



### ADDENDUM TO WILSON ELECTRONICS TEST REPORT FC08-108

### FOR THE

# SIGNAL BOOST IN-BUILDING WIRELESS CELLULAR/PCS AMPLIFIERS 271247-50 & 271247-75

#### FCC PART 24E AND RSS-131

#### **TESTING**

DATE OF ISSUE: FEBRUARY 13, 2009

**PREPARED FOR:** 

PREPARED BY:

Wilson Electronics 3301 East Deseret Drive St. George, UT 84790 Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

P.O. No.: 271247-1 W.O. No.: 88636 Date of test: October 13 - November 9, 2008

Report No.: FC08-108A

This report contains a total of 70 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.



# TABLE OF CONTENTS

| Administrative Information                                               | 3  |
|--------------------------------------------------------------------------|----|
| Approvals                                                                |    |
| Summary of Results                                                       |    |
| Conditions During Testing                                                | 4  |
| Equipment Under Test (EUT) Description                                   | 5  |
| Equipment Under Test                                                     | 5  |
| Peripheral Devices                                                       | 5  |
| Temperature and Humidity During Testing                                  | 6  |
| FCC 2.1033(c)(3) User's Manual                                           | 6  |
| FCC 2.1033(c)(4) Type of Emissions                                       | 6  |
| FCC 2.1033(c)(5) Frequency Range                                         | 6  |
| FCC 2.1033(c)(6) Operating Power                                         | 6  |
| FCC 2.1033(c)(8) DC Voltages                                             |    |
| FCC 2.1033(c)(9) Tune-Up Procedure                                       | 6  |
| FCC 2.1033(c)(10) Schematics and Circuitry Description                   | 6  |
| FCC 2.1033(c)(11) Label and Placement                                    | 6  |
| FCC 2.1033(c)(12) Submittal Photos                                       | 6  |
| FCC 2.1033(c)(13) Modulation Information                                 | 6  |
| FCC 2.1033(c)(14)/2.1046/24.232 - RF Power Output                        | 7  |
| RSS-131 Section 6.2- RF Power Output                                     | 10 |
| FCC 2.1033(c)(14)/2.1049(i) - Occupied Bandwidth                         | 17 |
| FCC 2.1033(c)(14)/2.1051/24.238 - Spurious Emissions at Antenna Terminal | 30 |
| FCC 2.1033(c)(14)/2.1053/24.238 - Field Strength of Spurious Radiation   | 33 |
| FCC 2.1051/2.1053 – Block Edge                                           | 36 |
| Input and Output Plots                                                   | 45 |
| FCC 2.1051 – Intermodulation Attenuation                                 | 55 |
| FCC 2.1051 – Out of Band Rejection                                       | 66 |
| RSS-131 - Passband Gain and Bandwidth                                    | 68 |

Page 2 of 70 Report No.: FC08-108A



#### **ADMINISTRATIVE INFORMATION**

**DATE OF TEST:** October 13 - November **DATE OF RECEIPT:** October 13, 2008

9, 2008

**REPRESENTATIVE:** Riki Kline

MANUFACTURER:TEST LOCATION:Wilson ElectronicsCKC Laboratories, Inc.3301 East Deseret Drive5046 Sierra Pines DriveSt. George, UT 84790Mariposa, CA 95338

FREQUENCY RANGE TESTED: 9 kHz-20 GHz

**TEST METHOD:** FCC Part 24E and RSS-131

### **PURPOSE OF TEST:**

**Original Report:** To perform the testing of the Signal Boost In-Building Wireless Cellular/PCS Amplifiers 271247-50 & 271247-75 with the requirements for FCC Part 24E and RSS-131 devices.

**Addendum A:** To correct the bandwidth settings on page 35 with no new testing.

#### **APPROVALS**

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE: TEST PERSONNEL:

Mike Wilkinson, Senior EMC Engineer/Lab

Manager

Page 3 of 70 Report No.: FC08-108A



## **SUMMARY OF RESULTS**

| Test                                      | Specification                                 | Results |
|-------------------------------------------|-----------------------------------------------|---------|
| RF Power Output                           | FCC 2.1046/Part 24.232<br>RSS-131 Section 6.2 | Pass    |
| Occupied Bandwidth                        | FCC 2.1049                                    | Pass    |
| Spurious Emissions at<br>Antenna Terminal | FCC 2.1051/Part 24.238                        | Pass    |
| Spurious Emissions Field<br>Strength      | FCC 2.1053/Part 24.238                        | Pass    |
| Block Edge                                | FCC 2.1031/2.1053                             | Pass    |
| Input and Output Plots                    |                                               | Pass    |
| Intermodulation FCC 2.1051 Attenuation    |                                               | Pass    |
| Out of Band Rejection                     | FCC 2.1051                                    | Pass    |
| Passband Gain and<br>Bandwidth            | RSS-131                                       | Pass    |
| Site File No.                             | FCC 90477<br>IC3082-A                         |         |

## **CONDITIONS DURING TESTING**

No modifications to the EUT were necessary during testing. The customer declares the uplink circuitry is identical in both the 271247-75 and 271247-50 versions of the EUT. Therefore, only one version of the uplink was tested.

Page 4 of 70 Report No.: FC08-108A



### **EQUIPMENT UNDER TEST (EUT) DESCRIPTION**

The customer declares the EUT tested by CKC Laboratories was representative of a production unit. These are wireless, in-building, dual-band bi-directional amplifiers for enhancing the range of cell phones. A 75 ohm F-type connector connects the amplifiers to a 75 ohm coaxial cable feeding an outside antenna. There are two models with the only difference being the impedance of the connection for the inside antenna. The first model (271247-50) provides a 50 ohm TNC connector enabling a 50 ohm coaxial cable to be connected between the amplifier and an inside antenna. The second model (271247-75) provides a 75 ohm F-type connector enabling a 75 ohm coaxial cable to be connected between the amplifier and an inside antenna. Both models allow the direct mounting of an appropriate small antenna on the amplifier itself. The 75 ohm inside antenna connection is achieved by the addition of a passive 50:75 ohm RF transformer. Other than the addition of the transformer and change in connector, the 75 ohm model is identical to the 50 ohm model.

### **EQUIPMENT UNDER TEST**

Signal Boost In-Building Wireless Signal Boost In-Building Wireless

<u>Cellular/PCS Amplifier</u> <u>Cellular/PCS Amplifier</u>

Manuf: Wilson Electronics Manuf: Wilson Electronics

Model: 271247-50 Model: 271247-75

 Serial:
 80124799021181716
 Serial:
 8012659901118715

 FCC ID:
 PWO271247ASB
 FCC ID:
 PWO271247ASB

 IC:
 4726A-271247ASB
 IC:
 4726A-271247ASB

#### PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Signal Generator Signal Generator

Manuf: Agilent Manuf: Agilent Model: E4437B
Serial: MY41000126 Serial: US39260577

Power Supply Splitter, 4-Way

Manuf: Wilson Manuf: Motorola Model: HK-B18-A06 Model: NA

Serial: NA Serial: ANP01314

#### **Step Attenuator**

Manuf: HP Model: 8494B Serial: AN02475

> Page 5 of 70 Report No.: FC08-108A



#### TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within  $+15^{\circ}$ C and  $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

#### FCC 2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

#### FCC 2.1033 (c)(4) TYPE OF EMISSIONS

GXW, G7W, F9W

### FCC 2.1033 (c)(5) FREQUENCY RANGE

1850-1910 MHz for uplink path and 1930-1990 MHz for downlink path

#### FCC 2.1033 (c)(6) OPERATING POWER

2511.88 mW uplink and 11.74 mW downlink

### **FCC 2.1033 (c)(8) DC VOLTAGES**

The necessary information is contained in a separate document.

#### FCC 2.1033 (c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

#### FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

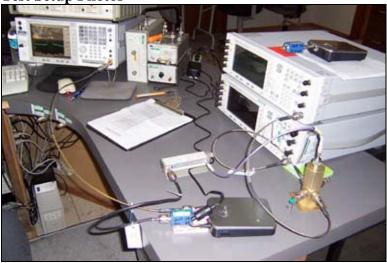
#### FCC 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

### FCC 2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

#### FCC 2.1033 (c)(13) MODULATION INFORMATION


CDMA, EDGE, GSM and WCDMA. The base interface CDMA2000 and WCDMA modulation types tested are intended to additionally demonstrate compliance with EVDO and HSPA extensions. Reference: FCC KDB Publication 935210.

