

ADDENDUM TO WILSON ELECTRONICS TEST REPORT FC08-063

FOR THE

DIRECT CONNECTION CELLULAR/PCS AMPLIFIER W/ GPS BYPASS, 2B1401

FCC PART 24 AND RSS 131 ISSUE 2

TESTING

DATE OF ISSUE: JULY 16, 2008

PREPARED FOR:

PREPARED BY:

Wilson Electronics 3301 Esast Deseret Drive St. George, UT 84790 Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

P.O. No.: PO2B1401-1

Date of test: May 22 - June 23, 2008

W.O. No.: 88034

Report No.: FC08-063A

This report contains a total of 57 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 57 Report No.: FC08-063A

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Summary of Results	4
Conditions During Testing	4
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	5
Temperature and Humidity During Testing	6
FCC 2.1033(c)(3) User's Manual	6
FCC 2.1033(c)(4) Type of Emissions	6
FCC 2.1033(c)(5) Frequency Range	6
FCC 2.1033(c)(6) Operating Power	6
FCC 2.1033(c)(8) DC Voltages	6
FCC 2.1033(c)(9) Tune-Up Procedure	6
FCC 2.1033(c)(10) Schematics and Circuitry Description	6
FCC 2.1033(c)(11) Label and Placement	6
FCC 2.1033(c)(12) Submittal Photos	6
FCC 2.1033(c)(13) Modulation Information	6
FCC 2.1033(c)(14)/2.1046/24.232 - RF Power Output	7
RSS 131 Section 6.2 Output Power	10
FCC 2.1033(c)(14)/2.1049(i) - Occupied Bandwidth	15
FCC 2.1033(c)(14)/2.1051/24.238 - Spurious Emissions at Antenna Terminal	20
FCC 2.1033(c)(14)/2.1053/24.238 - Field Strength of Spurious Radiation	24
FCC 2.1051 – Intermodulation Attenuation	27
FCC 2.1051 – Out of Band Rejection	31
FCC 2.1051/2.1053 - Block Edge	33
Input Plots	42
Output Plots	47
RSS 131 Section 6.1 Passband Bandwidth	52
RSS 131 Section 6.1 Passband Gain	55

Page 2 of 57 Report No.: FC08-063A

ADMINISTRATIVE INFORMATION

DATE OF TEST: May 22 - June 23, 2008 **DATE OF RECEIPT:** May 22, 2008

REPRESENTATIVE: Riki Kline

MANUFACTURER:TEST LOCATION:Wilson ElectronicsCKC Laboratories, Inc.3301 Esast Deseret Drive5046 Sierra Pines DriveSt. George, UT 84790Mariposa, CA 95338

FREQUENCY RANGE TESTED: 9 kHz-20 GHz

TEST METHOD: FCC Part 24, RSS 131 Issue 2 (2003) and RSS GEN Issue 2

PURPOSE OF TEST:

Original Report: To perform the testing of the Direct Connection Cellular/PCS Amplifier w/GPS Bypass, 2B1401 with the requirements for FCC Part 24 and RSS 131 devices. **Addendum A:** To correct the frequency range tested on page 25 and convert the field strength of spurious radiation data with no new testing.

APPROVALS QUALITY ASSURANCE:

Steve Behm, Director of Engineering Services

TEST PERSONNEL:

Mike Wilkinson, Senior EMC Engineer/Lab Manager

Page 3 of 57 Report No.: FC08-063A

SUMMARY OF RESULTS

Test	Specification	Results
RF Output Power	FCC 2.1033(c)(14)/2.1046/24.232 RSS 131 Section 6.2	Pass
Occupied Bandwidth	FCC 2.1033(c)(14)/2.1049(i)	Pass
Spurious Emissions at Antenna Terminal	FCC 2.1033(c)(14)/2.1051/24.238	Pass
Field Strength of Spurious Radiation	FCC 2.1033(c)(14)/2.1051/24.238	Pass
Intermodulation Attenuation	FCC 2.1051	Pass
Out of Band Rejection	FCC 2.1051	Pass
Block Edge	FCC 2.1051/2.1053	Pass
Input Plots		Pass
Output Plots		Pass
D 1 1D 1 1M	PGG 121 G 4' 6 1	D
Passband Bandwidth	RSS 131 Section 6.1	Pass
Passband Gain	RSS 131 Section 6.1	Pass

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

Page 4 of 57 Report No.: FC08-063A

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

<u>Direct Connection Cellular/PCS Amplifier w/</u>

GPS Bypass

Manuf: Wilson Electronics

Model: 2B1401

Serial: 811401A1011128467 FCC ID: PWO2B1401SA

IC: 4726A-2B1401SA

DC Power Supply

Manuf: Jentec

Model: AH1812-B

Serial: None

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Signal Generator Signal Generator

Manuf: Agilent Manuf: Gigatronics

Model: E4437B Model: 1026 Serial: MY41000126 Serial: 281701

DC Power Supply

Manuf: Topward Electric Instruments

Co., Ltd.

Model: TPS-2000 Serial: 920027

> Page 5 of 57 Report No.: FC08-063A

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

FCC 2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

FCC 2.1033 (c)(4) TYPE OF EMISSIONS

GXW, G7W, F9W

FCC 2.1033 (c)(5) FREQUENCY RANGE

Downlink 1930-1990 MHz, Uplink 1850-1910 MHz.

FCC 2.1033 (c)(6) OPERATING POWER

Downlink 22.9 mW, Uplink 933 mW.

FCC 2.1033 (c)(8) DC VOLTAGES

The necessary information is contained in a separate document.

FCC 2.1033 (c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

FCC 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

FCC 2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

FCC 2.1033 (c)(13) MODULATION INFORMATION

CDMA, EDGE, GSM, WCDMA. The base interface CDMA2000 and WCDMA modulation types tested are intended to additionally demonstrate compliance with 1xEVDO and HSPA extensions. Reference: FCC KDB Publication 935210.

Page 6 of 57 Report No.: FC08-063A

FCC 2.1033(c)(14)/2.1046/24.232 - RF POWER OUTPUT

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

Customer: Wilson Electronics
Specification: FCC 24.232 Mobil

Work Order #: 88034 Date: 5/28/2008
Test Type: Maximized Emissions Time: 09:24:49
Equipment: Direct Connection Cellular/PCS Sequence#: 2

Amplifier w/ GPS Bypass

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 2B1401

S/N: 811401A1011135889

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
Cable 2' 40 GHz	NA	01/15/2008	01/15/2010	AN03008
Astrolab				
Weinchel 10dB	C8597	11/30/2006	11/30/2008	P02139
attenuator				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Direct Connection	Wilson Electronics	2B1401	811401A1011128467
Cellular/PCS Amplifier w/			
GPS Bypass*			

Support Devices:

Function	Manufacturer	Model #	S/N	
DC Power Supply	Topward Electric	Topward Electric TPS-2000		
	Instruments Co., Ltd			
Signal Generator	Agilent	E4437B	MY41000126	
Signal Generator	Gigatronics	1026	281701	

Test Conditions / Notes:

This is a direct-connect, dual-band bi-directional amplifier for enhancing the range of cell phones, and data communication devices (computers, PDAs, etc.) in both mobile (vehicular) and in-building environments. A "GPS Bypass" is also included that amplifies GPS signals (1.575 GHz), but only in the downlink direction. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Reported power levels indicate the maximum compliant power output is reported as the maximum output power just measured at an input level just below that which will cause the EUT to automatically attenuate the input signal level. Frequency Range Investigated: Carrier. Temperature: 22.3°C, Relative Humidity: 35%. GSM/EDGE RBW = 1MHz CDMA RBW = 3 MHz WCDMA RBW = 10 MHz VBW = 3 x RBW. Combined cable and attenuator insertion loss accounted for in the measurements were: 10.1 to 10.2 dB for the frequency range of 824 to 894 MHz. 10.3 dB for the frequency range of 1850 to 1990 MHz. Reported power levels are not corrected to EIRP.

Page 7 of 57 Report No.: FC08-063A

Test Setup Photos

Page 8 of 57 Report No.: FC08-063A

Test Data

Uplink	Part	Frequency	dBm	mW
GSM Low	24	1850.29	27.3	537
GSM Mid	24	1880.00	26.8	489
GSM High	24	1909.72	26.6	457
EDGE Low	24	1850.30	27.8	603
EDGE Mid	24	1880.00	27.8	603
EDGE High	24	1909.73	27.6	575
CDMA Low	24	1853.80	29.6	912
CDMA Mid	24	1880.00	28.2	661
CDMA High	24	1906.23	27.9	617
WCDMA Low	24	1859.00	29.4	871
WCDMA Mid	24	1880.00	29.1	813
WCDMA High	24	1900.83	29.7	933

Downlink	Part	Frequency	dBm	mW
GSM Low	24	1930.28	9.3	8.51
GSM Mid	24	1960.00	9.6	9.12
GSM High	24	1989.72	8.5	7.08
EDGE Low	24	1930.28	9.4	8.71
EDGE Mid	24	1960.00	12.3	17.0
EDGE High	24	1989.72	11.1	12.9
CDMA Low	24	1931.25	11.7	14.8
CDMA Mid	24	1960.00	13.6	22.9
CDMA High	24	1988.75	12.1	16.2
WCDMA Low	24	1934.50	11.0	12.6
WCDMA Mid	24	1960.00	11.9	15.5
WCDMA High	24	1985.50	10.6	11.5

Page 9 of 57 Report No.: FC08-063A

RSS 131 SECTION 6.2 OUTPUT POWER

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

Customer: Wilson Electronics

Specification: RSS 131

 Work Order #:
 88034
 Date:
 6/2/2008

 Test Type:
 Maximized Emissions
 Time:
 13:35:00

Equipment: **Direct Connection Celluar/PCS** Sequence#: 7

Amplifier w/ GPS Bypass

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 2B1401

S/N: 811401A1011128467

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
Cable 2' 40 GHz	NA	01/15/2008	01/15/2010	AN03008
Astrolab				
Weinchel 10dB	C8597	11/30/2006	11/30/2008	P02139
attenuator				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Direct Connection	Wilson Electronics	2B1401	811401A1011128467
Celluar/PCS Amplifier w/			
GPS Bypass*			

Support Devices:

~ · · F F · · · · = · · · · · · · · ·				
Function	Manufacturer	Model #	S/N	,
DC Power Supply	Topward Electric	TPS-2000	920027	
	Instruments Co., Ltd			
Signal Generator	Agilent	E4437B	MY41000126	
Signal Generator	Gigaatrinics	1026	281701	
4 way Spliter	Motorola	None	CKC P1314	
Var Attenuator	HP	8494B	CKC 2475	

Test Conditions / Notes:

This is a direct-connect, dual-band bi-directional amplifier for enhancing the range of cell phones, and data communication devices (computers, PDAs, etc.) in both mobile (vehicular) and in-building environments. A "GPS Bypass" is also included that amplifies GPS signals (1.575 GHz), but only in the downlink direction. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. EUT is connected directly to a spectrum analyzer via suitable attenuation. Input signals are CW for Multi-Carrier Operation in accordance with RSS 131. RBW=100 kHz. Combined cable and attenuator insertion loss accounted for in the measurements were: 10.1 to 10.2 dB for the frequency range of 824 to 894 MHz. 10.3 dB for the frequency range of 1850 to 1990 Mhz. Freqency Range Investigated: Carrier. Temperature: 22.3°C, Relative Humidity: 35%.

