

FCC Test Report

Part 15 subpart C

Client Information:

Applicant: Applicant add.:	HONG KONG NATURAL SOUND ELECTRONICS LIMITED FLAT/ RM M 4/F CONTINENTAL MANSION 300 KING'S ROAD HONG KONG		
Product Information:			
EUT Name:	Tablet PC		
Model No.:	PC892ITC, Trio Pro 8.95 (Details refer to page 7)		
Brand Name:	Trio		
FCC ID:	PWK-PC892ITC		
Standards:	FCC PART 15 Subpart C: 2015 section 15.247		
Prepared By:			
ſ	Dongguan Yaxu (AiT) Technology Limited		
	No.22, Jinqianling Third Street, Jitigang, Huangjiang, Dongguan, Guangdong, China		
Date of Receipt: Dec. 30, 2	2015 Date of Test: Dec. 30~ Jan. 05, 2016		

Date of Issue: Jan. 05, 2016 Test Result: Pass

This device described above has been tested by Dongguan Yaxu(AiT) Technology Limited, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

*This test report must not be used by the client to claim product endorsement by any agency of the U.S. government.

Reviewed by: Seal-Chen Approved by:

Dongguan Yaxu (AiT) Technology Limited No.22, Jinqianling Third Street, Jitigang, Huangjiang, Dongguan, Guangdong, China

1 Contents

	COVER		age
1	CON	ITENTS	2
2	TES	T SUMMARY	4
	2.1 (COMPLIANCE WITH FCC PART 15 SUBPART C	4
	2.2 N	MEASUREMENT UNCERTAINTY	5
3	TES	T FACILITY	6
	3.1 E	DEVIATION FROM STANDARD	6
	3.2 A	ABNORMALITIES FROM STANDARD CONDITIONS	6
4	GEN	IERAL INFORMATION	7
	4.1 (GENERAL DESCRIPTION OF EUT	7
		Description of Test conditions	
		EUT PERIPHERAL LIST	
	-	Fest Peripheral List	-
5	EQU	IPMENTS LIST FOR ALL TEST ITEMS	11
6		T RESULT	
	6.1	ANTENNA REQUIREMENT	10
	6.1.1		
	6.1.2	•	
	-	CONDUCTION EMISSIONS MEASUREMENT	
	6.2.1		
	6.2.2		
	6.2.3		
	6.2.4	•	
	-	RADIATED EMISSIONS MEASUREMENT	
	6.3.1		
	6.3.2		
	6.3.3	3 Test procedure	18
	6.3.4	Test Result	19
	6.3.5	5 TEST RESULTS (Restricted Bands Requirements)	24
	6.4 E	BANDWIDTH TEST	25
	6.4.1	Applied procedures / Limit	25
	6.4.2	2 Test procedure	25
	6.4.3	B Deviation from standard	25
	6.4.4	Test setup	25
	6.4.5	5 Test results	26
	6.5 F	PEAK POWER DENSITY	28
	6.5.1		28
		Dongguan Yaxu (AiT) Technology Limited	

6.5	.2 Test procedure	
6.5	.3 Deviation from standard	
6.5	.4 Test results	
6.6	MAXIMUM PEAK OUTPUT POWER	
6.6	.1 Applied procedures / Limit	
6.6	.2 Test procedure	
6.6	.3 Deviation from standard	
6.6	.4 Test setup	
6.6	.5 Test results	
6.7	BAND EDGE	
6.7	.1 Applied procedures / Limit	
6.7	.2 Test procedure	
6.7	.3 Deviation from standard	
6.7	.4 Test setup	
6.7	.5 Test results	
6.8	CONDUCTED SPURIOUS EMISSIONS	
6.8	.1 Applied procedures / Limit	
6.8	.2 Test procedure	
6.8	.3 Deviation from standard	
6.8	.4 Test setup	
6.8	.5 Test results	

2 Test Summary

2.1 Compliance with FCC Part 15 subpart C

Test	Test Requirement	Standard Paragraph	Result
Antenna Requirement	FCC Part 15 C:2015	Section 15.247(c)	PASS
Conduction Emissions	FCC Part 15 C:2015	Section 15.207(a)	PASS
Radiated Emissions	FCC Part 15 C:2015	Section 15.247(d)	PASS
Occupied Bandwidth	FCC Part 15 C:2015	Section 15.247(a)(2)	PASS
Peak power density	FCC Part 15 C:2015	Section 15.247(e)	PASS
Maximum Peak Output Power	FCC Part 15 C:2015	Section 15.247(b)(1)	PASS
Band edge	FCC Part 15 C:2015	Section 15.247(d)	PASS
Conducted Spurious Emissions	FCC Part 15 C:2015	Section 15.247(d)	PASS
Note: Reference to the KDB 55	8074 D01 DTS Meas Guid	ance v03r03 and ANSI C63.4	-2009.

2.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, The following measurements uncertainty Levels have estimated based on ANSI C63.4:2009, the maximum value of the uncertainty as below

No.	Item	Uncertainty
1	Conducted Emission Test	1.20dB
2	Radiated Emission Test	3.30dB

3 Test Facility

The test facility is recognized, certified or accredited by the following organizations:

.CNAS- Registration No: L6177

Dongguan Yaxu (AiT) technology Limited is accredited to ISO/IEC 17025:2005 general Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the competence of testing and calibration laboratories) on Apr. 18, 2013

.FCC- Registration No: 248337

The 3m Semi-Anechoic Chamber, 3m/10m Open Area Test Site and Shielding Room of Dong Guan Yaxu (Ait) Technology Limited have been registered by Federal Communications Commission (FCC) on Aug.29, 2014.

.Industry Canada(IC)-Registration No: IC6819A-1 & IC6819A-2

The 3m Semi-Anechoic Chamber and 3m/10m Open Area Test Site of Dong Guan Yaxu (Ait) Technology Limited have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing on Oct. 12, 2014.

