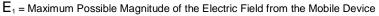


3301 E. Deseret Drive, St. George, UT 84790 www.wilsonelectronics.com • info@wilsonelectronics.com phone 1-800-204-4104 • fax 1-435-656-2432

January 23, 2014


To: Whom it May Concern

Subject: Calculated Mobile Station Coupling Losses (MSCL) For FCCID: PWO460005

The following formulas were used to calculate MSCL with a 6 foot path loss and a 45 degree polarity mismatch between the inside antenna and the mobile device:

Path Loss dB = 36.6 dB + 20Log(F MHz) dB+ 20Log(D_{miles}) dB

Polarity Loss dB = $10\text{Log}(E_1/E_2)^2$ dB = P_L dB P_L dB = $10\text{Log}(E_1^2/(E_1\text{Sin}(45_{\text{deg}}))^2)$ dB = $20\text{Log}(1/\text{Sin}(45_{\text{deg}}))$ dB = 3.01 dB Where:

 E_2 = Magnitude of the electric field from the Mobile device with a 45deg polarity mismatch = $E_1 Sin(\tau)$.

MSCL dB = Path Loss dB + Polarity Loss dB - Antenna Gain dB

The results of the calculations are shown in the following table:

Uplink Center Frequency MHz	836.5	1880-1882.5
Path Loss (dB)	36.16	43.21
Polarity Loss (dB)	3	3
Antenna Gain with Coax Loss	2.9	4.98
MSCL (dB)	36.26	41.23

Note: Antenna Gain with Coax Loss as measured.

Sincerely

Patrick L. Cook

Senior Electrical Engineer