Page 10 of 57 Report No.: FC08-063A

Band	Frequency	Power	Po+3dB	Pmean (mW)
	(MHz)	(dBm)	(dBm)	
Downlink 1900 MHz	1931.02	7.17	10.17	10.40
Downlink 1900 MHz	1931.50	7.08	10.08	10.19
Downlink 1900 MHz	1960.01	7.66	10.66	11.64
Downlink 1900 MHz	1960.49	7.67	10.67	11.67
Downlink 1900 MHz	1988.01	7.90	10.90	12.30
Downlink 1900 MHz	1988.49	7.90	10.90	12.30

Page 11 of 57 Report No.: FC08-063A

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

Customer: Wilson Electronics

Specification: RSS 131

Work Order #: 88034 Date: 6/2/2008
Test Type: Maximized Emissions Time: 09:31:50
Equipment: Direct Connection Celluar/PCS Sequence#: 6

Amplifier w/ GPS Bypass

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 2B1401

S/N: 811401A1011128467

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
Cable 2' 40 GHz	NA	01/15/2008	01/15/2010	AN03008
Astrolab				
Weinchel 10dB	C8597	11/30/2006	11/30/2008	P02139
attenuator				

Equipment Under Test (* = EUT):

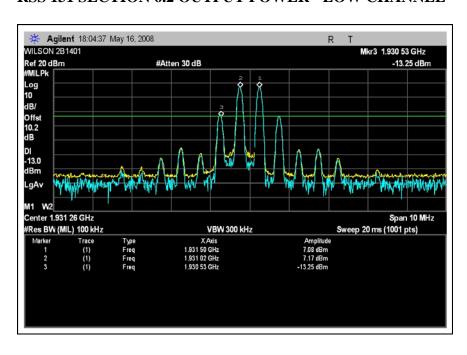
Function	Manufacturer	Model #	S/N
Direct Connection	Wilson Electronics	2B1401	811401A1011128467
Celluar/PCS Amplifier w/			
GPS Bypass*			

Support Devices:

Support 2 criters.			
Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920027
	Instruments Co., Ltd		
Signal Generator	Agilent	E4437B	MY41000126
Signal Generator	Gigaatrinics	1026	281701
4 way Spliter	Motorola	None	CKC P1314
Var Attenuator	HP	8494B	CKC 2475

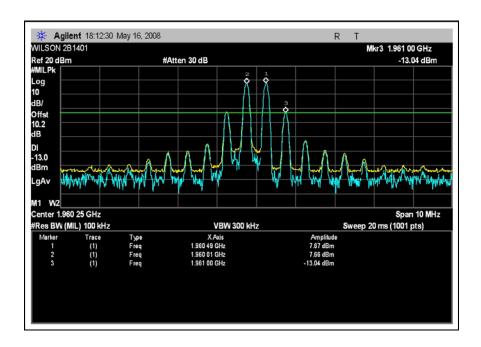
Test Conditions / Notes:

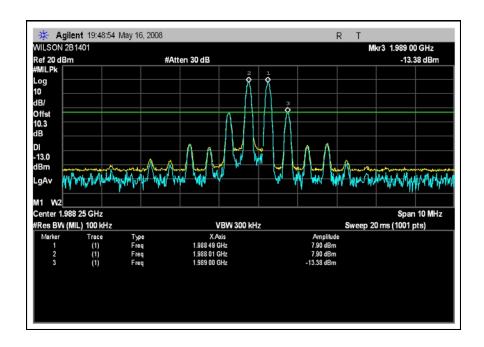
This is a direct-connect, dual-band bi-directional amplifier for enhancing the range of cell phones, and data communication devices (computers, PDAs, etc.) in both mobile (vehicular) and in-building environments. A "GPS Bypass" is also included that amplifies GPS signals (1.575 GHz), but only in the downlink direction. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. The input power level is increased until a 2 dB increase in input level results in a 1 dB increase in output level (i.e. compression begins). Frequency Range Investigated: Carrier. Temperature: 22.3°C, Relative Humidity: 35%. GSM/EDGE RBW = 1MHz CDMA RBW = 3 MHz WCDMA RBW = 10 MHz VBW = 3 x RBW. Combined cable and attenuator insertion loss accounted for in the measurements were: 10.1 to 10.2 dB for the frequency range of 824 to 894 MHz. 10.3 dB for the frequency range of 1850 to 1990 MHz.


Page 12 of 57 Report No.: FC08-063A

Uplink	RSS131	Frequency	dBm	mW
GSM Low	6.2	1850.29	29.6	912
GSM Mid	6.2	1880.00	28.1	646
GSM High	6.2	1909.72	29.5	891
EDGE Low	6.2	1850.30	29.3	851
EDGE Mid	6.2	1880.00	25.6	363
EDGE High	6.2	1909.73	24.5	282
CDMA Low	6.2	1853.80	29.4	871
CDMA Mid	6.2	1880.00	30.1	1023
CDMA High	6.2	1906.23	30.2	1047
WCDMA Low	6.2	1859.00	31.3	1348
WCDMA Mid	6.2	1880.00	30.5	1122
WCDMA High	6.2	1900.83	30.9	1230

Test Plots


RSS 131 SECTION 6.2 OUTPUT POWER - LOW CHANNEL


Page 13 of 57 Report No.: FC08-063A

RSS 131 SECTION 6.2 OUTPUT POWER - MIDDLE CHANNEL

RSS 131 SECTION 6.2 OUTPUT POWER - HIGH CHANNEL

Page 14 of 57 Report No.: FC08-063A

FCC 2.1033(c)(14)/2.1049(i)- OCCUPIED BANDWIDTH

1900 MHz OBW Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
Cable 2' 40 GHz	NA	01/15/2008	01/15/2010	AN03008
Astrolab				
Weinchel 10dB	C8597	11/30/2006	11/30/2008	P02139
attenuator				

Equipment Under Test (* = EUT):

1 1	- /:		
Function	Manufacturer	Model #	S/N
Direct Connection	Wilson Electronics	2B1401	811401A1011128467
Celluar/PCS Amplifier w/			
GPS Bypass*			

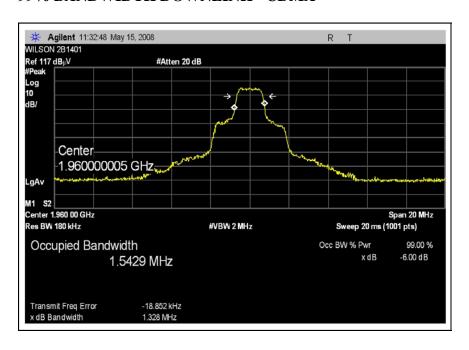
Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920027
	Instruments Co., Ltd		
Signal Generator	Agilent	E4437B	MY41000126
Signal Generator	Gigaatrinics	1026	281701

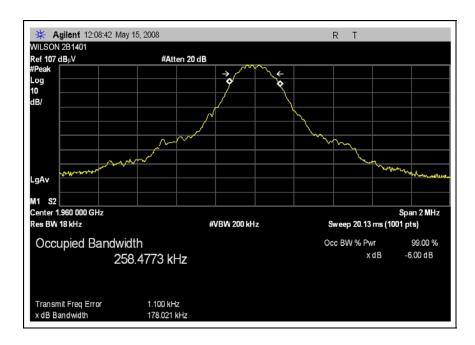
Test Conditions / Notes:

This is a direct-connect, dual-band bi-directional amplifier for enhancing the range of cell phones, and data communication devices (computers, PDAs, etc.) in both mobile (vehicular) and in-building environments. A "GPS Bypass" is also included that amplifies GPS signals (1.575 GHz), but only in the downlink direction. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Input signal level is set such that the amplifier employs maximum amplification gain. Frequency Range Investigated: Carrier Mid Channel. Temperature: 21°C, Relative Humidity: 30%.

