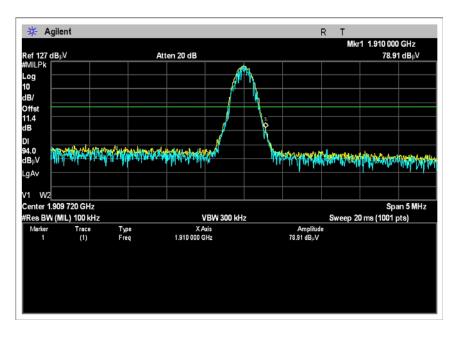
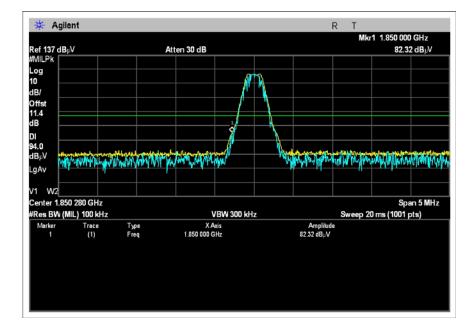


BLOCK EDGE UPLINK - CDMA LOW CHANNEL

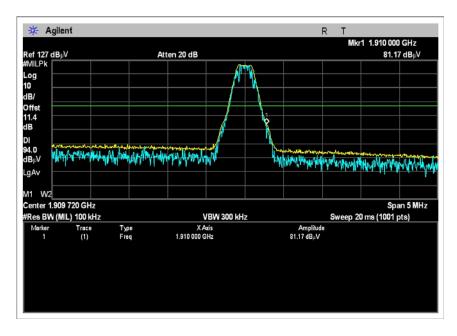
BLOCK EDGE UPLINK - CDMA HIGH CHANNEL





BLOCK EDGE UPLINK - EDGE LOW CHANNEL

BLOCK EDGE UPLINK - EDGE HIGH CHANNEL



BLOCK EDGE UPLINK - GSM LOW CHANNEL

BLOCK EDGE UPLINK - GSM HIGH CHANNEL



🔆 Agilent R T Mkr1 1.850 0 GHz Ref 137 dBµV #MILPk 79.52 dBµV Atten 30 dB Log 10 dB/ Offst 11.4 dB DI 94.0 dBµV 8 **Ger** and the second provide the second to be a second to all the second second to all the and and any and and any any provident of the LgAv M1 W2 Center 1.859 2 GHz Span 100 MHz Sweep 71.67 ms (1001 pts) #Res BW (MIL) 100 kHz VBW 300 kHz X Axis 1.850 0 GHz Amplitude 79.52 dBuV Trace (1) Type Freq Marker

BLOCK EDGE UPLINK - WCDMA LOW CHANNEL

BLOCK EDGE UPLINK - WCDMA HIGH CHANNEL

INPUT AND OUTPUT PLOTS

Test Equipment:

1 cor Dynipment										
Function	S/N	Calibration	Date	Cal Due Date		Asset #				
Agilent E4446A SA	US44300407	08/07/2008		08/07/2010		02660				
Wilson 50-75 Ohm Adapter	None	10/14/2008		10/14/2010		C00013				
Cable 3' 40 GHz Astrolab	NA	01/15/2008		01/15/2010		AN03012				
HP 8491A 10dB Attenuator	2708A47453	11/30/2006		11/30/2008		P01350				
10 dB 10W Attenuator	None	11/30/2006	j	11/30/2008		P02229				
Equipment Under Test (* = EUT):										
Function	Manufacturer		Model #		S/N					
Signal Boost In-Building	Wilson Electron	ics	271247-50		8012	4799021181716				
Wireless Cellular/PCS										
Amplifier*										
Support Devices:	Support Devices:									
Function	Manufacturer		Model #		S/N					
Signal Generator	Agilent		E4437B		MY4	1000126				
Signal Generator	Agilent		E4437B		US39	9260577				
Power Supply	Wilson		HK-B18-A	.06	None	2				

Test Conditions / Notes:

