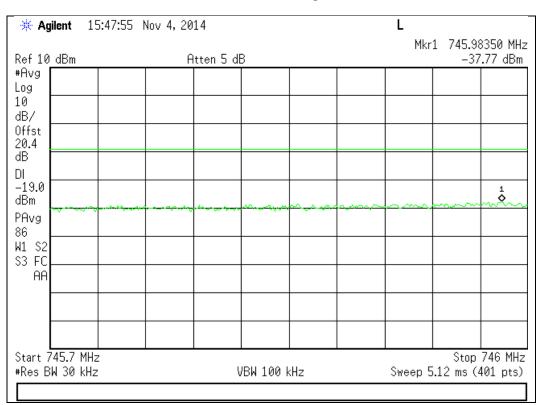
2110 - 2155 MHz Band

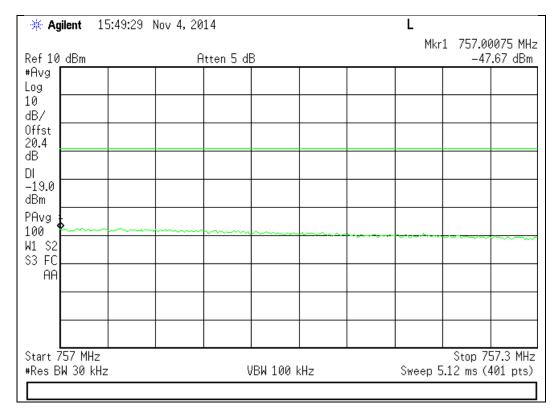
Lower Band Edge



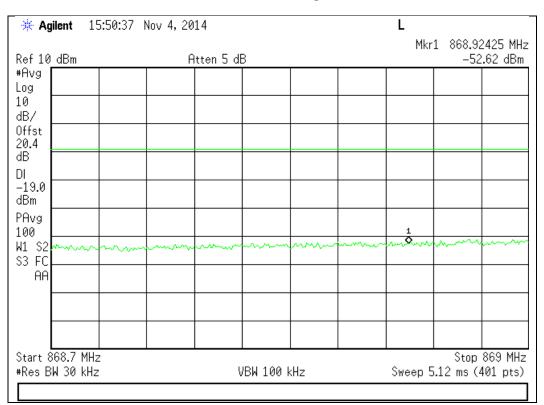
CDMA Downlink Test Plots

728 - 746 MHz Band

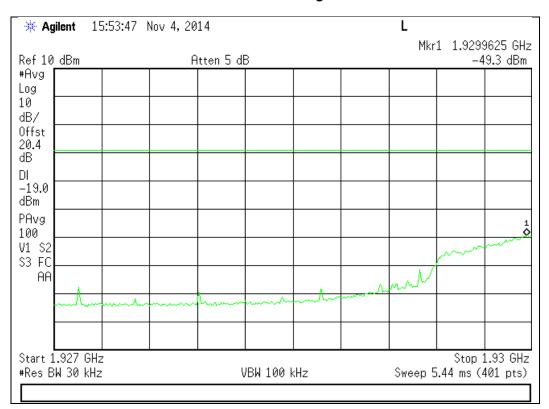

Lower Band Edge

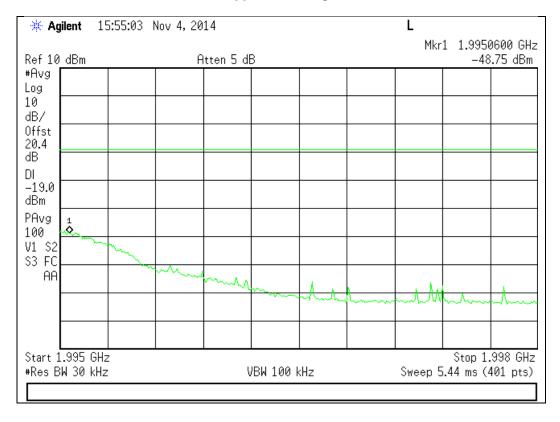

★ Agilent 15:46:55 N	ov 4, 2014	L Mkr1 746.24300 Mł			
Ref 10 dBm	Atten 5 dB		1 11/1 1	-39.43 dE	
#Avg					
Log 10					
dB/					
Offst					
20.4					
dB DI					
-19.0					
dBm	·····	······		1 2	un.
PAvg					
100					
W1 S2 S3 FC					
AA					
Start 746 MHz #Res BW 30 kHz	VBW 100 k	:Hz	Sweep 5.	Stop 746.3 M 12 ms (401 pt	

746 - 757 MHz Band

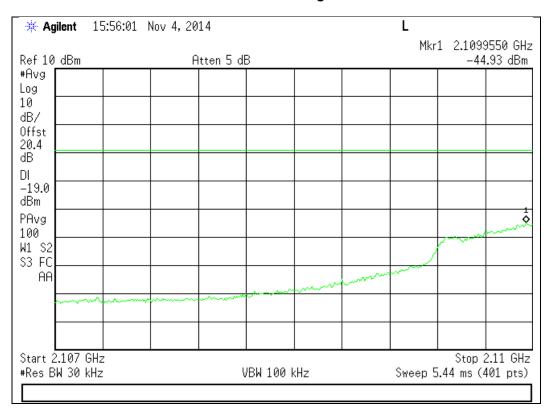


Lower Band Edge

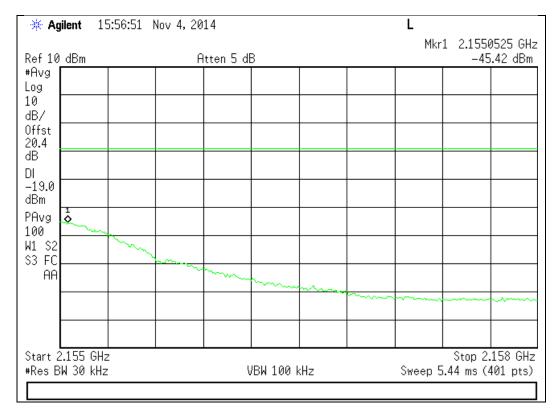

869 - 894 MHz Band


Lower Band Edge

🔆 🔆 Ag	✤ Agilent 15:51:36 Nov 4, 201							L	1 0010	
Ref 10	dBm		At	tten 5 d	В	-		Mkr		3825 MHz 3.89 dBm
#Avg Log										
10 dB/										
0ffst 20.4										
dB										
DI -19.0										
dBm PAvg										
100										
W1 S2 S3 FC										
AA										
	394 MHz W 30 kH	 z		(/BW 100	<hz< td=""><td></td><td>Sweep 5</td><td>Stop 8 5.12 ms (</td><td>94.3 MHz 401 pts)</td></hz<>		Sweep 5	Stop 8 5.12 ms (94.3 MHz 401 pts)
										• •

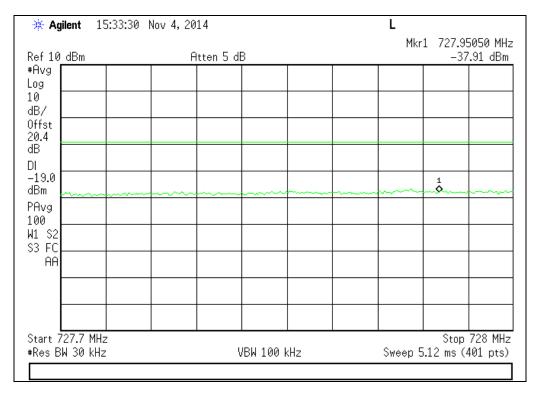


Lower Band Edge



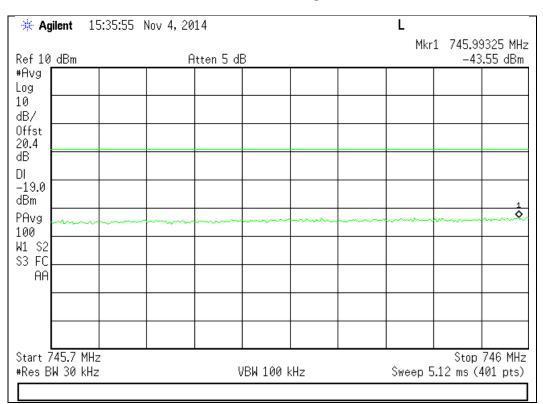
2110 - 2155 MHz Band

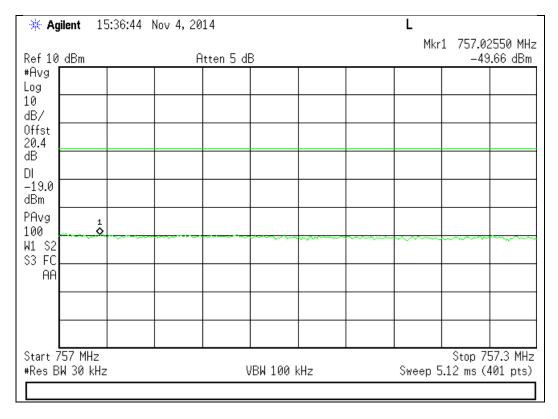
Lower Band Edge



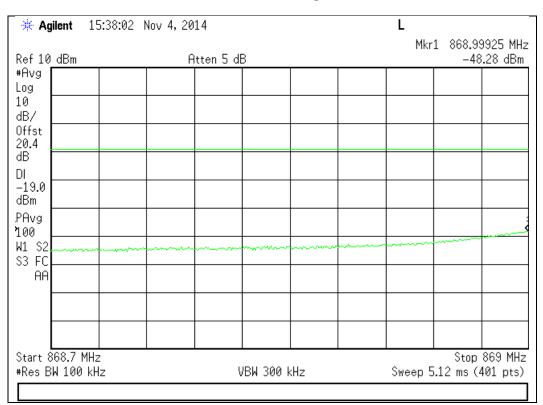
WCDMA Downlink Test Plots

728 - 746 MHz Band

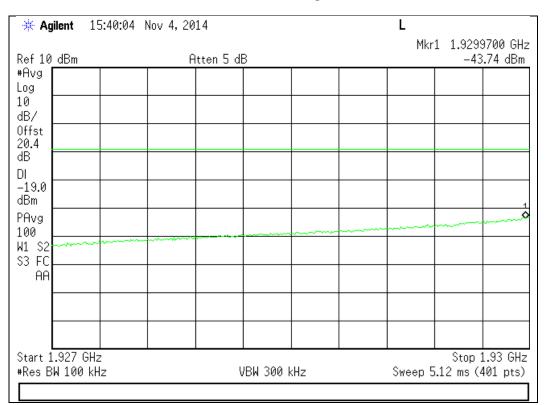

Lower Band Edge

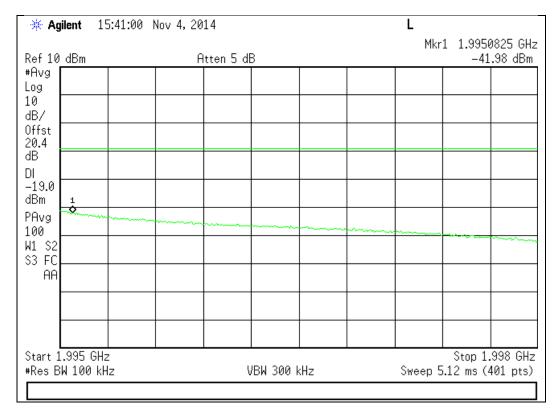

🔆 Agilent 15:	34:26 Nov 4, 2014		L
Ref 10_dBm	Atten 5 dB		Mkr1 746.09675 MHz -33.51 dBm
#Avg Log			
10 dB/			
0ffst 20.4			
dB DI	1		
-19.0 dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~
PAvg 100			
W1 S2 S3 FC			
AA			
Start 746 MHz #Res BW 30 kHz	VB	3W 100 kHz	Stop 746.3 MHz Sweep 5.12 ms (401 pts)

746 - 757 MHz Band

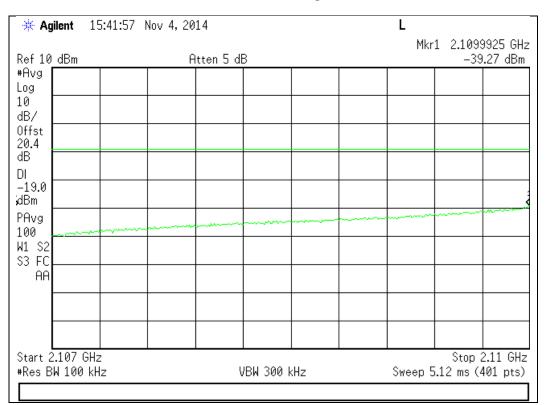


Lower Band Edge

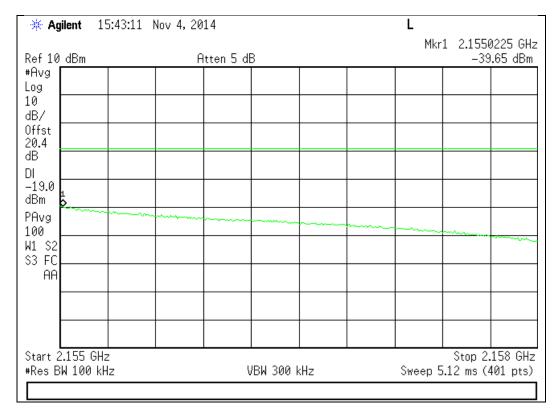

869 - 894 MHz Band


Lower Band Edge

🔆 Agilent	15:38:58 N	√ov 4, 2014				L Mkr1 894.00675 MHz		
Ref 10 dBm		Atten 5	dB			LINI		3.35 dBm
#Avg								
Log 10								
dB/								
Offst 20.4								
dB			_					
-19.0 dBm ₁								
PAvg &	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
100								
W1 S2 S3 FC								
AA								
Start 894 M	Hz			1		1	Stop 8	94.3 MHz
#Res BW 10			VBW 300	kHz		Sweep 5	5.12 ms (



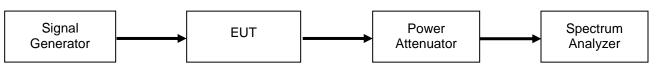
Lower Band Edge



2110 - 2155 MHz Band

Lower Band Edge

Conducted Spurious Emissions Engineer: Mike Graffeo Test Date: 11/4/14


Test Procedure

The EUT was connected to a spectrum analyzer through an attenuator, with the losses being input into the spectrum analyzer as a combination of reference level offset and correction factor as needed to ensure accurate readings. A signal generator was utilized to produce a 4.1 MHz AWGN signal operating at the maximum allowable power. The conducted spurious emissions from 9 kHz to 10 times the highest tunable frequency for each operational band were measured (excluding the band defined by the Out of band emissions test). The emissions were plotted and the highest level was recorded in the summary table.

The following formulas are used for calculating the limits.

Conducted Spurious Emissions Limit = P1 - (43 + 10Log(P2)) = -13 dBmP1 = power in dBm P2 = power in Watts

Test Setup

Uplink Test Results

Frequency Band (MHz)	Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
698 - 716	716.10	-29.92	-13	Pass
776 - 787	787.10	-13.83	-13	Pass
824 - 849	2993.4	-38.56	-13	Pass
1710 - 1755	2999.4	-39.98	-13	Pass
1850 - 1915	1721.4	-40.11	-13	Pass

Downlink Test Results

Frequency Band (MHz)	Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
728 - 746	746.10	-36.67	-13	Pass
746 - 757	757.10	-26.95	-13	Pass
869 - 894	2991.9	-38.99	-13	Pass
1930 - 1995	8030.3	-41.02	-13	Pass
2110 - 2155	21937.7	-40.74	-13	Pass

For the 746 – 758 downlink and 776 – 788 Uplink bands of operation, the following additional spurious emissions requirements apply.

FCC 27.53(c)

For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;

The test is performed using a 10 kHz RBW. Since the limit is referenced to a 6.25 kHz BW, the following correction factor is applied to the measured data.

BW correction Factor = 10Log B1/B2 BW correction Factor =10Log 6.25 / 10 = - 2.0 dB

Final Value (dBm) = conducted measurement +BW correction factor

776 – 787 MHz Uplink Band

Spurious Frequency Range (MHz)	Measured Frequency (MHz)	Measured Value (dBm)	Bandwidth Correction Factor (dB)	Final Value (dBm)	Limit (dBm)	Margin (dB)
763 – 775	774.57	-52.04	-2.0	-54.08	-35	-19.08
793 – 805	793.09	-65.14	-2.0	-67.18	-35	-32.18

746 - 757 MHz Downlink Band

Spurious Frequency Range (MHz)	Measured Frequency (MHz)	Measured Value (dBm)	Bandwidth Correction Factor (dB)	Final Value (dBm)	Limit (dBm)	Margin (dB)
763 – 775	765.07	-85.74	-2.0	-87.78	-35	-52.78
793 – 805	800.39	-85.83	-2.0	-87.87	-35	-52.87

FCC 27.53(f)

For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

Since the limit is referenced to EIRP, the final data is computed using the Conducted Spurious Emission data and adding the BW correction factor plus the final gain/loss data from the antenna kitting information supplied by the manufacturer.

For the Narrowband measurement, the test is performed using a 10 kHz RBW. Since the limit is referenced to a 700 Hz BW, the following correction factor is applied to the measured data.

