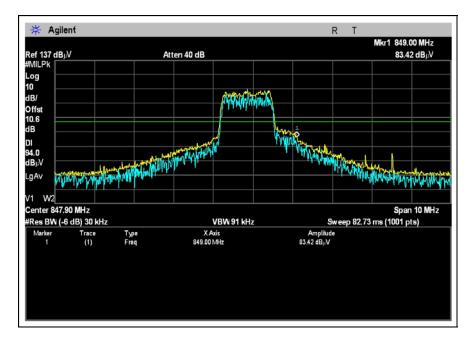
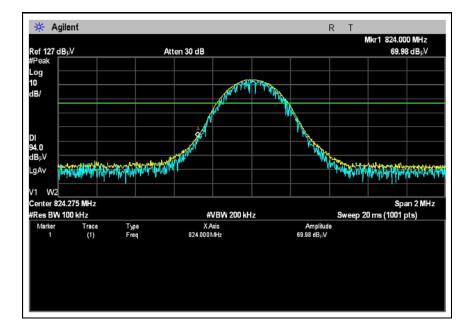

BLOCK EDGE DOWNLINK - WCDMA LOW CHANNEL

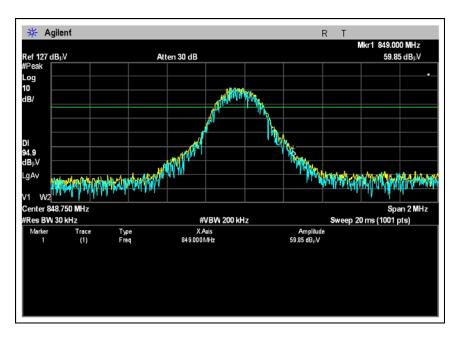
BLOCK EDGE DOWNLINK - WCDMA HIGH CHANNEL

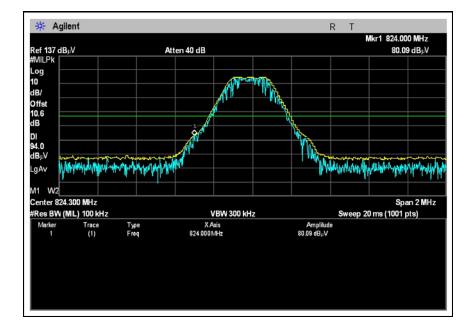




BLOCK EDGE UPLINK - CDMA LOW CHANNEL

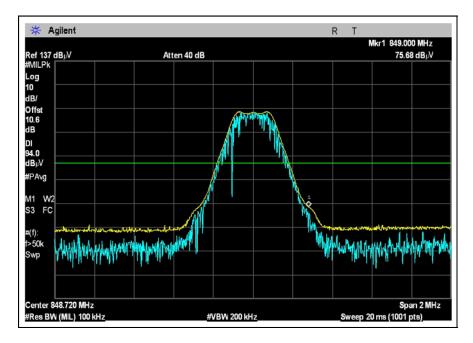
BLOCK EDGE UPLINK - CDMA HIGH CHANNEL

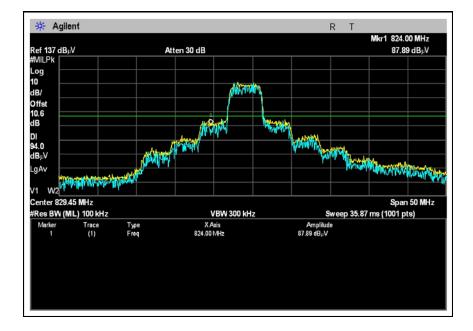




BLOCK EDGE UPLINK - EDGE LOW CHANNEL

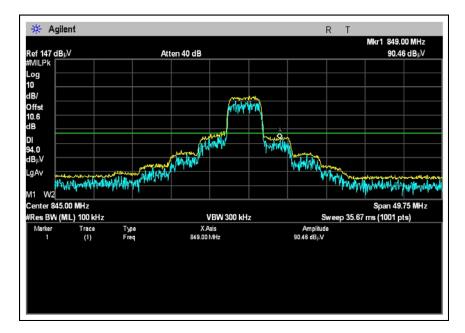
BLOCK EDGE UPLINK - EDGE HIGH CHANNEL





BLOCK EDGE UPLINK - GSM LOW CHANNEL

BLOCK EDGE UPLINK - GSM HIGH CHANNEL



BLOCK EDGE UPLINK - WCDMA LOW CHANNEL

BLOCK EDGE UPLINK - WCDMA HIGH CHANNEL

INPUT AND OUTPUT PLOTS

Test Equipment:

