

3301 E. Deseret Drive, St. George, UT 84790 www.wilsonelectronics.com • info@wilsonelectronics.com phone 1-800-204-4104 • fax 1-435-656-2432

July 1, 2024

To: Whom it May Concern

Subject: Calculated Mobile Station Coupling Losses (MSCL)

FCCID: PWO076

The following formulas were used to calculate MSCL with a 45 degree polarity mismatch between the inside antenna and the mobile device:

Distance (feet): 6

Path Loss dB = $36.6 \text{ dB} + 20 \text{Log}(\text{F MHz}) \text{ dB} + 20 \text{Log}(D_{\text{miles}}) \text{ dB}$

Polarity Loss dB = $10\text{Log}(E_1/E_2)^2$ dB = P_L dB P_L dB = $10\text{Log}(E_1^2/(E_1\text{Sin}(45_{\text{deg}}))^2)$ dB = $20\text{Log}(1/\text{Sin}(45_{\text{deg}}))$ dB = 3.01dB Where:

E₁ = Maximum Possible Magnitude of the Electric Field from the Mobile Device

 E_2 = Magnitude of the electric field from the Mobile device with a 45deg polarity mismatch = E_1 Sin(t).

 $E_{2} \begin{tabular}{|c|c|c|c|}\hline $\tau=45 deg \\ \hline E_{1} \end{tabular}$

MSCL dB = Path Loss dB + Polarity Loss dB - Antenna Gain dB

The results of the calculations are shown in the following table:

Uplink Center Frequency MHz	707-710	782	836.5	1732.5	1880-1882.5
Path Loss (dB)	34.72	35.58	36.16	42.49	43.20
Polarity Loss (dB)	3	3	3	3	3
Inside Antenna Gain with Coax Loss (dBi)	-2.43	-1.69	-2.79	-0.33	-1.29
MSCL (dB)	40.15	40.27	41.95	45.82	47.49

Note: Antenna Gain with Coax Loss as measured.

Sincerely

Ilesh Patel

Senior Engineering Product Manager