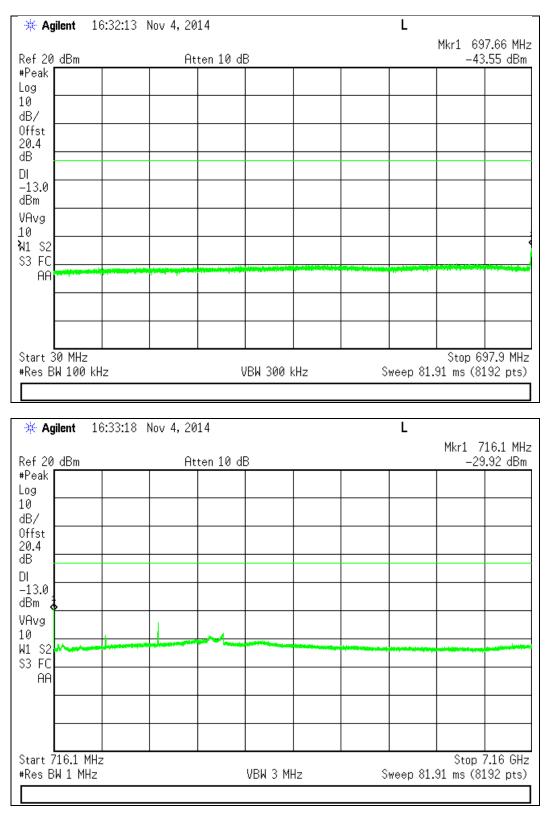
BW correction Factor = 10Log B1/B2 BW correction Factor =10Log 700 / 10000 = -11.55 dB

Final Value (dBm) = conducted measurement +BW correction factor + final gain/loss from Antenna Kitting document

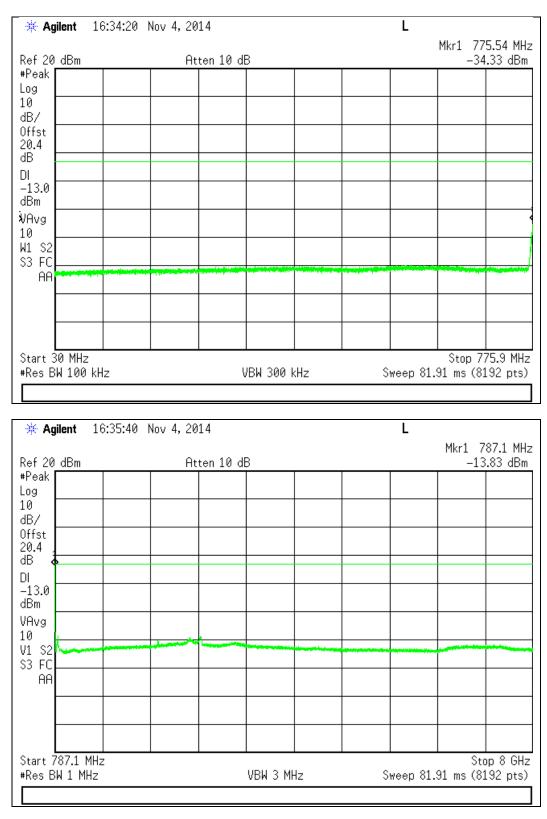
The Limit for discreet (narrowband) emissions is -80dBW (-50 dBm) in 700 MHz BW. The Limit for (wideband Emissions) is -70 dBW (-40 dBm) in a 1 MHz BW.

Spurious Frequency Range (MHz)	Measured Frequency (MHz)	Measured Value (dBm)	Bandwidth Correction Factor (dB)	Gain/Loss from Antenna Kitting Information (dB)	Final Value (dBm)	Limit (dBm)	Margin (dB)
1559 – 1610 (Wideband)	1562.7	-45.44	0	0	-45.44	-40	-5.44
1559 – 1610 (Narrowband)	1563.2	-73.19	-11.55	0	-84.74	-50	-34.74

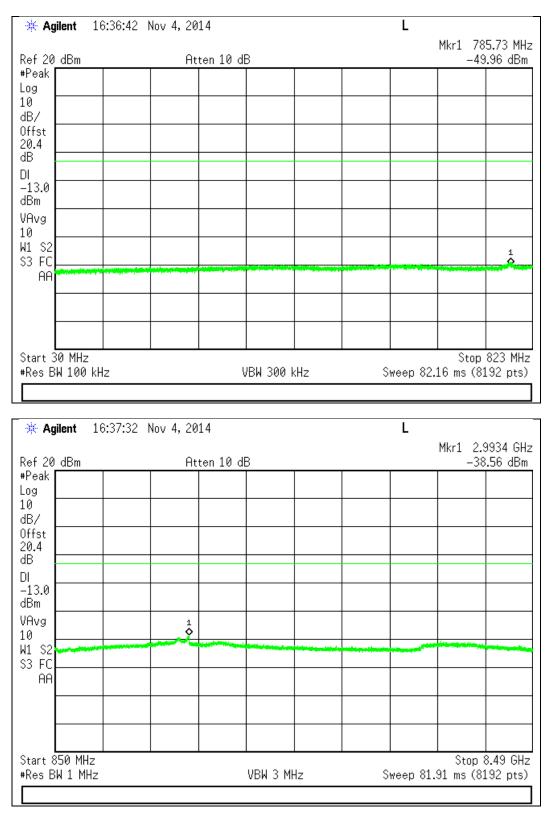
776 – 787 MHz Uplink Band

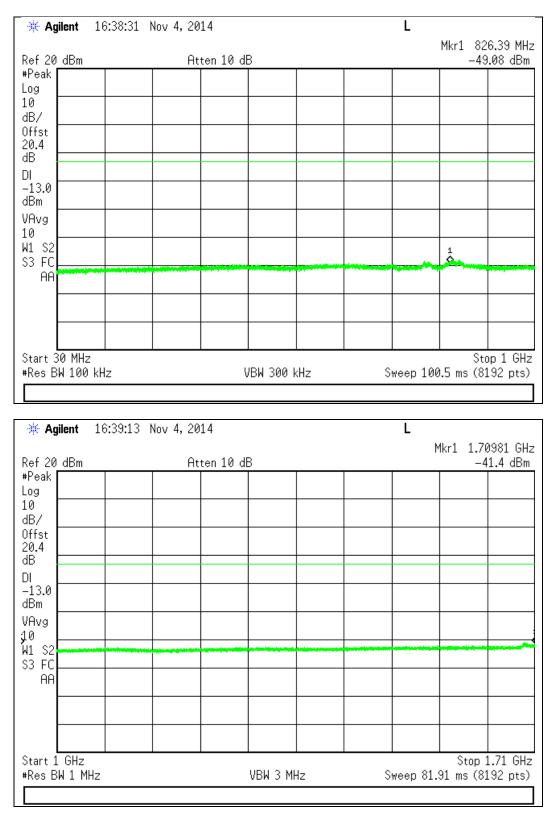

746 - 757 MHz Downlink Band

Spurious Frequency Range (MHz)	Measured Frequency (MHz)	Measured Value (dBm)	Bandwidth Correction Factor (dB)	Gain/Loss from Antenna Kitting information (dB)	Final Value (dBm)	Limit (dBm)	Margin (dB)
1559 – 1610 (Wideband)	1604.1	-58.83	0	10.00	-48.83	-40	-8.83
1559 – 1610 (Narrowband)	1595.2	-81.91	-11.55	10.00	-83.46	-50	-33.46



Uplink Test Plots



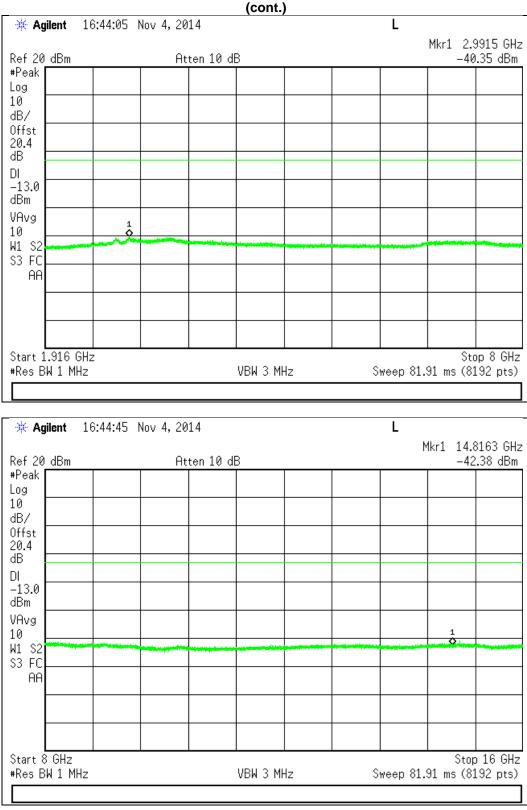

776 - 787 MHz Band

824 - 849 MHz Band

^{1710 - 1755} MHz Band

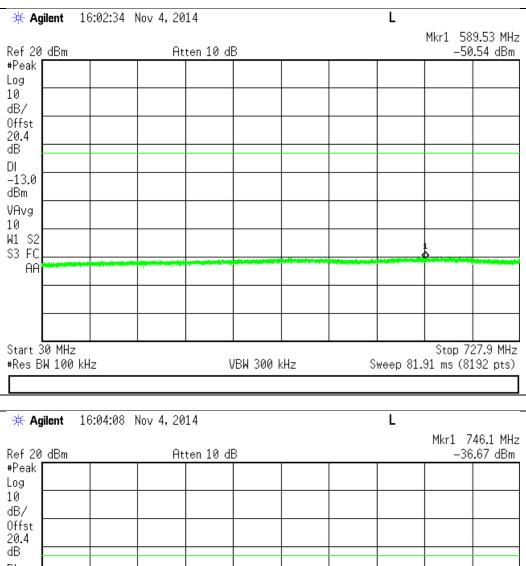
1710 - 1755 MHz Band (cont)

Agilent 16:39	9:53 Nov 4, 2014			L	MLr1 2	.9994 GHz
⊧f 20 dBm	Atten 10) dB				9.98 dBm
'eak						
g						
3/						
).4						
3						
13.0 3m						
lvg						+
)						
. S2		*****				-
FC						+
AA						
es BW 1 MHz		VBW 3 MHz	2	weep 81.	.01 113 (0	•
	0:25 Nov 4, 2014	VBW 3 MHz		L		
∦ Agilent 16:40 ∋f 20 dBm	0:25 Nov 4, 2014 Atten 10				Mkr1 8.	0068 GH:
<mark>∲Agilent</mark> 16:40 ef20dBm 'eak 					Mkr1 8.	0068 GH:
<mark>∲Agilent</mark> 16:40 ∍f20dBm 'eak					Mkr1 8.	0068 GH:
Agilent 16:40 9f 20 dBm 9 9 9					Mkr1 8.	0068 GH:
★ Agilent 16:40 F 20 dBm Peak 9 3/					Mkr1 8.	.0068 GH
Agilent 16:40 ef 20 dBm eak g 3/ fst 0.4					Mkr1 8.	0068 GH:
Agilent 16:40					Mkr1 8.	0068 GH:
Agilent 16:40					Mkr1 8.	.0068 GH
Agilent 16:40					Mkr1 8.	0068 GH:
Agilent 16:40					Mkr1 8.	0068 GH:
Agilent 16:40					Mkr1 8.	0068 GH:
Agilent 16:40					Mkr1 8.	0068 GH:
Agilent 16:40					Mkr1 8.	0068 GH: 1.05 dBm
Agilent 16:40					Mkr1 8.	0068 GH:
Agilent 16:40					Mkr1 8.	0068 GH:
Agilent 16:40					Mkr1 8.	.0068 GH
Agilent 16:40					Mkr1 8. 4	0068 GH



				(cont)					
🔆 Agilent	16:41:06	Nov 4, 2014	1				L	11 .01	0007 01-
Ref 20 dBm		Atte	n 10 dB				٣		.9927 GHz 0.56 dBm
#Peak Log									
10									
dB/ Offst									
20.4 dB									
DI									
-13.0 dBm									
VAvg	-								
10									
W1 S2 S3 FC									
AA									
Share 10 CU-								<u> </u>	
Start 16 GHz #Res BW 1 MH	z		ļ	VBW 3 MH	łz	S	weep 81.		p 22 GHz 3192 pts)

Agilent 16:42:1	L7 Nov 4, 2014			L	Mkr1	835.75
20 dBm	Atten 10) dB				-48.31 d
ak 🛛 👘						
/						
st						
4						
3.0						
n						
/g						
S2					1	
FC						
AA						
					_	
rt 30 MHz s BW 100 kHz		VBW 300 kł	Hz	Sweep	100.5 ms	(0192 h
∍s BW 100 kHz	08 Nov 4, 2014	VBW 300 ki	Hz	Sweep		
•s BW 100 kHz • Agilent 16:43:0	08 Nov 4, 2014 Atten 10		Hz		Mkr1	1.72141 -40.11 d
s BW 100 kHz → Agilent 16:43:0 ÷ 20 dBm ≈ak			Hz		Mkr1	1.72141
Agilent 16:43:6 20 dBm			Hz		Mkr1	1.72141
•s BW 100 kHz • Agilent 16:43:0 • 20 dBm • ak			Hz		Mkr1	1.72141
•s BW 100 kHz • Agilent 16:43:0 • 20 dBm • ak			Hz		Mkr1	1.72141
•s BW 100 kHz • Agilent 16:43:0 • 20 dBm • ak			Hz		Mkr1	1.72141
BW 100 kHz Agilent 16:43:0 dBm ak st 4					Mkr1	1.72141
Agilent 16:43:0			Hz		Mkr1	1.72141
SBW 100 kHz Agilent 16:43:0 20 dBm sak / 3.0					Mkr1	1.72141 -40.11 d
SBW 100 kHz Agilent 16:43:0 20 dBm sak / 3.0 n /g					Mkr1	1.72141 -40.11 d
S BW 100 kHz Agilent 16:43:0 Agilent 16:43:0 St					Mkr1	1.72141 -40.11 d
Agilent 16:43:0 Agilent 16:43:0 Agilent 16:43:0 Compared by the set of the					Mkr1	1.72141 -40.11 d
S BW 100 kHz Agilent 16:43:0 Agilent 16:43:0 St			Hz		Mkr1	1.72141 -40.11 d
Agilent 16:43:0 Agilent 16:43:0 Agilent 16:43:0 Compared by the set of the					Mkr1	1.72141 -40.11 d
Agilent 16:43:0 Agilent 16:43:0 Agilent 16:43:0 Compared by the set of the					Mkr1	1.72141 -40.11 d
Agilent 16:43:0 Agilent 16:43:0 Agilen			Hz		Mkr1	1.72141 -40.11 d
Agilent 16:43:0 Agilent 16:43:0 Agilent 16:43:0 Compared by the set of the				L	Mkr1	1.72141 -40.11 d



			(cont.)					
🔆 Agilent	16:45:25	Nov 4, 2014				L		
Ref 20 dBm		Atten 10	dB			١		9905 GHz 0.77 dBm
#Peak							-4,	
Log								
10 dB/								
Offst								
20.4 dB								
-13.0								
dBm								
VAvg 10								
W1 S2		·				-		
S3 FC								
Start 16 GH #Res BW 1 N			VBW 3 MH	17	S	ween 81		p 22 GHz 192 pts)
			100 0 10		· · ·		• <u> </u>	102 (0.0)

Downlink Test Plots

728 - 746 MHz Band

 Agilent
 16:04:08
 Nov 4, 2014
 L

 Mkr1 746.1 MHz

 Agilent 16:04:08
 Nov 4, 2014

 Mkr1 746.1 MHz

 Peak

 Wkr1 746.1 MHz

 Peak

 Offst

 Log
 Image: Colspan="2">Image: Colspan="2">Mkr1 746.1 MHz

 Peak

 Uog
 Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Mkr1 746.1 MHz

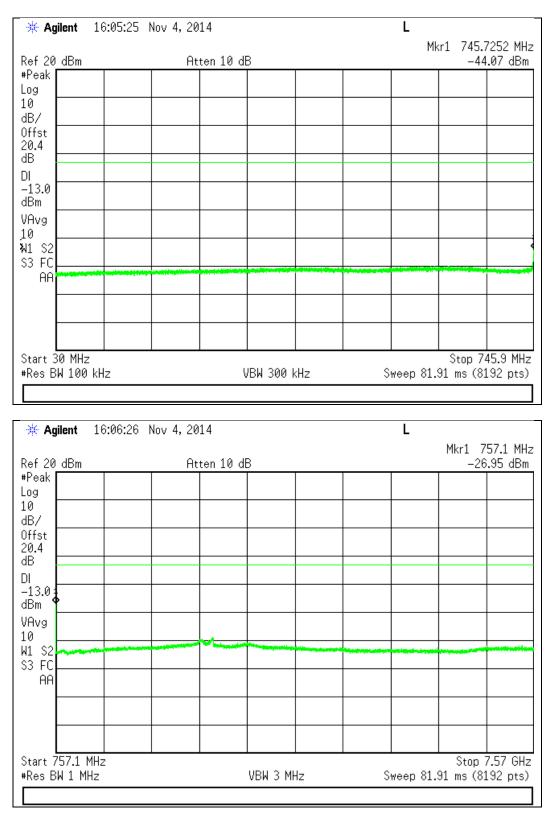
 Peak

 Uog
 Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Mkr1 746.1 MHz

 Peak

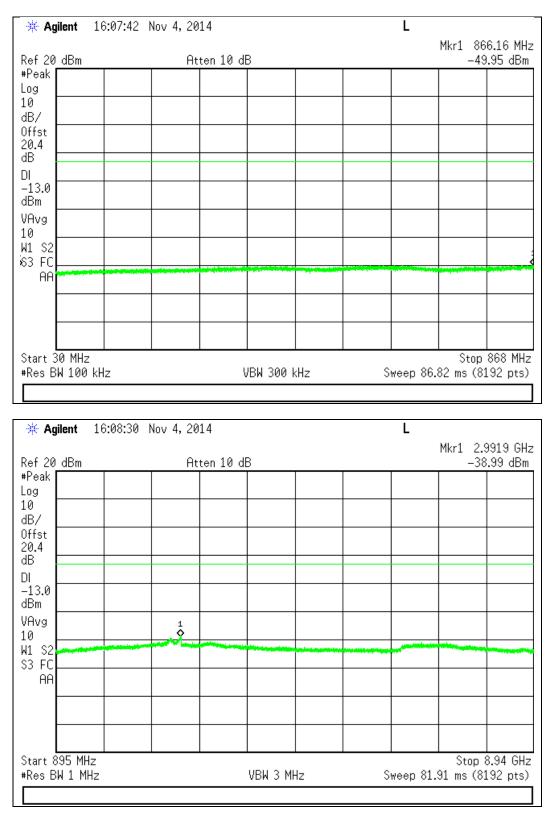
 Uof
 Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Mkr1 746.1 MHz