.VCCI- Registration No: 2705

The 3m/10m Open Area Test Site, Shielding Room and 3m Chamber of Dong Guan Yaxu (Ait) Technology Limited have been registered by Voluntary Control Council for Interference on Nov. 21, 2012. The Telecommunication Ports Conducted Disturbance Measurement of Dong Guan Yaxu (Ait) Technology Limited have been registered by Voluntary Control Council for Interference on May. 13, 2013.

.TUV NORD

Dong Guan Yaxu (Ait) Technology Limited has been assessed on Jun. 13, 2013 that it can carry out EMC tests by order and under supervision of TUV NORD.

.ITS- Registration No: TMPSHA031

Dong Guan Yaxu (Ait) Technology Limited has been assessed and included in Intertek Shanghai TMP Program regarding Laboratory facilities and test equipment on Jul.22, 2012.

3.1 Deviation from standard

None

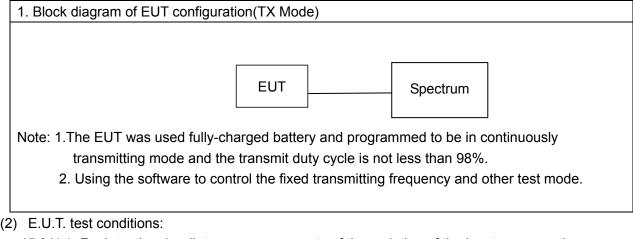
3.2 Abnormalities from standard conditions

None

4 General Information

4.1 General Description of EUT

Manufacturer:	Natural Sound Electronics (Shenzhen) Co., Ltd.
Manufacturer Address:	4th building, Xinyuan industrial zone, Gushu village, Bao'an district, Shenzhen, China
EUT Name:	Tablet PC
Model No:	PC892ITC, Trio Pro 8.95
Operation frequency:	2402 MHz to 2480 MHz
NUMBER OF CHANNEL:	40
Modulation Technology:	GFSK(1Mbps)
Bluetooth version:	BT4.0 BLE
Antenna Type:	Internal antenna (Using pogo pin connector to touch the metal area of antenna.)
Antenna Gain:	Maximum 0dBi
H/W No.:	REV21
S/W No.:	V0.02
Brand Name:	Trio
Serial No:	N/A
Power Supply Range:	DC 5V 2A from adapter, AC 120V/60Hz for adapter or DC 3.7V from battery
Power Supply:	The same as above.
Power Cord:	1.0 m x 2 wires unscreened DC cable
Output power (max) :	5.61dBm (Peak)
Model description:	According to the declaration from the applicant, the electrical circuit design, layout, components used and internal wiring were identical for all models, with only difference being the model name. Therefore only one model PC892ITC was tested in this report.
Note:	
1	For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.



	Description of Channel:						
Channel	Frequency (MHz)	Channel	Frequency (MHz)				
00	00 2402		2442				
01	2404	21	2444				
02	2406	22	2446				
03	2408	23	2448				
04	2410	24	2450				
05	2412	25	2452				
06	2414	26	2454				
07	2416	27	2456				
08	2418	28	2458				
09	2420	29	2460				
10	2422	30	2462				
11	2424	31	2464				
12	2426	32	2466				
13	2428	33	2468				
14	2430	34	2470				
15	2432	35	2472				
16	2434	36	2474				
17	2436	37	2476				
18	2438	38	2478				
19	2440	39	2480				

4.2 Description of Test conditions

(1) EUT was tested in normal configuration (Please See following Block diagram)

15.31(e): For intentional radiators, measurements of the variation of the input power or the adiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

(3) Test frequencies:

According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and. If required reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range over	Number of	Location in
which device operates	frequencies	the range of operation
1 MHz or less	1	Middle
1 to 10 MHz	2	1 near top and 1 near bottom
	2	1 near top, 1 near middle and
More than 10 MHz	3	1 near bottom

(4) Frequency range of radiated measurements:

According to the 15.33, the test range will be up to the tenth harmonic of the highest fundamental frequency.

4.3 EUT Peripheral List

No.	Equipment	Manufacturer	Model No.	Serial No.	Power cord	signal cable
1	Adapter	Trio	AW010WR-0500200UU	N/A	0.8m/unshielded /detachable	N/A

4.4 Test Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	Remark
1	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Report No.: E-F1512021-2 Page 11 of 42 Rev: 00

5 Equipments List for All Test Items

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date		
1	Spectrum Analyzer	ADVANTEST	R3182	150900201	2015.06.29	2016.06.28		
2	EMI Measuring Receiver	R&S	ESR	101660	2015.06.29	2016.06.28		
3	Low Noise Pre Amplifier	Tsj	MLA-10K01-B01-27	1205323	2015.06.29	2016.06.28		
4	Low Noise Pre Amplifier	Tsj	MLA-0120-A02-34	2648A04738	2015.06.29	2016.06.28		
5	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2015.06.29	2016.06.28		
6	Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	452	2015.06.29	2016.06.28		
7	SHF-EHF Horn	SCHWARZBECK	BBHA9170	BBHA9170367	2015.06.29	2016.06.28		
8	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2015.06.29	2016.06.28		
9	EMI Test Receiver	R&S	ESCI	100124	2015.06.29	2016.06.28		
10	LISN	Kyoritsu	KNW-242	8-837-4	2015.06.29	2016.06.28		
11	LISN	Kyoritsu	KNW-407	8-1789-3	2015.06.29	2016.06.28		
12	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2015.06.29	2016.06.28		
13	Loop Antenna	ETS	6512	00165355	2015.06.29	2016.06.28		
14	Radiated Cable 1# (30MHz-1GHz)	FUJIKURA	5D-2W	01	2015.12.25	2016.12.24		
15	Radiated Cable 2# (1GHz -25GHz)	FUJIKURA	10D2W	02	2015.12.25	2016.12.24		
16	Conducted Cable 1#(9KHz-30MHz)	FUJIKURA	1D-2W	01	2015.12.25	2016.12.24		
17	SMA Antenna connector	Dosin	Dosin-SMA	N/A	N/A	N/A		
Note:	Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.							