Test Setup Photos

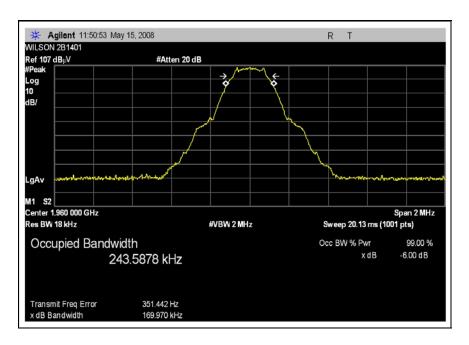


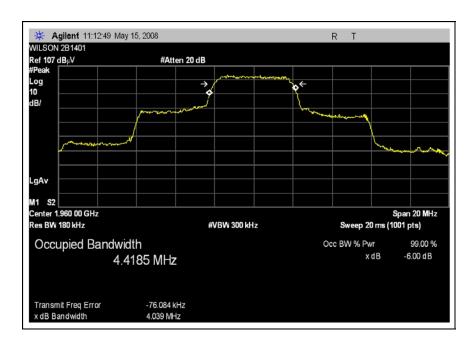
Page 15 of 57 Report No.: FC08-063A



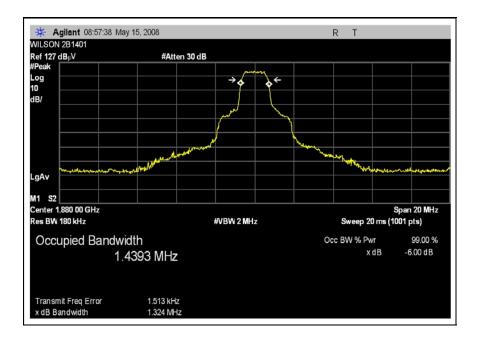
Test Plots

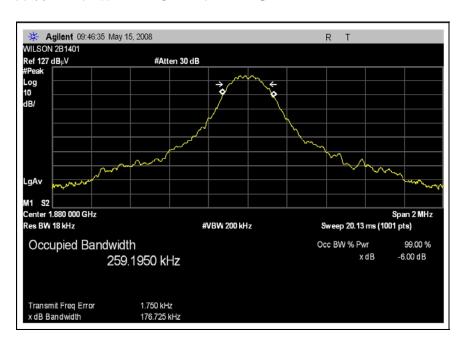
99% BANDWIDTH DOWNLINK - CDMA


99% BANDWIDTH DOWNLINK - EDGE

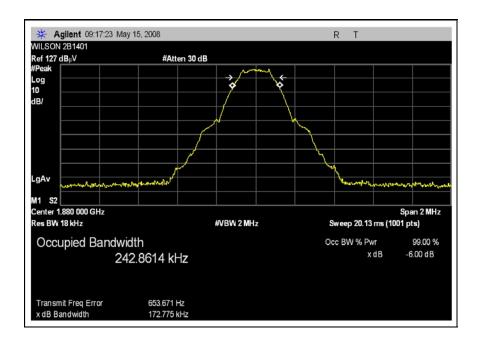

Page 16 of 57 Report No.: FC08-063A

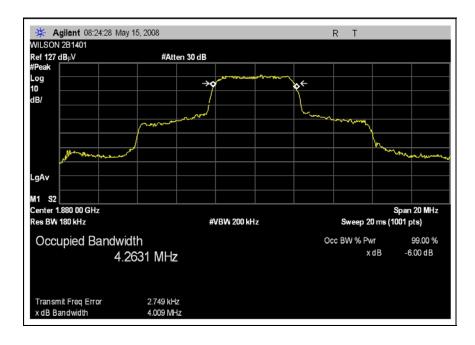
99% BANDWIDTH DOWNLINK - GSM


99% BANDWIDTH DOWNLINK - WCDMA


Page 17 of 57 Report No.: FC08-063A

99% BANDWIDTH UPLINK - CDMA


99% BANDWIDTH UPLINK - EDGE


Page 18 of 57 Report No.: FC08-063A

99% BANDWIDTH UPLINK - GSM

99% BANDWIDTH UPLINK - WCDMA

Page 19 of 57 Report No.: FC08-063A

FCC 2.1033(c)(14)/2.1051/24.238 - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

Customer: **Wilson Electronics**

FCC 24.238 Specification:

Work Order #: 88034 Date: 6/16/2008 Test Type: **Maximized Emissions** Time: 16:45:02 Equipment: **Direct Connection Cellular/PCS** Sequence#: 4

Amplifier w/ GPS Bypass

Wilson Electronics Manufacturer: Tested By: Mike Wilkinson

Model: 2B1401

S/N: 811401A1011128467

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
Cable 2' 40 GHz Astrolab	NA	01/15/2008	01/15/2010	AN03008
Weinchel 10dB attenuator	C8597	11/30/2006	11/30/2008	P02139

Equipment Under Test (* = EUT):

1 1	<i>)</i> -		
Function	Manufacturer	Model #	S/N
Direct Connection Cellular/PCS	Wilson Electronics	2B1401	811401A1011128467
Amplifier w/ GPS Bypass*			

Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920027
	Instruments Co., Ltd		
Signal Generator	Agilent	E4437B	MY41000126
Signal Generator	Gigatronics	1026	281701

Page 20 of 57 Report No.: FC08-063A

Test Conditions / Notes:

This is a direct-connect, dual-band bi-directional amplifier for enhancing the range of cell phones, and data communication devices (computers, PDAs, etc.) in both mobile (vehicular) and in-building environments. A "GPS Bypass" is also included that amplifies GPS signals (1.575 GHz), but only in the downlink direction. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Input signal level is set such that the amplifier employs maximum amplification gain. Frequency Range Investigated: 9kHz - 20GHz. Temperature: 22.3°C, Relative Humidity: 35%. GSM/EDGE RBW = 1MHz CDMA RBW = 3 MHz WCDMA RBW = 10 MHz VBW = 3 x RBW.

Transducer Legend:

T1=ATT 10d B AN02139	T2=CAB-AN03008-40GHZ-2FT

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	st Distan	ce: None		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	811.120M	68.6	+10.0	+0.5			+0.0	79.1	94.0	-14.9	None
									UL-HIGH	CH-	
									WCDMA		
2	709.250M	67.6	+10.0	+0.5			+0.0	78.1	94.0	-15.9	None
									UL-LOW	CH-	
									WCDMA		
3	819.470M	67.2	+10.0	+0.5			+0.0	77.7	94.0	-16.3	None
									UL-HIGH	CH-	
									GSM		
4	880.300M	67.0	+10.0	+0.6			+0.0	77.6	94.0	-16.4	None
									DL-MID (CH-	
									WCDMA		
5	735.000M	67.0	+10.0	+0.5			+0.0	77.5	94.0	-16.5	None
									UL-MID (CH-	
									WCDMA		
6	869.000M	66.8	+10.0	+0.5			+0.0	77.3	94.0	-16.7	None
									DL-LOW	CH-	
			100						WCDMA		
7	760.030M	66.0	+10.0	+0.5			+0.0	76.5	94.0	-17.5	None
									UL-MID (CH-	
	017 5103 6	65.0	10.0	0.5			0.0	7.60	EDGE	17.7	N.T.
8	817.510M	65.8	+10.0	+0.5			+0.0	76.3	94.0	-17.7	None
									UL-HIGH	CH-	
	056 00014	<i>(5.5.</i>	. 10.0	.0.6			. 0. 0	76.1	CDMA	17.0	NT
9	956.800M	65.5	+10.0	+0.6			+0.0	76.1	94.0	-17.9	None
									DL-HIGH WCDMA	CH-	
10	920.200M	65.5	+10.0	+0.5			+0.0	76.0	94.0	-18.0	None
10	920.200M	05.5	+10.0	+0.5			+0.0	76.0	94.0 DL-MID (None
									WCDMA	∠П-	
11	971.200M	65.4	+10.0	+0.5			+0.0	75.9	94.0	-18.1	None
11	7/1.2001VI	05.4	+10.0	+0.3			+0.0	13.9	94.0 DL-HIGH		None
									WCDMA		
12	803.500M	65.1	+10.0	+0.6			+0.0	75.7	94.0	-18.3	None
12	303.300IVI	05.1	+10.0	+0.0			+0.0	13.1	DL-LOW		None
									WCDMA	C11-	
									W CDIVIA		

13	3760.030M	65.2	+10.0	+0.5	+0.0	75.7	94.0 -18.3 UL-MID CH-GSM	None
14	716.680M	64.0	+10.0	+0.6	+0.0	74.6	94.0 -19.4	None
1 7	710.000IVI	04.0	110.0	10.0	10.0	74.0	UL-HIGH CH-	TOHE
							WCDMA	
15	615.000M	63.6	+10.0	+0.6	+0.0	74.2	94.0 -19.8	None
13	013.000WI	03.0	+10.0	+0.0	+0.0	74.2	94.0 -19.8 UL-MID CH-	None
							WCDMA	
1.6	910 470M	(2.4	+10.0	+0.5	+0.0	73.9		None
16	819.470M	63.4	+10.0	+0.5	+0.0	13.9		None
							UL-HIGH CH-	
17	5562 7503 4	(2.2	. 10.0	.0.6	. 0.0	72.0	EDGE	N.T.
1/	5563.750M	63.3	+10.0	+0.6	+0.0	/3.9	94.0 -20.1	None
							UL-LOW CH-	
10	2502 5003 5		10.0	0.7	0.0		WCDMA	
18	3702.500M	61.2	+10.0	+0.5	+0.0	/1./	94.0 -22.3	None
							UL-LOW CH-	
							CDMA	
19	3760.000M	60.8	+10.0	+0.5	+0.0	71.3	94.0 -22.7	None
							UL-MID CH-	
							CDMA	
20	5880.000M	60.6	+10.0	+0.6	+0.0	71.2		None
							DL-MID CH-	
							EDGE	
21	3862.700M	60.6	+10.0	+0.5	+0.0	71.1		None
							DL-LOW CH-	
							CDMA	
22	5966.560M	60.4	+10.0	+0.6	+0.0	71.0	94.0 -23.0	None
							DL-HIGH CH-	
							CDMA	
23	5880.075M	59.5	+10.0	+0.6	+0.0	70.1	94.0 -23.9	None
							DL-MID CH-GSM	
24	5880.400M	59.0	+10.0	+0.6	+0.0	69.6	94.0 -24.4	None
							DL-MID CH-	
							CDMA	
25	3920.300M	59.0	+10.0	+0.5	+0.0	69.5	94.0 -24.5	None
							DL-MID CH-	
							CDMA	
26	5790.810M	58.8	+10.0	+0.6	+0.0	69.4		None
							DL-LOW CH-	
							EDGE	
27	700.590M	58.7	+10.0	+0.5	+0.0	69.2	94.0 -24.8	None
							UL-LOW CH-	
							EDGE	
28	3700.575M	58.6	+10.0	+0.5	+0.0	69.1	94.0 -24.9	None
	2.00.07.0111	23.0	. 20.0	. 0.0	10.0	07.1	UL-LOW CH-GSM	1,5110
29	7958.935M	58.0	+10.1	+0.7	+0.0	68.8	94.0 -25.2	None
	1750.755141	20.0	110.1	10.7	10.0	00.0	DL-HIGH CH-	1 10110
							EDGE	
30	5969.215M	58.1	+10.0	+0.6	+0.0	68.7	94.0 -25.3	None
30	JJUJ.21J1V1	50.1	110.0	10.0	+0.0	00.7	DL-HIGH CH-	TOHC
							EDGE	
							LDUE	