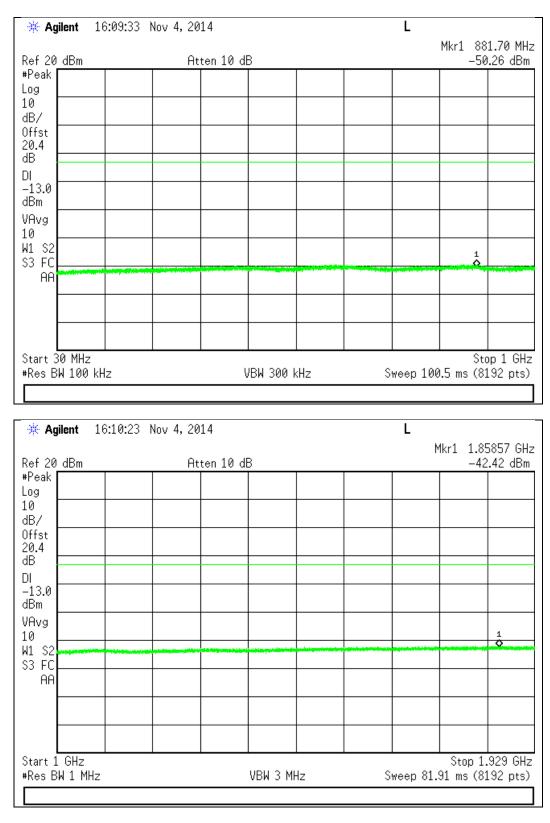
 VBW 3 MHz

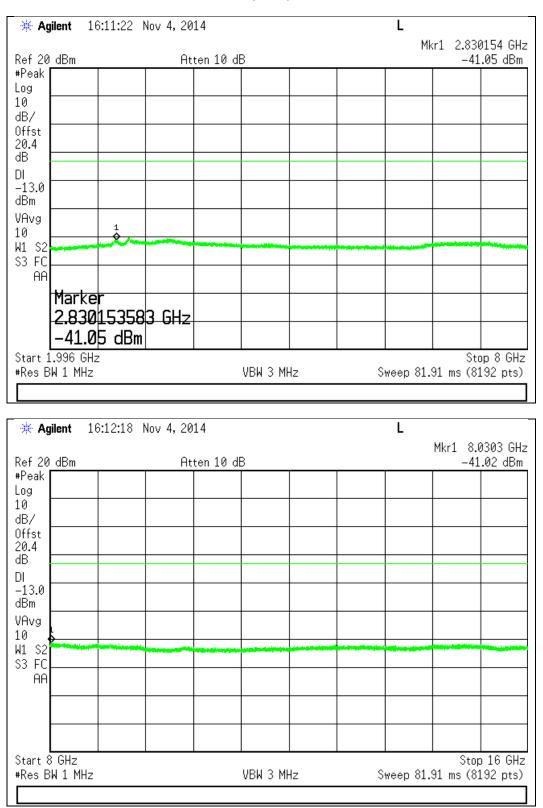

 Start 746.1 MHz

 *Res BW 1 MHz

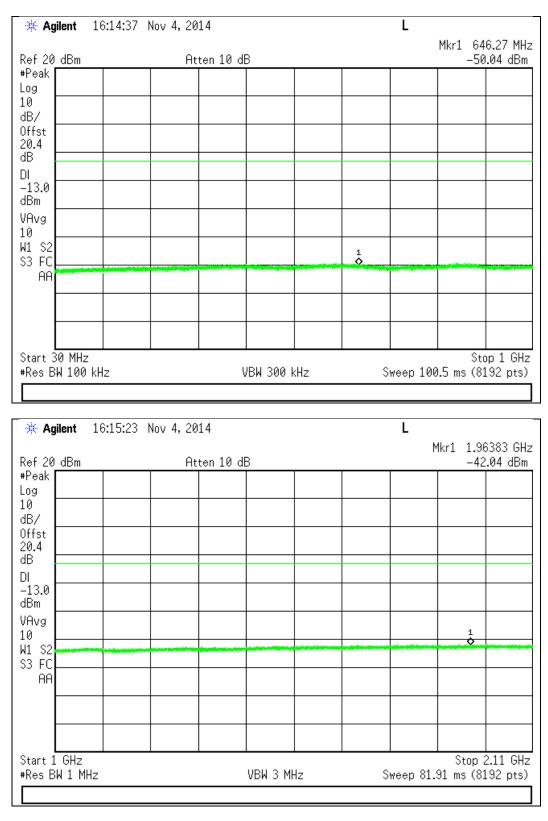
 VBW 3 MHz


 Sweep 81.91 ms (8192 pts)

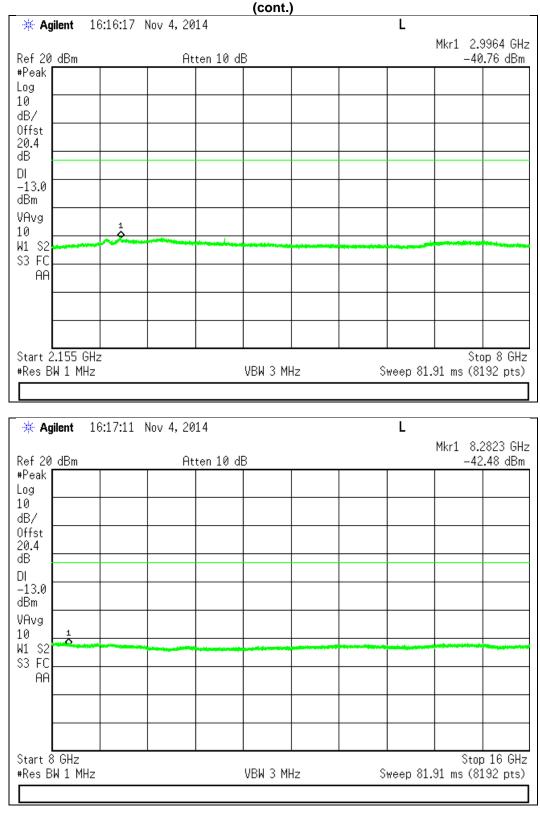

746 - 757 MHz Band


^{869 - 894} MHz Band

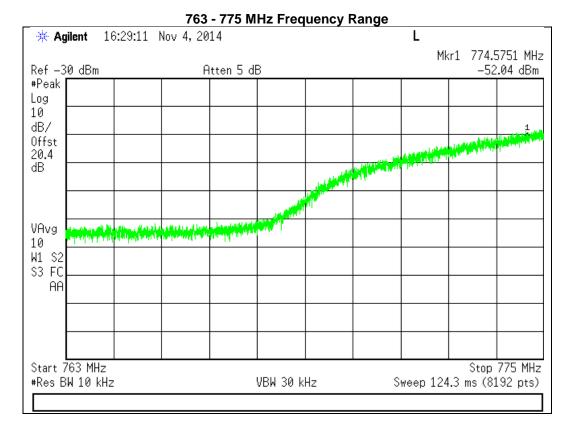
1930 - 1995 MHz Band (cont.)



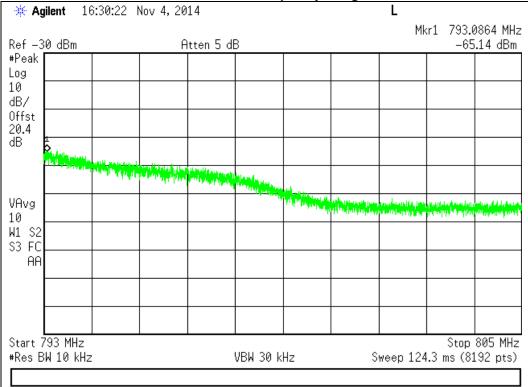
1930 - 1995 MHz Band (cont.)

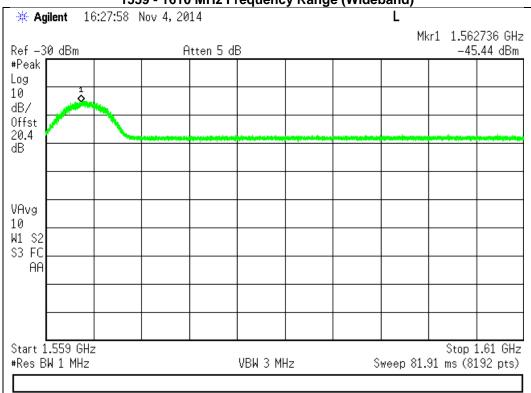

Agilent 16:13:40 Nov	v 4,2014	L	Mkr1 21.9077 GHz
Ref 20_dBm	Atten 10 dB		-40.51 dBm
#Peak Log			
10			
dB/ Offst			
20.4 dB			
DI			
-13.0 dBm			
VAvg			
10 W1 S2			- à
S3 FC			
AA			
Start 16 GHz			Stop 22 GHz
#Res BW 1 MHz	VBW 3 MHz	Sweep 8	1.91 ms (8192 pts)

2110 - 2155 MHz Band


2110 - 2155 MHz Band

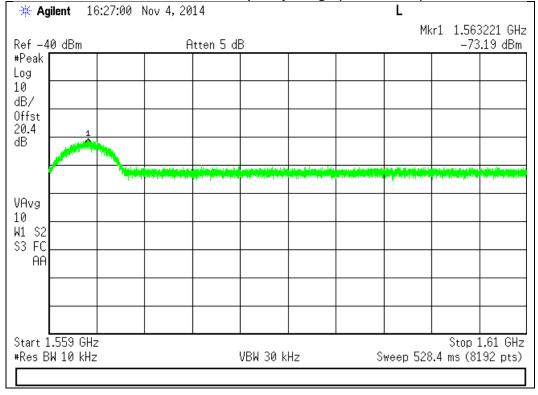
🔆 Agilent 16:17:59	Nov 4, 2014		L		
Ref 20 dBm	Atten 10 dB			Mkr1 21.93 -40.7	377 GH 74 dBm
#Peak Log					
10 dB/					
Offst					
20.4 dB					
DI					
dBm					
VAvg 10					
W1 S2 S3 FC					
AA					
Start 16 GHz #Res BW 1 MHz	<u> </u>	IBW 3 MHz	Sweep 81	Stop .91 ms (819	22 GH: 92 pts)


2110 - 2155 MHz Band (cont.)



776 – 787 MHz Uplink Test Plots for the

793 - 805 MHz Frequency Range

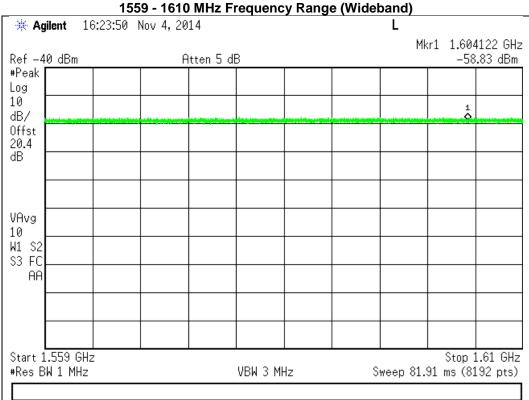


776 – 787 MHz Uplink Test Plots for the

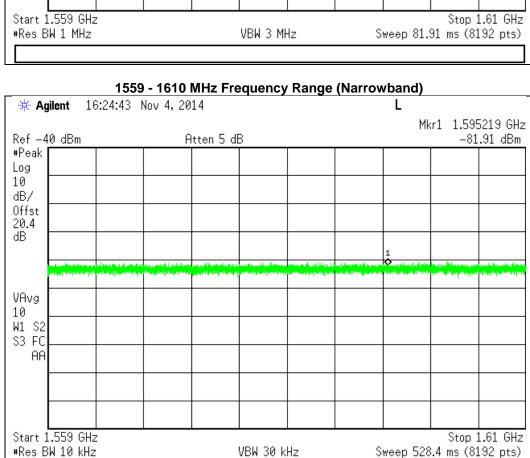
1559 - 1610 MHz Frequency Range (Wideband)

1559 - 1610 MHz Frequency Range (Narrowband)

🔆 🔆 Ag	jilent 1	6:21:00	Nov 4, 20	14				L		
Ref -6	i0 dBm		A	tten 5 di	В			Mk		0686 MHz .74 dBm
#Peak Log										
10 dB/										
Offst 20.4										
dB										
VAvg 10										
W1 S2 S3 FC										
ÂA										
	763 MHz WW 10 kHz	 :			VBW 30 k	Hz	s	weep 124	Stop .3 ms (81	775 MHz 92 pts)


746 - 757 MHz Downlink Test Plots for the

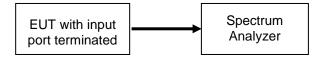
763 - 775 MHz Frequency Range


793 - 805 MHz Frequency Range

🔆 🔆 Ag	jilent 1	6:22:43 I	Vov 4, 20				Ŭ	L		
Ref -6	0 dBm		A	tten 5 df	3			Mk		3998 MHz .83 dBm
#Peak Log										
10 dB/										
Offst 20.4										
dB										
VAvg 10										
W1 S2 S3 FC										
ÂÂ										
	'93 MHz W 10 kHz	:			VBW 30 k	Hz	s	weep 124	Stop 4.3 ms (81	805 MHz 192 pts)

746 - 757 MHz Downlink Test Plots for the

Noise Limits Engineer: Mike Graffeo Test Date: 11/4/14


Test Procedure

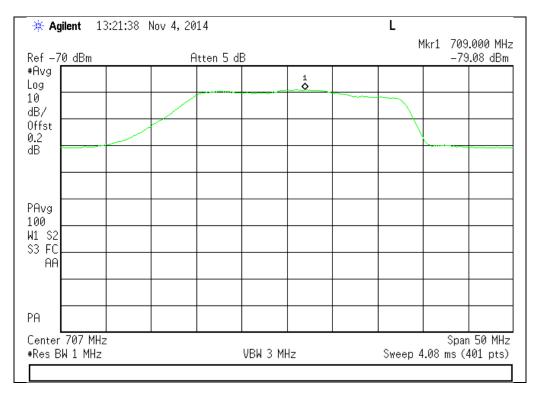
The EUT was connected to a spectrum analyzer through an attenuator with the losses being input into the spectrum analyzer as a combination of reference level offset and correction factor as necessary to ensure accurate readings were obtained. Tests are performed to measure the maximum uplink and downlink noise. The detailed procedures from KDB 935210 D03 Wideband Consumer Signal Booster Measurement Guidance DR04-41516c were followed.

Noise Power limit =-59 dBm/MHz for Mobile devices

Test Setup

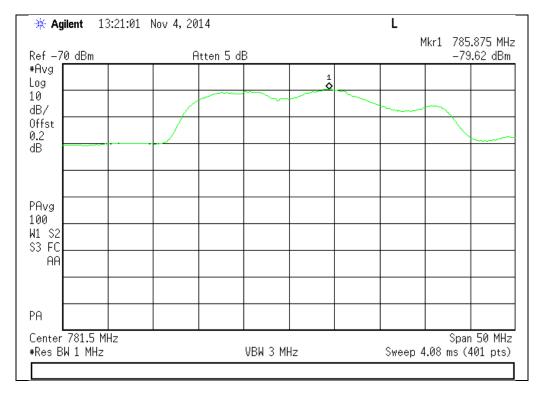
Maximum Noise Power

Maximum Uplink Noise Test Results

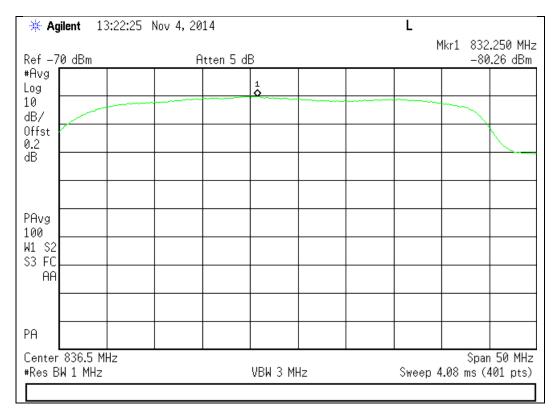

Frequency Band (MHz)	Measured Noise (dBm)	Limit (dBm)	Margin (dB)	Result
698 - 716	-79.08	-59.0	-20.1	Pass
776 - 787	-79.62	-59.0	-20.6	Pass
824 - 849	-80.26	-59.0	-21.3	Pass
1710 - 1755	-80.53	-59.0	-21.5	Pass
1850 - 1915	-79.91	-59.0	-20.9	Pass

Maximum Downlink Noise Test Results

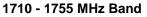
Frequency Band (MHz)	Measured Noise (dBm)	Limit (dBm)	Margin (dB)	Result
728 - 746	-86.46	-59.0	-27.5	Pass
746 - 757	-86.64	-59.0	-27.6	Pass
869 - 894	-86.85	-59.0	-27.9	Pass
1930 - 1995	-87.4	-59.0	-28.4	Pass
2110 - 2155	-84.71	-59.0	-25.7	Pass