6 Test Result

6.1 Antenna Requirement

6.1.1 Standard requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

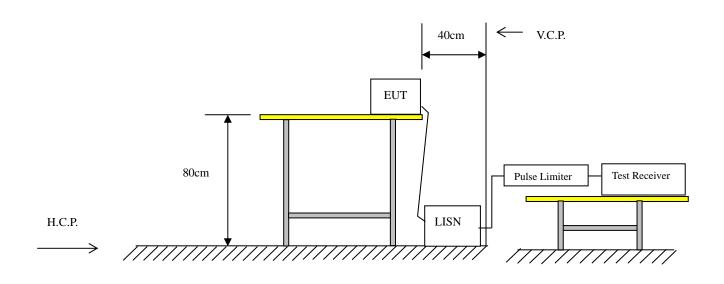
15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

6.1.2 EUT Antenna

The antenna is internal antenna (Using pogo pin connector to touch the metal area of antenna) and no consideration of replacement. Antenna gain is maximum 0 dBi from 2.4GHz to 2.5GHz.

6.2 Conduction Emissions Measurement

6.2.1 Applied procedures / Limit

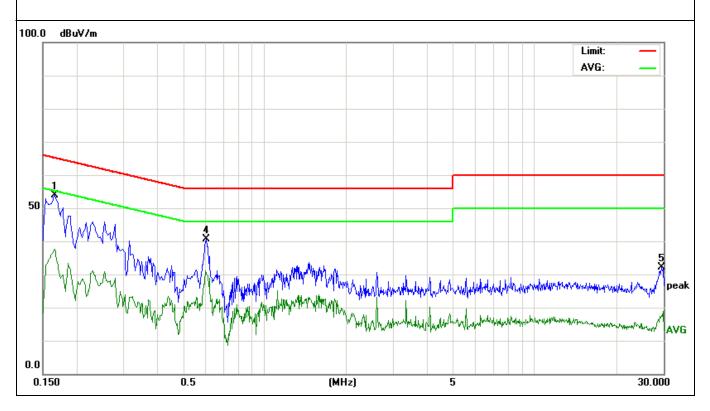

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

Note: Decreases with the logarithm of the frequency.

6.2.2 Test procedure

EUT was placed upon a wooden test table 0.8m above the horizontal metal reference plane and 0.4m from the vertical ground plane, and it was connected to an AMN. The closest distance between the boundary of the EUT and the surface of the AMN is 0.8m. All peripherals were connected to another AMN, and placed at a distance of 10cm from each other. A spectrum and receiver was connected to the RF output port of the AMN. Both average and quasi-peak value were detected.

6.2.3 Test setup

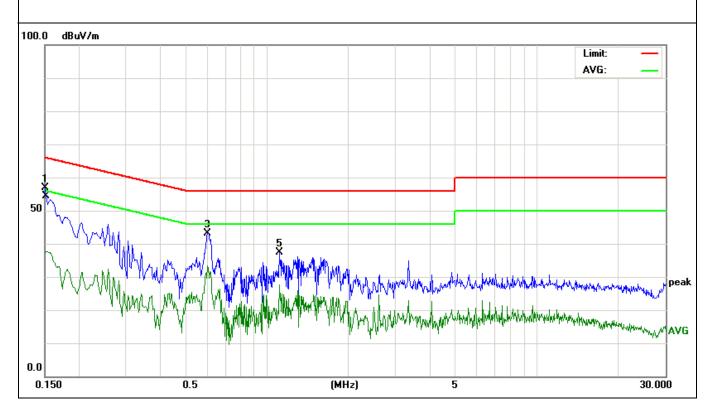


6.2.4 Test results

EUT:	Tablet PC	Model Name. :	PC892ITC		
Temperature:	26 ℃	Relative Humidity:	54%		
Pressure:	1010hPa	Test Date :	2016-01-04		
Test Mode:	TX (1Mbps) CH00 (worst case) Phase : Line				
Test Voltage :	DC 5V from adapter, AC 120V/60Hz for adapter				

Frequency (MHz)	Meter Reading (dBµV)	Factor(dB)	Emission Level (dBµV)	Limits (dBµV)	Over (dB)	Detector
0.1660	42.15	11.61	53.76	65.15	-11.39	Quasi-Peak
0.1660	25.98	11.61	37.59	55.15	-17.56	Average
0.6020	21.11	9.99	31.10	46.00	-14.90	Quasi-Peak
0.6060	30.58	9.99	40.57	56.00	-15.43	Average
29.4660	30.13	2.10	32.23	60.00	-27.77	Quasi-Peak
29.8700	16.64	2.12	18.76	50.00	-31.24	Average

Remark: Factor = LISN factor + Cable Loss + Pulse limiter factor.



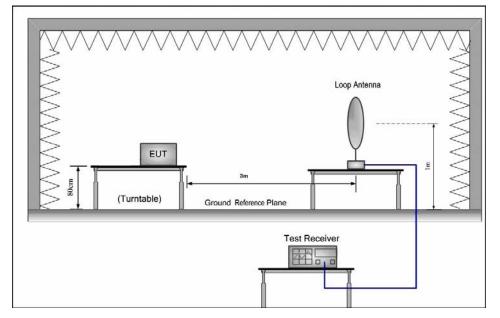
EUT:	Tablet PC	Model Name. :	PC892ITC		
Temperature:	26 ℃	Relative Humidity:	54%		
Pressure:	1010hPa	Test Date :	2016-01-04		
Test Mode:	TX (1Mbps) CH00 (worst case) Phase : Neutral				
Test Voltage :	DC 5V from adapter, AC 120V/60Hz for adapter				

Frequency (MHz)	Meter Reading (dBµV)	Factor(dB)	Emission Level (dBµV)	Limits (dBµV)	Over (dB)	Detector
0.1500	44.90	11.94	56.84	65.99	-9.15	Quasi-Peak
0.1539	25.73	11.84	37.57	55.78	-18.21	Average
0.6020	33.24	9.99	43.23	56.00	-12.77	Quasi-Peak
0.6020	23.47	9.99	33.46	46.00	-12.54	Average
1.1140	27.53	9.94	37.47	56.00	-18.53	Quasi-Peak
1.1140	17.58	9.94	27.52	46.00	-18.48	Average

Remark: Factor = LISN factor + Cable Loss + Pulse limiter factor.

