

3301 East Deseret Drive St. George, Utah 84790 www.wilsonelectronics.com info@wilsonelectronics.com

Phone 800.204.4104 • Fax 435.656.2432

July 2, 2013

To: Whom it May Concern

Subject: Calculated Mobile Station Coupling Losses (MSCL) For FCCID: PWO460003

The following formulas were used to calculate MSCL with a 6' foot path loss and a 45 degree polarity mismatch between the inside antenna and the mobile device:

Path Loss dB = 36.6 dB + 20Log(F MHz) dB+ 20Log(D_{miles}) dB

Polarity Loss dB = $10Log(E_1/E_2)^2 dB = P_L dB$ $P_L dB = 10Log(E_1^2/(E_1Sin(45_{deg}))^2) dB = 20Log(1/Sin(45_{deg})) dB = 3.01dB$ Where:

 E_1 = Maximum Possible Magnitude of the Electric Field from the Mobile Device

 $E_{2} = \text{Magnitude of the electric field from the Mobile device with a 45deg polarity mismatch} = E_{1}Sin(\tau).$

 E_2 E_1

MSCL dB = Path Loss dB + Polarity Loss dB - Antenna Gain dB

The results of the calculations are shown in the following table:

Uplink Center Frequency MHz	707-710	782	836.5	1732.5	1880-1882.5
Path Loss (dB)	34.70	35.57	36.16	42.48	43.19
Polarity Loss (dB)	3	3	3	3	3
Antenna Gain with Coax Loss	2.8	2.76	2.9	4.98	4.98
MSCL (dB)	34.90	35.81	36.26	40.50	41.21

Sincerely

Patrick L. Cook

Senior Electrical Engineer

Form: PWO460003_MSCL 0070213