Page 6 of 70 Report No.: FC08-108A



## FCC 2.1033(c)(14)/2.1046/24.232 - RF POWER OUTPUT

## **Test Setup Photos**



## **Test Data Sheets**

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

Customer: Wilson Electronics
Specification: FCC 24.232 Mobil

Work Order #: 88636 Date: 10/31/2008
Test Type: Maximized Emissions Time: 09:07:22
Equipment: Signal Boost In-Building Wireless Sequence#: 4

Cellular/PCS Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 271247-50 &271247-75 S/N: 80124799021181716 & 8012659901118715

## Test Equipment:

| Function                 | S/N        | Calibration Date | Cal Due Date | Asset # |
|--------------------------|------------|------------------|--------------|---------|
| Agilent E4446A SA        | US44300407 | 08/07/2008       | 08/07/2010   | 02660   |
| Wilson 50-75 Ohm Adapter | None       | 10/14/2008       | 10/14/2010   | C00013  |
| Cable 3' 40 GHz Astrolab | NA         | 01/15/2008       | 01/15/2010   | AN03012 |
| HP 8491A 10dB Attenuator | 2708A47453 | 11/30/2006       | 11/30/2008   | P01350  |
| 10 dB 10W Attenuator     | None       | 11/30/2006       | 11/30/2008   | P02229  |

**Equipment Under Test (\* = EUT):** 

| Function                 | Manufacturer       | Model #   | S/N               |
|--------------------------|--------------------|-----------|-------------------|
| Signal Boost In-Building | Wilson Electronics | 271247-50 | 80124799021181716 |
| Wireless Cellular/PCS    |                    |           |                   |
| Amplifier*               |                    |           |                   |

Page 7 of 70 Report No.: FC08-108A



### Support Devices:

| Function         | Manufacturer | Model #    | S/N        |
|------------------|--------------|------------|------------|
| Signal Generator | Agilent      | E4437B     | MY41000126 |
| Signal Generator | Agilent      | E4437B     | US39260577 |
| Power Supply     | Wilson       | HK-B18-A06 | None       |
| Step Attenuator  | HP           | 8494B      | AN02475    |
| Splitter, 4-Way  | Motorola     | None       | ANP01314   |

#### Test Conditions / Notes:

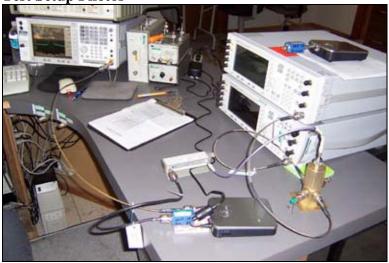
This is an in-building, dual-band bi-directional amplifier for enhancing the range of cell phones in-building environments. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Reported power levels indicate the maximum compliant power output measured at an input level just below that which will cause the EUT to fail harmonic, intermodulation or band edge limits, whichever results in the lowest power output for each modulation and channel setting. Frequency Range Investigated: Carrier. Temperature: 22.3°C, Relative Humidity: 35%. GSM/EDGE RBW = 1MHz, CDMA RBW = 3 MHz, WCDMA RBW = 10 MHz VBW = 3 x RBW. Reported power levels are not corrected to ERP.

| Uplink-50  | Part | Frequency | dBm  | mW      |
|------------|------|-----------|------|---------|
| GSM Low    | 24   | 1850.29   | 16.9 | 48.97   |
| GSM Mid    | 24   | 1880.00   | 29.3 | 851.13  |
| GSM High   | 24   | 1909.72   | 16.6 | 45.70   |
| EDGE Low   | 24   | 1850.30   | 17.4 | 54.95   |
| EDGE Mid   | 24   | 1880.00   | 27.6 | 575.43  |
| EDGE High  | 24   | 1909.73   | 17.3 | 53.70   |
| CDMA Low   | 24   | 1853.80   | 26.6 | 457.08  |
| CDMA Mid   | 24   | 1880.00   | 30.9 | 1230.26 |
| CDMA High  | 24   | 1906.23   | 25.3 | 388.84  |
| WCDMA Low  | 24   | 1859.00   | 28.1 | 645.65  |
| WCDMA Mid  | 24   | 1880.00   | 34.0 | 2511.88 |
| WCDMA High | 24   | 1900.83   | 26.3 | 426.57  |

| Downlink-50 | Part | Frequency | dBm  | mW    |
|-------------|------|-----------|------|-------|
| GSM Low     | 24   | 1930.28   | -0.2 | 0.95  |
| GSM Mid     | 24   | 1960.00   | 5.5  | 3.54  |
| GSM High    | 24   | 1989.72   | 4.7  | 2.95  |
| EDGE Low    | 24   | 1930.28   | 0.6  | 1.14  |
| EDGE Mid    | 24   | 1960.00   | 6.2  | 4.16  |
| EDGE High   | 24   | 1989.72   | 4.6  | 2.88  |
| CDMA Low    | 24   | 1931.25   | 4.7  | 2.95  |
| CDMA Mid    | 24   | 1960.00   | 6.4  | 4.36  |
| CDMA High   | 24   | 1988.75   | 7.9  | 6.19  |
| WCDMA Low   | 24   | 1934.50   | 7.6  | 4.75  |
| WCDMA Mid   | 24   | 1960.00   | 10.7 | 11.74 |
| WCDMA High  | 24   | 1985.50   | 4.7  | 2.95  |

Page 8 of 70 Report No.: FC08-108A




| Downlink-75 | Part | Frequency | dBm | mW   |
|-------------|------|-----------|-----|------|
| GSM Mid     | 24   | 1960.00   | 7.6 | 5.75 |
| EDGE Mid    | 24   | 1960.00   | 7.6 | 5.75 |
| CDMA Mid    | 24   | 1960.00   | 8.1 | 6.45 |
| WCDMA Mid   | 24   | 1960.00   | 8.2 | 6.60 |

Page 9 of 70 Report No.: FC08-108A



## RSS-131 SECTION 6.2 - RF POWER OUTPUT

**Test Setup Photos** 



**Test Data** 

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

Customer: Wilson Electronics

Specification: RSS 131

Work Order #: 88636 Date: 11/3/2008
Test Type: Maximized Emissions Time: 15:18:04
Equipment: Signal Boost In-Building Wireless Sequence#: 1

Cellular/PCS Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 271247-50 &271247-75 S/N: 80124799021181716 & 8012659901118715

Test Equipment:

| z est z quip mem.        |            |                  |              |         |
|--------------------------|------------|------------------|--------------|---------|
| Function                 | S/N        | Calibration Date | Cal Due Date | Asset # |
| Agilent E4446A SA        | US44300407 | 08/07/2008       | 08/07/2010   | 02660   |
| Wilson 50-75 Ohm Adapter | None       | 10/14/2008       | 10/14/2010   | C00013  |
| Cable 3' 40 GHz Astrolab | NA         | 01/15/2008       | 01/15/2010   | AN03012 |
| HP 8491A 10dB Attenuator | 2708A47453 | 11/30/2006       | 11/30/2008   | P01350  |
| 10 dB 10W Attenuator     | None       | 11/30/2006       | 11/30/2008   | P02229  |

**Equipment Under Test (\* = EUT):** 

| Function                 | Manufacturer       | Model #   | S/N               |
|--------------------------|--------------------|-----------|-------------------|
| Signal Boost In-Building | Wilson Electronics | 271247-50 | 80124799021181716 |
| Wireless Cellular/PCS    |                    |           |                   |
| Amplifier*               |                    |           |                   |

Page 10 of 70 Report No.: FC08-108A



### Support Devices:

| Function         | Manufacturer | Model #    | S/N        |
|------------------|--------------|------------|------------|
| Signal Generator | Agilent      | E4437B     | MY41000126 |
| Signal Generator | Agilent      | E4437B     | US39260577 |
| Power Supply     | Wilson       | HK-B18-A06 | None       |
| Step Attenuator  | HP           | 8494B      | AN02475    |
| Splitter, 4-Way  | Motorola     | None       | ANP01314   |

#### Test Conditions / Notes:

This is an in-building, dual-band bi-directional amplifier for enhancing the range of cell phones in-building environments. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Frequency Range Investigated: Carrier. Temperature: 22.3°C, Relative Humidity: 35%. Input signals are CW for Multi-Carrier Operation in accordance with RSS 131. Fundamental output power was measured at the point which the intermodulation product reached -13dBm. RBW=100 kHz.