1 cor Dynipment								
Function	S/N	Calibration	Date	Cal Due Date		Asset #		
Agilent E4446A SA	US44300407	08/07/2008		08/07/2010		02660		
Wilson 50-75 Ohm Adapter	None	10/14/2008		10/14/2010		C00013		
Cable 3' 40 GHz Astrolab	NA	01/15/2008		01/15/2010		AN03012		
HP 8491A 10dB Attenuator	2708A47453	11/30/2006		11/30/2008		P01350		
10 dB 10W Attenuator	None	11/30/2006	j	11/30/2008		P02229		
Equipment Under Test (* = EUT):								
Function	Manufacturer		Model #		S/N			
Signal Boost In-Building	Wilson Electron	ics	271247-50		8012	4799021181716		
Wireless Cellular/PCS								
Amplifier*								
Support Devices:								
Function	Manufacturer		Model #		S/N			
Signal Generator	Agilent		E4437B		MY4	1000126		
Signal Generator	Agilent		E4437B		US39	9260577		
Power Supply	Wilson		HK-B18-A	.06	None	2		

Test Conditions / Notes:

HP

Motorola

Step Attenuator

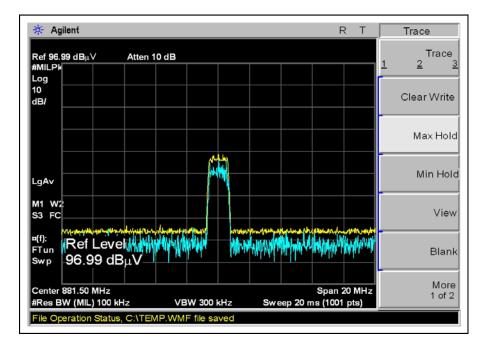
Splitter, 4-Way

This is an in-building, dual-band bi-directional amplifier for enhancing the range of cell phones in-building environments. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Reported power levels indicate the maximum compliant power output measured at an input level just below that which will cause the EUT to fail harmonic, intermodulation or band edge limits, whichever results in the lowest power output for each modulation and channel setting. Signal generator input signal used is CW and is swept to provide amplification and bandwidth plots. For output plots, EUT is connected directly to a spectrum analyzer via suitable attenuation. For input plots, signal generator is connected directly to spectrum analyzer without external attenuation. Frequency Range Investigated: Carrier. Temperature: 22.3°C, Relative Humidity: 35%.

