

849 NW State Road 45 Newberry, Fl 32669 USA Phone: 888.472.2424 or 352.472.5500 Fax: 352.472.2030 Email: <u>info@timcoengr.com</u> Website: <u>www.timcoengr.com</u>

PART 22, 24

AND RSS-131

CLASS II PERMISSIVE CHANGE TEST REPORT

Applicant	WILSON ELECTRONICS, INC.	
Address	3301 E. DESERET DRIVE	
Address	ST. GEORGE UTAH 84790 USA	
FCC ID	PWO271265	
IC	4726A-217265	
Model Number	271265	
Product Description	DUAL BAND IN-BUILDING AMPLIFIER	
Date Sample Received	4/6/2011	
Date Tested	4/11/2011	
Tested By	Nam Nguyen	
Approved By	Mario de Aranzeta	
Report Number	683AUT11TestReport2.doc	
Test Results	PASS FAIL	

THE ATTACHED REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN APPROVAL OF TIMCO ENGINEERING, INC.

TABLE OF CONTENTS

GENERAL REMARKS	3
REPORT SUMMARY	4
TEST ENVIRONMENT	4
TEST SETUP SUMMARY	4
DUT SPECIFICATION	5
TEST EQUIPMENT LIST	7
TEST PROCEDURES	8
X RADIATED SPURIOUS EMISSIONS	9

GENERAL REMARKS

The attached report shall not be reproduced except in full without the written permission of Timco Engineering Inc.

The test results only relate to the item tested.

Summary

The device under test does:

 \mathbb{N}

fulfill the general approval requirements as identified in this test report

not fulfill the general approval requirements as identified in this test report

Attestations

This equipment has been tested in accordance with the standards identified in this test report. To the best of my knowledge and belief, these tests were performed using the measurement procedures described in this report.

All instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regularly in accordance with ISO 17025: 2005 requirements.

Testing Certificate # 0955-01

I attest that the necessary measurements were made, under my supervision, at:

Timco Engineering Inc. 849 NW State Road 45 Newberry, Fl 32669

Authorized Signatory Name:

Mario de Aranzeta C.E.T. Compliance Engineer/ Lab. Supervisor

Date: April 25th, 2011

APPLICANT: WILSON ELECTRONICS, INC. PWO271265, IC: 4726A-271265 FCC ID: REPORT: Z:\W\WILSON_PWO\683AUT11\Extra683AUT11\683AUT11TestReport2.doc Page 3 of 9

mdea 12.11.2007

REPORT SUMMARY

Applicable Rule(s) ANSI C63.4: 2003, FCC PART 22, 24, and IC RSS-131

TEST ENVIRONMENT

Test Facility	Timco Engineering, Inc. 849 NW State Road 45 Newberry, FL 32669 USA.
Test Condition in the	Temperature: 26°C
laboratory	Relative humidity: 50%

TEST SETUP SUMMARY

Test Setup Diagram/ Description	The DUT was placed on the turntable per setup per ANSI C63.4: 2003. A test set up photo is provided for clarification.
Deviation from the standard/procedure	No deviation
Modification of DUT	No modification

DUT SPECIFICATION

DUT Description	DUAL BAND IN-BUILDING AMPLIFIER		
FCC ID	PWO271265		
IC	4726A-271265		
	⊠ 110–120Vac/50– 60Hz		
DUT Power Source	DC Power		
	Battery Operated Exclusively		
	Prototype		
Test Item	Pre-Production		
	Production		
	⊠ Fixed		
Type of Equipment	Mobile		
	Portable		
Laboratory	Temperature: 26°C		
Test Conditions	Humidity: 55%		
Modifications to DUT:	\square No \square Yes (explanation below)		

DUT EXTERNAL PHOTOS

APPLICANT: WILSON ELECTRONICS, INC. FCC ID: PWO271265, IC: 4726A-271265 REPORT: Z:\W\WILSON_PWO\683AUT11\Extra683AUT11\683AUT11TestReport2.doc Page 6 of 9 mdea 12.11.2007