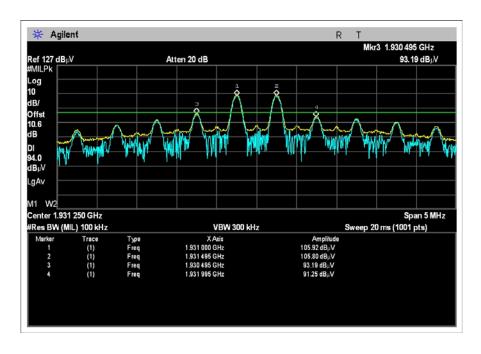
### -50

| Band              | Frequency (MHz) | Power (dBm) | Po+3dB<br>(dBm) | Pmean (mW) |
|-------------------|-----------------|-------------|-----------------|------------|
| Downlink 1900 MHz | 1960.000        | 1.25        | 4.25            | 2.66       |
| Downlink 1900 MHz | 1960.495        | 1.20        | 4.20            | 2.63       |
| Downlink 1900 MHz | 1931.000        | 0.78        | 3.78            | 2.38       |
| Downlink 1900 MHz | 1931.495        | 0.76        | 3.76            | 2.37       |
| Downlink 1900 MHz | 1988.000        | 2.15        | 5.15            | 3.27       |
| Downlink 1900 MHz | 1988.498        | 1.60        | 4.60            | 2.88       |

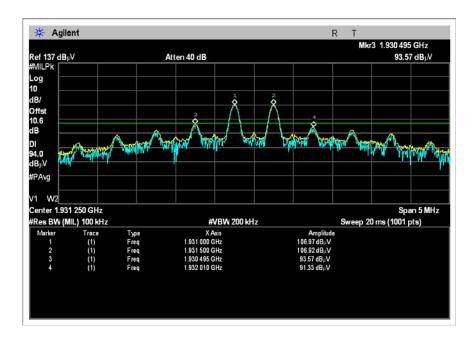
#### -75

| -13               |           |       |        |            |
|-------------------|-----------|-------|--------|------------|
| Band              | Frequency | Power | Po+3dB | Pmean (mW) |
|                   | (MHz)     | (dBm) | (dBm)  |            |
| Downlink 1900 MHz | 1931.000  | 0.99  | 3.99   | 2.51       |
| Downlink 1900 MHz | 1931.500  | 0.98  | 3.98   | 2.50       |
| Downlink 1900 MHz | 1960.000  | 1.71  | 4.71   | 2.95       |
| Downlink 1900 MHz | 1960.500  | 1.78  | 4.78   | 3.00       |
| Downlink 1900 MHz | 1988.000  | 1.67  | 4.67   | 2.93       |
| Downlink 1900 MHz | 1999.495  | 1.91  | 4.91   | 3.09       |
|                   |           |       |        |            |

### -50


| Band            | Frequency<br>(MHz) | Power (dBm) | Po+3dB<br>(dBm) | Pmean (mW) |
|-----------------|--------------------|-------------|-----------------|------------|
| Uplink 1900 MHz | 1850.99            | 16.45       | 19.45           | 88.10      |
| Uplink 1900 MHz | 1851.49            | 16.00       | 19.00           | 79.43      |
| Uplink 1900 MHz | 1880.00            | 18.30       | 21.30           | 134.89     |
| Uplink 1900 MHz | 1880.50            | 18.28       | 21.28           | 134.27     |
| Uplink 1900 MHz | 1908.00            | 17.46       | 20.46           | 111.17     |
| Uplink 1900 MHz | 1908.50            | 17.36       | 20.36           | 108.64     |

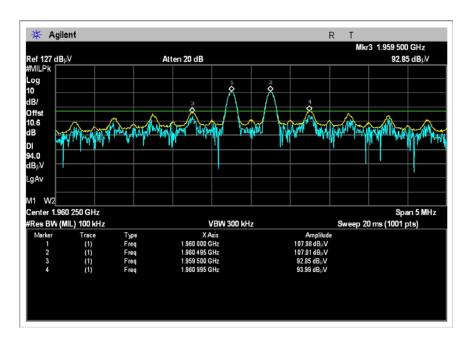
Page 11 of 70 Report No.: FC08-108A



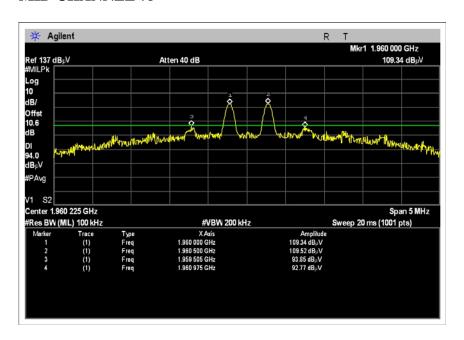

### **Test Plots**

# RSS-131 SECTION 6.2 OUTPUT POWER DOWNLINK – LOW CHANNEL 50




# RSS-131 SECTION 6.2 OUTPUT POWER DOWNLINK – LOW CHANNEL 75

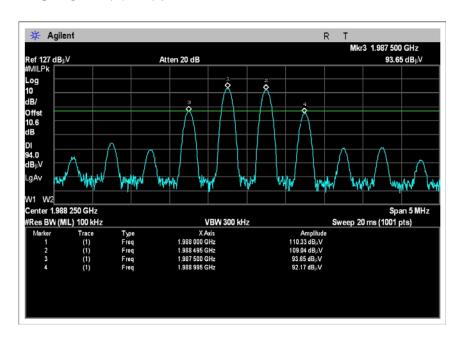



Page 12 of 70 Report No.: FC08-108A

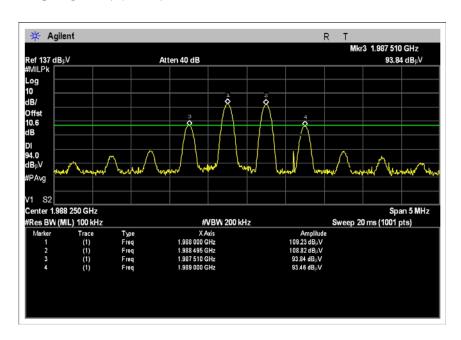


# RSS-131 SECTION 6.2 OUTPUT POWER DOWNLINK – MID CHANNEL 50




# RSS-131 SECTION 6.2 OUTPUT POWER DOWNLINK – MID CHANNEL 75

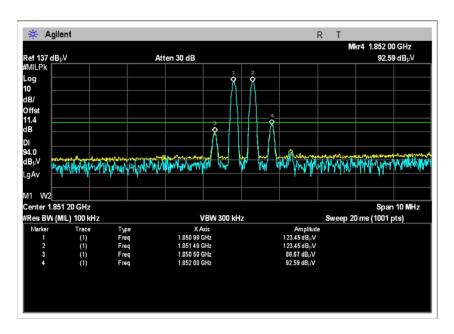



Page 13 of 70 Report No.: FC08-108A

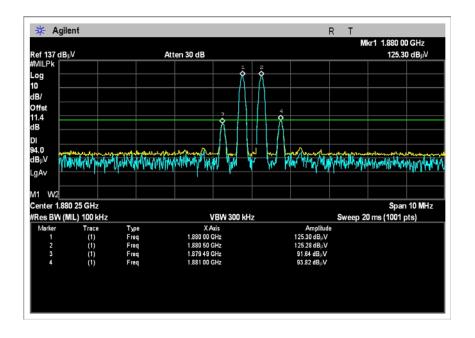


# RSS-131 SECTION 6.2 OUTPUT POWER DOWNLINK – HIGH CHANNEL 50




# RSS-131 SECTION 6.2 OUTPUT POWER DOWNLINK – HIGH CHANNEL 75

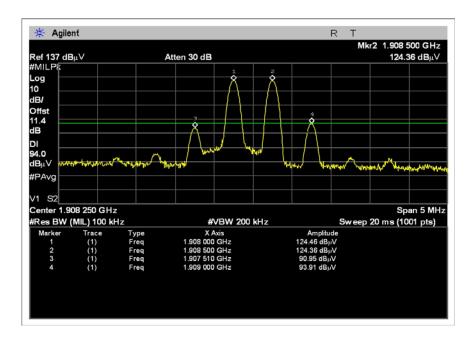



Page 14 of 70 Report No.: FC08-108A



# RSS-131 SECTION 6.2 OUTPUT POWER UPLINK – LOW CHANNEL 50




# RSS-131 SECTION 6.2 OUTPUT POWER UPLINK – MID CHANNEL 50



Page 15 of 70 Report No.: FC08-108A



# RSS-131 SECTION 6.2 OUTPUT POWER UPLINK – HIGH CHANNEL 50



Page 16 of 70 Report No.: FC08-108A



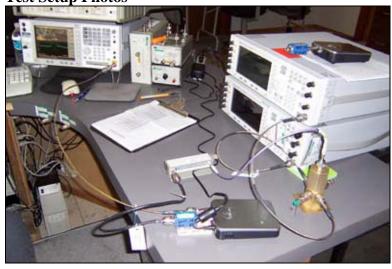
## FCC 2.1033(c)(14)/2.1049(i)- OCCUPIED BANDWIDTH