HP

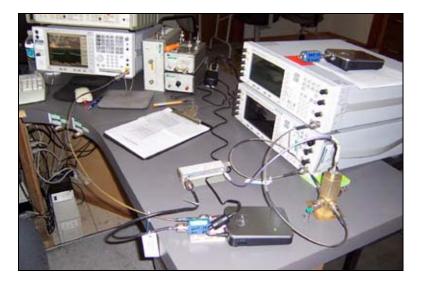
Motorola

Step Attenuator

Splitter, 4-Way

This is an in-building, dual-band bi-directional amplifier for enhancing the range of cell phones in-building environments. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Reported power levels indicate the maximum compliant power output measured at an input level just below that which will cause the EUT to fail harmonic, intermodulation or band edge limits, whichever results in the lowest power output for each modulation and channel setting. Signal generator input signal used is CW and is swept to provide amplification and bandwidth plots. For output plots, EUT is connected directly to a spectrum analyzer via suitable attenuation. For input plots, signal generator is connected directly to spectrum analyzer without external attenuation. Frequency Range Investigated: Carrier. Temperature: 22.3°C, Relative Humidity: 35%.

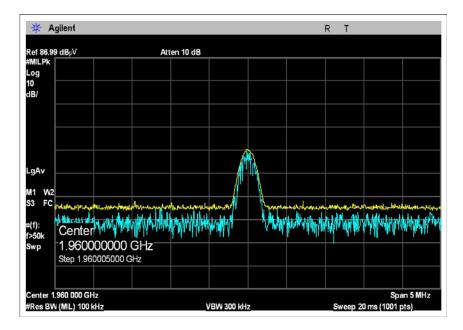
8494B

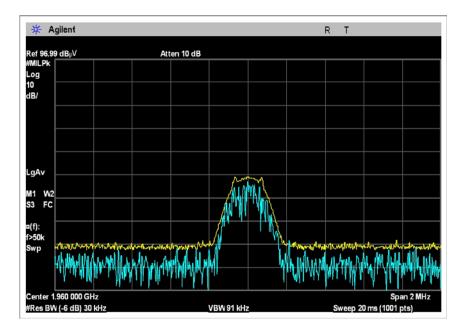

None

AN02475

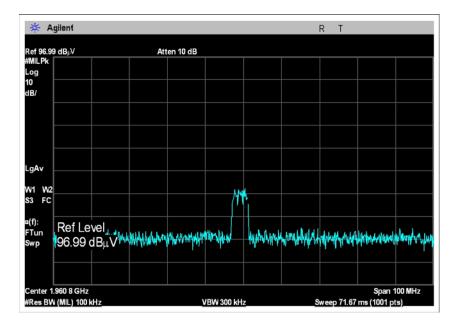

ANP01314

Test Setup Photos


Test Plots

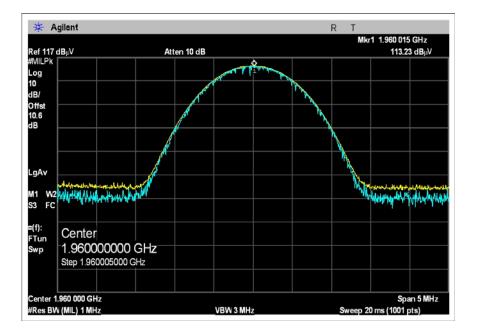

INPUT PLOT DOWNLINK - CDMA MID CHANNEL

INPUT PLOT DOWNLINK - EDGE MID CHANNEL

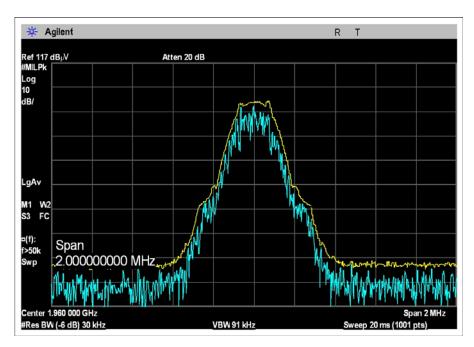


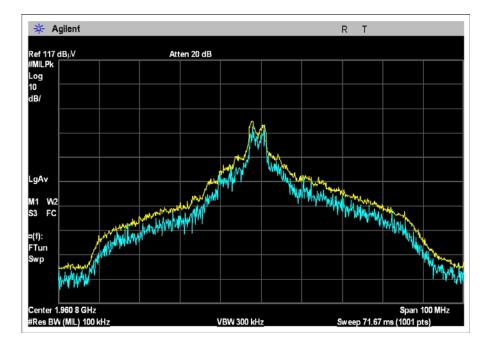