Page 22 of 57 Report No.: FC08-063A

31 5640.000M 58.1 +10.0 +0.6 +0.0 68.7 49.0 -25.3 None									
STOPM	31	5640.000M	58.1	+10.0	+0.6	+0.0	68.7		None
32 3977.710M 57.8									
State								CDMA	
STEP	32	3977.710M	57.8	+10.0	+0.5	+0.0	68.3	94.0 -25.7	None
33 \$726,260M \$7.7 \$+10.0 \$+0.6 \$+0.0 \$68.3 \$94.0 \$-25.7 \$None UL-HIGH CH-CDMA \$35,74 \$+10.0 \$+0.6 \$+0.0 \$68.0 \$94.0 \$-26.0 \$None DL-LOW CH-CDMA \$35,553,750M \$7.3 \$+10.0 \$+0.6 \$+0.0 \$67.9 \$94.0 \$-26.1 \$None UL-HIGH CH-CDMA \$36 \$5969,235M \$55.8 \$+10.0 \$+0.6 \$+0.0 \$66.4 \$94.0 \$-27.6 \$None DL-HIGH CH-GSM \$38 \$3860,610M \$55.6 \$+10.0 \$+0.6 \$+0.0 \$66.2 \$94.0 \$-27.8 \$None UL-MID CH-GSM \$38 \$3860,610M \$55.4 \$+10.0 \$+0.5 \$+0.0 \$65.9 \$94.0 \$-28.1 \$None DL-MID CH-EDGE \$40 \$-28.2 \$None DL-MID CH-EDGE \$40 \$-28.2 \$None DL-MID CH-GSM \$40 \$-29.0 \$None DL-M								DL-HIGH CH-	
								CDMA	
STATE STAT	33	5726.260M	57.7	+10.0	+0.6	+0.0	68.3	94.0 -25.7	None
34 \$794,150M \$7.4 \$10.0 \$40.6 \$40.0 \$68.0 \$94.0 \$-26.0 None DL-LOW CH-CDMM \$100 \$10								UL-HIGH CH-	
Section Sect								CDMA	
Section Sect	34	5794.150M	57.4	+10.0	+0.6	+0.0	68.0	94.0 -26.0	None
S S S S S S S S S S									
35 5553.750M 57.3 +10.0 +0.6 +0.0 67.9 94.0 -26.1 None UL-LOW CH-CDMA 36 5969.235M 55.8 +10.0 +0.6 +0.0 66.4 94.0 -27.6 None DL-HIGH CH-GSM 37 5640.045M 55.6 +10.0 +0.6 +0.0 66.2 94.0 -27.8 None UL-MID CH-GSM 38 3860.610M 55.4 +10.0 +0.5 +0.0 65.9 94.0 -28.1 None DL-LOW CH-EDGE 39 3920.000M 55.3 +10.0 +0.5 +0.0 65.8 94.0 -28.2 None DL-HIGH CH-EDGE 40 3979.490M 55.1 +10.0 +0.5 +0.0 65.6 94.0 -28.4 None DL-HIGH CH-GSM 41 3860.610M 55.0 +10.0 +0.5 +0.0 65.5 94.0 -28.5 None DL-LOW CH-GSM 42 3920.050M 54.5 +10.0 +0.5 +0.0 65.5 94.0 -29.0 None DL-MID CH-GSM 43 5790.915M 54.2 +10.0 +0.6 +0.0 64.8 94.0 -29.0 None DL-LOW CH-GSM 44 5729.205M 53.7 +10.0 +0.6 +0.0 64.3 94.0 -29.7 None DL-LOW CH-GSM 45 5640.045M 53.4 +10.0 +0.6 +0.0 64.0 94.0 -30.0 None UL-HIGH CH-EDGE 46 5550.885M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 47 5550.855M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.5 None UL-HIGH CH-								CDMA	
Section Sect	35	5553.750M	57.3	+10.0	+0.6	+0.0	67.9		None
Section Sect									
36 5969.235M 55.8 +10.0 +0.6 +0.0 66.4 94.0 -27.6 None DL-HIGH CH-GSM 37 5640.045M 55.6 +10.0 +0.6 +0.0 66.2 94.0 -27.8 None UL-MID CH-GSM 38 3860.610M 55.4 +10.0 +0.5 +0.0 65.9 94.0 -28.1 None DL-LOW CH-EDGE 39 3920.000M 55.3 +10.0 +0.5 +0.0 65.8 94.0 -28.2 None DL-MID CH-EDGE 40 3979.490M 55.1 +10.0 +0.5 +0.0 65.6 94.0 -28.4 None DL-HIGH CH-GSM 41 3860.610M 55.0 +10.0 +0.5 +0.0 65.5 94.0 -28.5 None DL-LOW CH-GSM 42 3920.050M 54.5 +10.0 +0.5 +0.0 65.0 94.0 -29.0 None DL-LOW CH-GSM 43 5790.915M 54.2 +10.0 +0.6 +0.0 64.8 94.0 -29.2 None DL-LOW CH-GSM 44 5729.205M 53.7 +10.0 +0.6 +0.0 64.3 94.0 -29.7 None UL-HIGH CH-EDGE 45 5640.045M 53.4 +10.0 +0.6 +0.0 64.9 94.0 -30.0 None UL-MID CH-EDGE 46 5550.885M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-EDGE 47 5550.855M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.6 +0.0 63.5 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.6 +0.0 63.5 94.0 -30.1 None UL-HIGH CH-									
DL-HIGH CH-GSM S5.6 +10.0 +0.6 +0.0 66.2 94.0 -27.8 None UL-MID CH-GSM	36	5969 235M	55.8	+10.0	+0.6	+0.0	66.4		None
SSM S640.045M S5.6 +10.0 +0.6 +0.0 66.2 94.0 -27.8 None UL-MID CH-GSM	30	5707.255111	22.0	110.0	10.0	10.0	00.1		rtone
37 5640.045M 55.6 +10.0 +0.6 +0.0 66.2 94.0 -27.8 None UL-MID CH-GSM 38 3860.610M 55.4 +10.0 +0.5 +0.0 65.9 94.0 -28.1 None DL-LOW CH-EDGE 39 3920.000M 55.3 +10.0 +0.5 +0.0 65.8 94.0 -28.2 None DL-MID CH-EDGE 40 3979.490M 55.1 +10.0 +0.5 +0.0 65.6 94.0 -28.4 None DL-HIGH CH-GSM 41 3860.610M 55.0 +10.0 +0.5 +0.0 65.5 94.0 -28.5 None DL-LOW CH-GSM 42 3920.050M 54.5 +10.0 +0.5 +0.0 65.0 94.0 -29.0 None DL-MID CH-GSM 43 5790.915M 54.2 +10.0 +0.6 +0.0 64.8 94.0 -29.2 None DL-LOW CH-GSM 44 5729.205M 53.7 +10.0 +0.6 +0.0 64.3 94.0 -29.7 None DL-HIGH CH-EDGE 45 5640.045M 53.4 +10.0 +0.6 +0.0 64.0 94.0 -30.0 None UL-MID CH-EDGE 46 5550.885M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 47 5550.855M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.9 94.0 -30.5 None UL-HIGH CH-									
Section Sect	37	5640 045M	55.6	+10.0	+0.6	+0.0	66.2		None
38 3860.610M 55.4 +10.0 +0.5 +0.0 65.9 94.0 -28.1 None DL-LOW CH-EDGE	3,	20101012111	22.0	110.0	10.0	10.0	00.2		rvone
DL-LOW CH-EDGE	38	3860 610M	55.4	+10.0	+0.5	+0.0	65.9		None
BDGE State	30	3000.010111	33.1	110.0	10.5	10.0	03.7		Ttone
39 3920.000M 55.3									
A0 3979.490M 55.1 +10.0 +0.5 +0.0 65.6 94.0 -28.4 None DL-HIGH CH-GSM 41 3860.610M 55.0 +10.0 +0.5 +0.0 65.5 94.0 -28.5 None DL-LOW CH-GSM 42 3920.050M 54.5 +10.0 +0.5 +0.0 65.0 94.0 -29.0 None DL-MID CH-GSM 43 5790.915M 54.2 +10.0 +0.6 +0.0 64.8 94.0 -29.2 None DL-LOW CH-GSM 44 5729.205M 53.7 +10.0 +0.6 +0.0 64.8 94.0 -29.7 None UL-HIGH CH-EDGE 45 5640.045M 53.4 +10.0 +0.6 +0.0 64.0 94.0 -30.0 None UL-MID CH-EDGE 46 5550.885M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-EDGE 47 5550.855M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.5 None UL-HIGH CH-	30	3920 000M	55.3	±10.0	⊥ 0.5	±0.0	65.8		None
BDGE	37	3720.000111	33.3	110.0	10.5	10.0	05.0		TTOILC
40 3979,490M 55.1									
DL-HIGH CH-GSM	40	3979 /90M	55.1	±10.0	⊥ 0.5	±0.0	65.6		None
Alt 3860.610M 55.0 +10.0 +0.5 +0.0 65.5 94.0 -28.5 None	40	3717. 4 701 v 1	33.1	110.0	10.5	10.0	05.0		TVOILC
41 3860.610M 55.0 +10.0 +0.5 +0.0 65.5 94.0 -28.5 None DL-LOW CH-GSM 42 3920.050M 54.5 +10.0 +0.5 +0.0 65.0 94.0 -29.0 None DL-MID CH-GSM 43 5790.915M 54.2 +10.0 +0.6 +0.0 64.8 94.0 -29.2 None DL-LOW CH-GSM 44 5729.205M 53.7 +10.0 +0.6 +0.0 64.3 94.0 -29.7 None UL-HIGH CH-EDGE 45 5640.045M 53.4 +10.0 +0.6 +0.0 63.9 94.0 -30.0 None UL-MID CH-EDGE 46 5550.885M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 47 5550.855M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.5 None UL-HIG									
A2 3920.050M 54.5 +10.0 +0.5 +0.0 65.0 94.0 -29.0 None	41	3860 610M	55.0	+10.0	10.5	100	65.5		None
42 3920.050M 54.5 +10.0 +0.5 +0.0 65.0 94.0 -29.0 None DL-MID CH-GSM 43 5790.915M 54.2 +10.0 +0.6 +0.0 64.8 94.0 -29.2 None DL-LOW CH-GSM 44 5729.205M 53.7 +10.0 +0.6 +0.0 64.3 94.0 -29.7 None UL-HIGH CH-EDGE 45 5640.045M 53.4 +10.0 +0.6 +0.0 64.0 94.0 -30.0 None UL-MID CH-EDGE 46 5550.885M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-EDGE 47 5550.855M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.5 None UL-HIGH CH-	71	3000.010W	33.0	+10.0	±0.5	+0.0	05.5		None
DL-MID CH-GSM S4.2 +10.0 +0.6 +0.0 64.8 94.0 -29.2 None	42	3020 050M	54.5	100	10.5	100	65.0		None
43 5790.915M 54.2 +10.0 +0.6 +0.0 64.8 94.0 -29.2 None DL-LOW CH-GSM 44 5729.205M 53.7 +10.0 +0.6 +0.0 64.3 94.0 -29.7 None UL-HIGH CH-EDGE 45 5640.045M 53.4 +10.0 +0.6 +0.0 64.0 94.0 -30.0 None UL-MID CH-EDGE 46 5550.885M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-EDGE 47 5550.855M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.5 None UL-HIGH CH-	42	3920.030W	34.3	+10.0	+0.5	+0.0	05.0		None
A4 5729.205M 53.7 +10.0 +0.6 +0.0 64.3 94.0 -29.7 None UL-HIGH CH-EDGE	12	5700 015M	54.2	+10.0	10.6	+ O O	610		Mono
44 5729.205M 53.7 +10.0 +0.6 +0.0 64.3 94.0 -29.7 None UL-HIGH CH-EDGE 45 5640.045M 53.4 +10.0 +0.6 +0.0 64.0 94.0 -30.0 None UL-MID CH-EDGE 46 5550.885M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-EDGE 47 5550.855M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.5 None UL-HIGH CH-	43	3/90.913WI	34.2	+10.0	+∪.0	+0.0	04.8		none
UL-HIGH CH-EDGE	4.4	5720 205M	527	+10.0	10.6	.00	612		Morra
## EDGE ### 45 5640.045M ### 53.4 ### 10.0 ### 1	44	3129.203M	33./	+10.0	+0.6	+0.0	04.3		none
45 5640.045M 53.4 +10.0 +0.6 +0.0 64.0 94.0 -30.0 None UL-MID CH-EDGE 46 5550.885M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-EDGE 47 5550.855M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.5 None UL-HIGH CH-									
UL-MID CH-EDGE 46 5550.885M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-EDGE 47 5550.855M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.5 None UL-HIGH CH-	4.5	5C40.04534	F2 4	. 10.0	.0.6	.00	(4.0		Mani
## EDGE 46 5550.885M 53.3 40.0 40.0 53.9 40.0	45	304U.U45M	55.4	+10.0	+0.6	+0.0	64.0		None
46 5550.885M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-EDGE 47 5550.855M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.5 None UL-HIGH CH-									
UL-LOW CH-EDGE 47 5550.855M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.5 None UL-HIGH CH-	4.0	EEE0 00534	<i>5</i> 2.2	. 10.0	.0.6	.00	(2.0		NT.
## EDGE 47 5550.855M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None ## VIL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.5 None UL-HIGH CH-	46	M688.0666	53.3	+10.0	+0.6	+0.0	63.9		None
47 5550.855M 53.3 +10.0 +0.6 +0.0 63.9 94.0 -30.1 None UL-LOW CH-GSM 48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.5 None UL-HIGH CH-									
48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.5 None UL-HIGH CH-			50.0	10.0	0.5	2.2	62.0		3.7
48 5729.205M 52.9 +10.0 +0.6 +0.0 63.5 94.0 -30.5 None UL-HIGH CH-	47	5550.855M	53.3	+10.0	+0.6	+0.0	63.9		None
UL-HIGH CH-									
	48	5729.205M	52.9	+10.0	+0.6	+0.0	63.5		None
GSM									
								GSM	