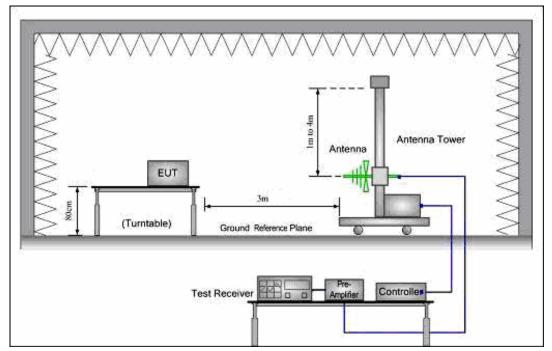
6.3 Radiated Emissions Measurement

6.3.1 Applied procedures / Limit

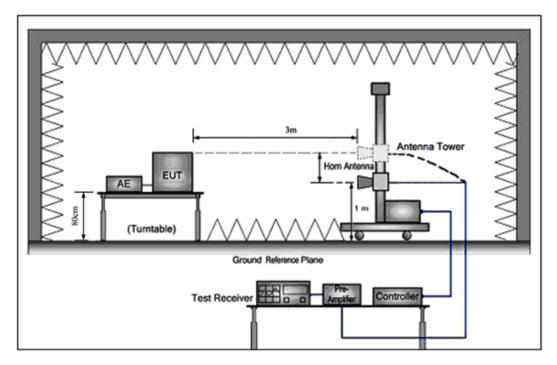

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

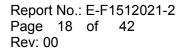
Exercise of Emission (MUT)	Field Stre	ngth	Measurement
Frequency of Emission (MHz)	μV/m	dBµV/m	Distance (meters)
0.009-0.49	2400/F(kHz)		300
0.49-1.705	24000/F(kHz)		30
1.705-30	30		30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

6.3.2 Test setup


Test Configuration:

1) 9 kHz to 30 MHz emissions:




2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 25 GHz emissions:

6.3.3 Test procedure

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter, for the test frequency of above 1GHz, horn antenna opening in the test would have been facing the EUT when rise or fall) and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. The resolution bandwidth and video bandwidth of the test receiver was 1MHz and 1MHz for Peak detection at frequency above 1GHz.
- g. Test the EUT in the lowest channel (2402MHz), the middle channel (2440MHz), the Highest channel (2480MHz)
- h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
- i. Repeat above procedures until all frequencies measured was complete.
- For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. For Average measurement at frequency above 1GHz.

The resolution bandwidth of the test receiver was 1MHz, the video bandwidth is 10Hz. In 18GHz to 25GHz, The EUT was checked by Horn ANT. But the test result at least have 20dB margin.

The EUT was tested in Chamber Site.

Pre-test the EUT under 2 modes: power-supplied by using the AC adapter and power-supplied by using internal battery. After pre-testing, we found the worst case is the test mode of EUT power-supplied by using internal battery.

6.3.4 Test Result

Radiated Emissions Test Data Below 30MHz

EUT:	Tablet PC	Model Name :	PC892ITC		
Temperature:	25 ℃	Test Data	2016-01-04		
Pressure:	1005 hPa	Relative Humidity:	60%		
Test Mode :	TX(1Mbps worst case)	Toot Voltago	DC 5V from adapter,		
rest mode :		Test Voltage :	AC 120V/60Hz for adapter		
Measurement Distance	3 m Frenqucy Range 9KHz to 30MHz				
RBW/VBW	9KHz~150KHz/RB 200Hz for QP, 150KHz~30MHz/RB 9KHz for QP				

No emission found between lowest internal used/generated frequencies to 30MHz.

Radiated Emissions Test Data Below 1GHz

EUT:	Tablet PC	Model Name :	PC892ITC		
Temperature:	25 ℃	Test Data	2016-01-04		
Pressure:	1010 hPa	Relative Humidity:	60%		
Test Mede	TX (1Mbps) CH00 (worst case)	Tost Voltago	DC 5V from adapter,		
Test Mode :		lest voltage :	AC 120V/60Hz for adapter		
Measurement Distance	3 m	Frenqucy Range	30MHz to 1GHz		
RBW/VBW	100KHz / 300KHz for spectrum, RBW=120KHz for receiver.				

(a) Antenna polarization: Horizontal

Frequency	Reading	Correct	Measure	Limit	Margin	Detector Type
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	
	(dBuV)	(dB)	(dBuV/m)			
87.4175	38.42	-17.32	21.10	40.00	-18.90	QUASIPEAK
104.9033	37.91	-15.57	22.34	43.50	-21.16	QUASIPEAK
175.6516	36.92	-12.61	24.31	43.50	-19.19	QUASIPEAK
240.8302	35.42	-11.62	23.80	46.00	-22.20	QUASIPEAK
336.0350	34.84	-8.64	26.20	46.00	-19.80	QUASIPEAK
*704.2259	30.70	0.08	30.78	46.00	-15.22	QUASIPEAK