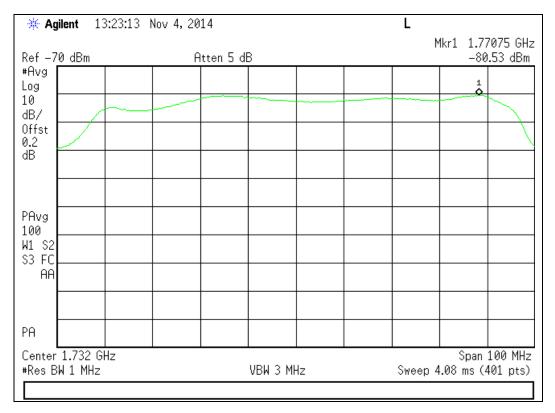


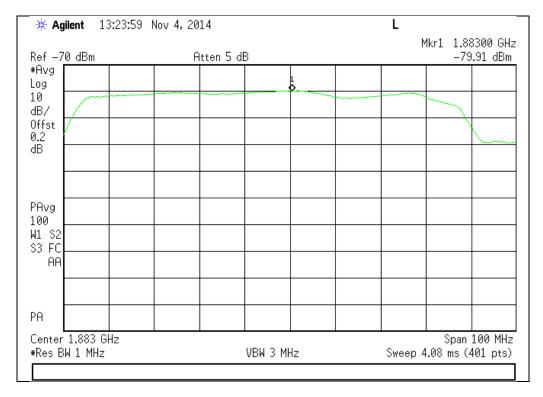
Maximum Uplink Noise Test Plots



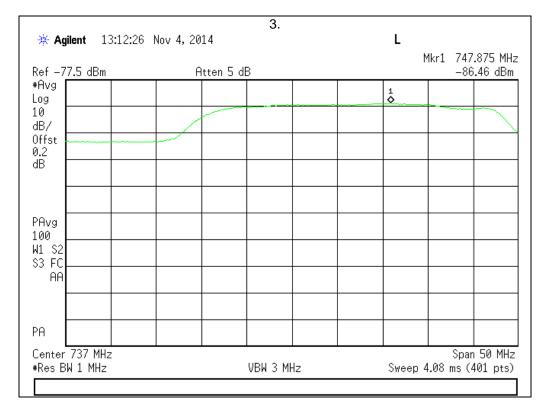
698 - 716 MHz Band

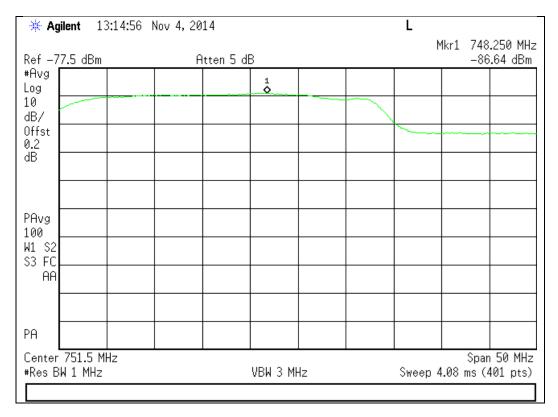

776 - 787 MHz Band





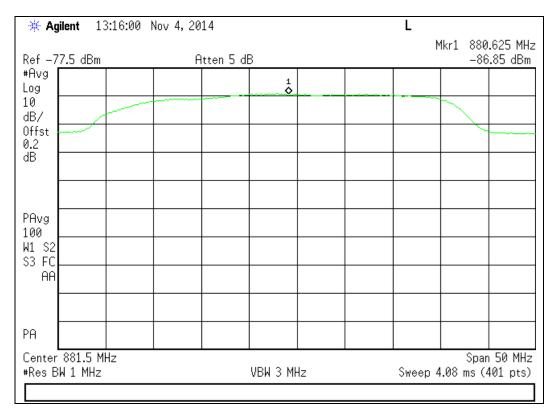
824 - 849 MHz Band

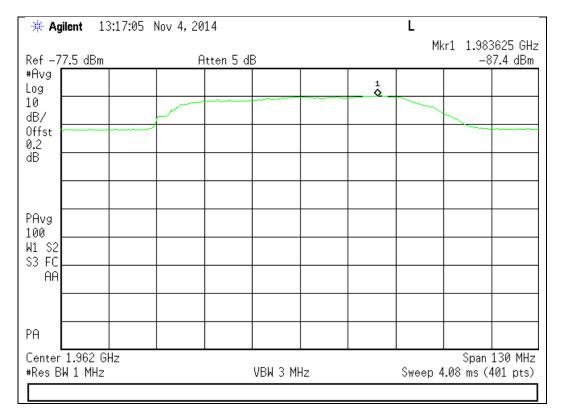



1850 - 1915 MHz Band

Maximum Downlink Noise Test Plots

728 - 746 MHz Band





746 - 757 MHz Band

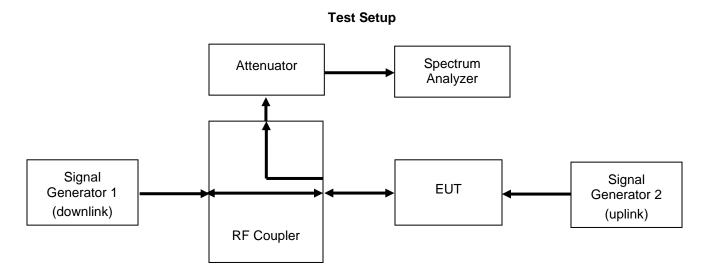
869 - 894 MHz Band

1930 - 1995 MHz Band

2110 - 2155 MHz Band

🔆 🔆 Ag	jilent 🔅	L6:17:04	Nov 12, 2	014							
	'7.5 dBn	1	A	tten 5 dl	В			1	Mkr1 2.12850 GHz _84.83 dBm		
#Avg Log	Log										
10 dB/ Offst 0.2							~~~~~	~~~~~	•		
dB											
PAvg 100 W1 S2											
S3 FC AA											
PA											
	Center 2.132 GHz #Res BW 1 MHz				VBW 3 MHz			Span 100 MHz Sweep 4.08 ms (401 pts)			

Variable Gain Engineer: Mike Graffeo Test Date: 11/4/14


Test Procedure

The EUT was connected to a spectrum analyzer through an attenuator with the losses being input into the spectrum analyzer as a combination of reference level offset and correction factor in order to ensure accurate readings were obtained. The uplink gain in the presence of a downlink signal was measured for each operational uplink band using the detailed procedures from KDB 935210 D03 Wideband Consumer Signal Booster Measurement Guidance DR04-41516.

The following formula is used for calculating the limits:

Variable Gain = -34 dB - RSSI +MSCL

Direct Connect Mobile Booster gain limit = 23 dB

Uplink Test Results

	698 - 716 MHz								
RSSI (dBm)	MSCL (dB)	Gain Limit (dBm)	P(in) (dBm)	P(out) (dBm)	Gain (dB)	Margin (dB)			
-43	10.0	19.0	1.5	15.5	14.0	-5.0			
-42	10.0	18.0	1.5	14.5	13.0	-5.0			
-57	10.0	23.0	1.5	18.2	16.7	-6.3			
-56	10.0	23.0	1.5	18.2	16.7	-6.3			
-55	10.0	23.0	1.5	18.2	16.7	-6.3			
-54	10.0	23.0	1.5	18.2	16.7	-6.3			

776 - 787 MHz								
RSSI (dBm)	MSCL (dB)	Gain Limit (dBm)	P(in) (dBm)	P(out) (dBm)	Gain (dB)	Margin (dB)		
-45	10.0	21.0	0.0	15.5	15.5	-5.5		
-44	10.0	20.0	0.0	14.5	14.5	-5.5		
-57	10.0	23.0	0.0	17.4	17.4	-5.6		
-56	10.0	23.0	0.0	17.4	17.4	-5.6		
-55	10.0	23.0	0.0	17.4	17.4	-5.6		
-54	10.0	23.0	0.0	17.4	17.4	-5.6		

_ _ _ _ _ _ _ _ _

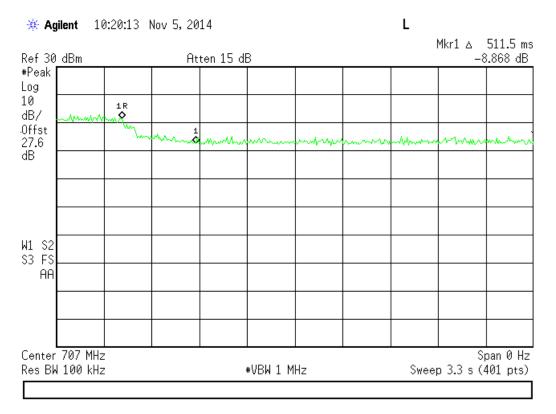
	824 - 849 MHZ								
RSSI (dBm)	MSCL (dB)	Gain Limit (dBm)	P(in) (dBm)	P(out) (dBm)	Gain (dB)	Margin (dB)			
-44	10.0	20.0	-2.0	13.7	15.7	-4.3			
-43	10.0	19.0	-2.0	12.7	14.7	-4.3			
-54.0	10.0	23.0	-2.0	17.2	19.2	-3.8			
-53.0	10.0	23.0	-2.0	17.2	19.2	-3.8			
-52.0	10.0	23.0	-2.0	17.2	19.2	-3.8			
-51.0	10.0	23.0	-2.0	17.2	19.2	-3.8			

824 - 849 MHz

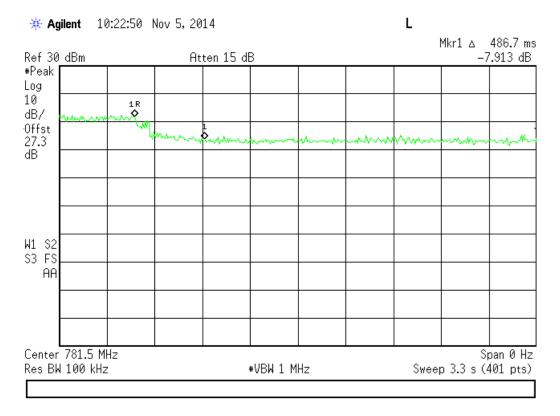
1710 - 1755 MHz

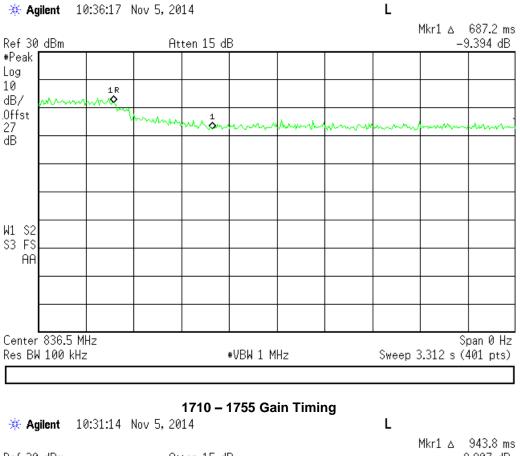
RSSI (dBm)	MSCL (dB)	Gain Limit (dBm)	P(in) (dBm)	P(out) (dBm)	Gain (dB)	Margin (dB)		
-41.0	10.0	16.0	1.2	12.2	11.0	-5.0		
-40.0	10.0	16.0	1.2	12.2	11.0	-5.0		
-63.0	10.0	23.0	1.2	17.4	16.2	-6.8		
-62.0	10.0	23.0	1.2	17.4	16.2	-6.8		
-61.0	10.0	23.0	1.2	17.4	16.2	-6.8		
-60.0	10.0	23.0	1.2	17.4	16.2	-6.8		

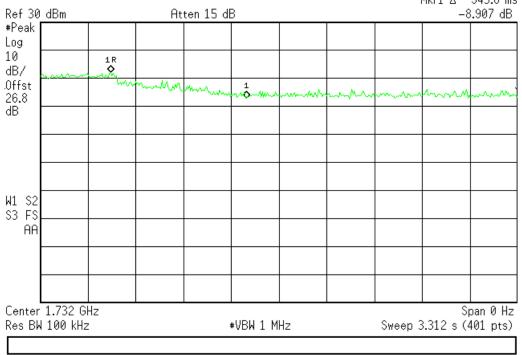
1850 - 1915 MHz

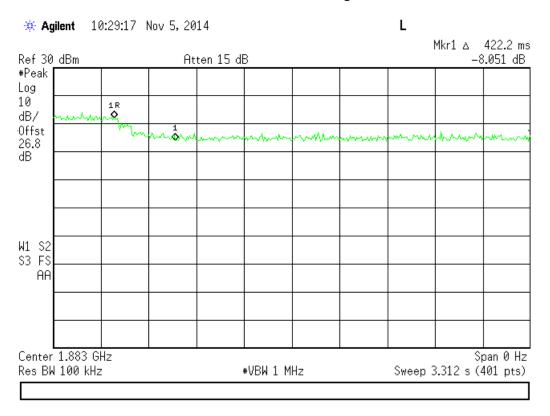

RSSI (dBm)	MSCL (dB)	Gain Limit (dBm)	P(in) (dBm)	P(out) (dBm)	Gain (dB)	Margin (dB)
-45	10.0	21.0	-0.8	16.2	17.0	-4.0
-44	10.0	20.0	-0.8	15.0	15.8	-4.2
-61.0	10.0	23.0	-0.8	17.3	18.1	-4.9
-60.0	10.0	23.0	-0.8	17.3	18.1	-4.9
-59.0	10.0	23.0	-0.8	17.3	18.1	-4.9
-58.0	10.0	23.0	-0.8	17.3	18.1	-4.9

Uplink Gain Timing Test Results

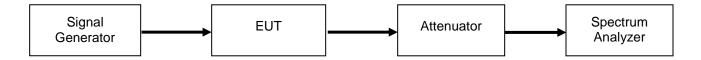

Frequency Band (MHz)	Measured Timing (milliseconds)	Limit (milliseconds)	Result
698 - 716	511.50	1000	Pass
776 - 787	486.70	1000	Pass
824 - 849	687.20	1000	Pass
1710 - 1755	943.80	1000	Pass
1850 - 1915	422.20	1000	Pass




776 - 787 Gain Timing



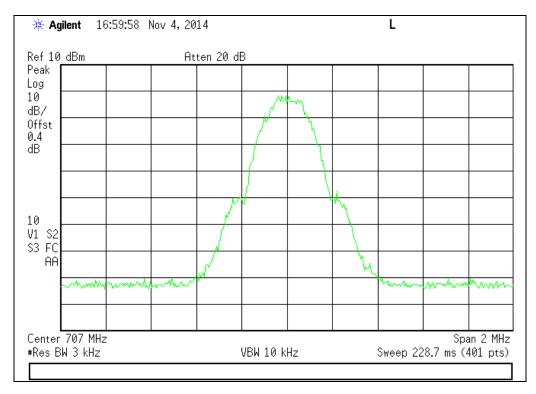
1850 – 1915 Gain Timing

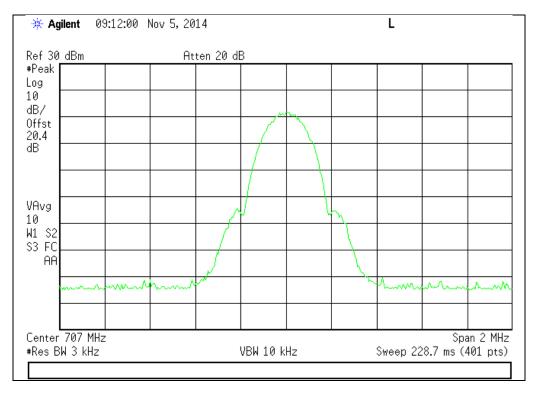


Occupied Bandwidth Engineer: Mike Graffeo Test Date: 11/4/14

Test Procedure

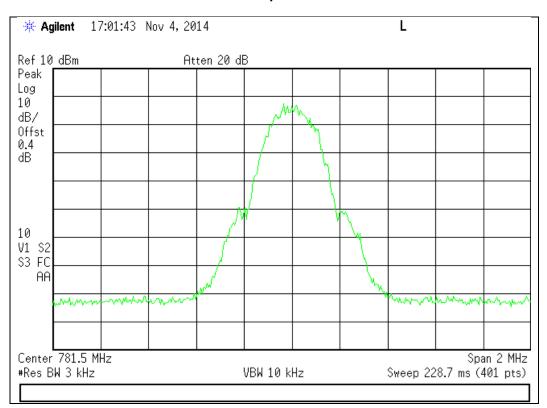
The EUT was connected to a spectrum analyzer through an attenuator with the losses being input into the spectrum analyzer as a combination of reference level offset and correction factor as required to ensure that accurate readings were obtained. A signal generator was utilized to produce the following signals: GSM, CDMA, and WCDMA. The signal generator was tuned to the center channel of each of the EUT operational uplink and downlink bands with the RF level set at a point just prior to the AGC being in control of the power. For each modulation type, the input and output signal was measured and plotted to ensure that the signals were similar.