$\underline{FCC~2.1033(c)(14)/2.1053/24.238}~\underline{FIELD~STRENGTH~OF~SPURIOUS~RADIATION}$

Test Setup Photos

Page 24 of 57 Report No.: FC08-063A

Test Data Sheets

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

Customer: Wilson Electronics

Specification: 24.238

Work Order #: 88034 Date: 6/23/2008
Test Type: Maximized Emissions Time: 15:20:53
Equipment: Direct Connection Cellular/PCS Sequence#: 14

Amplifier w/ GPS Bypass

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 2B1401

S/N: 811401A1011128467

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
Chase CBL6111C Bilog	2456	12/30/2006	12/30/2008	01991
HP 8447D Preamp	1937A02604	03/14/2007	03/14/2009	00099
3M SITE CABLE 20GHZ	NA	03/06/2008	03/06/2010	SITED3M1
Andrews Hardline (25')	CKC 1012	04/23/2007	04/23/2009	P01012
EMCO 3115 Horn	9307-4085	03/17/2007	03/17/2009	00656
Antenna				
ARA MWH-1826/B Horn	1005	11/26/2006	11/26/2008	02046
Antenna				
HP 8449B Preamp	3008A00301	12/13/2006	12/13/2008	2010
Mag Loop Antenna	1074	5/1/2007	5/1/2009	00226

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Direct Connection	Wilson Electronics	2B1401	811401A1011128467
Cellular/PCS Amplifier w/			
GPS Bypass*			
DC Power Supply	Jentec	AH1812-B	None

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	Agilent	E4437B	MY41000126
Signal Generator	Gigatronics	1026	281701

Test Conditions / Notes:

This is a direct-connect, dual-band bi-directional amplifier for enhancing the range of cell phones, and data communication devices (computers, PDAs, etc.) in both mobile (vehicular) and in-building environments. A "GPS Bypass" is also included that amplifies GPS signals (1.575 GHz), but only in the downlink direction. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT RF output ports are terminated in 50 Ohms. An input level just below that which will cause the EUT to automatically attenuate the input signal level was applied to the inputs. Modulation is CW (worst case). Uplink & Downlink Paths tested as noted in the data. Low, Mid and High channels tested as noted in the data. Frequency Range Investigated: 8 to 20000 MHz. Temperature: 22.3°C, Relative Humidity: 35%. RBW=100 kHz VBW 300 kHz.

Page 25 of 57 Report No.: FC08-063A

Operating Frequency: <u>1850-1910 M</u>Hz and 1930-1990 MHz

Channels: Low, Mid and High

Highest Measured Output Power: 29.70 ERP(dBm)= 0.933 ERP(Watts)

Distance: 3 meters

Limit: 43+10Log(P) 42.70 dBc

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
11,279.99	-47.5	Vert	77.20
11,279.99	-47.6	Horiz	77.30
9,400.00	-49.1	Vert	78.80
3,700.56	-49.9	Vert	79.60
9,400.00	-51.7	Horiz	81.40
5,640.00	-51.9	Horiz	81.60
7,520.00	-52.9	Vert	82.60
5,550.84	-53.9	Horiz	83.60
3,860.56	-54	Horiz	83.70
7,721.12	-54.1	Vert	83.80
7,721.12	-54.5	Horiz	84.20
5,640.00	-55.2	Vert	84.90
3,760.00	-55.4	Horiz	85.10
7,401.12	-55.4	Horiz	85.10
7,401.12	-55.7	Vert	85.40
3,860.56	-56.6	Vert	86.30
7,520.00	-57.3	Horiz	87.00
3,700.56	-57.6	Horiz	87.30
3,920.00	-58.7	Vert	88.40
3,920.00	-59.4	Horiz	89.10
3,979.44	-60.4	Horiz	90.10
3,979.43	-60.5	Vert	90.20
5,969.15	-61.2	Vert	90.90
5,880.00	-61.6	Vert	91.30
5,969.15	-61.7	Horiz	91.40
5,880.00	-62.1	Horiz	91.80
5,550.84	-62.3	Vert	92.00
5,790.84	-62.3	Horiz	92.00
3,760.00	-62.6	Vert	92.30
5,669.72	-63	Horiz	92.70
5,669.72	-63.5	Vert	93.20
3,789.72	-65.2	Vert	94.90
3,789.72	-65.8	Horiz	95.50

Page 26 of 57 Report No.: FC08-063A

FCC 2.1051 – INTERMODULATION ATTENUATION

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

Customer: Wilson Electronics

Specification: 24.238

Work Order #: 88034 Date: 6/3/2008
Test Type: Maximized Emissions Time: 13:27:41
Equipment: Direct Connection Cellular/PCS Sequence#: 7

Amplifier w/ GPS Bypass

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 2B1401

S/N: 811401A1011128467

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
Cable 2' 40 GHz	NA	01/15/2008	01/15/2010	AN03008
Astrolab				
Weinchel 10dB	C8597	11/30/2006	11/30/2008	P02139
attenuator				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N		
Direct Connection	Wilson Electronics	2B1401	811401A1011128467		
Cellular/PCS Amplifier w/					
GPS Bypass*					

Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920027
	Instruments Co., Ltd		
Signal Generator	Agilent	E4437B	MY41000126
Signal Generator	Gigatronics	1026	281701

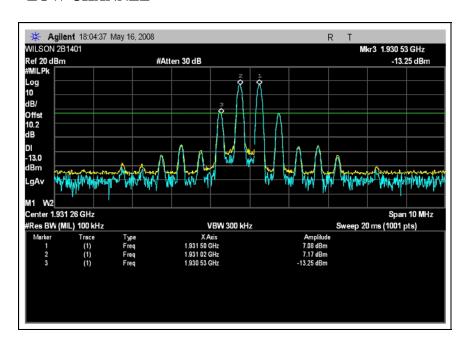
Test Conditions / Notes:

This is a direct-connect, dual-band bi-directional amplifier for enhancing the range of cell phones, and data communication devices (computers, PDAs, etc.) in both mobile (vehicular) and in-building environments. A "GPS Bypass" is also included that amplifies GPS signals (1.575 GHz), but only in the downlink direction. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Combined cable and attenuator insertion loss accounted for in the measurements were: 10.1 to 10.2 dB for the frequency range of 824 to 894 MHz. 10.3 dB for the frequency range of 1850 to 1990 MHz. Freqency Range Investigated: 9kHz - 20 GHz. Temperature: 22.3°C, Relative Humidity: 35%. RBW=100kHz.

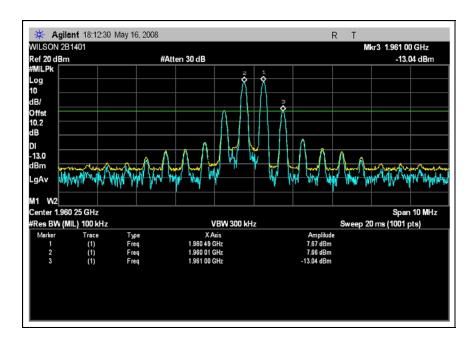
Page 27 of 57 Report No.: FC08-063A

Measu	rement Data:	Re	Reading listed by margin.			Test Distance: None					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	1961.000M	-13.1					+0.0	-13.1	-13.0	-0.1	None
									DL-MID	CH	
2	1930.530M	-13.3					+0.0	-13.3	-13.0	-0.3	None
									DL-LOW	'CH	
3	1989.000M	-13.4	<u> </u>				+0.0	-13.4	-13.0	-0.4	None
									DL-HIGH	CH	

Test Setup Photos

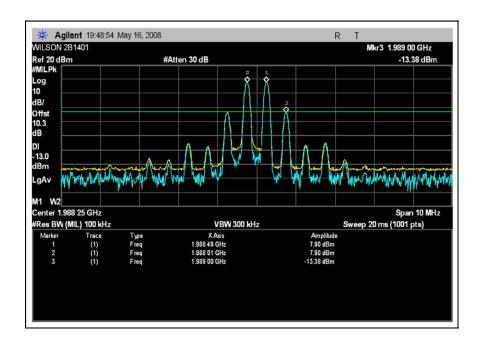


Page 28 of 57 Report No.: FC08-063A



Test Plots

FCC 24.238 INTERMODULATION ATTENUATION DOWNLINK - LOW CHANNEL


FCC 24.238 INTERMODULATION ATTENUATION DOWNLINK - MIDDLE CHANNEL

Page 29 of 57 Report No.: FC08-063A

FCC 24.238 INTERMODULATION ATTENUATION DOWNLINK - HIGH CHANNEL

Page 30 of 57 Report No.: FC08-063A

FCC 2.1051 – OUT OF BAND REJECTION

1900 MHz OOBG Plots Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
Cable 2' 40 GHz	NA	01/15/2008	01/15/2010	AN03008
Astrolab				
Weinchel 10dB	C8597	11/30/2006	11/30/2008	P02139
attenuator				