(b) Antenna polarization: vertical

Frequency	Readin	Correct	Measure	Limit	Margin	Detector Type
(MHz)	g Level	Factor	Level	(dBuV/m	(dB)	
	(dBuV)	(dB)	(dBuV/m))		
43.8119	42.28	-17.52	24.76	40.00	-15.24	QUASIPEAK
87.7248	44.29	-18.60	25.69	40.00	-14.31	QUASIPEAK
103.0798	35.15	-13.72	21.43	43.50	-22.07	QUASIPEAK
284.9766	31.19	-10.12	21.07	46.00	-24.93	QUASIPEAK
434.0649	31.36	-6.61	24.75	46.00	-21.25	QUASIPEAK
*801.7862	30.28	3.30	33.58	46.00	-12.42	QUASIPEAK

Note: "' means the worst case

Measurement Level = Reading Level + Factor Factor= Ant Factor + Cable Loss - Pre-amplifier

Radiated Emissions Test Data Above 1GHz

EUT:	Tablet PC	Model Name :	PC892ITC		
Temperature:	25 ℃	Test Data	2016-01-04		
Pressure:	1010 hPa	Relative Humidity:	60%		
Teet Mede	TX(1Mbps)	Toot Voltage	DC 5V from adapter,		
Test Mode :		Test Voltage :	AC 120V/60Hz for adapter		
Measurement Distance	3 m	Frenqucy Range	1GHz to 25GHz		
RBW/VBW	Spurious emission: 1MHz/1MHz for Peak, 1MHz/10Hz for Average.				
KBVV/VBVV	non-restricted band: 100KHz/300KHz for Peak.				

(a) Antenna polarization: Horizontal

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4804.000	54.76	5.06	59.82	74.00	-14.18	PEAK
*4804.000	42.51	5.06	47.57	54.00	-6.43	AVERAGE
7206.000	48.62	7.03	55.65	74.00	-18.35	PEAK
7206.000	36.92	7.03	43.95	54.00	-10.05	AVERAGE

(b) Antenna polarization: Vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4804.000	53.66	5.06	58.72	74.00	-15.28	PEAK
*4804.000	41.25	5.06	46.31	54.00	-7.69	AVERAGE
7206.000	43.68	7.03	50.71	74.00	-23.29	PEAK
7206.000	34.78	7.03	41.81	54.00	-12.19	AVERAGE

Note: "' means the worst case

8~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor

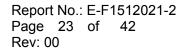
Factor= Ant Factor + Cable Loss - Pre-amplifier

Low Channel 00: 2402 MHz

Data rate: 1Mbps

(a) Antenna polarization: Horizontal

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	ictor Level (d		(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4880.000	53.86	5.14	59.00	74.00	-15.00	PEAK
*4880.000	40.29	5.14	45.43	54.00	-8.57	AVERAGE
7320.000	45.74	7.52	53.26	74.00	-20.74	PEAK
7320.000	34.33	7.52	41.85	54.00	-12.15	AVERAGE


(b) Antenna polarization: Vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4880.000	54.62	5.14	59.76	74.00	-14.24	PEAK
*4880.000	39.87	5.14	45.01	54.00	-8.99	AVERAGE
7320.000	45.29	7.52	52.81	74.00	-21.19	PEAK
7320.000	33.62	7.52	41.14	54.00	-12.86	AVERAGE

Note: '*' means the worst case

8~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor Factor= Ant Factor + Cable Loss - Pre-amplifier Middle Channel 19: 2440 MHz Data rate: 1Mbps

(a) Antenna polarization: Horizontal

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4960.000	53.20	5.14	58.34	74.00	-15.66	PEAK
*4960.000	41.43	5.14	46.57	54.00	-7.43	AVERAGE
7440.000	44.54	7.52	52.06	74.00	-21.94	PEAK
7440.000	33.37	7.52	40.89	54.00	-13.11	AVERAGE

(b) Antenna polarization: Vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4960.000	52.27	5.14	57.41	74.00	-16.59	PEAK
*4960.000	40.39	5.14	45.53	54.00	-8.47	AVERAGE
7440.000	46.24	7.52	53.76	74.00	-20.24	PEAK
7440.000	34.86	7.52	42.38	54.00	-11.62	AVERAGE

Note: "' means the worst case

8~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor

Factor= Ant Factor + Cable Loss - Pre-amplifier

Low Channel 39: 2480 MHz

Data rate: 1Mbps

6.3.5 TEST RESULTS (Restricted Bands Requirements)

EUT:	Tablet PC	Model Name :	PC892ITC				
Temperature:	25 ℃	Test Data	2016-01-04				
Pressure:	1010 hPa	Relative Humidity:	60%				
Test Mode :	TX(1Mbps)	s) DC 5V from ada					
rest mode :		Test Voltage : AC 120V/60Hz for ada					
RBW/VBW	1MHz/1MHz for Peak, 1MHz/10Hz	for Average.					
Note:	1. The transmitter was setup to	transmit at the low	west channel. Then the field				
	strength was measured at 2310	-2390 MHz.					
	2. The transmitter was setup to	transmit at the hig	hest channel. Then the field				
	strength was measured at 2483.	strength was measured at 2483.5-2500 MHz.					
	3. The data of 2390MHz and 2483	.5MHz was the wors	st.				

Test	Ant.Pol.	Freq.	Rea	Reading		Ant/CF Ad		Lir	imit	
Mode	H/V	(MHz)	Peak	AV	CF(dB)	Peak	AV	Peak	AV	
			(dBuv)	(dBuv)		(dBuv/m)	(dBuv/m)	(dBuv/m)	(dBuv/m)	
	Н	2390.00	48.86	35.61	-5.79	43.07	29.82	74.00	54.00	
TX Data rate	V	2390.00	46.43	35.59	-5.79	40.64	29.80	74.00	54.00	
1Mbps	Н	2483.50	46.85	35.72	-4.98	41.87	30.74	74.00	54.00	
	V	2483.50	48.57	36.65	-4.98	43.59	31.67	74.00	54.00	

6.4 BANDWIDTH TEST

6.4.1 Applied procedures / Limit

15.247(a) (2) Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.4.2 Test procedure

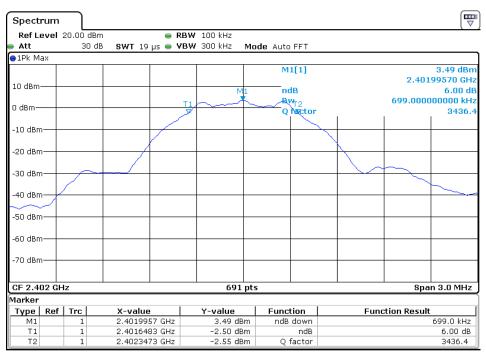
- a. The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Spectrum Setting: RBW= 100KHz, VBW \ge 3×RBW, Sweep time = Auto, Detector Function = Peak, centering on a hopping channel Trace = Max Hold.
- d Mark the peak frequency and -6 dB points bandwidth.