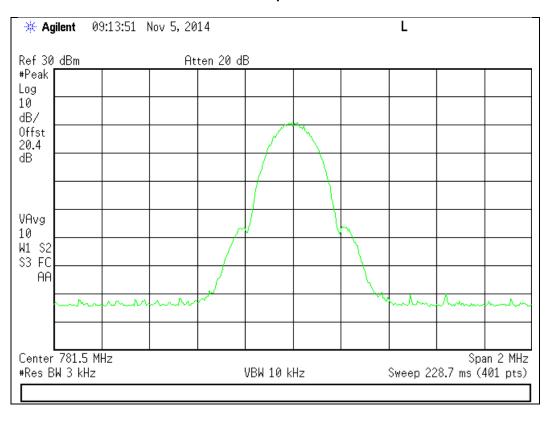



GSM Uplink Test Plots

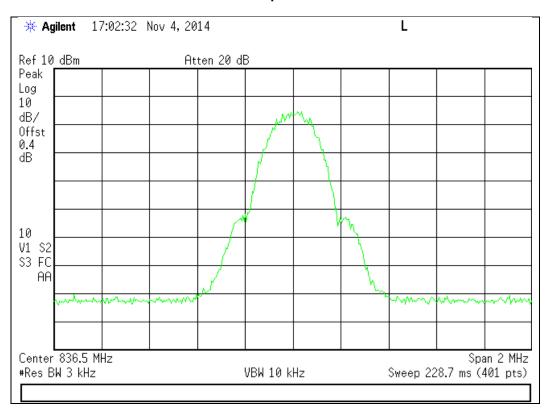
698 - 716 MHz Band

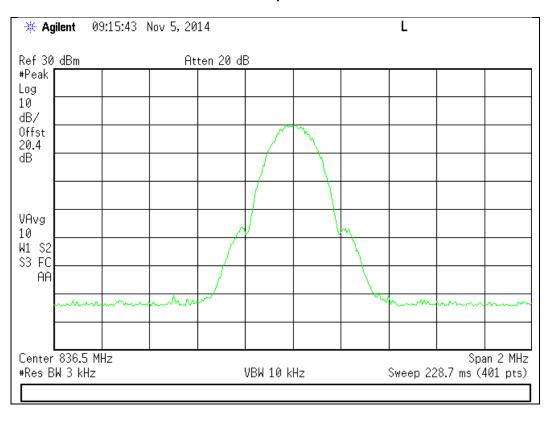
Input



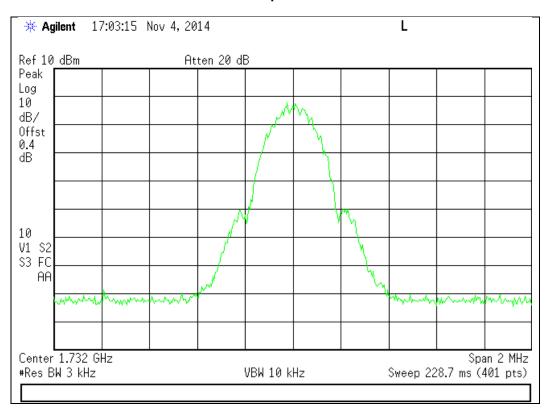


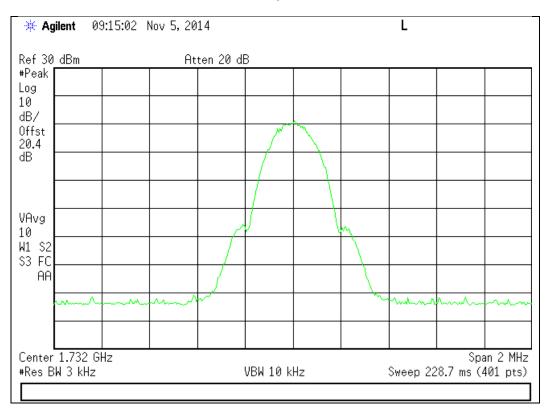
776 - 787 MHz Band



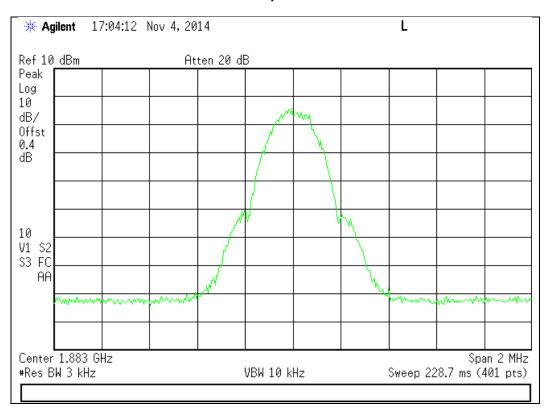


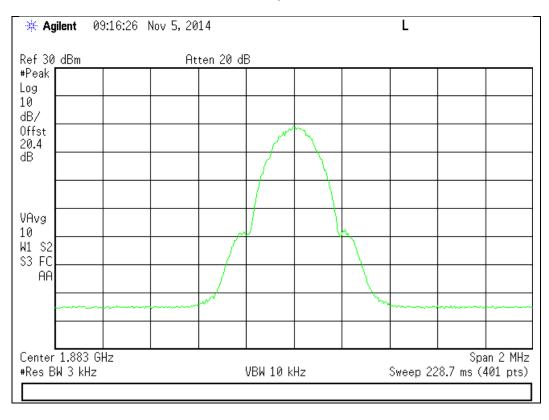
824 - 849 MHz Band



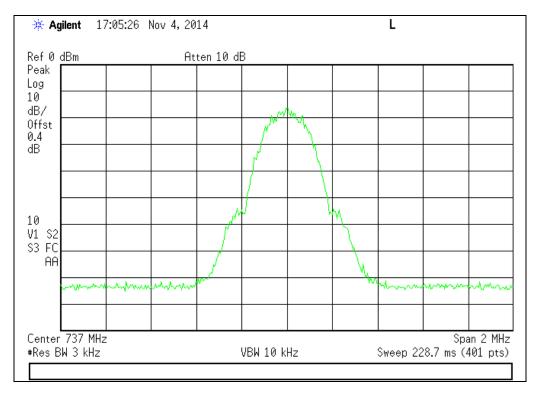


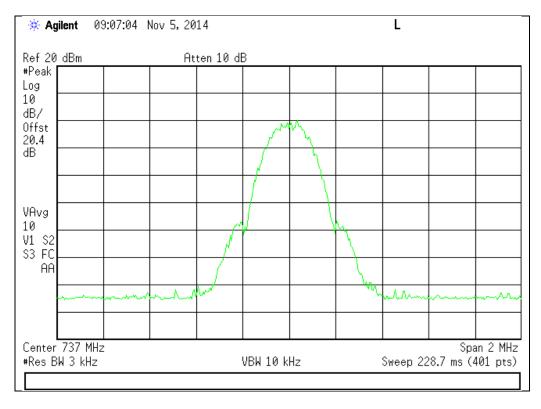
1710 - 1755 MHz Band





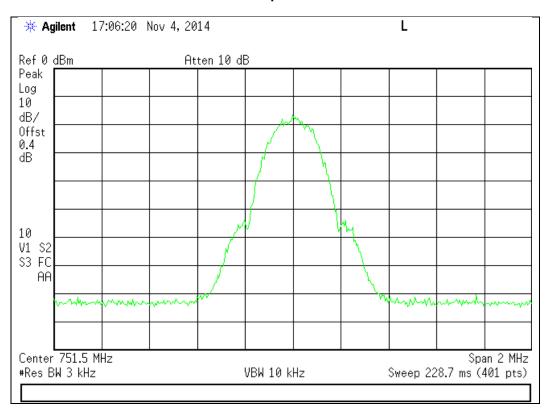
1850 - 1915 MHz Band

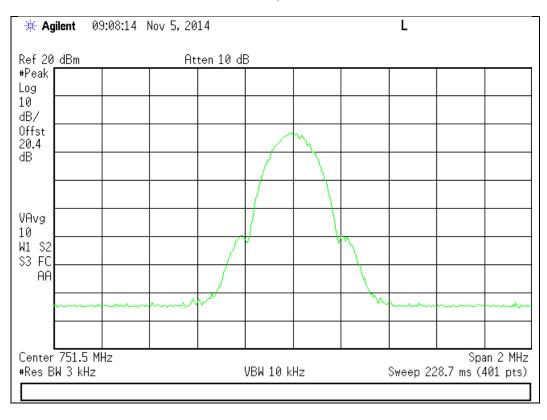



GSM Downlink Test Plots

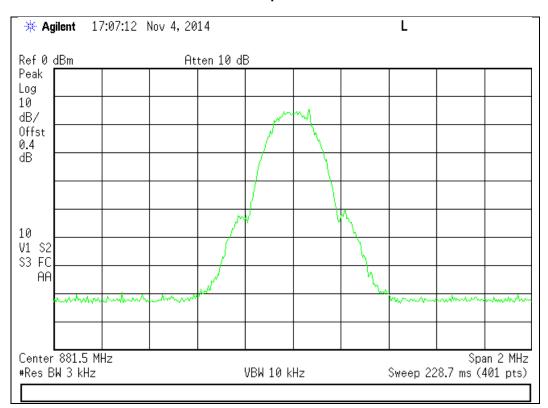
728 - 746 MHz Band

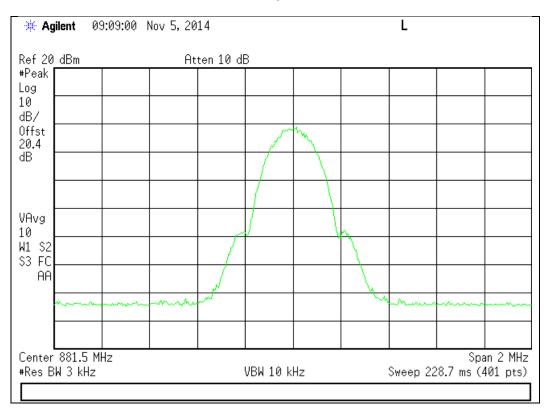
Input



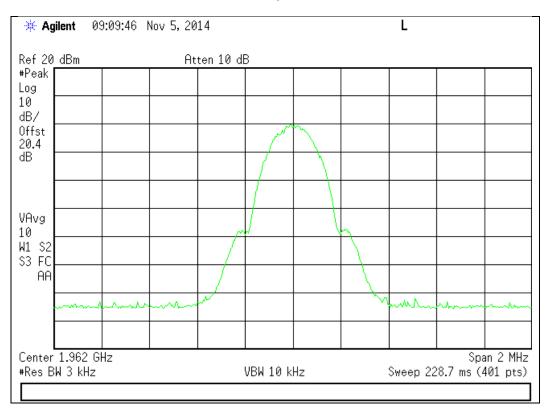


746 - 757 MHz Band

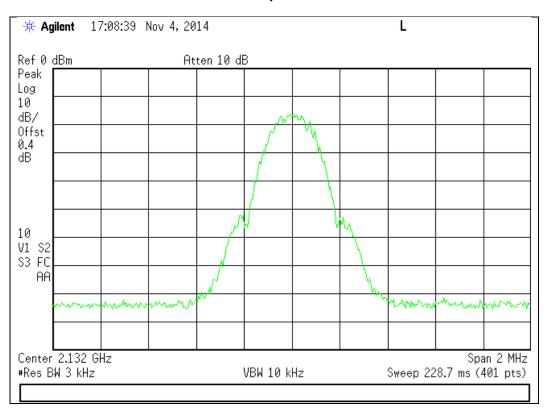


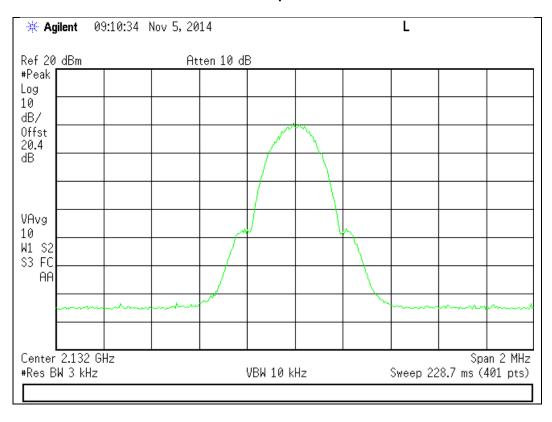


869 - 894 MHz Band



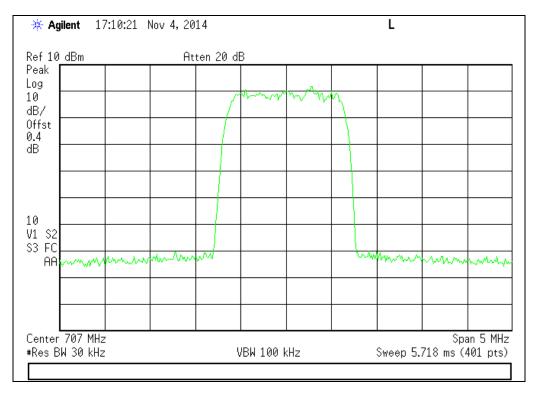
1930 - 1995 MHz Band

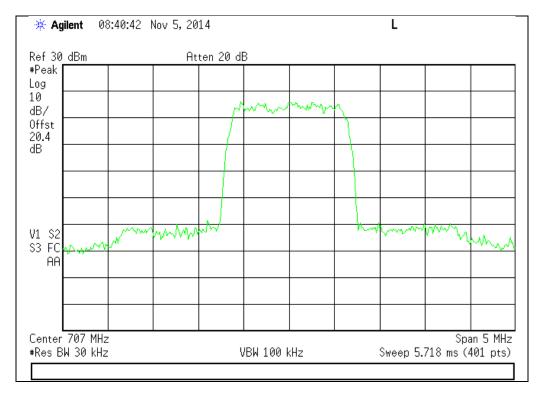




2110 - 2155 MHz Band

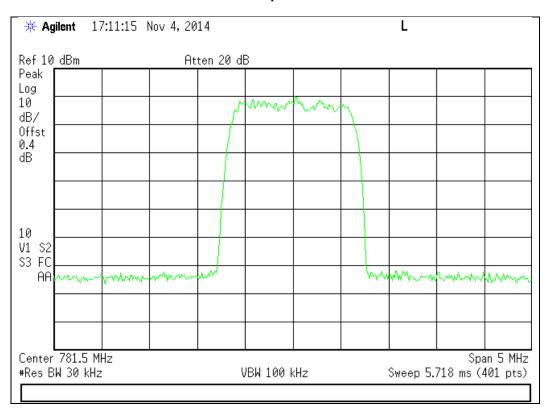
Output

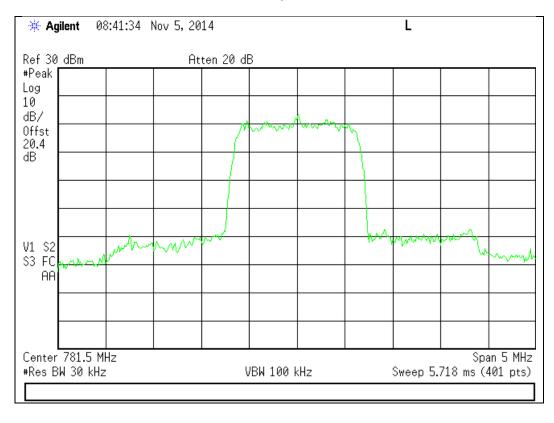



CDMA Uplink Test Plots

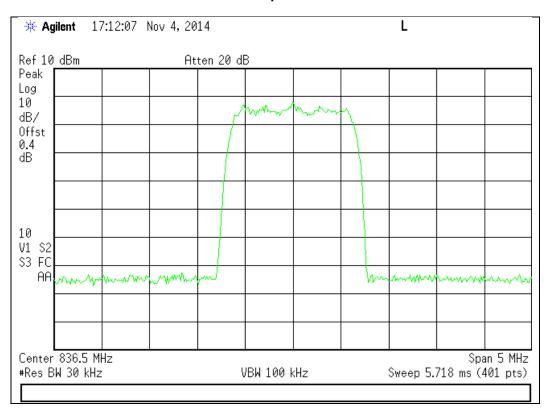
698 - 716 MHz Band

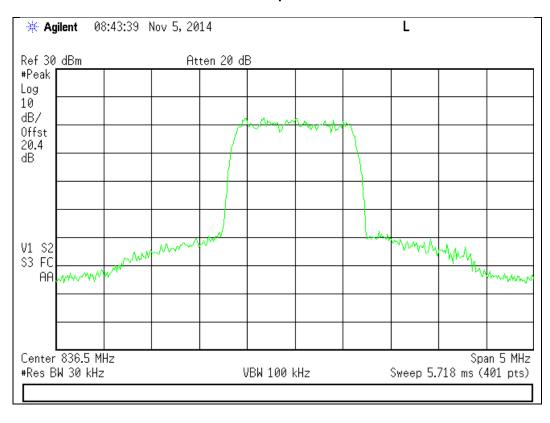
Input


Output

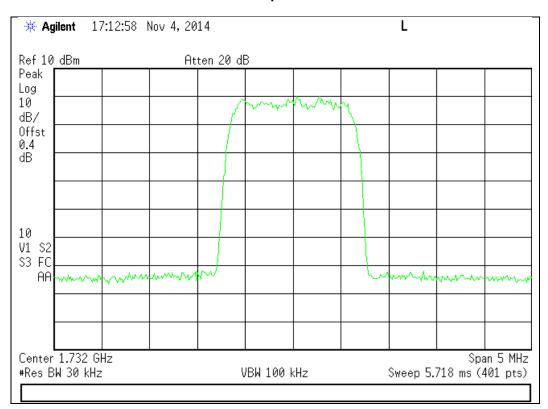


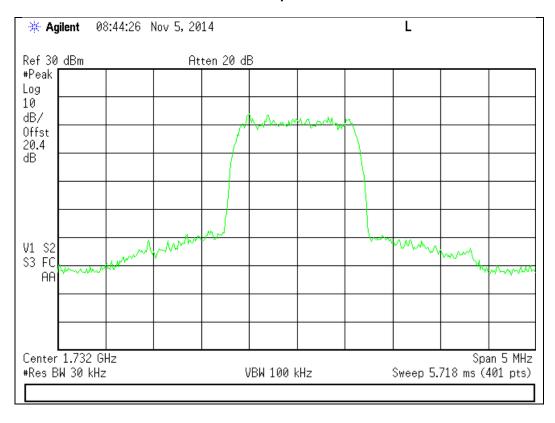
776 - 787 MHz Band


Output

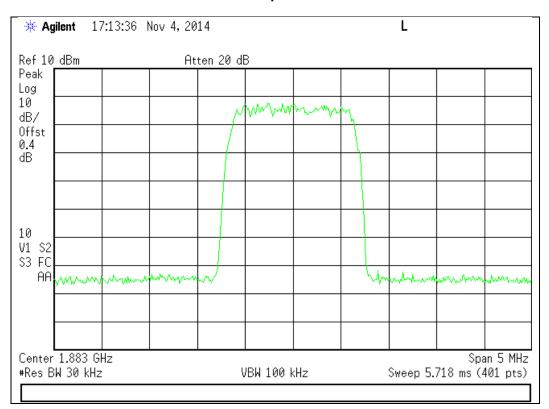


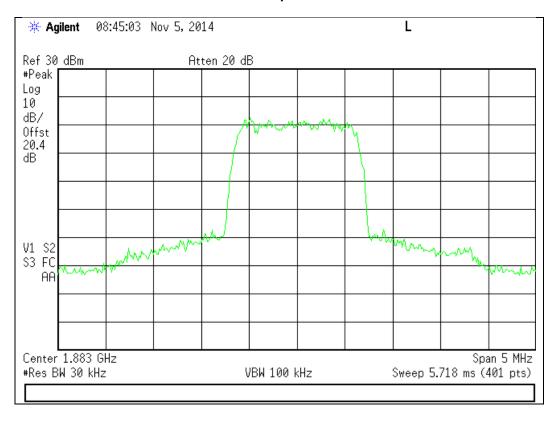
824 - 849 MHz Band





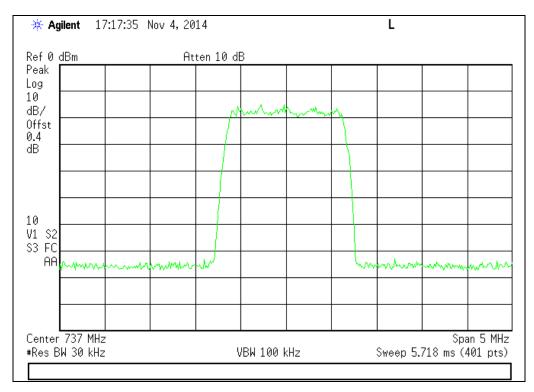
1710 - 1755 MHz Band

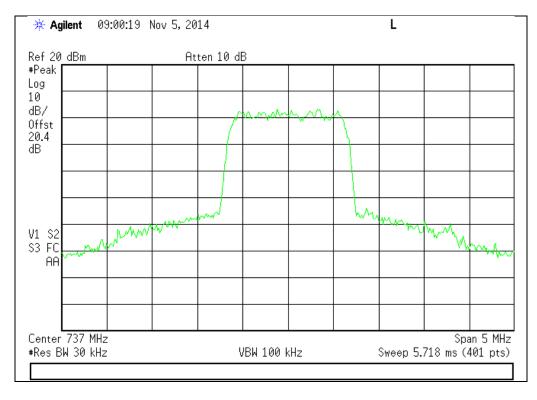

Output



1850 - 1915 MHz Band

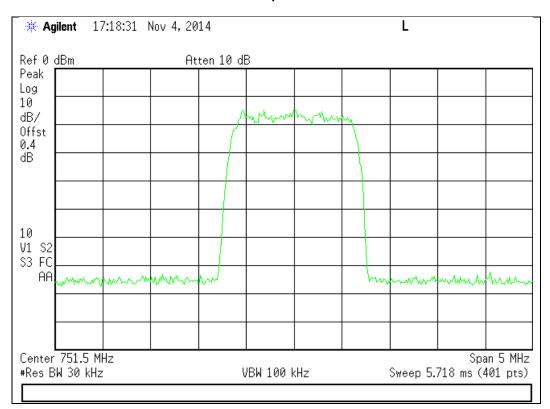
Output

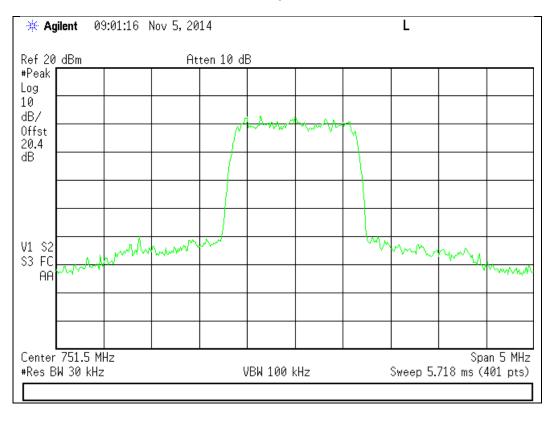



CDMA Downlink Test Plots

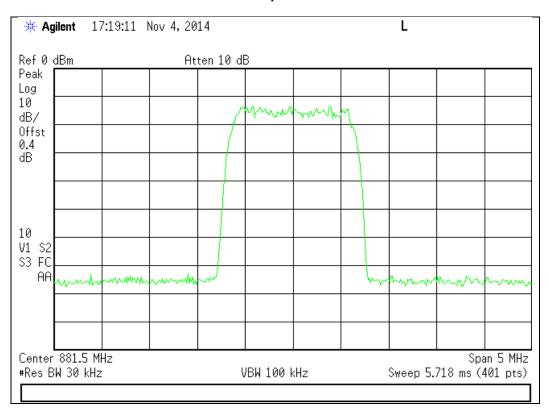