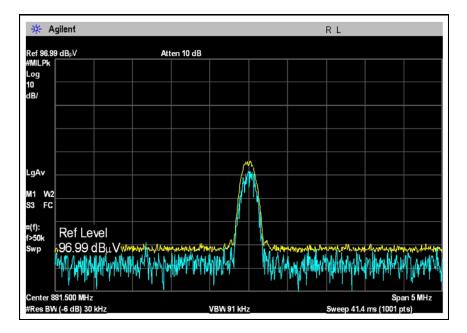
8494B

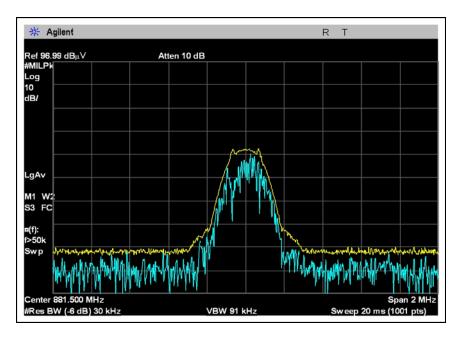

None

AN02475

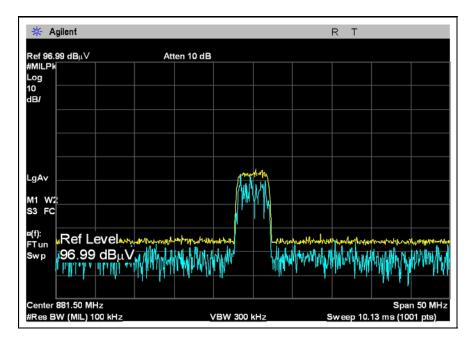

ANP01314

Test Setup Photos

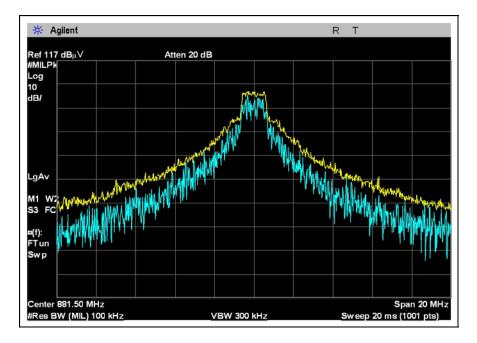

Test Plots

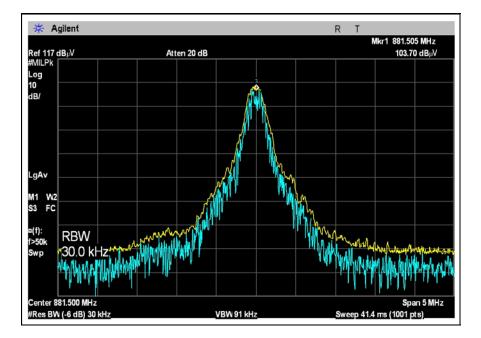

INPUT PLOT DOWNLINK - CDMA MID CHANNEL

INPUT PLOT DOWNLINK - EDGE MID CHANNEL

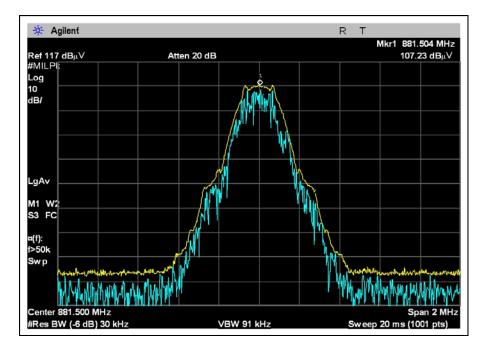


INPUT PLOT DOWNLINK - GSM MID CHANNEL

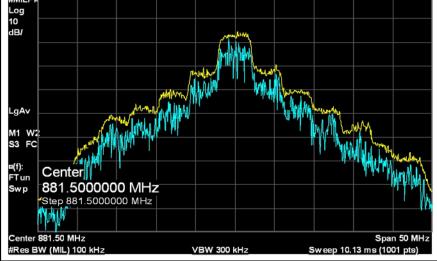


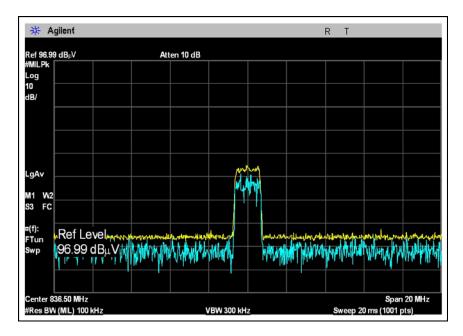

INPUT PLOT DOWNLINK - WCDMA MID CHANNEL

OUTPUT PLOT DOWNLINK - CDMA MID CHANNEL

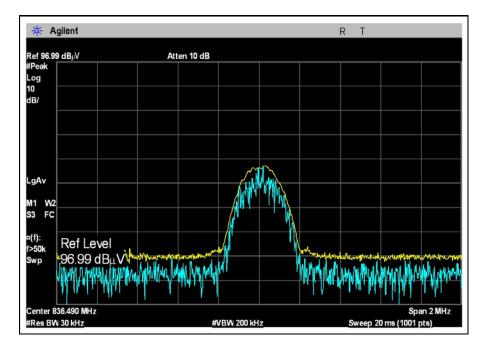


OUTPUT PLOT DOWNLINK - EDGE MID CHANNEL

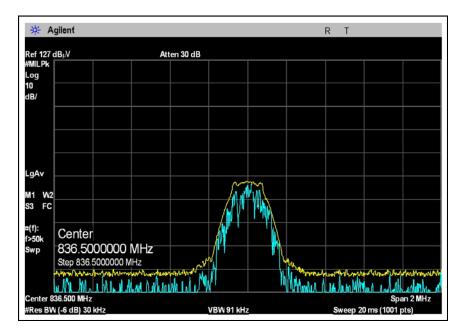

OUTPUT PLOT DOWNLINK - GSM MID CHANNEL



OUTPUT PLOT DOWNLINK - WCDMA MID CHANNEL



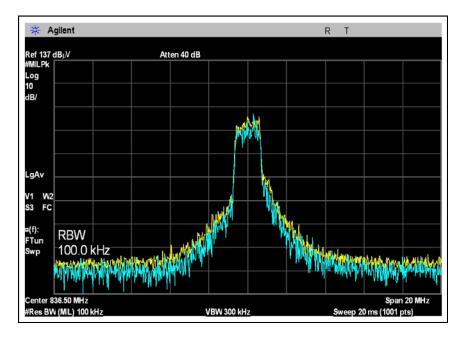
INPUT PLOT UPLINK - CDMA MID CHANNEL



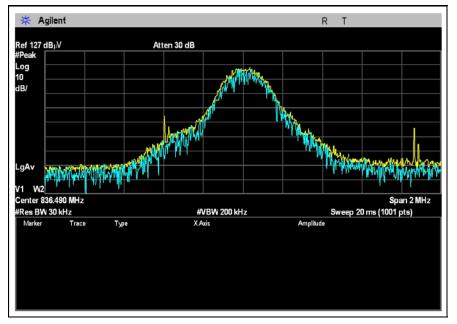
INPUT PLOT UPLINK - EDGE MID CHANNEL



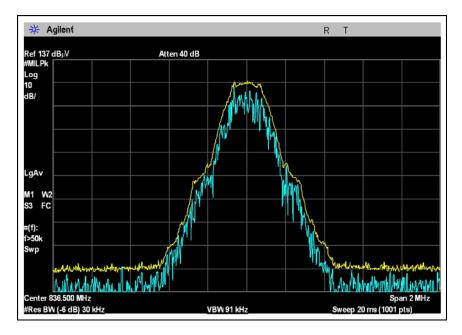
INPUT PLOT UPLINK - GSM MID CHANNEL

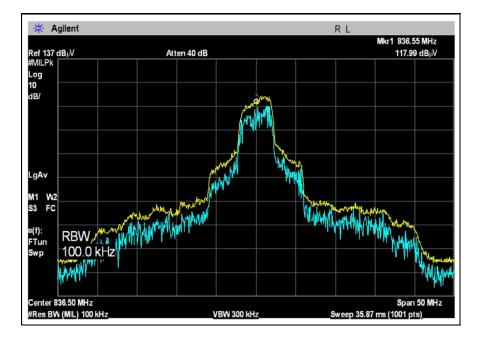


INPUT PLOT UPLINK - WCDMA MID CHANNEL

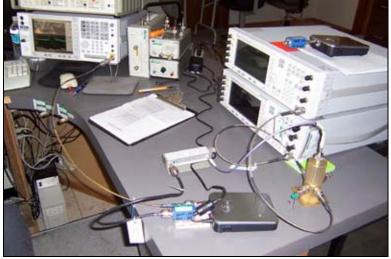


OUTPUT PLOT UPLINK - CDMA MID CHANNEL




OUTPUT PLOT UPLINK - EDGE MID CHANNEL