Pre-test the EUT under 2 modes: power-supplied by using the AC adapter and power-supplied by using internal battery. After pre-testing, we found the worst case is the test mode of EUT power-supplied by using internal battery.

6.4.3 Deviation from standard

No deviation.

6.4.4 Test setup



6.4.5 Test results

EUT:	Tablet PC	Model Name :	PC892ITC
Temperature:	26 ℃	Relative Humidity:	53%
Pressure:	1010 hPa	Lest Power :	DC 5V from adapter, AC 120V/60Hz for adapter
Test Mode :	TX(1Mbps)		

Test Mode	Test Channel	Frequency	6 dB Bandwidth	Limit
Test Mode	rest channel	(MHz)	(KHz)	(kHz)
	CH00	2402	699.0	≧500
Data rate 1Mbps	CH19	2440	699.0	≧500
	CH39	2480	694.6	≧500

(1Mbps) The Lowest Channel 00: 2402 MHz

Spectrum Ref Level 20.00 dBm RBW 100 kHz 30 dB SWT 19 µs 👄 VBW 300 kHz Att Mode Auto FFT ⊖1Pk Max 4.75 dBm 2.43999570 GHz M1[1] 10 dBm· ndB 6.00 dB BVT2 Q factor 699.00000000 kHz 0 dBm 3490.8 -10 dBm· -20 dBm -30 dBm 40.dBm -50 dBm -60 dBm· -70 dBm· CF 2.44 GHz 691 pts Span 3.0 MHz Marker
 Type
 Ref
 Trc

 M1
 1

 T1
 1

 T2
 1
 X-value Y-value Function **Function Result** 2.4399957 GHz 2.439644 GHz 2.440343 GHz 4.75 dBm ndB down 699.0 kHz -1.16 dBm -1.28 dBm ndB Q factor 6.00 dB 3490.8

(1Mbps) The Middle Channel 19: 2440 MHz

(1Mbps) The High Channel 39: 2480MHz

Spect	rum								
Ref Le	evel 3	20.00 dBm		RBW 100 kHz					
🛛 Att		30 dB	SWT 19 µs 👄	VBW 300 kHz	Mode Auto	FFT			
⊖1Pk Ma	эх								
					MI	1[1]		2.479	5.40 dBm 99570 GHz
10 dBm-					🖞 nd				6.00 dB
0 dBm—	_			T1 ~~~~	Bw Q	₹2 Factor		694.6000	00000 kHz 3570.2
-10 dBm	-			, 					
-20 dBm	·		A				\rightarrow		
-30 dBm		\square						\square	
-40 aBm	7								
-50 dBm									\sim
-60 dBm	,								
-70 dBm									
-70 0011	'								
CF 2.48	3 GHz		I	69:	1 pts		I	Spa	n 3.0 MHz
Marker									
Type	Ref	Trc	X-value	Y-value	Funct	tion	Fun	ction Result	1
M1		1	2.4799957 GHz	5.40 d		down			694.6 kHz
T1		1	2.479644 GHz	-0.57 d		ndB			6.00 dB
T2		1	2.4803386 GHz	-0.61 d	Bm∣ Qf	factor			3570.2

6.5 Peak Power Density

6.5.1 Applied procedures / Limit

15.247(a) (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

6.5.2 Test procedure

- a. The testing follows Measurement procedure 10.2 Method PKPSD of FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Connected the antenna port to the Spectrum Analyzer, set the Spectrum Analyzer as center frequency to channel center frequency, span=1.5 times the bandwith, detector = peak 3kHz≤RBW≤100kHz, VBW≥3×RBW kHz, Sweep time=Auto.
- d. Trace mode = max hold. Mark the peak.
- e. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Pre-test the EUT under 2 modes: power-supplied by using the AC adapter and power-supplied by using internal battery. After pre-testing, we found the worst case is the test mode of EUT power-supplied by using internal battery.

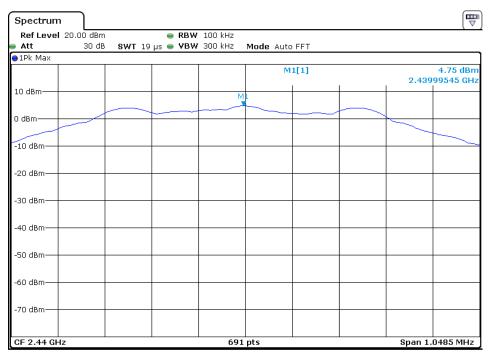
6.5.3 Deviation from standard

No deviation.