Test Equipment:

| Function                 | S/N        | Calibration Date | Cal Due Date | Asset # |  |
|--------------------------|------------|------------------|--------------|---------|--|
| Agilent E4446A SA        | US44300407 | 08/07/2008       | 08/07/2010   | 02660   |  |
| Wilson 50-75 Ohm Adapter | None       | 10/14/2008       | 10/14/2010   | C00013  |  |
| Cable 3' 40 GHz Astrolab | NA         | 01/15/2008       | 01/15/2010   | AN03012 |  |
| HP 8491A 10dB Attenuator | 2708A47453 | 11/30/2006       | 11/30/2008   | P01350  |  |
| 10 dB 10W Attenuator     | None       | 11/30/2006       | 11/30/2008   | P02229  |  |

Equipment Under Test (\* = EUT):

| 1 1                      | - /-               |           |                   |
|--------------------------|--------------------|-----------|-------------------|
| Function                 | Manufacturer       | Model #   | S/N               |
| Signal Boost In-Building | Wilson Electronics | 271247-50 | 80124799021181716 |
| Wireless Cellular/PCS    |                    |           |                   |
| Amplifier*               |                    |           |                   |

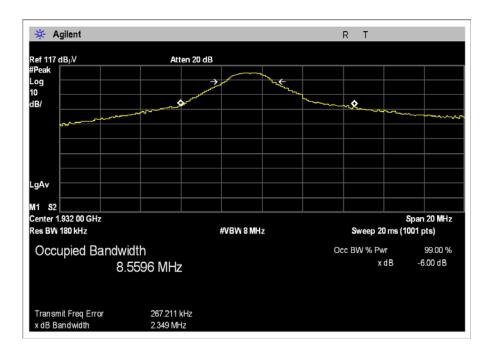

Support Devices:

| Function         | Manufacturer | Model #    | S/N        |
|------------------|--------------|------------|------------|
| Signal Generator | Agilent      | E4437B     | MY41000126 |
| Signal Generator | Agilent      | E4437B     | US39260577 |
| Power Supply     | Wilson       | HK-B18-A06 | None       |
| Step Attenuator  | HP           | 8494B      | AN02475    |
| Splitter, 4-Way  | Motorola     | None       | ANP01314   |

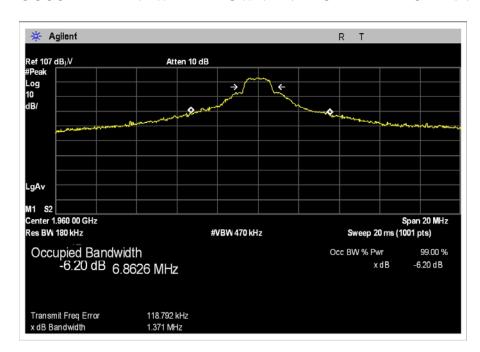
#### Test Conditions / Notes:

This is an in-building, dual-band bi-directional amplifier for enhancing the range of cell phones in-building environments. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Reported power levels indicate the maximum compliant power output measured at an input level just below that which will cause the EUT to fail harmonic, intermodulation or band edge limits, whichever results in the lowest power output for each modulation and channel setting. Frequency Range Investigated: Carrier. Temperature: 22.3°C, Relative Humidity: 35%.