OUTPUT PLOT UPLINK - GSM MID CHANNEL



OUTPUT PLOT UPLINK - WCDMA MID CHANNEL

FCC 2.1051- INTERMODULATION ATTENUATION

Test Setup Photos

Test Data

 Test Location:
 CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209 966-5240

 Output
 Electric

Customer:	Wilson Electronics
Specification:	FCC 22.917
Work Order #:	88636
Test Type:	Maximized Emissions
Equipment:	Signal Boost In-Building Wireless
	Cellular/PCS Amplifier
Manufacturer:	Wilson Electronics
Model:	271247-50
S/N:	80124799021181716

Motorola

HP

Date: 11/3/2008 Time: 15:26:16 Sequence#: 2

Tested By: Mike Wilkinson

ANP01314

AN02475

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/03/2007	01/03/2009	02660
Cable 2' 40 GHz Astrolab	NA	01/15/2008	01/15/2010	AN03008
Weinchel 10dB attenuator	C8597	11/30/2006	11/30/2008	P02139

Equipment Under Test (* = EUT):							
Function	Manufacturer	Model #	S/N				
Signal Boost In-Building	Wilson Electronics	271247-50	80124799021181716				
Wireless Cellular/PCS							
Amplifier*							
Support Devices:							
Function	Manufacturer	Model #	S/N				
Signal Generator	Agilent	E4437B	MY41000126				
Signal Generator	Agilent	E4437B	US39260577				
Power Supply	Wilson	HK-B18-A06	None				

Test Conditions / Notes:

Splitter, 4-Way

Step Attenuator

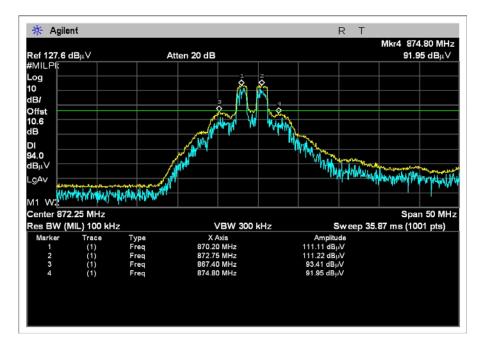
This is an in-building, dual-band bi-directional amplifier for enhancing the range of cell phones in-building environments. EUT operating frequency ranges are 824-849 MHz and 1850-1910 MHz for uplink path and 869-894 MHz and 1930-1990 MHz for downlink path. EUT is connected directly to a spectrum analyzer via suitable attenuation. Combined cable and attenuator insertion loss accounted for in the measurements were: 10.6 dB for the frequency range of 869 to 894 MHz. 10.6 dB for the frequency range of 824 to 849 MHz. Frequency Range Investigated: 9kHz - 20 GHz. Temperature: 22.3°C, Relative Humidity: 35%. RBW=100kHz.

None

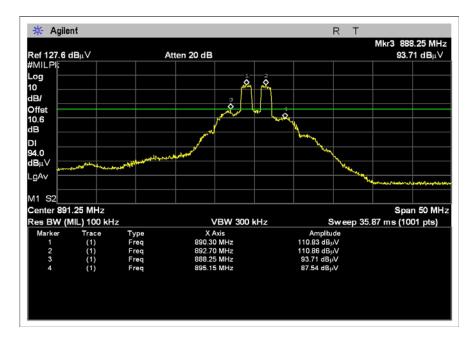
8494B

Transducer Legend:

Measu	rement Data:	Re	eading l	isted by m	nargin.	Test Distance: None					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	850.440M	93.9					+0.0	93.9	94.0	-0.1	None
									UL-HIGH	END-	
									CDMA		
2	891.600M	93.9					+0.0	93.9	94.0	-0.1	None
									DL-LOW	END -	
									WCDMA		

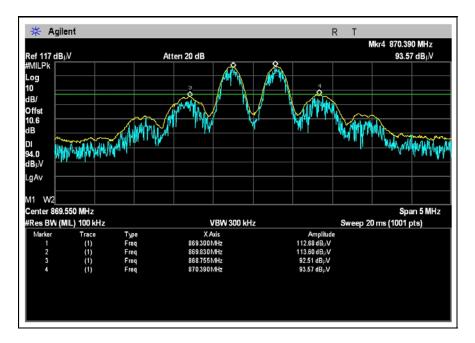


3	888.250M	93.7	+0.0	93.7	94.0 -0.3 DL-HIGH END- CDMA	None
4	871.600M	93.7	+0.0	93.7		None
5	870.000M	93.6	+0.0	93.6	94.0 -0.4 DL-LOW END- EDGE	None
6	825.220M	93.4	+0.0	93.4	94.0 -0.6 UL-LOW END- GSM	None
7	867.400M	93.4	+0.0	93.4	94.0 -0.6 DL-LOW END- CDMA	None
8	852.500M	93.3	+0.0	93.3	94.0 -0.7 UL-HIGH END- WCDMA	None
9	816.800M	93.3	+0.0	93.3	94.0 -0.7 UL-LOW END- WCDMA	None
10	892.965M	93.4	+0.0	93.4	94.0 -0.7 DL-HIGH END- EDGE	None
11	824.430M	93.2	+0.0	93.2	94.0 -0.8 UL-LOW END- EDGE	None
12	849.000M	93.2	+0.0	93.2	94.0 -0.8 UL-HIGH END- GSM	None
13	870.465M	93.0	+0.0	93.0	94.0 -1.0 DL-LOW END- GSM	None
14	894.080M	93.0	+0.0	93.0	94.0 -1.1 DL-HIGH END- GSM	None
15	822.640M	92.3	+0.0	92.3	94.0 -1.7 UL-LOW END- CDMA	None

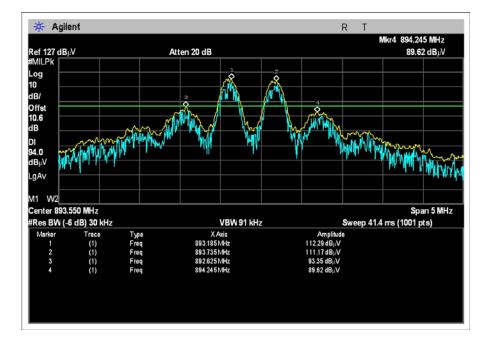


Test Plots

INTERMODULATION DOWNLINK - CDMA LOW CHANNEL



INTERMODULATION DOWNLINK - CDMA HIGH CHANNEL



INTERMODULATION DOWNLINK - EDGE LOW CHANNEL

INTERMODULATION DOWNLINK - EDGE HIGH CHANNEL