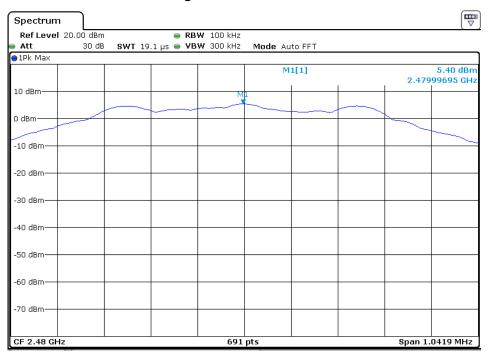
6.5.4 Test results

EUT:	Tablet PC	Model Name :	PC892ITC
Temperature:	24 ℃	Relative Humidity:	53%
Pressure:	1010 hPa	lest Power ·	DC 5V from adapter, AC 120V/60Hz for adapter
Test Mode :	TX(1Mbps)		

Test Mode	Channel frenqucy (MHz)	Power Density PSD 100kHz (dBm/100kHz)	Limit (dBm/3kHz)	Result
ТХ	2402	3.46	8	Pass
(1Mbps)	2440	4.75	8	Pass
(Twops)	2480	5.40	8	Pass


Note: The cable loss is 0.5dB

PSD 100kHz (1Mbps) The Lowest Channel 00: 2402MHz


Spectrum							
Ref Level 20.00 dBm	RBW	100 kHz					
Att 30 dB	SWT 19 µs 👄 VBW	300 kHz	Mode Auto	FFT			
●1Pk Max							,
			М	1[1]		2.401	3.46 dBm 99695 GHz
10 dBm							
		N	<u>р</u>				
0 dBm							
-10 dBm-							
-20 dBm							
-20 ubiii							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							
CF 2.402 GHz		691	pts			Span 1.	0485 MHz

PSD 100kHz (1Mbps) The Middle Channel 19: 2440MHz

PSD 100kHz (1Mbps) The High Channel 39: 2480MHz

6.6 Maximum Peak Output Power

6.6.1 Applied procedures / Limit

15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

6.6.2 Test procedure

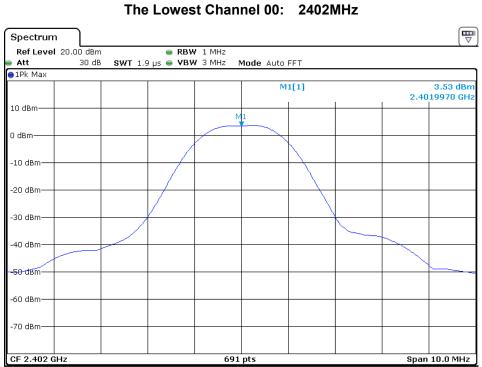
- a. The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- ^{c.} Spectrum Setting: RBW ≥ Bandwidth, VBW ≥ 3×RBW, Sweep time = Auto, Span ≥ 3×RBW,
- d Detector = peak. Trace mode = max hold.
- e Use peak marker function to determine the peak amplitude level.

Pre-test the EUT under 2 modes: power-supplied by using the AC adapter and power-supplied by using internal battery. After pre-testing, we found the worst case is the test mode of EUT power-supplied by using internal battery.

6.6.3 Deviation from standard

No deviation.

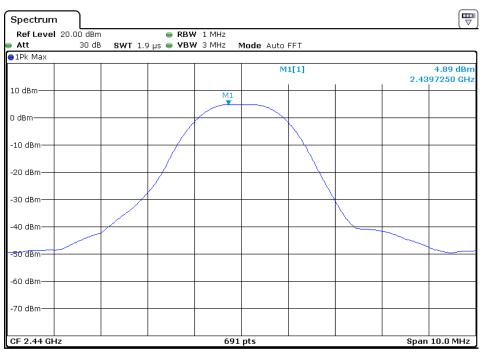
6.6.4 Test setup



6.6.5 Test results

EUT:	Tablet PC	Model Name :	PC892ITC
Temperature:	26 ℃	Relative Humidity:	60%
Pressure:	1010 hPa	Lest Voltage :	DC 5V from adapter, AC 120V/60Hz for adapter
Test Mode :	TX (1Mbps)		
Note: N/A			

Test Mode	Frequency	Peak Output Power (dBm)	Limit (dBm)	Result
	2402 MHz	3.53	30	Pass
Data rate 1Mbps	2440 MHz	4.89	30	Pass
	2480 MHz	5.61	30	Pass


Note: The cable loss is 0.5dB

(1Mbps) The Lowest Channel 00: 2402MHz

(1Mbps) The Middle Channel 19: 2440MHz

(1Mbps) The High Channel 39: 2480MHz

6.7 Band edge

6.7.1 Applied procedures / Limit

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

6.7.2 Test procedure

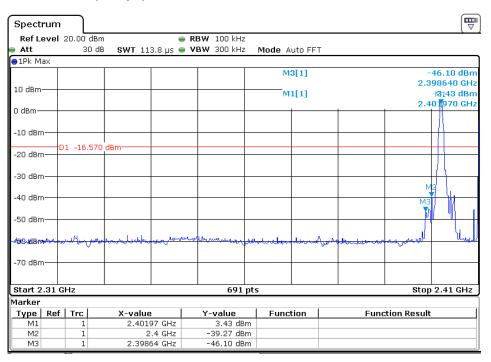
- a. The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Spectrum Setting: RBW=100kHz, VBW \geq 300kHz, Sweep time=Auto, Detector Function=Peak.
- d. The band edges was measured and recorded Result:

The Lower Edges attenuated more than 20dB.

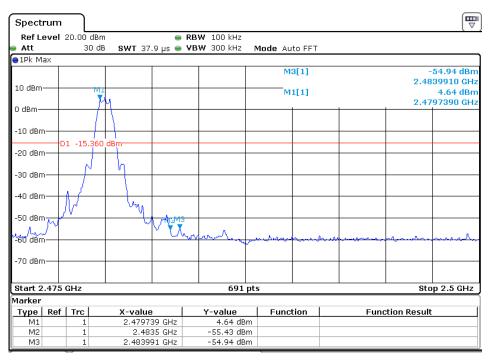
The Upper Edges attenuated more than 20dB.

Pre-test the EUT under 2 modes: power-supplied by using the AC adapter and power-supplied by using internal battery. After pre-testing, we found the worst case is the test mode of EUT power-supplied by using internal battery.

6.7.3 Deviation from standard


No deviation.