Equipment Under Test (* = EUT):

1 1	- /-		
Function	Manufacturer	Model #	S/N
Direct Connection	Wilson Electronics	2B1401	811401A1011128467
Celluar/PCS Amplifier w/			
GPS Bypass*			

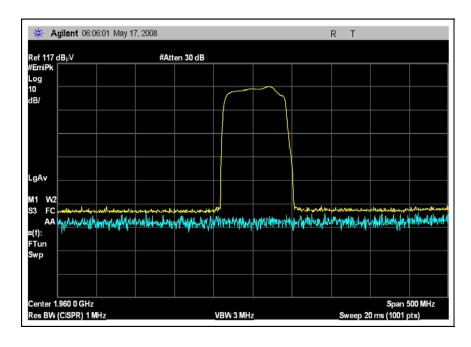
Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920027
	Instruments Co., Ltd		
Signal Generator	Agilent	E4437B	MY41000126
Signal Generator	Gigaatrinics	1026	281701

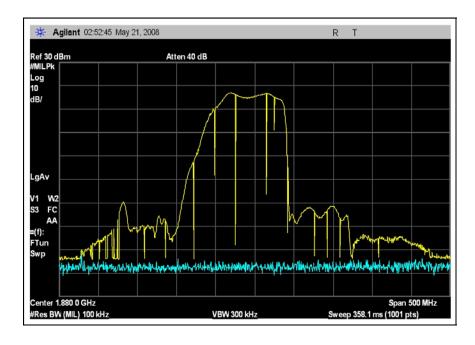
Test Conditions / Notes:

This is a direct-connect, dual-band bi-directional amplifier for enhancing the range of cell phones, and data communication devices (computers, PDAs, etc.) in both mobile (vehicular) and in-building environments. A "GPS Bypass" is also included that amplifies GPS signals (1.575 GHz), but only in the downlink direction. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Temperature: 22.3°C, Relative Humidity: 35%. RBW=100kHz. Signal generator input signal used is CW and is swept to provide out of band and passband spectrum characteristics.. Frequency Range Investigated: See provide plots (frequency spectrum investigated up to three times the indicated span).

Test Setup Photos



Page 31 of 57 Report No.: FC08-063A



Test Plots

OUT OF BAND REJECTION DOWNLINK

OUT OF BAND REJECTION UPLINK

Page 32 of 57 Report No.: FC08-063A

FCC 2.1051/2.1053 - BLOCK EDGE

1900 MHz BAND EDGE Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
Cable 2' 40 GHz	NA	01/15/2008	01/15/2010	AN03008
Astrolab				
Weinchel 10dB	C8597	11/30/2006	11/30/2008	P02139
attenuator				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Direct Connection	Wilson Electronics	2B1401	811401A1011128467
Celluar/PCS Amplifier w/			
GPS Bypass*			

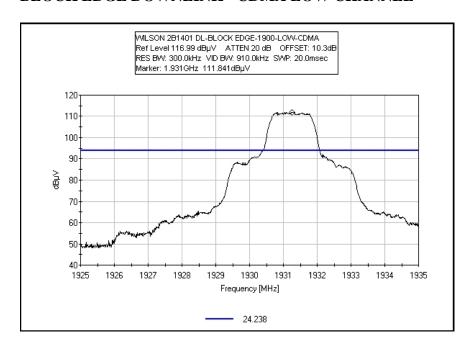
Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920027
	Instruments Co., Ltd		
Signal Generator	Agilent	E4437B	MY41000126
Signal Generator	Gigaatrinics	1026	281701

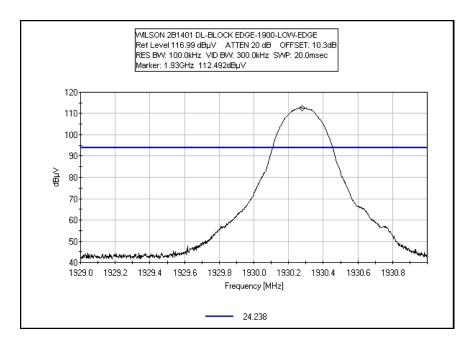
Test Conditions / Notes:

This is a direct-connect, dual-band bi-directional amplifier for enhancing the range of cell phones, and data communication devices (computers, PDAs, etc.) in both mobile (vehicular) and in-building environments. A "GPS Bypass" is also included that amplifies GPS signals (1.575 GHz), but only in the downlink direction. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Input signal level is set such that the amplifier employs maximum amplification gain. Frequency Range Investigated: Carrier Mid Channel. Temperature: 21°C, Relative Humidity: 30%.