INPUT PLOT DOWNLINK - GSM MID CHANNEL




INPUT PLOT DOWNLINK - WCDMA MID CHANNEL

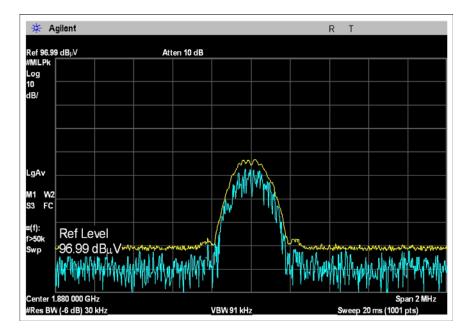
OUTPUT PLOT DOWNLINK - CDMA MID CHANNEL



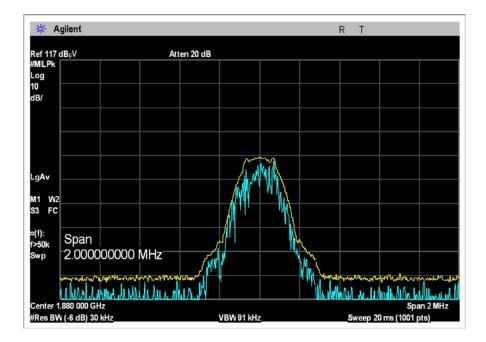


OUTPUT PLOT DOWNLINK - EDGE MID CHANNEL

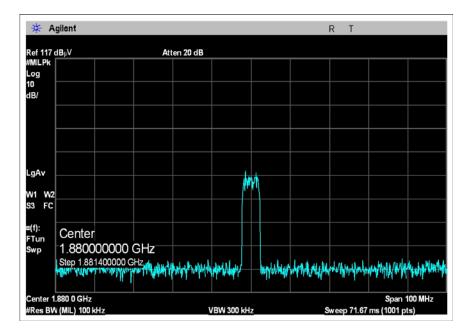
OUTPUT PLOT DOWNLINK - GSM MID CHANNEL


OUTPUT PLOT DOWNLINK - WCDMA MID CHANNEL

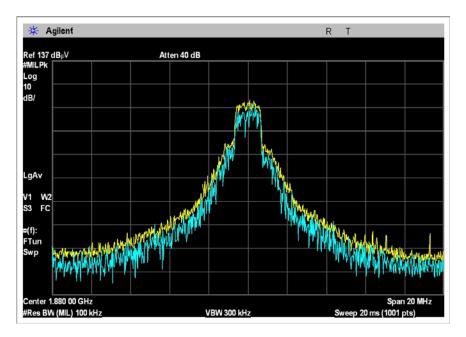
INPUT PLOT UPLINK - CDMA MID CHANNEL

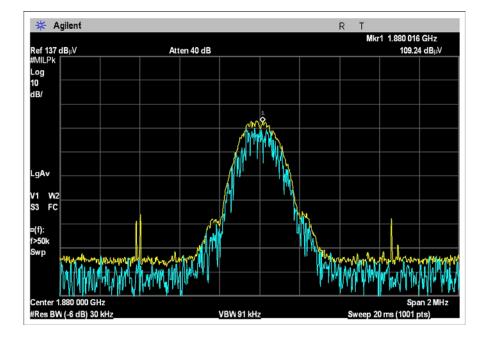


INPUT PLOT UPLINK - EDGE MID CHANNEL

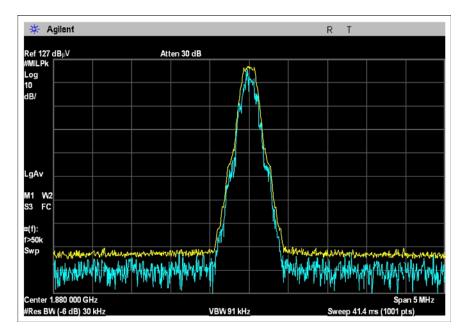


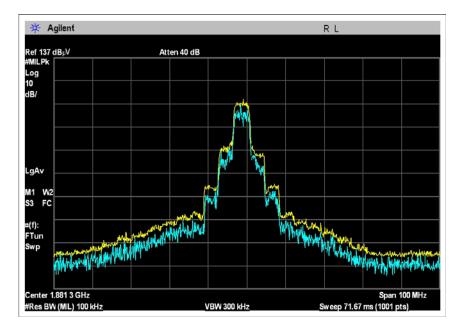
INPUT PLOT UPLINK - GSM MID CHANNEL



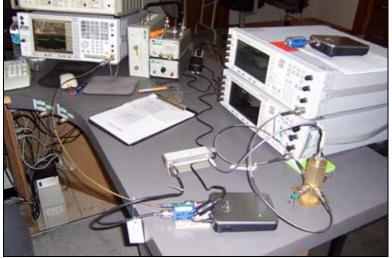

INPUT PLOT UPLINK - WCDMA MID CHANNEL

OUTPUT PLOT UPLINK - CDMA MID CHANNEL




OUTPUT PLOT UPLINK - EDGE MID CHANNEL

OUTPUT PLOT UPLINK - GSM MID CHANNEL


OUTPUT PLOT UPLINK - WCDMA MID CHANNEL

FCC 2.1051- INTERMODULATION ATTENUATION

Test Setup Photos

Test Data

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240 Customer: Wilson Electronics Specification: FCC 24.238 Work Order #: 88636 Date: 10/31/2008 Test Type: **Maximized Emissions** Time: 08:58:45 Equipment: Signal Boost In-Building Wireless Sequence#: 6 **Cellular/PCS Amplifier** Manufacturer: Wilson Electronics Tested By: Mike Wilkinson 271247-50 Model: 80124799021181716 S/N: **Test Equipment:**

