3301 E. Deseret Drive, St. George, UT 84790
www.wilsonelectronics.com • info@wilsonelectronics.com
phone 1-800-204-4104 • fax 1-435-656-2432

November 19, 2015

To: Whom it May Concern
Subject: Calculated Mobile Station Coupling Losses (MSCL) For FCCID: PWO460008
The following formulas were used to calculate MSCL with a 1.5 ' foot path loss and a 45 degree polarity mismatch between the inside antenna and the mobile device:

Path Loss $\mathrm{dB}=36.6 \mathrm{~dB}+20 \log (F \mathrm{MHz}) \mathrm{dB}+20 \log \left(\mathrm{D}_{\text {miles }}\right) \mathrm{dB}$
Polarity Loss $\mathrm{dB}=10 \log \left(\mathrm{E}_{1} / \mathrm{E}_{2}\right)^{2} \mathrm{~dB}=\mathrm{PLdB}$
$P_{L} d B=10 \log \left(E_{1}^{2} /\left(E_{1} \operatorname{Sin}\left(45_{\text {deg }}\right)\right)^{2}\right) d B=20 \log \left(1 / \operatorname{Sin}\left(45_{\text {deg }}\right)\right) d B=3.01 d B$ Where:
E_{1} = Maximum Possible Magnitude of the Electric Field from the Mobile Device
E_{2}

MSCL dB = Path Loss dB + Polarity Loss dB - Antenna Gain dB
The results of the calculations are shown in the following table:

Uplink Center Frequency MHz	$707-710$	782	836.5	1732.5	$1880-1882.5$
Path Loss (dB)	22.69	23.53	24.12	30.44	31.16
Polarity Loss (dB)	3	3	3	3	3
Antenna Gain with Coax Loss	0.22	0.04	-1.96	-3.68	-2.10
MSCL (dB)	$\mathbf{2 5 . 4 7}$	$\mathbf{2 6 . 4 9}$	$\mathbf{2 9 . 0 8}$	$\mathbf{3 7 . 1 2}$	$\mathbf{3 6 . 2 6}$

Note: Antenna Gain with Coax Loss as measured.

Sincerely

Patrick L. Cook
Senior Electrical Engineer