**Test Setup Photos** 



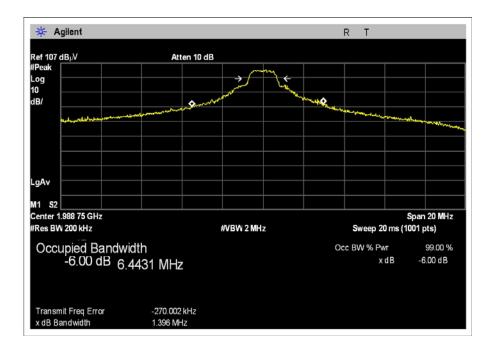

Page 17 of 70 Report No.: FC08-108A



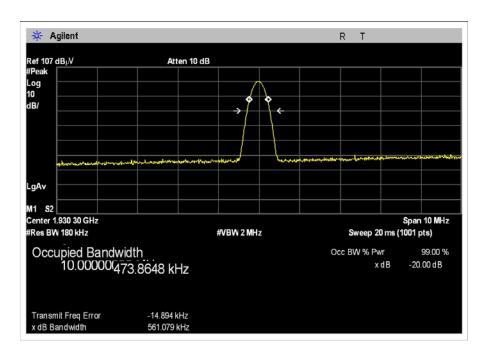

### **Test Plots**

### OCCUPIED BANDWIDTH DOWNLINK - CDMA LOW CHANNEL




#### OCCUPIED BANDWIDTH DOWNLINK - CDMA MID CHANNEL

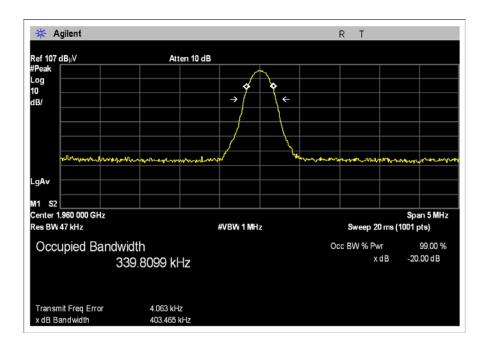



Page 18 of 70 Report No.: FC08-108A

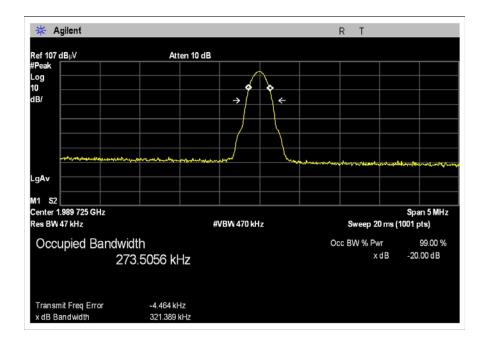


### OCCUPIED BANDWIDTH DOWNLINK - CDMA HIGH CHANNEL




### OCCUPIED BANDWIDTH DOWNLINK - EDGE LOW CHANNEL

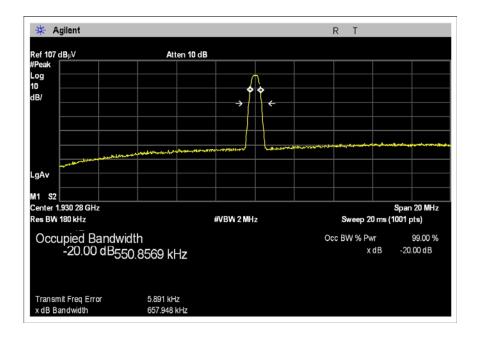



Page 19 of 70 Report No.: FC08-108A

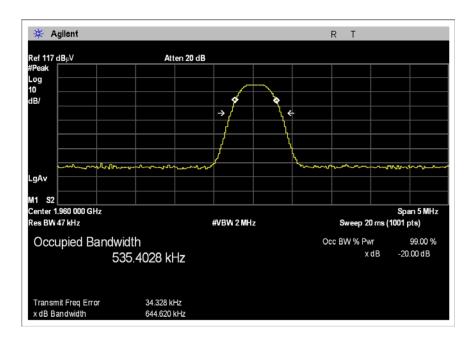


### OCCUPIED BANDWIDTH DOWNLINK - EDGE MID CHANNEL




### OCCUPIED BANDWIDTH DOWNLINK - EDGE HIGH CHANNEL

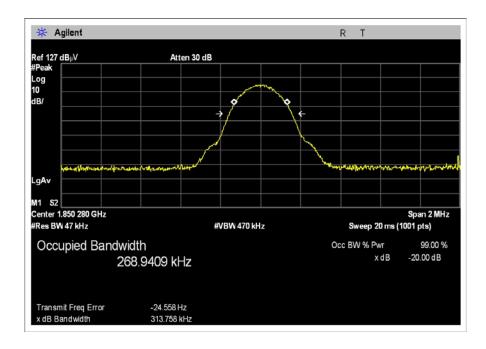



Page 20 of 70 Report No.: FC08-108A

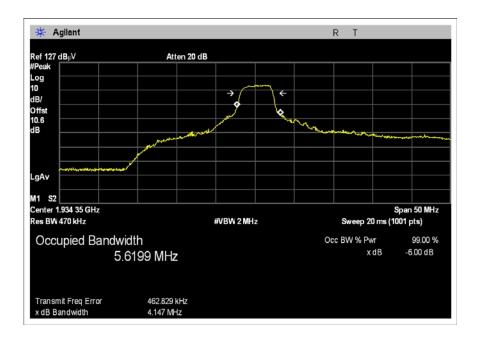


### OCCUPIED BANDWIDTH DOWNLINK - GSM LOW CHANNEL




### OCCUPIED BANDWIDTH DOWNLINK - GSM MID CHANNEL

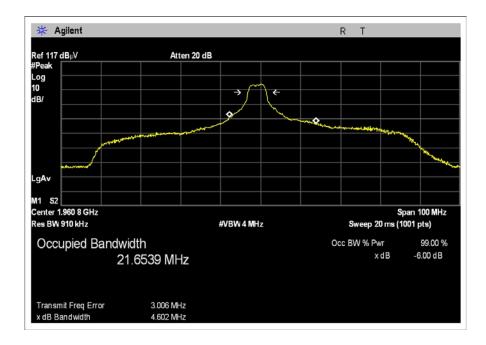



Page 21 of 70 Report No.: FC08-108A

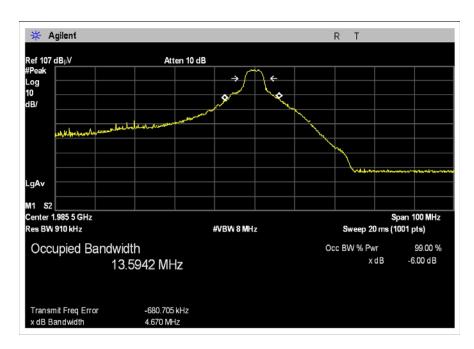


### OCCUPIED BANDWIDTH DOWNLINK - GSM HIGH CHANNEL




### OCCUPIED BANDWIDTH DOWNLINK - WCDMA LOW CHANNEL

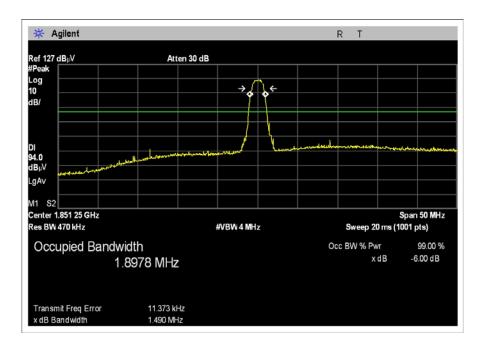



Page 22 of 70 Report No.: FC08-108A

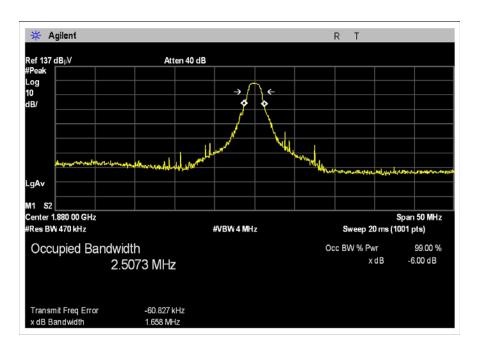


### OCCUPIED BANDWIDTH DOWNLINK - WCDMA MID CHANNEL




### OCCUPIED BANDWIDTH DOWNLINK - WCDMA HIGH CHANNEL

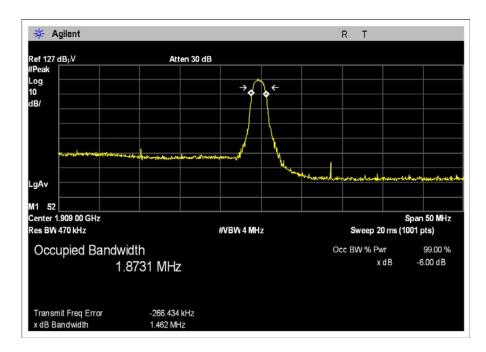



Page 23 of 70 Report No.: FC08-108A

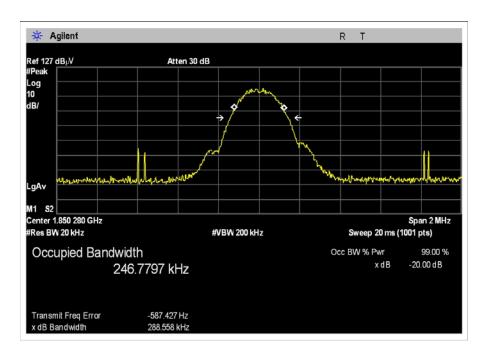


### OCCUPIED BANDWIDTH UPLINK - CDMA LOW CHANNEL




### OCCUPIED BANDWIDTH UPLINK - CDMA MID CHANNEL

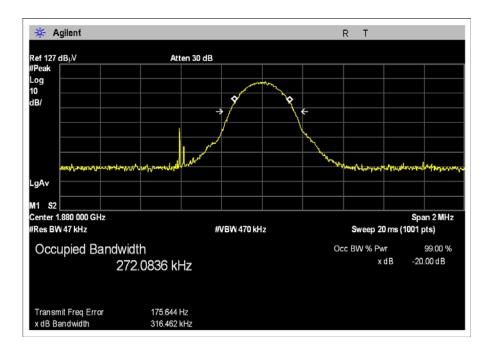



Page 24 of 70 Report No.: FC08-108A

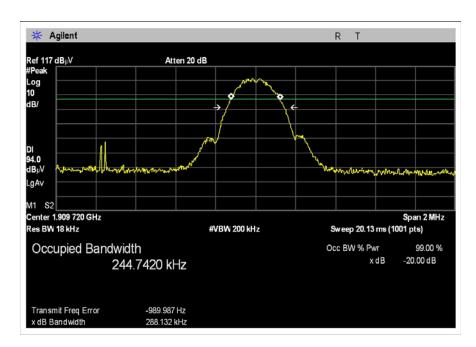


### OCCUPIED BANDWIDTH UPLINK - CDMA HIGH CHANNEL




### OCCUPIED BANDWIDTH UPLINK - EDGE LOW CHANNEL

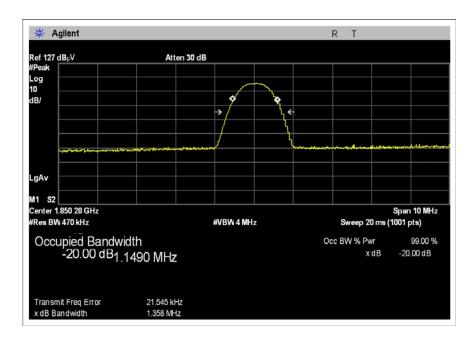



Page 25 of 70 Report No.: FC08-108A

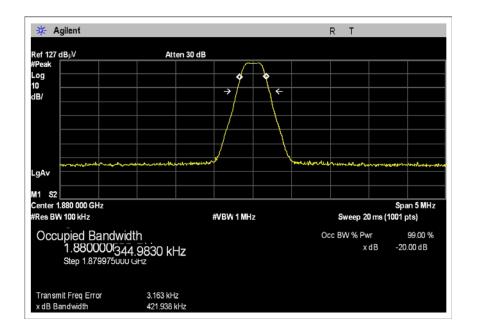


### OCCUPIED BANDWIDTH UPLINK - EDGE MID CHANNEL




### OCCUPIED BANDWIDTH UPLINK - EDGE HIGH CHANNEL

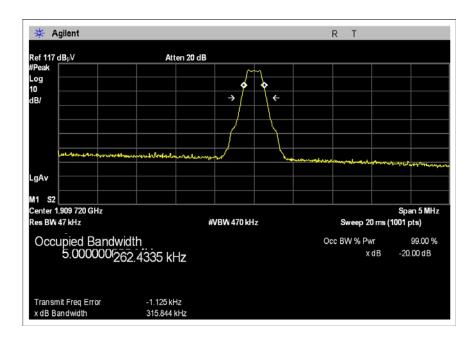



Page 26 of 70 Report No.: FC08-108A

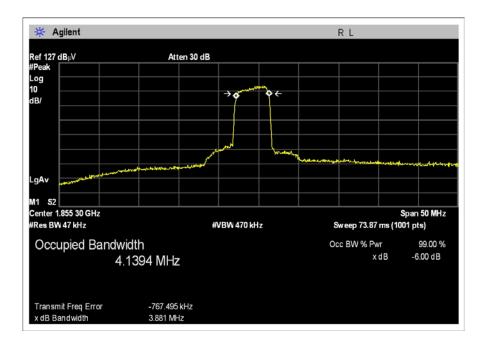


### OCCUPIED BANDWIDTH UPLINK - GSM LOW CHANNEL




### OCCUPIED BANDWIDTH UPLINK - GSM MID CHANNEL

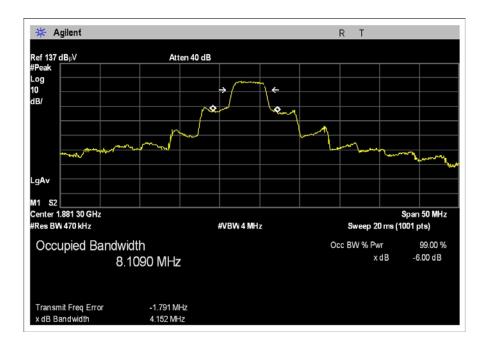



Page 27 of 70 Report No.: FC08-108A

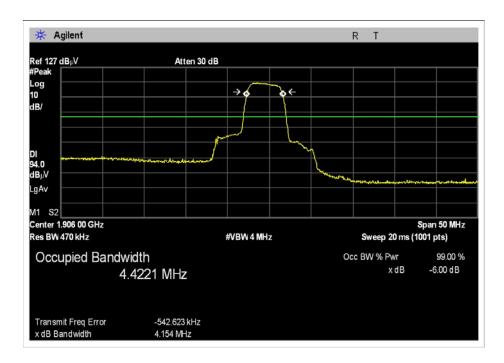


### OCCUPIED BANDWIDTH UPLINK - GSM HIGH CHANNEL




## OCCUPIED BANDWIDTH UPLINK - WCDMA LOW CHANNEL



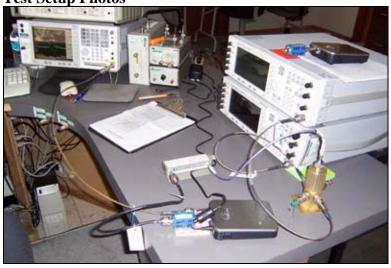

Page 28 of 70 Report No.: FC08-108A



### OCCUPIED BANDWIDTH UPLINK - WCDMA MID CHANNEL



### OCCUPIED BANDWIDTH UPLINK - WCDMA HIGH CHANNEL




Page 29 of 70 Report No.: FC08-108A



## FCC 2.1033(c)(14)/2.1051/24.238 - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

**Test Setup Photos** 



### **Test Data Sheets**

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

Customer: Wilson Electronics

Specification: FCC 24.238

 Work Order #:
 88636
 Date:
 10/31/2008

 Test Type:
 Maximized Emissions
 Time:
 09:06:11

Equipment: Signal Boost In-Building Wireless Sequence#: 5

Cellular/PCS Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 271247-50

S/N: 80124799021181716

#### Test Equipment:

| 1 cst Equipment   |            |                  |              |         |
|-------------------|------------|------------------|--------------|---------|
| Function          | S/N        | Calibration Date | Cal Due Date | Asset # |
| Agilent E4446A SA | US44300407 | 01/03/2007       | 01/03/2009   | 02660   |
| Cable 2' 40 GHz   | NA         | 01/15/2008       | 01/15/2010   | AN03008 |
| Astrolab          |            |                  |              |         |
| Weinchel 10dB     | C8597      | 11/30/2006       | 11/30/2008   | P02139  |
| attenuator        |            |                  |              |         |

Equipment Under Test (\* = EUT):

| Function                 | Manufacturer       | Model #   | S/N               |
|--------------------------|--------------------|-----------|-------------------|
| Signal Boost In-Building | Wilson Electronics | 271247-50 | 80124799021181716 |
| Wireless Cellular/PCS    |                    |           |                   |
| Amplifier*               |                    |           |                   |

Page 30 of 70 Report No.: FC08-108A



Support Devices:

| Function         | Manufacturer | Model #    | S/N        |
|------------------|--------------|------------|------------|
| Signal Generator | Agilent      | E4437B     | MY41000126 |
| Signal Generator | Agilent      | E4437B     | US39260577 |
| Power Supply     | Wilson       | HK-B18-A06 | None       |
| Splitter, 4-Way  | Motorola     | None       | ANP01314   |
| Step Attenuator  | HP           | 8494B      | AN02475    |