728 - 746 MHz Band

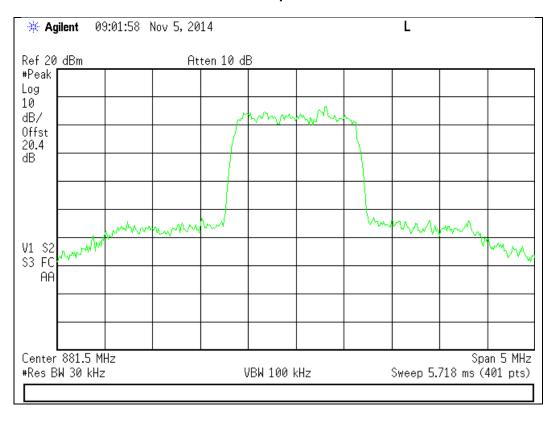
Input


Output

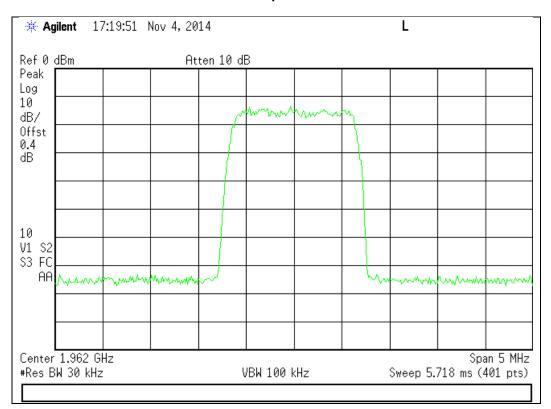


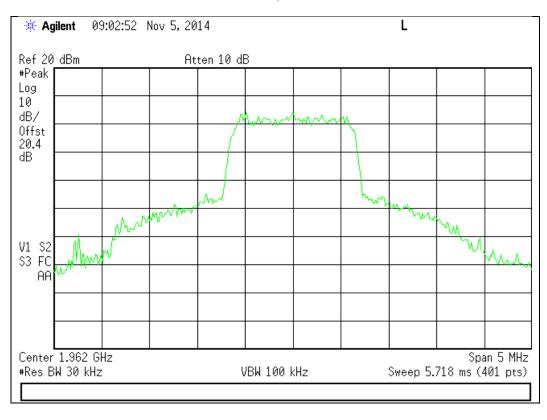
746 - 757 MHz Band



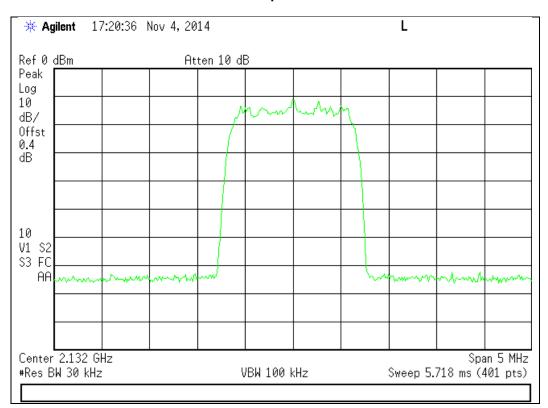


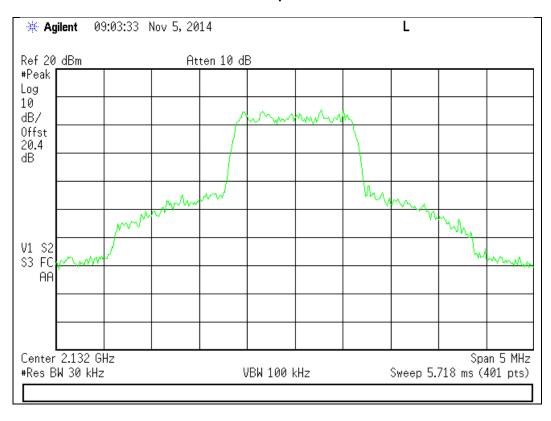
869 - 894 MHz Band


Output



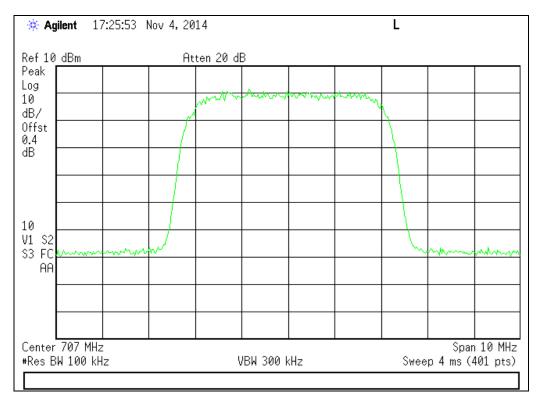
1930 - 1995 MHz Band

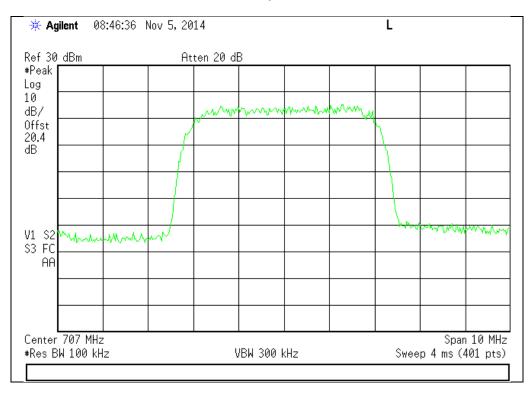




2110 - 2155 MHz Band

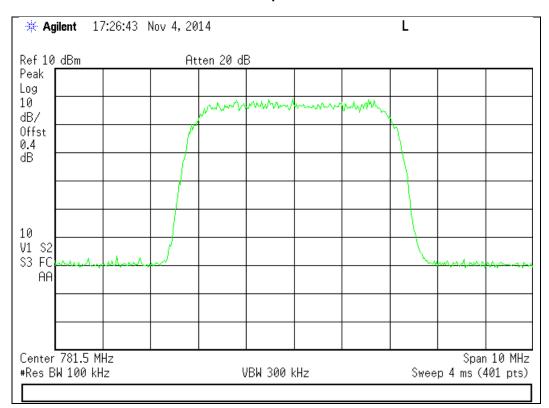
Output

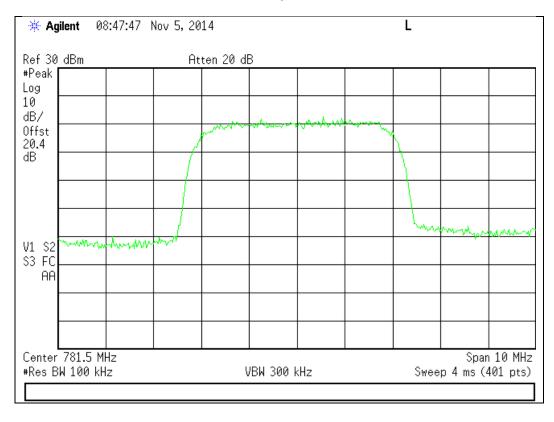



WCDMA Uplink Test Plots

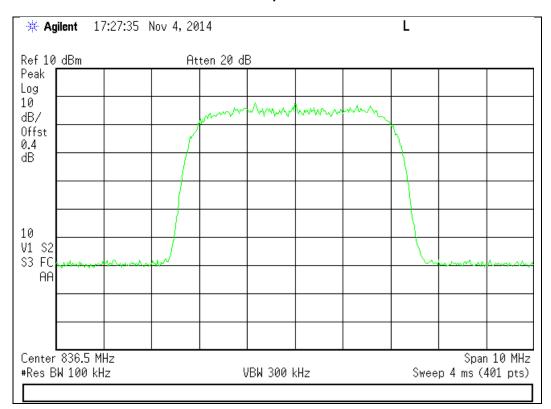
698 - 716 MHz Band

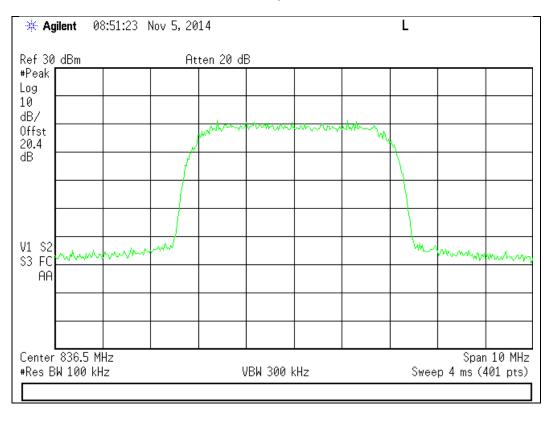
Input



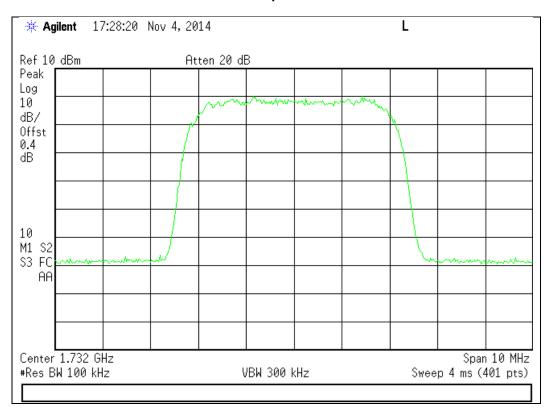


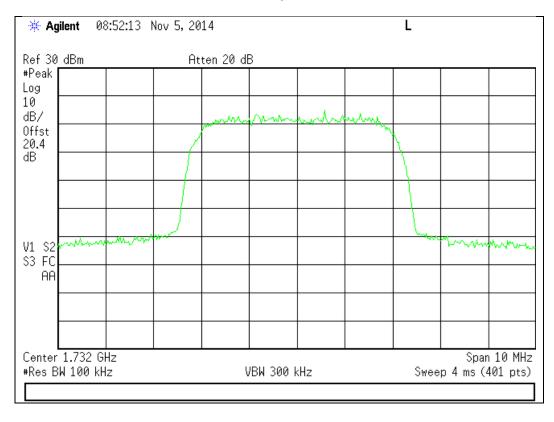
776 - 787 MHz Band


Output

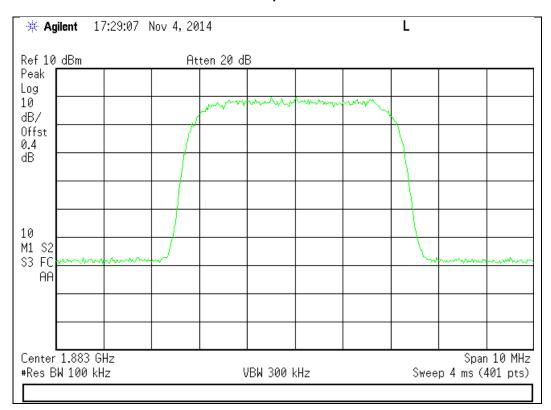


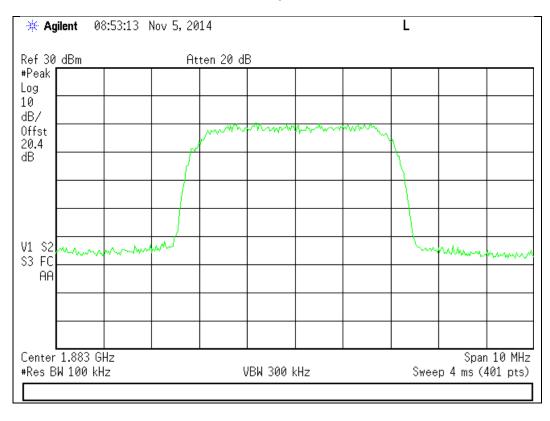
824 - 849 MHz Band



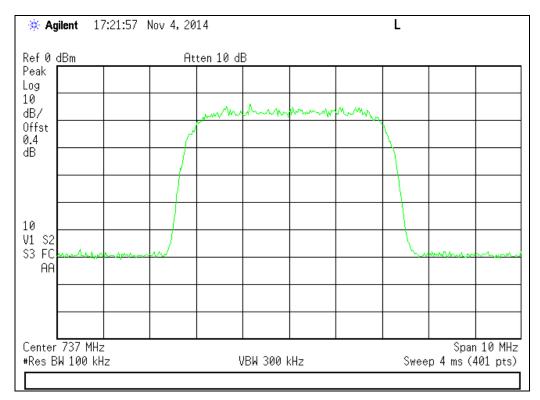


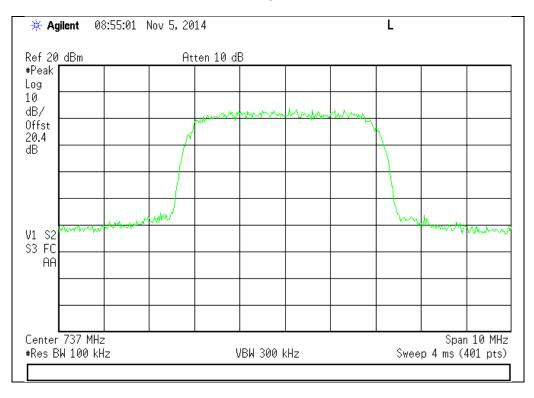
1710 - 1755 MHz Band


Output



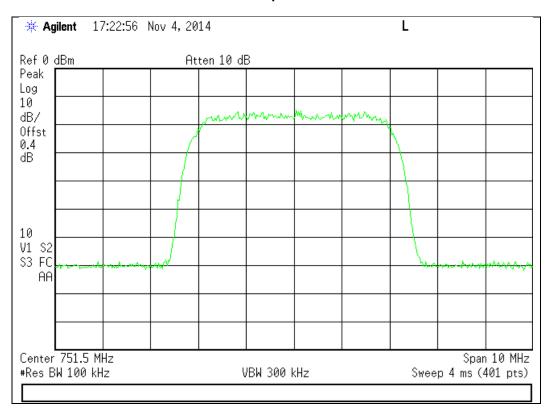
1850 - 1915 MHz Band

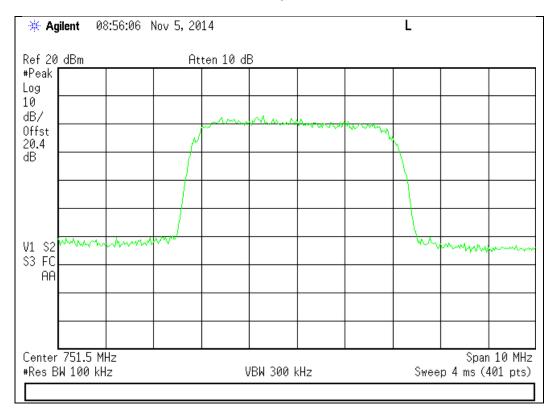



WCDMA Downlink Test Plots

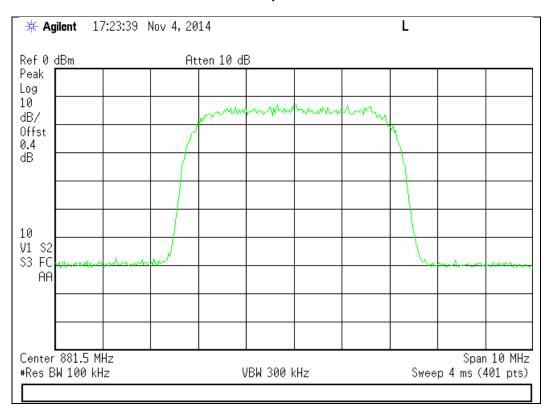
728 - 746 MHz Band

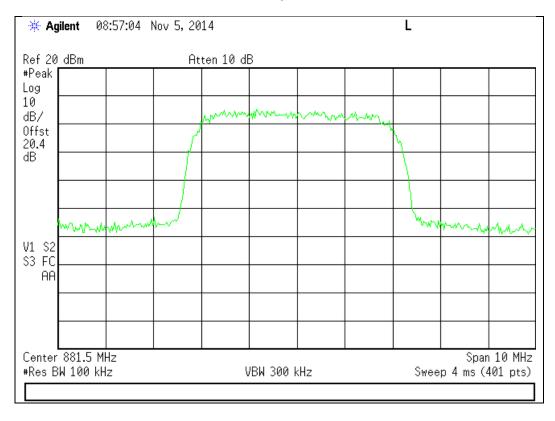
Input



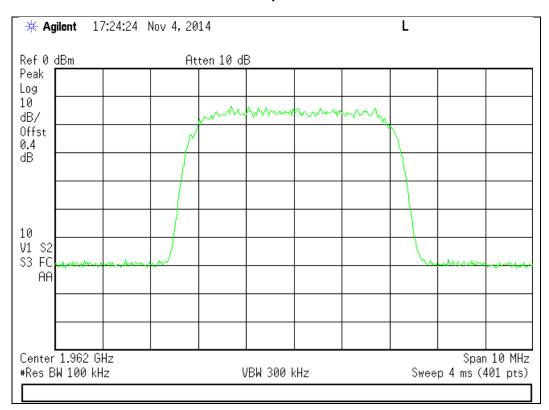


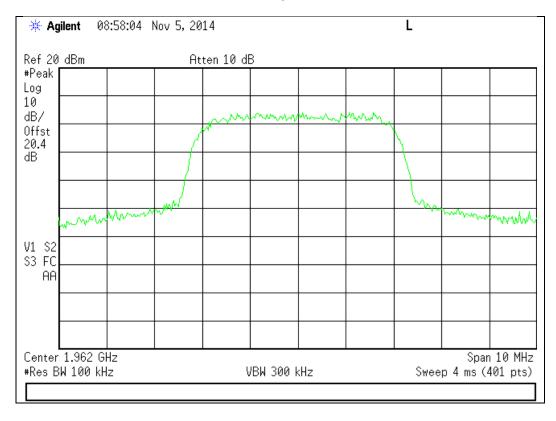
746 - 757 MHz Band


Output

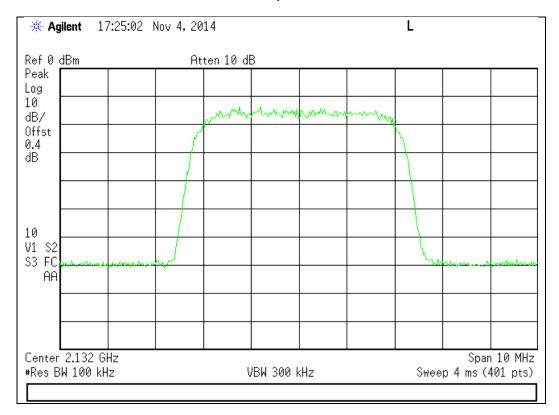


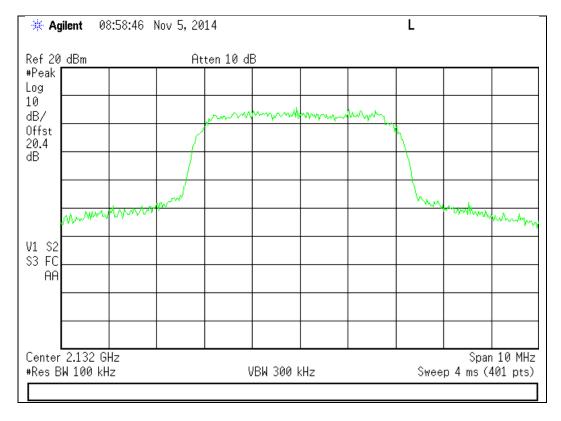
869 - 894 MHz Band


Output



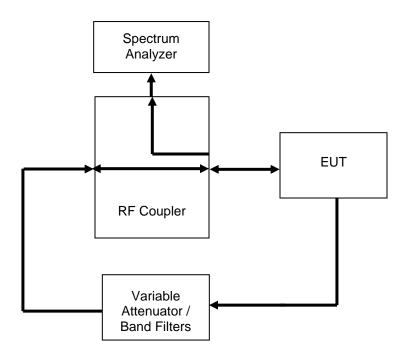
1930 - 1995 MHz Band


Output



2110 - 2155 MHz Band

Output



Oscillation Detection Engineer: Mike Graffeo Test Date: 11/4/14

Test Procedure