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
Cable 2' 40 GHz Astrolab	NA	01/15/2008	01/15/2010	AN03008
Weinchel 10dB attenuator	C8597	11/30/2006	11/30/2008	P02139
Wilson 50-75 Ohm Adapter	None	10/14/2008	10/14/2010	C00013

Equipment Under Test (* = EUT):								
Function	Manufacturer	Model #	S/N					
Signal Boost In-Building Wireless Cellular/PCS Amplifier*	Wilson Electronics	271247-50	80124799021181716					
Support Devices:								

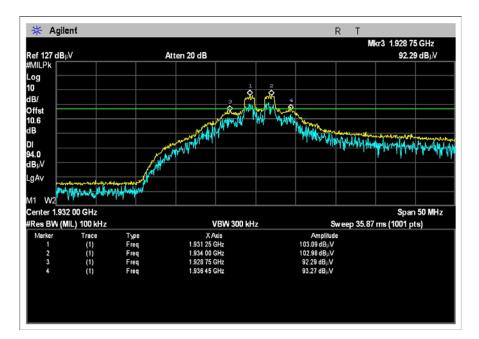
Support Dericesi			
Function	Manufacturer	Model #	S/N
Signal Generator	Agilent	E4437B	MY41000126
Signal Generator	Agilent	E4437B	US39260577
Power Supply	Wilson	HK-B18-A06	None
Splitter, 4-Way	Motorola	None	ANP01314
Step Attenuator	HP	8494B	AN02475

Test Conditions / Notes:

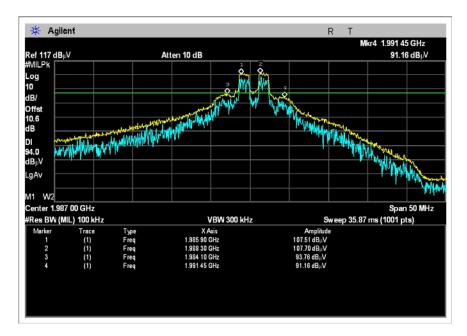
This is an in-building, dual-band bi-directional amplifier for enhancing the range of cell phones in-building environments. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Combined cable, 75 Ohm adapter and attenuator insertion loss accounted for in the measurements were: 10.6 dB for the frequency range of 869 to 894 MHz & 1930 to 1990 MHz. 11.4 dB for the frequency range of 842 to 849 MHz & 1850 to 1910 MHz. Freqency Range Investigated: 9kHz - 20 GHz. Temperature: 22.3°C, Relative Humidity: 35%. RBW=100kHz.