TEST EQUIPMENT LIST

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date
3-Meter Semi- Anechoic Chamber	Panashield	N/A	N/A	Listed 3/10/10	3/10/12
AC Voltmeter	HP	400FL	2213A14499	CAL 3/23/09	3/23/12
Antenna: Dipole Kit	Electro- Metrics	TDA-30/1-4	153	CHAR 6/10/09	6/10/11
Frequency Counter	HP	5385A	3242A07460	CAL 5/26/09	5/26/11
Hygro- Thermometer	Extech	445703	0602	CAL 1/30/09	1/30/12
Modulation Analyzer	HP	8901A	3435A06868	CAL 5/26/09	5/26/11
Digital Multimeter	Fluke	FLUKE-77-3	79510405	CAL 5/18/09	5/18/11
Analyzer Tan Tower Preamplifier	HP	8449B-H02	3008A00372	CAL 11/21/09	11/21/11
Analyzer Tan Tower Quasi- Peak Adapter	HP	85650A	3303A01690	CAL 11/22/09	11/22/11
Analyzer Tan Tower RF Preselector	HP	85685A	3221A01400	CAL 11/21/09	11/21/11
Analyzer Tan Tower Spectrum Analyzer	HP	8566B Opt 462	3138A07786 3144A20661	CAL 11/24/09	11/24/11
Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 4/25/10	4/25/12

TEST PROCEDURES

Power line conducted Emission: The test procedure used was ANSI C63.4-2003. The spectrum was scanned from 0.15 to 30 MHz.

Radiation Interference: The test procedure used was ANSI C63.4-2003 using a spectrum analyzer with preselector. The resolution bandwidth used was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The video bandwidth was always greater than or equal to the RBW.

The unit under test was placed on a table 80 cm high and with dimensions of 1mby 1.5m. The table used for radiated measurements is capable of continuous rotation. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and verticals planes. The frequency was scanned from 30 MHz to 1.0 GHz.. The DUT was measured in three (3) orthogonal planes when necessary.

Formula of Conversion Factors: The field strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dB μ V) to the antenna correction factor supplied by the antenna manufacturer plus the coax loss. The antenna correction factors are stated in terms of dB. The gain of the preselector was accounted for in the spectrum analyzer meter reading.

Exan	ıple:	

Freq (MHz)	Meter Reading	+ ACF	+CL	= FS
33	20 dBµV	+ 10.36 dB/m	+0.40 dB	=30.76 dBµV/m @ 3m

TX RADIATED SPURIOUS EMISSIONS

Rule Parts. No.: FCC Pt 2.1053, IC RSS-131

Requirements: Emissions must be 43 +10log (Po) dB below the mean power output of the transmitter:

43 + 10log (1.00) = 43.0 dBc (Uplink) 43 + 10log (0.30) = 37.8 dBc (Downlink)

Test Data:

Emission Frequency MHz	Ant. Polarity	dB Below Carrier (dBc)
836.50	0	0
1673.00	V	87.77
2509.50	Н	70.85
3346.00	Н	75.75
4182.50	V	84.23
5019.00	H/V	NF
5855.50	H/V	NF
6692.00	H/V	NF
7528.50	H/V	NF
8365.00	H/V	NF

Emission Frequency MHz	Ant. Polarity	dB Below Carrier (dBc)
881.50	0	0
1763.00	Н	82.87
2644.50	Н	76.95
3526.00	V	71.65
4407.50	V	77.03
5289.00	H/V	NF
6170.50	H/V	NF
7052.00	H/V	NF
7933.50	H/V	NF
8815.00	H/V	NF

Emission Frequency MHz	Ant. Polarity	dB Below Carrier (dBc)
1880.00	0	0
3760.00	Н	85.17
5640.00	V	82.01
7520.00	V	84.67
9400.00	V	81.96
11280.00	H/V	NF
13160.00	H/V	NF
15040.00	H/V	NF
16920.00	H/V	NF
18800.00	H/V	NF

Emission Frequency MHz	Ant. Polarity	dB Below Carrier
		(dBc)
1960.00	0	0
3920.00	Н	76.41
5880.00	V	71.61
7840.00	V	75.42
9800.00	V	72.92
11760.00	H/V	NF
13720.00	H/V	NF
15680.00	H/V	NF
17640.00	H/V	NF
19600.00	H/V	NF

APPLICANT: WILSON ELECTRONICS, INC.

FCC ID: PWO271265, IC: 4726A-271265

REPORT: Z:\W\WILSON_PWO\683AUT11\Extra683AUT11\683AUT11TestReport2.doc

Page 9 of 9 mdea 12.11.2007