#### Test Conditions / Notes:

This is an in-building, dual-band bi-directional amplifier for enhancing the range of cell phones in-building environments. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Reported power levels indicate the maximum compliant power output measured at an input level just below that which will cause the EUT to fail harmonic, intermodulation or band edge limits, whichever results in the lowest power output for each modulation and channel setting. Combined cable, 75 Ohm adapter and attenuator insertion loss accounted for in the measurements were: 10.6 dB for the frequency range of 869 to 894 MHz & 1930 to 1990 MHz. 11.4 dB for the frequency range of 842 to 849 MHz & 1850 to 1910 MHz. Frequency Range Investigated: 9 kHz to 10000 MHz. Temperature: 22.3°C, Relative Humidity: 35%. GSM/EDGE RBW = 1MHz, CDMA RBW = 3 MHz, WCDMA RBW = 10 MHz VBW = 3 x RBW.

Transducer Legend:

| Measu | asurement Data: Reading listed by margin. |      |    |    | Te | Test Distance: None |       |      |          |        |       |
|-------|-------------------------------------------|------|----|----|----|---------------------|-------|------|----------|--------|-------|
| #     | Freq                                      | Rdng |    | -  |    |                     | Dist  | Corr | Spec     | Margin | Polar |
|       | MHz                                       | dΒμV | dB | dB | dB | dB                  | Table | dΒμV | dΒμV     | dB     | Ant   |
| 1     | 3762.000M                                 | 91.0 |    |    |    |                     | +0.0  | 91.0 | 94.0     | -3.0   | None  |
|       |                                           |      |    |    |    |                     |       |      | UL-MID ( | CH-    |       |
|       |                                           |      |    |    |    |                     |       |      | WCDMA    |        |       |
| 2     | 3760.000M                                 | 83.5 |    |    |    |                     | +0.0  | 83.5 | 94.0     | -10.5  | None  |
|       |                                           |      |    |    |    |                     |       |      | UL-MIID  | CH-    |       |
|       |                                           |      |    |    |    |                     |       |      | CDMA     |        |       |
| 3     | 3809.600M                                 | 80.7 |    |    |    |                     | +0.0  | 80.7 | 94.0     | -13.3  | None  |
|       |                                           |      |    |    |    |                     |       |      | UL-HIGH  | CH-    |       |
|       |                                           |      |    |    |    |                     |       |      | WCDMA    |        |       |
| 4     | 3714.400M                                 | 78.9 |    |    |    |                     | +0.0  | 78.9 | 94.0     | -15.1  | None  |
|       |                                           |      |    |    |    |                     |       |      | UL-LOW   |        |       |
|       |                                           |      |    |    |    |                     |       |      | WCDMA    |        |       |
| 5     | 3760.040M                                 | 77.4 |    |    |    |                     | +0.0  | 77.4 | 94.0     | -16.6  | None  |
|       |                                           |      |    |    |    |                     |       |      | UL-MID-  |        |       |
| 6     | 3700.490M                                 | 76.6 |    |    |    |                     | +0.0  | 76.6 | 94.0     | -17.4  | None  |
|       |                                           |      |    |    |    |                     |       |      | UL-LOW-  | -EDGE  |       |
| 7     | 3817.530M                                 | 75.5 |    |    |    |                     | +0.0  | 75.5 | 94.0     | -18.5  | None  |
|       |                                           |      |    |    |    |                     |       |      | UL-HIGH  | CH-    |       |
|       |                                           |      |    |    |    |                     |       |      | CDMA     |        |       |
| 8     | 3760.080M                                 | 75.1 |    |    |    |                     | +0.0  | 75.1 | 94.0     | -18.9  | None  |
|       |                                           |      |    |    |    |                     |       |      | UL-MID-  | GSM    |       |
| 9     | 3702.400M                                 | 72.8 |    |    |    |                     | +0.0  | 72.8 | 94.0     | -21.2  | None  |
|       |                                           |      |    |    |    | UL-LOW CH-          |       |      |          |        |       |
|       |                                           |      |    |    |    |                     |       |      | CDMA     |        |       |
| 10    | 3700.700M                                 | 68.1 |    |    |    |                     | +0.0  | 68.1 | 94.0     | -25.9  | None  |
|       |                                           |      |    |    |    |                     |       |      | UL-LOW   | CH-GSM |       |