Transducer Legend:

Me	easu	rement Data:	Re	eading	listed by m	nargin.	n. Test Distance: None					
Ŧ	#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
		MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
	1	1981.100M	93.8					+0.0	93.8	94.0	-0.2	None
									DL-HIGH-CDMA			
	2	1910.240M	93.6					+0.0	93.6	94.0	-0.4	None
								UL-HIGH-EDGE				

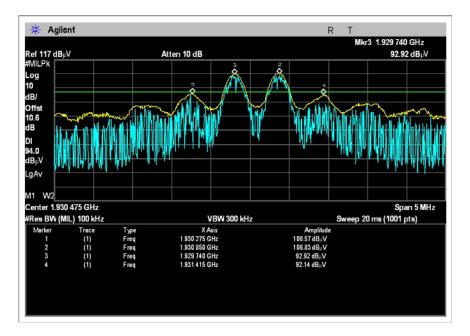


3	1883.300M	93.5	+0.0	93.5	94.0	-0.5	None
					UL-HIGH-		
					WCDMA		
4	1971.800M	93.5	+0.0	93.5	94.0	-0.5	None
					UL-LOW-		
					WCDMA		
5	1929.920M	93.4	+0.0	93.4	94.0	-0.6	None
					DL-LOW-G	SM	
6	1851.420M	93.3	+0.0	93.3	94.0	-0.7	None
					UL-LOW-EI	DGE	
7	1903.700M	93.3	+0.0	93.3	94.0	-0.7	None
					UL-HIGH-C	DMA	
8	1936.450M	93.3	+0.0	93.3	94.0	-0.7	None
					DL-LOW-Cl	DMA	
9	1851.210M	93.1	+0.0	93.1	94.0	-0.9	None
					UL-LOW-G	SM	
10	1953.200M	93.0	+0.0	93.0	94.0	-1.0	None
					DL-LOW-		
					WCDMA		
11	1929.740M	92.9	+0.0	92.9	94.0	-1.1	None
					DL-LOW-EI	DGE	
12	1910.090M	92.6	+0.0	92.6	94.0	-1.4	None
					UL-HIGH-G	SM	
13	1848.550M	92.1	+0.0	92.1	94.0	-1.9	None
					UL-LOW-CI	DMA	
14	1988.670M	91.9	+0.0	91.9	94.0	-2.1	None
					DL-HIGH-GSM		
15	1969.200M	89.2	+0.0	89.2	94.0	-4.8	None
					DL-HIGH-		
					WCDMA		

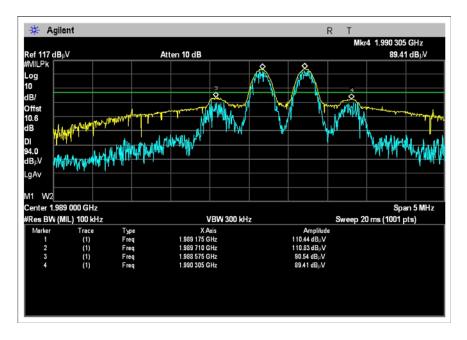


Test Plots

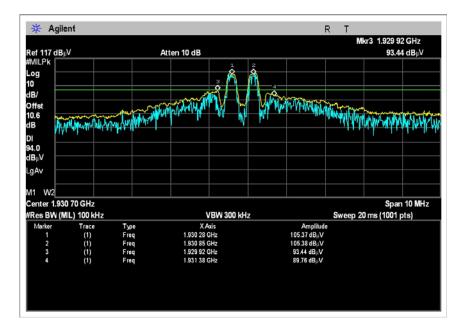
INTERMODULATION ATTENUATION DOWNLINK – CDMA LOW CHANNEL



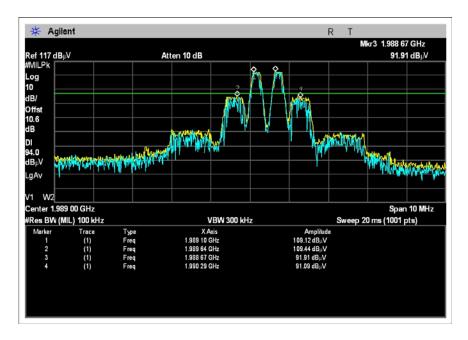
INTERMODULATION ATTENUATION DOWNLINK – CDMA HIGH CHANNEL



INTERMODULATION ATTENUATION DOWNLINK – EDGE LOW CHANNEL



INTERMODULATION ATTENUATION DOWNLINK – EDGE HIGH CHANNEL



INTERMODULATION ATTENUATION DOWNLINK – GSM LOW CHANNEL

INTERMODULATION ATTENUATION DOWNLINK – GSM HIGH CHANNEL