The EUT was connected to a spectrum analyzer set for 0 Hz operation. The EUT uplink and downlink were fed back upon each other through a selectable band pass filter and variable attenuator. The EUT uplink and downlink were tested to ensure that the presence of oscillation was detected and that the EUT output turned off within 300 mS for the Uplink and 1 second for the Downlink and remained off for 1 minute. A EUT with test software was utilized to ensure that the EUT only had a maximum of 5 attempts at restart from oscillation before permanently shutting off.

Uplink Detection Time Test Results

Frequency Band (MHz)	Measured Time (mS)	Limit (mS)	Result
698 - 716	79.75	300	Pass
776 - 787	57.75	300	Pass
824 - 849	93.5	300	Pass
1710 - 1755	52.25	300	Pass
1850 - 1915	104.5	300	Pass

Downlink Detection Time Test Results

Frequency Band (MHz)	Measured Time (mS)	Limit (mS)	Result
728 - 746	167.8	1000	Pass
746 - 757	107.3	1000	Pass
869 - 894	96.25	1000	Pass
1930 - 1995	93.5	1000	Pass
2110 - 2155	99.0	1000	Pass

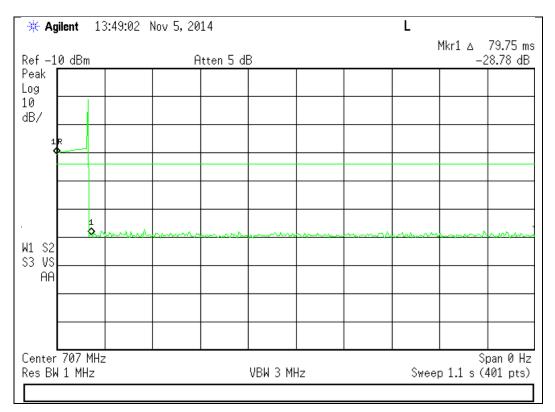
Uplink Res	start Time	Test	Res	ults

Frequency Band (MHz)	Measured Time (S)	Limit (S)	Result
698 - 716	70	≥60	Pass
776 - 787	70	≥60	Pass
824 - 849	70	≥60	Pass
1710 - 1755	70	≥60	Pass
1850 - 1915	70	≥60	Pass

Downlink Restart Time Test Results

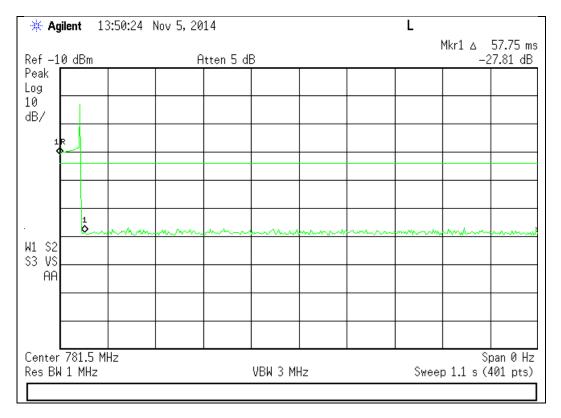
Frequency Band (MHz)	Measured Time (S)	Limit (S)	Result
728 - 746	70	≥60	Pass
746 - 757	70	≥60	Pass
869 - 894	70	≥60	Pass
1930 - 1995	70	≥60	Pass
2110 - 2155	70	≥60	Pass

Uplink Restart Count Test Results

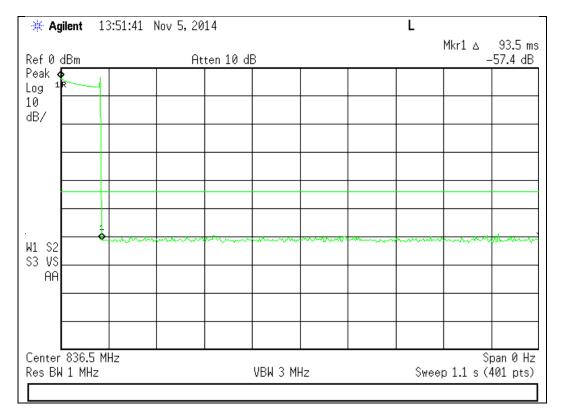

Frequency Band (MHz)	Restarts	Limit	Result
698 - 716	5	≤5	Pass
776 - 787	5	≤5	Pass
824 - 849	5	≤5	Pass
1710 - 1755	5	≤5	Pass
1850 - 1915	5	≤5	Pass

Downlink Restart Count Test Results

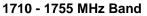
Frequency Band (MHz)	Restarts	Limit	Result
728 - 746	5	≤5	Pass
746 - 757	5	≤5	Pass
869 - 894	5	≤5	Pass
1930 - 1995	5	≤5	Pass
2110 - 2155	5	≤5	Pass