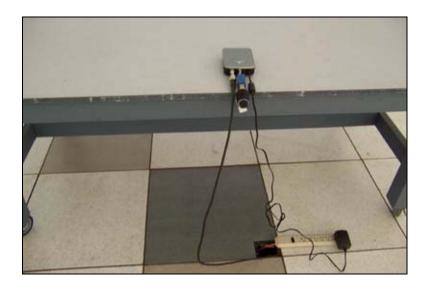
Page 31 of 70 Report No.: FC08-108A



| 11 3971.600M   | 67.9 | +0.0  | 67.0  | 94.0 -26.1    | None        |
|----------------|------|-------|-------|---------------|-------------|
| 11 39/1.000WI  | 07.9 | +0.0  | 07.9  | DL-HIGH CH-   | None        |
|                |      |       |       | WCDMA         |             |
| 12 3819.335M   | 65.8 | +0.0  | 65.8  | 94.0 -28.2    | None        |
| 12 3017.333141 | 03.0 | 10.0  | 05.0  | UL-HIGH-GSM   | TOILC       |
| 13 3819.460M   | 64.5 | +0.0  | 64.5  |               | None        |
| 13 3017.10011  | 01.5 | 10.0  | 01.5  | UL-HIGH-EDGE  | Tione       |
| 14 3919.750M   | 58.5 | +0.0  | 58.5  |               | None        |
| 1. 0,1,1,001,1 | 20.0 | . 0.0 |       | DL-MID CH-GSM | 1,0110      |
| 15 3868.400M   | 58.0 | +0.0  | 58.0  |               | None        |
|                |      |       |       | DL-LOW CH-    | - 1 - 1 - 1 |
|                |      |       |       | WCDMA         |             |
| 16 3977.880M   | 57.1 | +0.0  | 57.1  | 94.0 -36.9    | None        |
|                |      |       |       | DL-HIGH CH-   |             |
|                |      |       |       | CDMA          |             |
| 17 3919.540M   | 55.2 | +0.0  | 55.2  | 94.0 -38.8    | None        |
|                |      |       |       | DL-MID CH-    |             |
|                |      |       |       | CDMA          |             |
| 18 3979.462M   | 52.7 | +0.0  | 52.7  | 94.0 -41.3    | None        |
|                |      |       |       | DL-HIGH CH-   |             |
|                |      |       |       | EDGE          |             |
| 19 3979.304M   | 52.4 | +0.0  | 52.4  | 94.0 -41.6    | None        |
|                |      |       |       | DL-HIGH CH-   |             |
|                |      |       |       | GSM           |             |
| 20 3862.210M   | 52.3 | +0.0  | 52.3  | 94.0 -41.7    | None        |
|                |      |       |       | DL-LOW CH-    |             |
|                |      |       |       | CDMA          |             |
| 21 3920.020M   | 52.0 | +0.0  | 52.0  | 94.0 -42.0    | None        |
|                |      |       |       | DL-MID CH-    |             |
|                |      |       |       | EDGE          |             |
| 22 3860.340M   | 49.9 | +0.0  | 49.9  | 94.0 -44.1    | None        |
| 22 2020 2022 7 | 1.00 | 0.0   | 1.5.6 | DL-LOW CH-GSM |             |
| 23 3920.200M   | 46.8 | +0.0  | 46.8  | 94.0 -47.2    | None        |
|                |      |       |       | DL-MID CH-    |             |
| 04 2010 04735  | 47.0 | 0.0   | 45.0  | WCDMA 40.2    | NT.         |
| 24 3919.947M   | 45.8 | +0.0  | 45.8  | 94.0 -48.2    | None        |
|                |      |       |       | DL-LOW CH-    |             |
|                |      |       |       | EDGE          |             |

Page 32 of 70 Report No.: FC08-108A




# FCC 2.1033(c)(14)/2.1053/24.238 - FIELD STRENGTH OF SPURIOUS RADIATION

# **Test Setup Photos**



Page 33 of 70 Report No.: FC08-108A





## **Test Data Sheets**

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

Customer: **Wilson Electronics** 

24.238 Specification:

Work Order #: 88636 Date: 11/6/2008 Test Type: Equipment: **Radiated Scan** Time: 13:17:18 Sequence#: 8

**Signal Boost In-Building Wireless** 

Cellular/PCS Amplifier

Manufacturer: Wilson Electronics Tested By: Mike Wilkinson

Model: 271247-50

S/N: 80124799021181716

### Test Equipment:

| Function                  | S/N        | Calibration Date | Cal Due Date | Asset # |
|---------------------------|------------|------------------|--------------|---------|
| Spectrum Analyzer HP      | 3624A00159 | 03/23/2007       | 03/23/2009   | 02111   |
| 8593EM                    |            |                  |              |         |
| Bilog Antenna             | 2455       | 04/27/2007       | 04/27/2009   | 01992   |
| Site A 10 meter cable set |            | 05/11/2007       | 05/11/2009   | MA10M   |
| HP-8447D Preamp           | 2727A05444 | 06/20/2008       | 06/20/2010   | 00062   |
| EMCO 3115 Horn Antenna    | 9307-4085  | 03/17/2007       | 03/17/2009   | 00656   |
| HP 8449B Preamp           | 3008A00301 | 12/13/2006       | 12/13/2008   | 2010    |
| Cable 2' 40 GHz Astrolab  | NA         | 01/15/2008       | 01/15/2010   | AN03008 |
| Cable 2' 40 GHz Astrolab  | NA         | 01/15/2008       | 01/15/2010   | AN03011 |
| Cable 12' 40 GHz Astrolab | NA         | 07/03/2008       | 07/03/2010   | AN05769 |
| ARA MWH-1826/B Horn       | 1005       | 11/26/2006       | 11/26/2008   | 02046   |
| Antenna                   |            |                  |              |         |
| EMCO Loop Antenna         | 1074       | 05/01/2007       | 05/01/2009   | 00226   |

Page 34 of 70 Report No.: FC08-108A



#### **Equipment Under Test (\* = EUT):**

| Manufacturer       | Model #            | S/N                          |
|--------------------|--------------------|------------------------------|
| Wilson Electronics | 271247-50          | 80124799021181716            |
|                    |                    |                              |
|                    |                    |                              |
| Wilson             | HK-B18-A06         | None                         |
|                    | Wilson Electronics | Wilson Electronics 271247-50 |

#### Support Devices:

#### Test Conditions / Notes:

This is an in-building, dual-band bi-directional amplifier for enhancing the range of cell phones in-building environments. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. An input level just below that which will cause the EUT to fail harmonic, intermodulation or band edge limits, whichever results in the lowest power output for each modulation and channel setting was applied to the inputs. EUT RF output ports are terminated in 50 Ohms. Modulation for all readings is CW (worst case). Frequency Range Investigated: 9 kHz to 20000 MHz. Frequencies 9kHz-1000MHz were measured at 10 meters distance. Frequencies 1000-10000MHz were measured at 3 meters distance. Uplink & Downlink Paths tested as noted in the data. Low, Mid and High channels tested as noted in the data. Temperature: 22.3°C, Relative Humidity: 35%. RBW = 9 kHz 9 kHz-30 MHz, RBW = 1.0 MHz 30-1000 MHz RBW = 120kHz VBW = 3 x RBW, 1-2 GHz RBW = 1MHz.