Test Setup Photos

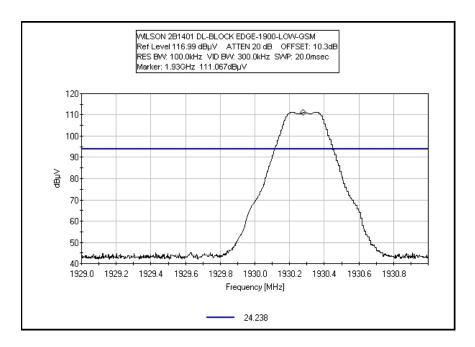


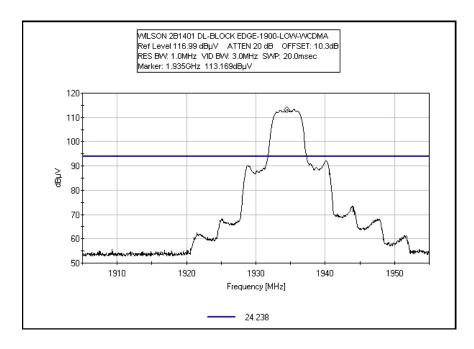
Page 33 of 57 Report No.: FC08-063A



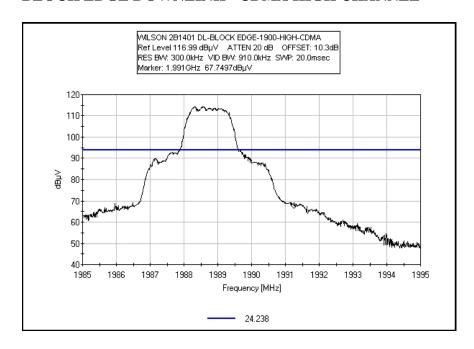
Test Plots

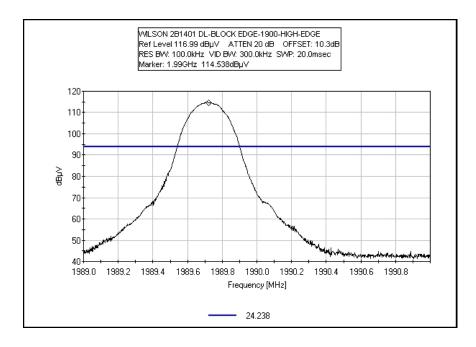
BLOCK EDGE DOWNLINK - CDMA LOW CHANNEL


BLOCK EDGE DOWNLINK - EDGE LOW CHANNEL

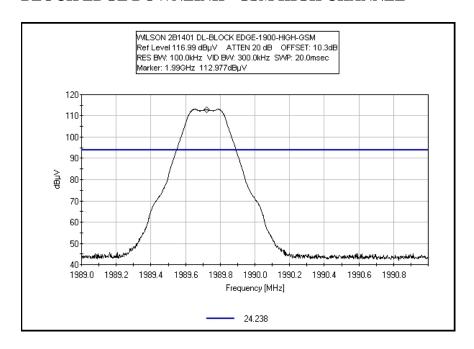

Page 34 of 57 Report No.: FC08-063A

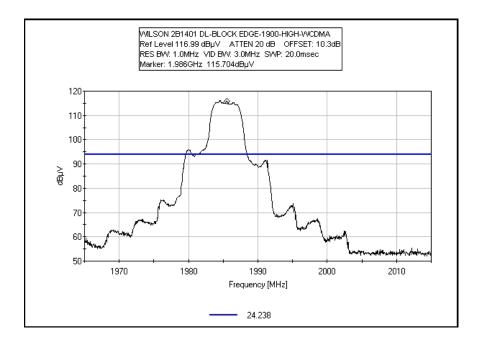
BLOCK EDGE DOWNLINK - GSM LOW CHANNEL


BLOCK EDGE DOWNLINK - WCDMA LOW CHANNEL

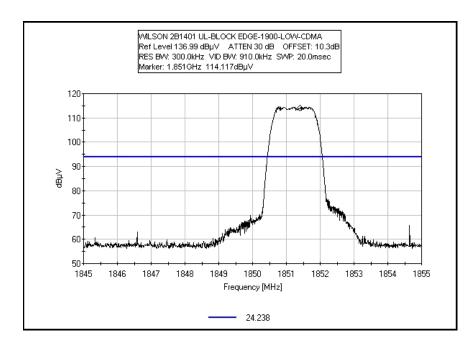

Page 35 of 57 Report No.: FC08-063A

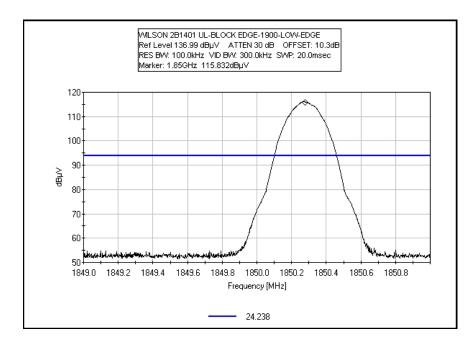
BLOCK EDGE DOWNLINK - CDMA HIGH CHANNEL


BLOCK EDGE DOWNLINK - EDGE HIGH CHANNEL

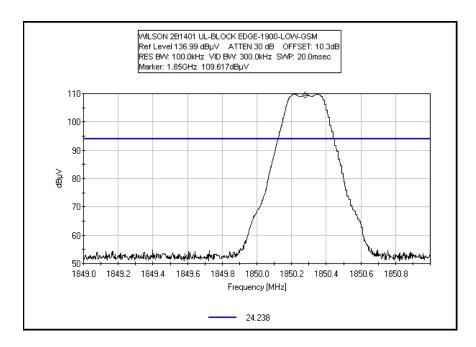

Page 36 of 57 Report No.: FC08-063A

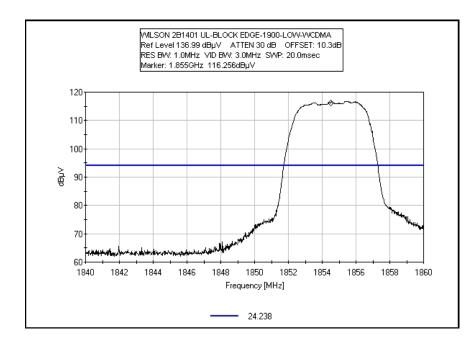
BLOCK EDGE DOWNLINK - GSM HIGH CHANNEL


BLOCK EDGE DOWNLINK - WCDMA HIGH CHANNEL

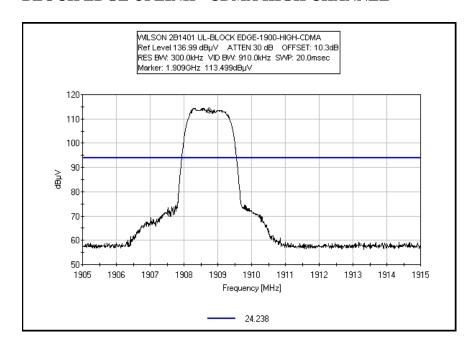

Page 37 of 57 Report No.: FC08-063A

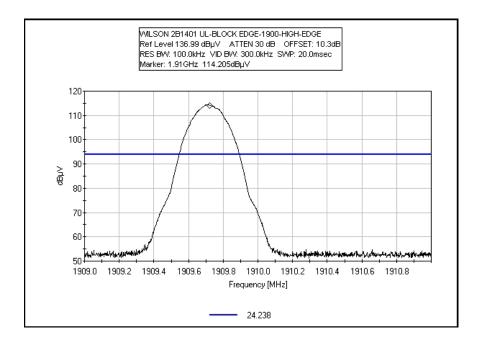
BLOCK EDGE UPLINK - CDMA LOW CHANNEL


BLOCK EDGE UPLINK - EDGE LOW CHANNEL

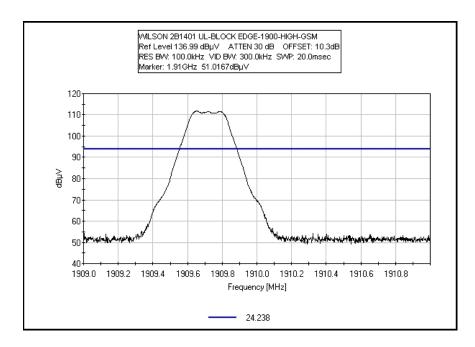

Page 38 of 57 Report No.: FC08-063A

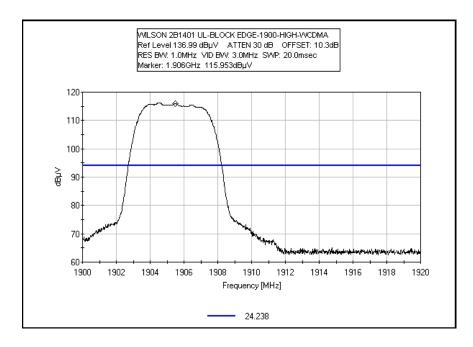
BLOCK EDGE UPLINK - GSM LOW CHANNEL


BLOCK EDGE UPLINK - WCDMA LOW CHANNEL


Page 39 of 57 Report No.: FC08-063A

BLOCK EDGE UPLINK - CDMA HIGH CHANNEL


BLOCK EDGE UPLINK - EDGE HIGH CHANNEL


Page 40 of 57 Report No.: FC08-063A

BLOCK EDGE UPLINK - GSM HIGH CHANNEL

BLOCK EDGE UPLINK - WCDMA HIGH CHANNEL

Page 41 of 57 Report No.: FC08-063A

INPUT PLOTS

1900 MHz INPUT PLOTS Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
Cable 2' 40 GHz	NA	01/15/2008	01/15/2010	AN03008
Astrolab				
Weinchel 10dB	C8597	11/30/2006	11/30/2008	P02139
attenuator				

Equipment Under Test (* = EUT):

(/ -		
Function	Manufacturer	Model #	S/N
Direct Connection	Wilson Electronics	2B1401	811401A1011128467
Celluar/PCS Amplifier w/			
GPS Bypass*			

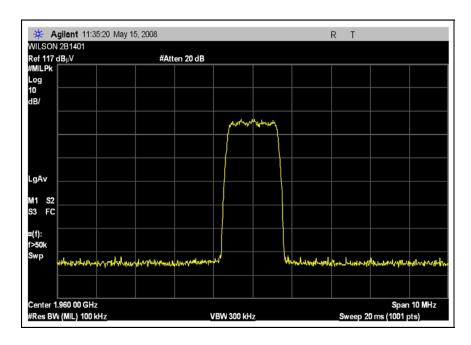
Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920027
	Instruments Co., Ltd		
Signal Generator	Agilent	E4437B	MY41000126
Signal Generator	Gigaatrinics	1026	281701

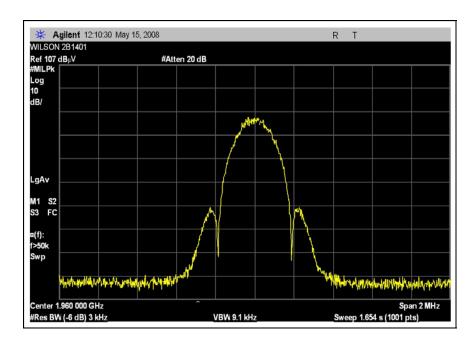
Test Conditions / Notes:

This is a direct-connect, dual-band bi-directional amplifier for enhancing the range of cell phones, and data communication devices (computers, PDAs, etc.) in both mobile (vehicular) and in-building environments. A "GPS Bypass" is also included that amplifies GPS signals (1.575 GHz), but only in the downlink direction. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. Input and output plots do not provide information regarding amplifier gain and the signal levels used vary significantly. For output plots, EUT is connected directly to a spectrum analyzer via suitable attenuation. Input signal level is set such that the amplifier employs maximum amplification gain. For input plots, signal generator is connected directly to spectrum analyzer without external attenuation. The signal generator level is adjusted to provide appropriate display of input signal spectral characteristics. Frequency Range Investigated: Carrier. Temperature: 22.3°C, Relative Humidity: 35%.

Test Setup Photos

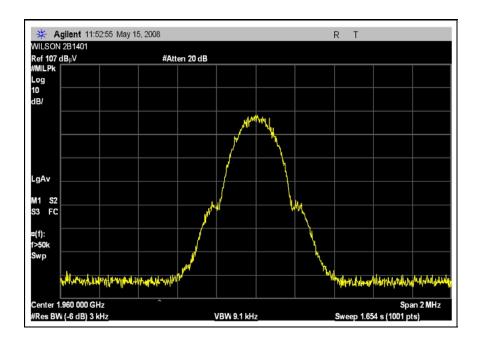


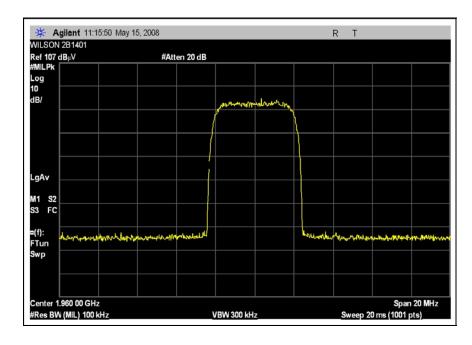
Page 42 of 57 Report No.: FC08-063A



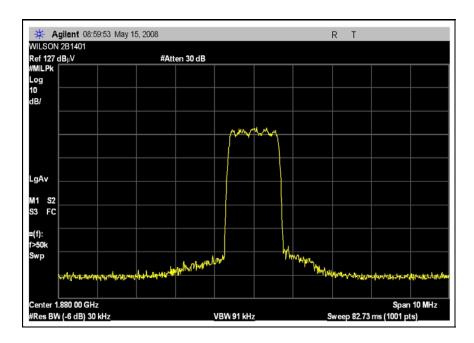
Test Plots

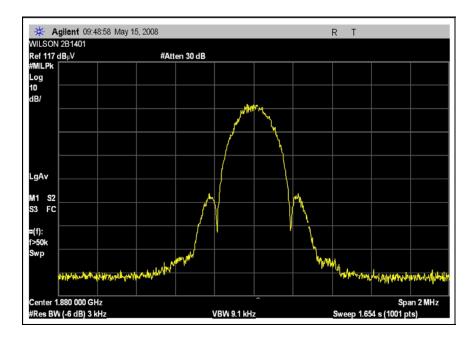
INPUT PLOT DOWNLINK - CDMA


INPUT PLOT DOWNLINK - EDGE

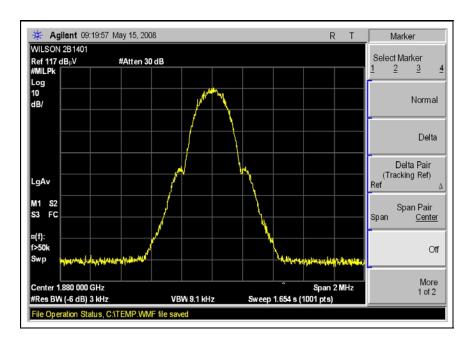

Page 43 of 57 Report No.: FC08-063A

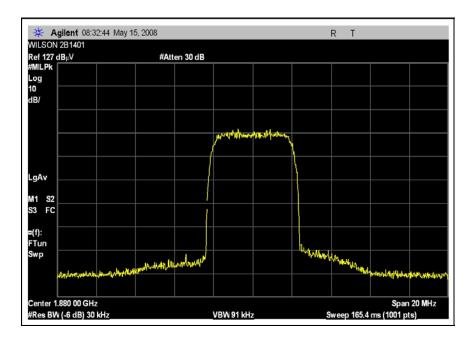
INPUT PLOT DOWNLINK - GSM


INPUT PLOT DOWNLINK - WCDMA


Page 44 of 57 Report No.: FC08-063A

INPUT PLOT UPLINK - CDMA


INPUT PLOT UPLINK - EDGE


Page 45 of 57 Report No.: FC08-063A

INPUT PLOT UPLINK - GSM

INPUT PLOT UPLINK - WCDMA

Page 46 of 57 Report No.: FC08-063A

OUTPUT PLOTS

1900 MHz INPUT & OUTPUT PLOTS Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660	
Cable 2' 40 GHz Astrolab	NA	01/15/2008	01/15/2010	AN03008	
Weinchel 10dB attenuator	C8597	11/30/2006	11/30/2008	P02139	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Direct Connection	Wilson Electronics	2B1401	811401A1011128467
Celluar/PCS Amplifier w/			
GPS Bypass*			

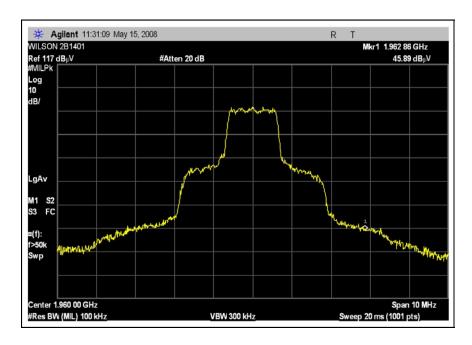
Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920027
	Instruments Co., Ltd		
Signal Generator	Agilent	E4437B	MY41000126
Signal Generator	Gigaatrinics	1026	281701

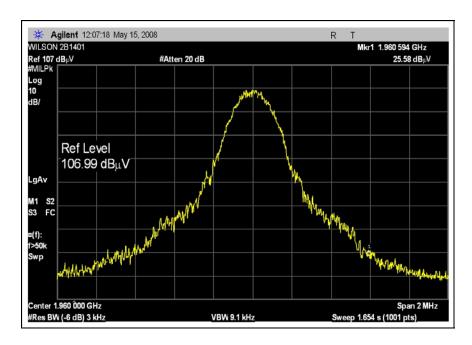
Test Conditions / Notes:

This is a direct-connect, dual-band bi-directional amplifier for enhancing the range of cell phones, and data communication devices (computers, PDAs, etc.) in both mobile (vehicular) and in-building environments. A "GPS Bypass" is also included that amplifies GPS signals (1.575 GHz), but only in the downlink direction. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. Input and output plots do not provide information regarding amplifier gain and the signal levels used vary significantly. For output plots, EUT is connected directly to a spectrum analyzer via suitable attenuation. Input signal level is set such that the amplifier employs maximum amplification gain. For input plots, signal generator is connected directly to spectrum analyzer without external attenuation. The signal generator level is adjusted to provide appropriate display of input signal spectral characteristics. Frequency Range Investigated: Carrier. Temperature: 22.3°C, Relative Humidity: 35%.