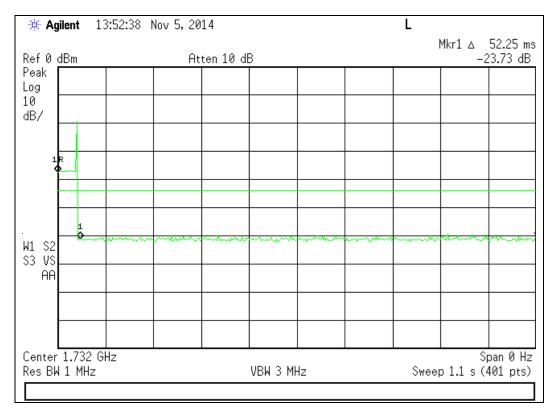


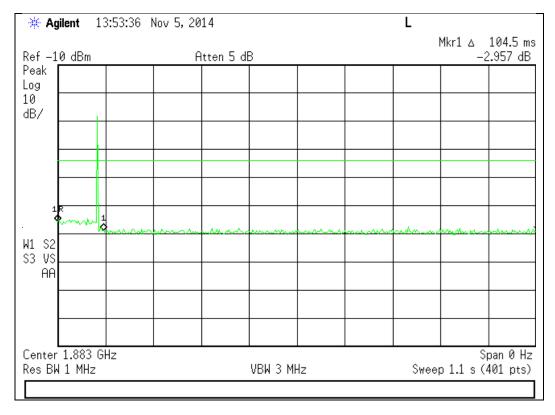
Uplink Detection Time Test Results



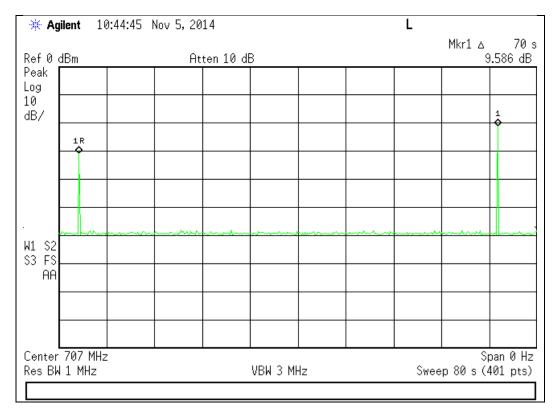
698 - 716 MHz Band

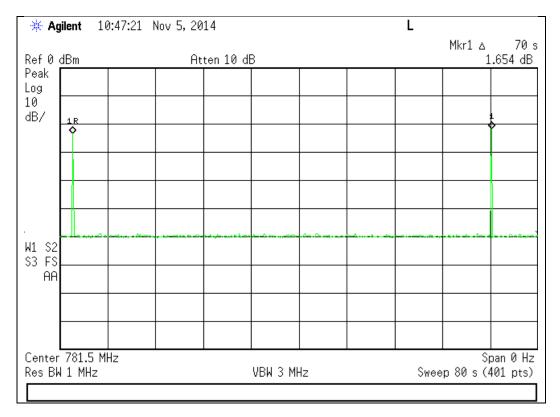

776 - 787 MHz Band



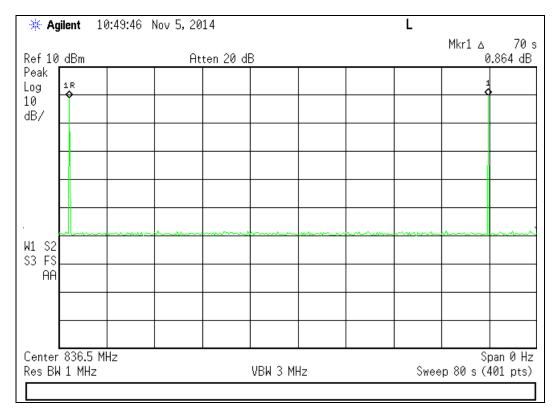


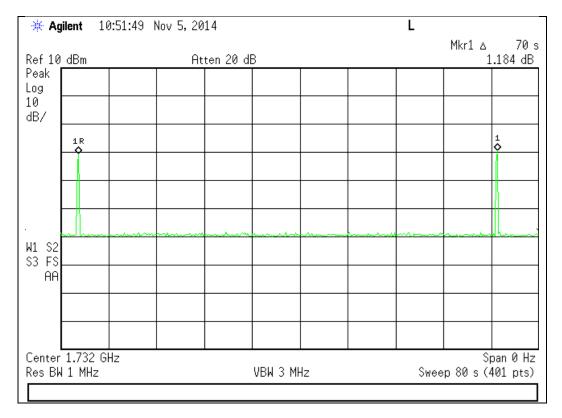
824 - 849 MHz Band



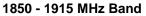

1850 - 1915 MHz Band

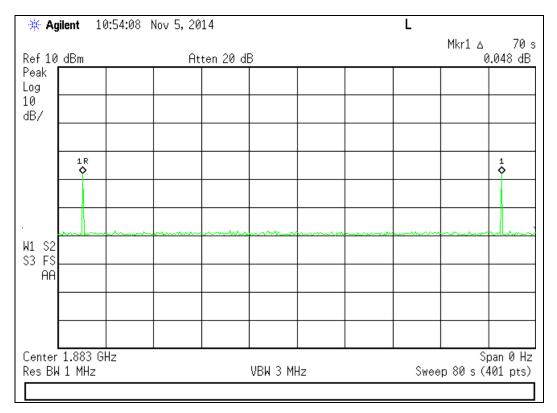
698 - 716 MHz Band

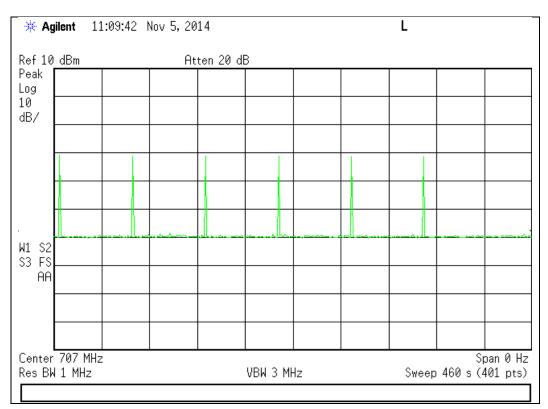


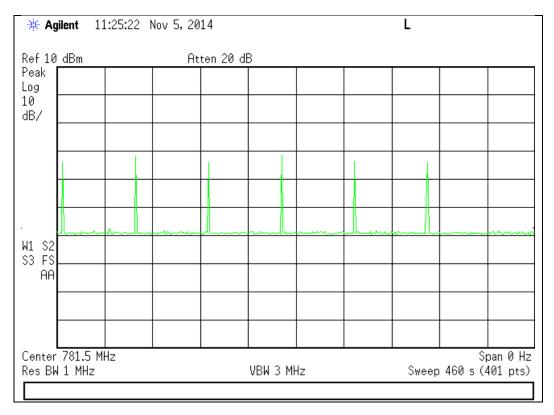


776 - 787 MHz Band

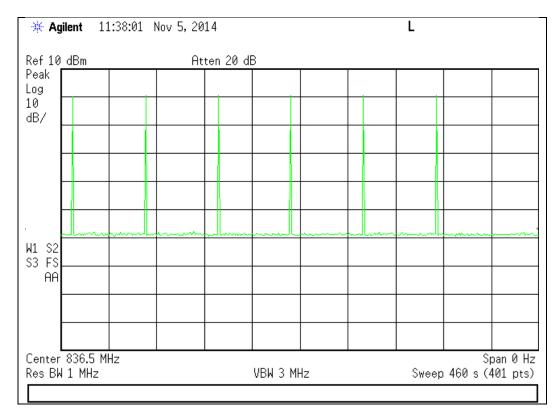





1710 - 1755 MHz Band

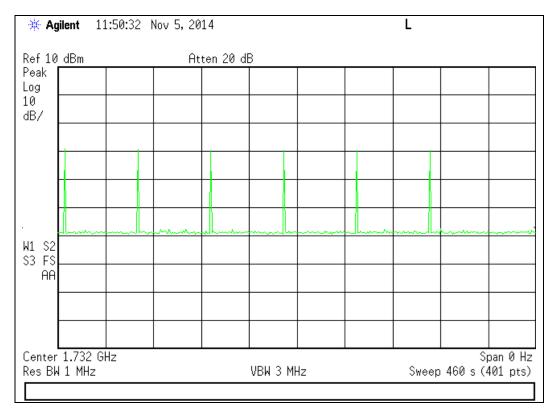


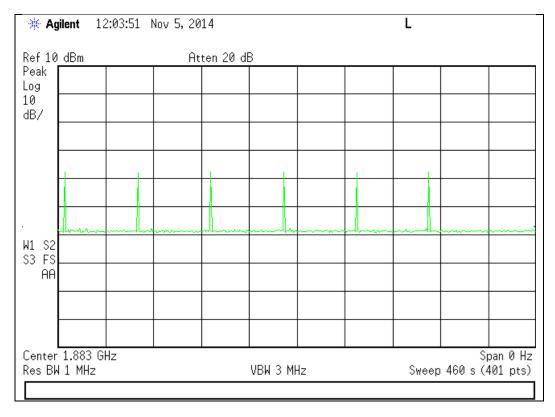
Uplink Restart Count Test Results



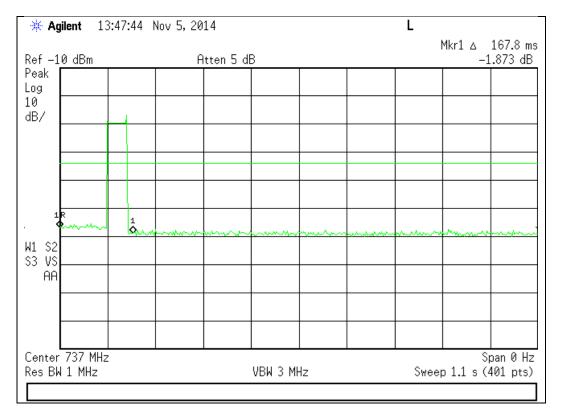
698 - 716 MHz Band

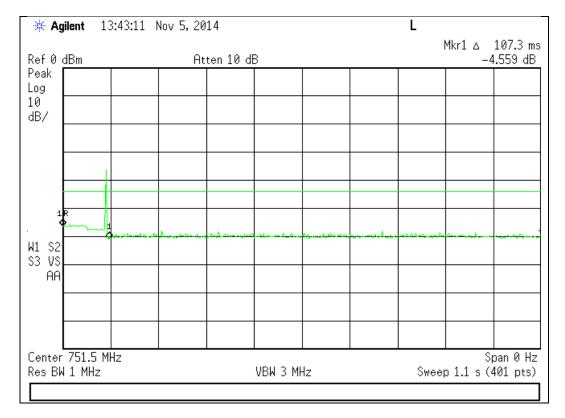
776 - 787 MHz Band



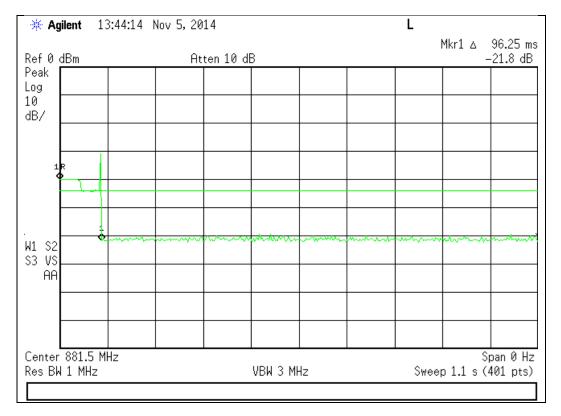


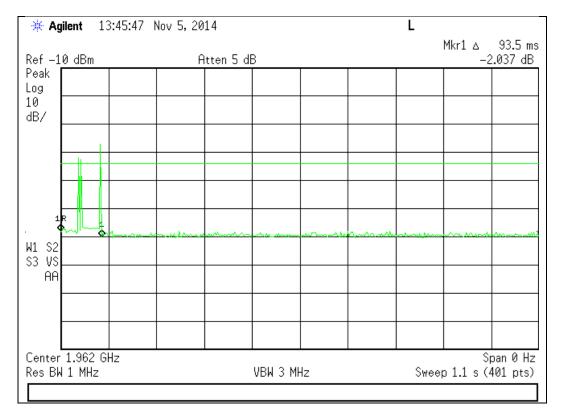
824 - 849 MHz Band




1850 - 1915 MHz Band

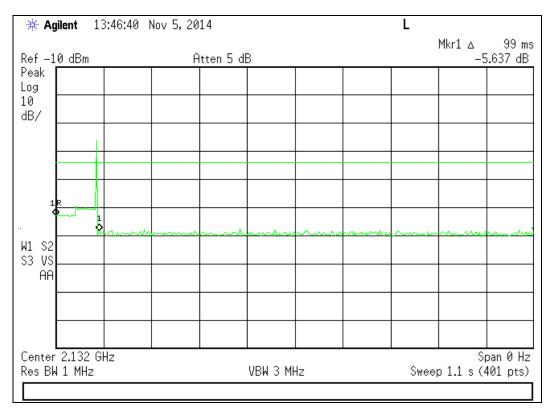
728 - 746 MHz Band

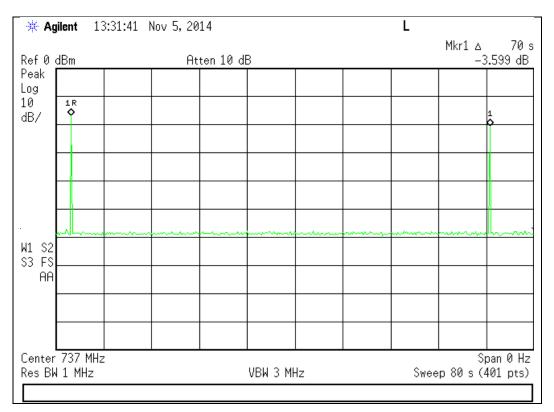


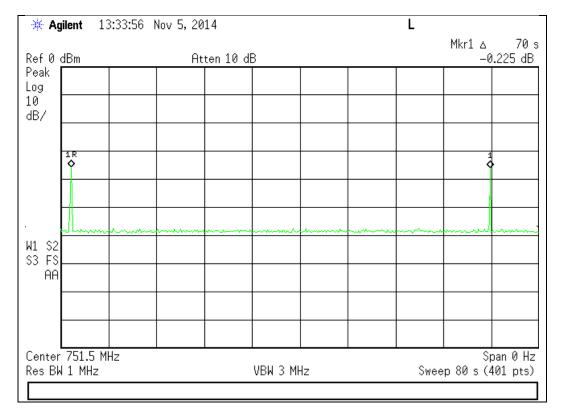


746 - 757 MHz Band

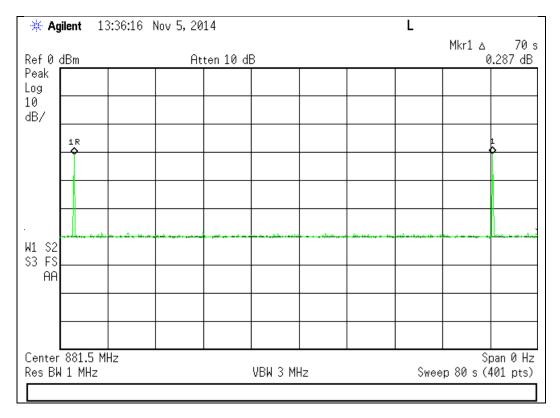
869 - 894 MHz Band




1930 - 1995 MHz Band

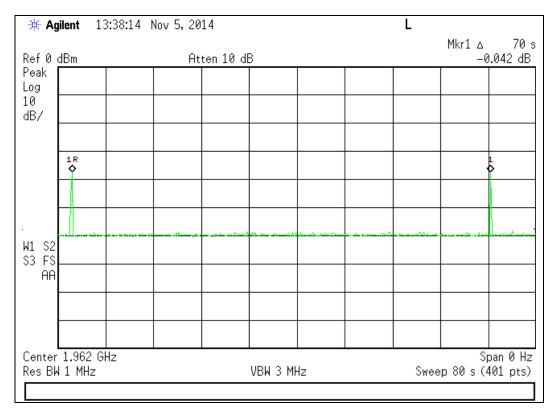


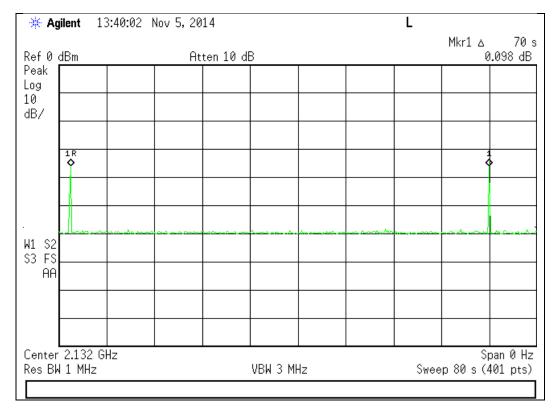
Downlink Restart Time Test Results



728 - 746 MHz Band

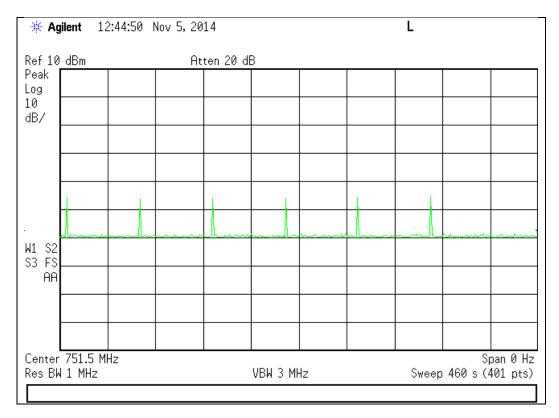
746 - 757 MHz Band



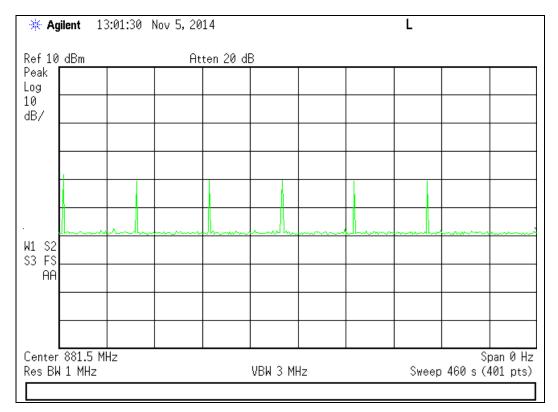


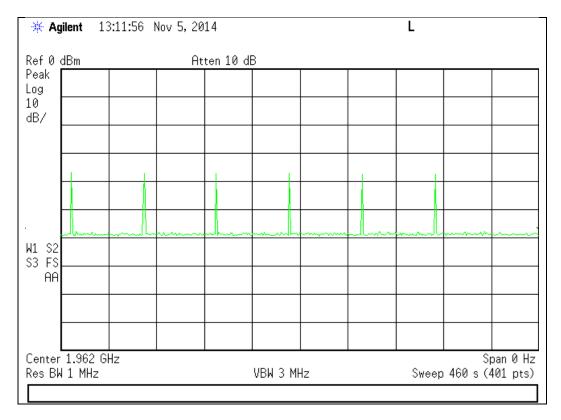
869 - 894 MHz Band



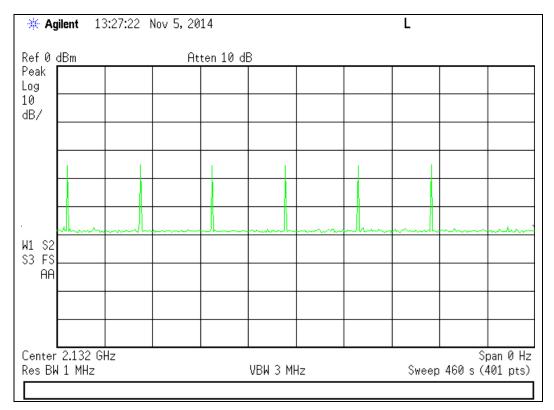

2110 - 2155 MHz Band

728 - 746 MHz Band



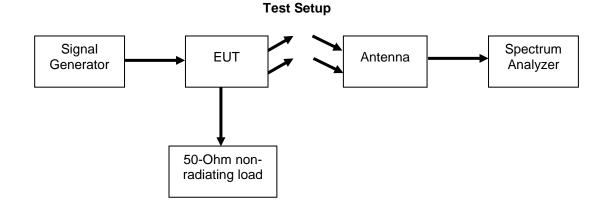


746 - 757 MHz Band



1930 - 1995 MHz Band

Radiated Spurious Engineer: Mike Graffeo Test Date: 11/6/14


Test Procedure

The EUT was tested in a semi-anechoic chamber with the turntable set 3m from the receiving antenna. A spectrum analyzer was used to verify that the EUT met the requirements for Radiated Emissions. The EUT was tested by rotating it 360 degrees with the antenna in both the vertical and horizontal orientation while raised from 1 to 4 meters to ensure that the signal levels were maximized. All cable and antenna correction factors were input into the spectrum analyzer ensuring an accurate measurement in ERP/EIRP with the resultant power in dBm. A signal generator was used to provide a CW signal centered in each operational uplink and downlink band. The EUT output was terminated into a 50 Ohm non-radiating load.

The following formula was used for calculating the limits:

Radiated Spurious Emissions Limit = P1 - (43 + 10Log(P2)) = -13dBmP1 = power in dBm

P2 = power in Watts

Uplink Test Results

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
1414	-55.21	-13	Pass
2121	-52.58	-13	Pass
2828	-44.11	-13	Pass

698 - 716 MHz Band 707 MHz Tuned Frequency

776 - 787 MHz Band 781.5 MHz Tuned Frequency

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
1563	-53.50	-13	Pass
2344.5	-49.65	-13	Pass
3126	-43.38	-13	Pass

824 - 849 MHz Band 836.5 MHz Tuned Frequency

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
1673	-56.64	-13	Pass
2509.5	-49.49	-13	Pass
3344	-44.43	-13	Pass

1710 - 1755 MHz Band 1732.5 MHz Tuned Frequency

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
3465	-47.88	-13	Pass
5197.5	-42.56	-13	Pass
6930	-38.24	-13	Pass

1850 - 1915 MHz Band 1882.5 MHz Tuned Frequency

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
3765	-45.02	-13	Pass
5647.5	-40.26	-13	Pass
7530	-32.32	-13	Pass

Downlink Test Results

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
1474	-55.58	-13	Pass
2211	-47.60	-13	Pass
2948	-46.13	-13	Pass

728 - 746 MHz Band 737 MHz Tuned Frequency

746 - 757 MHz Band 751.5 MHz Tuned Frequency

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
1503	-55.89	-13	Pass
2254.5	-49.83	-13	Pass
3006	-47.83	-13	Pass

869 - 894 MHz Band 881.5 MHz Tuned Frequency

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
1763	-55.35	-13	Pass
2644.5	-47.08	-13	Pass
3526	-47.63	-13	Pass

1930 - 1995 MHz Band 1960.5 MHz Tuned Frequency

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
3921	-42.79	-13	Pass
5881.5	-41.45	-13	Pass
7842	-33.87	-13	Pass

2110 - 2155 MHz Band 2132.5 MHz Tuned Frequency

Measured Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Result
4265	-42.03	-13	Pass
6397.5	-39.33	-13	Pass
8530	-35.05	-13	Pass

No other emissions were detected. All emissions were lower than -13 dBm. All emissions were system noise floor.

Test Equipment Utilized

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
Horn Antenna, Amplified	ARA	DRG-118/A	i00271	5/8/14	5/8/16
Bi-Log Antenna	Schaffner	CBL 6111D	i00349	10/8/13	10/8/15
Humidity / Temp Meter	Newport	IBTHX-W-5	i00282	3/24/14	3/24/15
Voltmeter	Fluke	75111	i00320	3/24/14	3/24/15
EMI Analyzer	Agilent	E7405A	i00379	1/14/14	1/14/15
Spectrum Analyzer *	Tektronix	RSA5126A	i00424	9/22/13	9/22/14
Non-radiating load	Termaline	8201	i00334	Verified on: 9/1/14	
Signal Generator	Rohde & Schwarz	SMU200A	i00405	12/11/13	12/11/14
RF Directional Coupler	Меса	CS06-1.500V	i00412	Verified c	n: 9/1/14

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

* Lab Manager has approved a 60 day extension on this piece of equipment

END OF TEST REPORT