Operating Frequency: 1850-1910 MHz uplink and 1930-1990 MHz downlink

Channels: Low, Mid and High

Highest Measured Output Power: 34.00 ERP(dBm)= 2.51188 ERP(Watts)

Distance: 3 meters

Limit: 43+10Log(P) 47.00 dBc

| Freq. (MHz) | Reference Level (dBm) | Antenna Polarity (H/V) | dBc   |
|-------------|-----------------------|------------------------|-------|
| 3,817.01    | -50.9                 | Horiz                  | 84.90 |
| 3,702.01    | -51.2                 | Horiz                  | 85.20 |
| 3,977.01    | -51.9                 | Horiz                  | 85.90 |
| 3,920.01    | -52.3                 | Horiz                  | 86.30 |
| 3,977.01    | -52.4                 | Vert                   | 86.40 |
| 3,862.01    | -52.6                 | Horiz                  | 86.60 |
| 3,702.01    | -53                   | Vert                   | 87.00 |
| 3,760.01    | -53.3                 | Horiz                  | 87.30 |
| 3,817.01    | -53.4                 | Vert                   | 87.40 |
| 3,862.01    | -53.5                 | Vert                   | 87.50 |
| 3,920.01    | -54.2                 | Vert                   | 88.20 |
| 3,760.01    | -55.3                 | Vert                   | 89.30 |

Page 35 of 70 Report No.: FC08-108A



# FCC 2.1051/2.1053- BLOCK EDGE

#### Test Equipment:

| Function                 | S/N        | Calibration Date | Cal Due Date | Asset # |  |
|--------------------------|------------|------------------|--------------|---------|--|
| Agilent E4446A SA        | US44300407 | 08/07/2008       | 08/07/2010   | 02660   |  |
| Wilson 50-75 Ohm Adapter | None       | 10/14/2008       | 10/14/2010   | C00013  |  |
| Cable 3' 40 GHz Astrolab | NA         | 01/15/2008       | 01/15/2010   | AN03012 |  |
| HP 8491A 10dB Attenuator | 2708A47453 | 11/30/2006       | 11/30/2008   | P01350  |  |
| 10 dB 10W Attenuator     | None       | 11/30/2006       | 11/30/2008   | P02229  |  |

Equipment Under Test (\* = EUT):

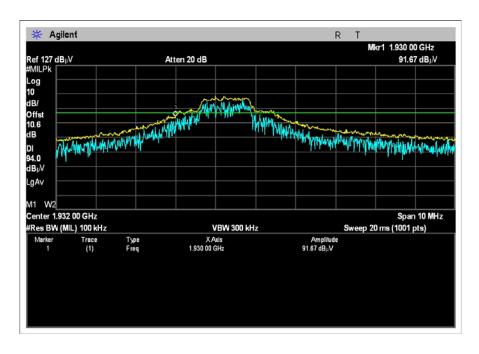
| Function                 | Manufacturer       | Model #   | S/N               |
|--------------------------|--------------------|-----------|-------------------|
| Signal Boost In-Building | Wilson Electronics | 271247-50 | 80124799021181716 |
| Wireless Cellular/PCS    |                    |           |                   |
| Amplifier*               |                    |           |                   |

Support Devices:

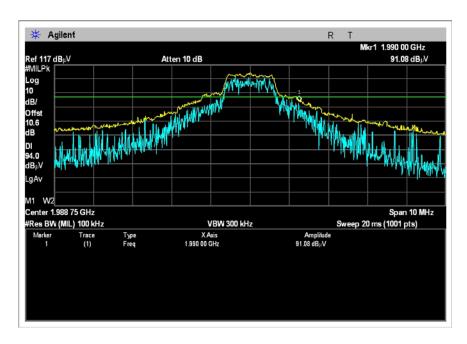
| II               |              |            |            |
|------------------|--------------|------------|------------|
| Function         | Manufacturer | Model #    | S/N        |
| Signal Generator | Agilent      | E4437B     | MY41000126 |
| Signal Generator | Agilent      | E4437B     | US39260577 |
| Power Supply     | Wilson       | HK-B18-A06 | None       |
| Step Attenuator  | HP           | 8494B      | AN02475    |
| Splitter, 4-Way  | Motorola     | None       | ANP01314   |

#### Test Conditions / Notes:

This is an in-building, dual-band bi-directional amplifier for enhancing the range of cell phones in-building environments. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Reported power levels indicate the maximum compliant power output measured at an input level just below that which will cause the EUT to fail harmonic, intermodulation or band edge limits, whichever results in the lowest power output for each modulation and channel setting. Frequency Range Investigated: Carrier. Temperature: 22.3°C, Relative Humidity: 35%.


### **Test Setup Photos**

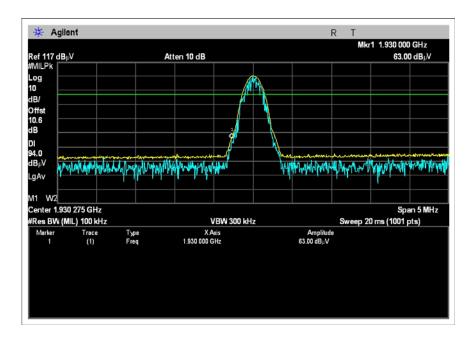



Page 36 of 70 Report No.: FC08-108A

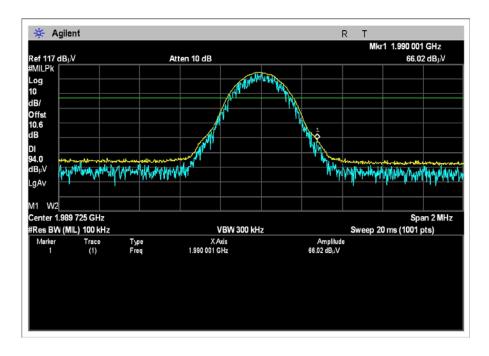


Test Plots BLOCK EDGE DOWNLINK - CDMA LOW CHANNEL




### **BLOCK EDGE DOWNLINK - CDMA HIGH CHANNEL**

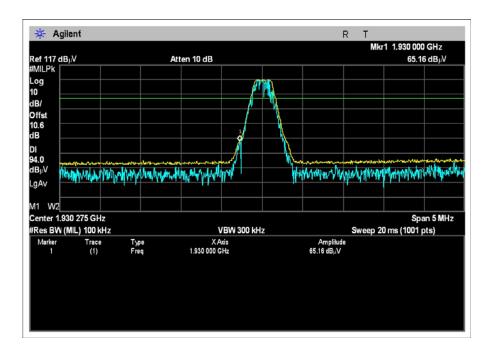



Page 37 of 70 Report No.: FC08-108A

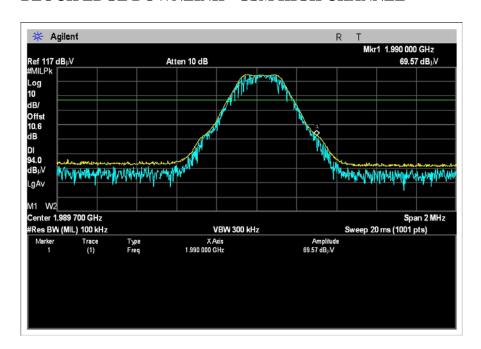


### **BLOCK EDGE DOWNLINK - EDGE LOW CHANNEL**




## **BLOCK EDGE DOWNLINK - EDGE HIGH CHANNEL**

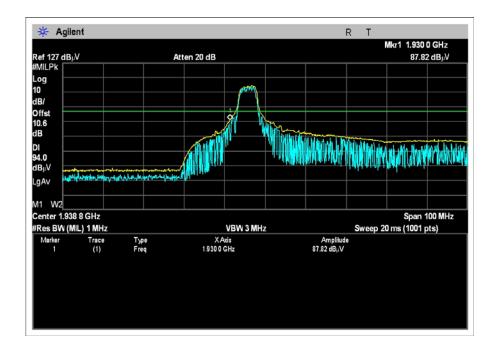



Page 38 of 70 Report No.: FC08-108A

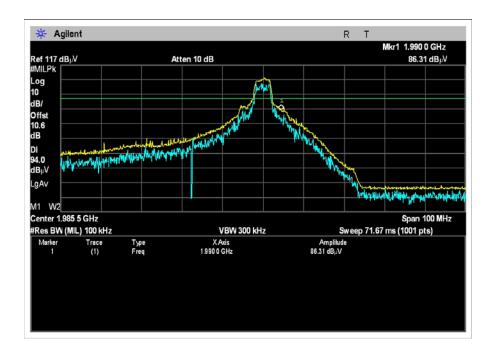


### **BLOCK EDGE DOWNLINK - GSM LOW CHANNEL**




#### **BLOCK EDGE DOWNLINK - GSM HIGH CHANNEL**




Page 39 of 70 Report No.: FC08-108A



### BLOCK EDGE DOWNLINK - WCDMA LOW CHANNEL



### BLOCK EDGE DOWNLINK - WCDMA HIGH CHANNEL



Page 40 of 70 Report No.: FC08-108A