Test Setup Photos

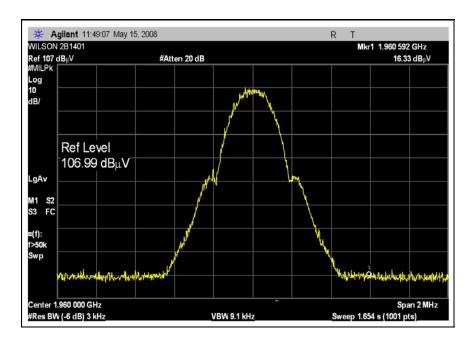


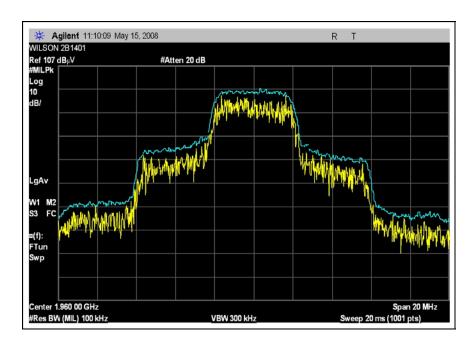
Page 47 of 57 Report No.: FC08-063A



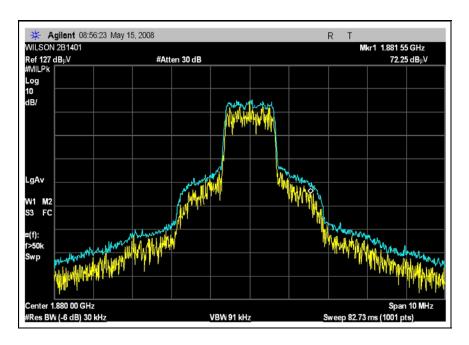
Test Plots

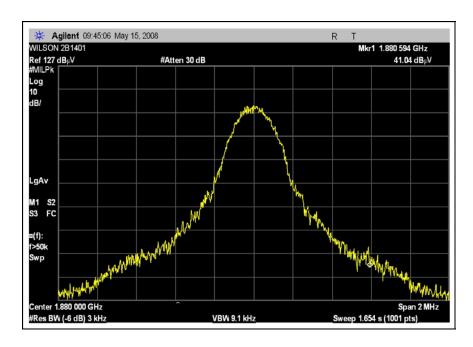
OUTPUT PLOT DOWNLINK - CDMA


OUTPUT PLOT DOWNLINK - EDGE

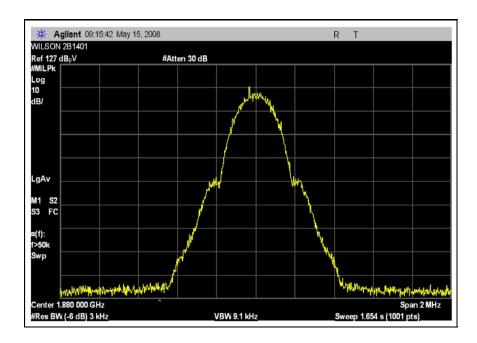

Page 48 of 57 Report No.: FC08-063A

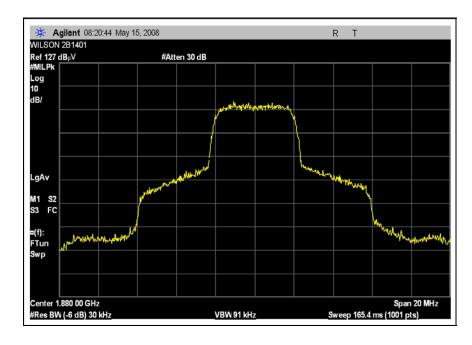
OUTPUT PLOT DOWNLINK - GSM


OUTPUT PLOT DOWNLINK - WCDMA


Page 49 of 57 Report No.: FC08-063A

OUTPUT PLOT UPLINK - CDMA


OUTPUT PLOT UPLINK - EDGE


Page 50 of 57 Report No.: FC08-063A

OUTPUT PLOT UPLINK - GSM

OUTPUT PLOT UPLINK - WCDMA

Page 51 of 57 Report No.: FC08-063A

RSS 131 SECTION 6.1 PASSBAND BANDWIDTH

RSS131 Passband Bandwidth Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
Cable 2' 40 GHz	NA	01/15/2008	01/15/2010	AN03008
Astrolab				
Weinchel 10dB	C8597	11/30/2006	11/30/2008	P02139
attenuator				

Equipment Under Test (* = EUT):

(— / -		
Function	Manufacturer	Model #	S/N
Direct Connection	Wilson Electronics	2B1401	811401A1011128467
Celluar/PCS Amplifier w/			
GPS Bypass*			

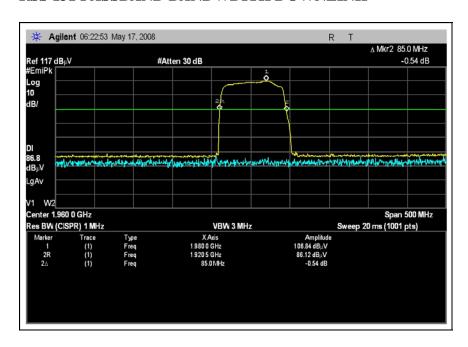
Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920027
	Instruments Co., Ltd		
Signal Generator	Agilent	E4437B	MY41000126
Signal Generator	Gigaatrinics	1026	281701

Test Conditions / Notes:

This is a direct-connect, dual-band bi-directional amplifier for enhancing the range of cell phones, and data communication devices (computers, PDAs, etc.) in both mobile (vehicular) and in-building environments. A "GPS Bypass" is also included that amplifies GPS signals (1.575 GHz), but only in the downlink direction. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Temperature: 22.3°C, Relative Humidity: 35%. RBW=100kHz. Signal generator input signal used is CW and is swept to provide amplification and bandwidth plots. Amplifier Gain is measured from the maximum output level to the input signal level. The input signal level is adjusted 3dB below the point at which the amplifier attenuates an input signal in the midband of the amplifier path. Passbandwidth is measured 20dBc from the maximum output level using the same settings as listed above. Frequency Range Investigated: See provide plots (frequency spectrum investigated up to three times the indicated span).

Page 52 of 57 Report No.: FC08-063A



Test Setup Photos

Test Plots

RSS 131 PASSBAND BANDWDITH DOWNLINK

RSS 131 PASSBAND BANDWDITH UPLINK

Page 54 of 57 Report No.: FC08-063A

RSS 131 SECTION 6.1 PASSBAND GAIN

RSS131 Passband Gain Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
Cable 2' 40 GHz	NA	01/15/2008	01/15/2010	AN03008
Astrolab				
Weinchel 10dB	C8597	11/30/2006	11/30/2008	P02139
attenuator				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Direct Connection	Wilson Electronics	2B1401	811401A1011128467
Celluar/PCS Amplifier w/			
GPS Bypass*			

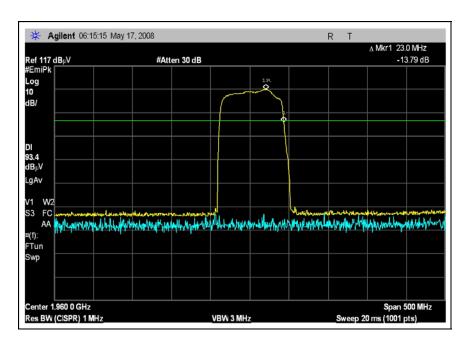
Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920027
	Instruments Co., Ltd		
Signal Generator	Agilent	E4437B	MY41000126
Signal Generator	Gigaatrinics	1026	281701

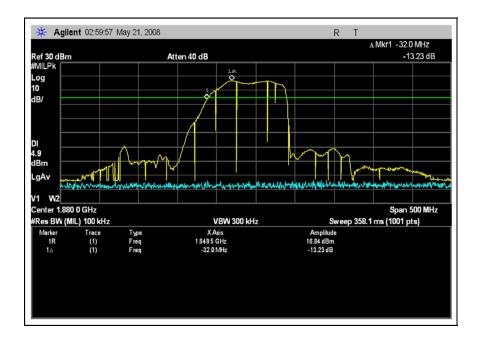
Test Conditions / Notes:

This is a direct-connect, dual-band bi-directional amplifier for enhancing the range of cell phones, and data communication devices (computers, PDAs, etc.) in both mobile (vehicular) and in-building environments. A "GPS Bypass" is also included that amplifies GPS signals (1.575 GHz), but only in the downlink direction. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Temperature: 22.3°C, Relative Humidity: 35%. RBW=100kHz. Signal generator input signal used is CW and is swept to provide amplification and bandwidth plots. Amplifier Gain is measured from the maximum output level to the input signal level. The input signal level is adjusted 3dB below the point at which the amplifier attenuates an input signal in the midband of the amplifier path. Passbandwidth is measured 20dBc from the maximum output level using the same settings as listed above. Frequency Range Investigated: See provide plots (frequency spectrum investigated up to three times the indicated span).

Page 55 of 57 Report No.: FC08-063A



Test Setup Photos


Test Plots

RSS 131 PASSBAND GAIN DOWNLINK

RSS 131 PASSBAND GAIN UPLINK

Page 57 of 57 Report No.: FC08-063A