6.7.4 Test setup



6.7.5 Test results

(1Mbps) The Lowest Channel 00: 2402MHz

6.8 Conducted Spurious Emissions

6.8.1 Applied procedures / Limit

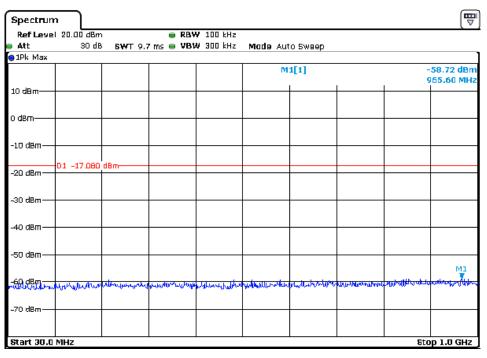
15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

6.8.2 Test procedure

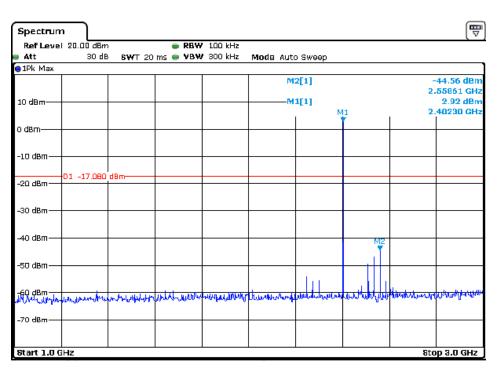
- a. The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Spectrum Setting: RBW=100kHz, VBW=300kHz, Sweep time=Auto, Detector Function=Peak, sweep points ≥ investigated frequency range/RBW.

Pre-test the EUT under 2 modes: power-supplied by using the AC adapter and power-supplied by using internal battery. After pre-testing, we found the worst case is the test mode of EUT power-supplied by using internal battery.

6.8.3 Deviation from standard


No deviation.

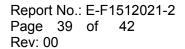
6.8.4 Test setup



6.8.5 Test results

The Lowest Channel 00 (1Mbps): 2402MHz

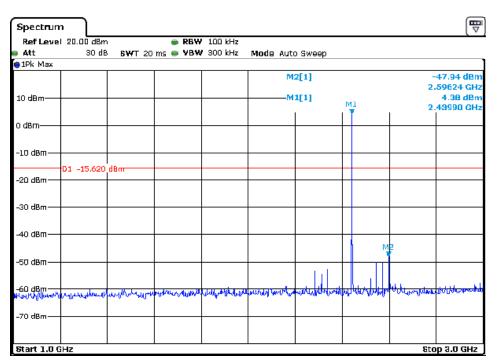
Note: Sweep Points=9700


Report No.: E-F1512021-2 Page 38 of 42 Rev: 00

Ref Level 20.00 dBm RBW 100 kHz Att 30 dB 6WT 100 ms VBW 300 kHz Mode Auto Sweep 1Pk Max Max M1[1] M1[1] 10 dBm 0 dBm 0 dBm 0 dBm	-52.33 de 10.6050 G
10 dBm	
10 dBm	
0 dBm	
-10 dBm	
-20 dBm	
-30 dBm	
40 dBm	
-50 dBm M1	
-50 dBm	www.when.when.when.whe
-70 dBm	
-/0 dbm	

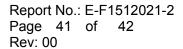
Note: Sweep Points=100000

Spectrum	<u>, </u>								
Ref Level	20.00 dBm		👄 RB\	₩ 100 kHz					
👄 Att	30 dB	6W T 120) ms 🥌 VBV	W 300 kHz	Mode Au	to Sweep			
🔵 1Pk Max									
					М	1[1]			49.06 dBm 0.1110 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	01 -17.080	d8m							
-30 dBm									
-40 dBm					M	1			
-50 dBm	muture	Mury Me	he have defined	holyman	Moral March	and mark	how have	Manangenten	What have not
-60 dBm									
-70 dBm									
Start 13.0	GHz							Stop	25.0 GHz



Spectrum	ر آ								(₩)
	20.00 dBm		_	V 100 kHz					
Att	30 de	6W T 9.	7 ms 🖷 VBV	V 300 kHz	Mode Aut	to Sweep			
😑 1Pk Max			1						
					м	1[1]			42.84 dBm 98.20 MHz
10 dBm								<u> </u>	50120 0112
0 dBm									
-10 dBm									
-20 dBm	01 -15.620	dBm							
-20 0011									
-30 dBm									
-40 dBm								M	1
-50 dBm									
-60 dBm								L. L. Here	and the second second
NEC ABUT	alle and realistic the	veran allestelation	northall search which	مىلىلىلىلىكى يەرىپىرىيەر مەرىكىلىلىلىكى يەرىپىر	nugaran Menyang	medi ordena	. Conservation and		
-70 dBm									
Start 30.0	MHz							l Sto	p 1.0 GHz
									_

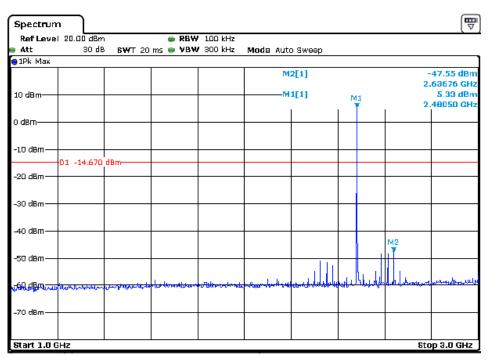
The Middle Channel 19(1Mbps): 2440MHz


Report No.: E-F1512021-2 Page 40 of 42 Rev: 00

Spectrum	'n								Ē
Ref Level	20.00 dBm	1	👄 RB\	₩ 100 kHz					
👄 Att	30 dB	6WT 100) ms 🥌 🛛 🗛	🖌 300 kHz	Mode Au	to Sweep			
😑 1Pk Max									
					М	1[1]			-51.23 dBm 2.6890 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -15.620	dBm							
-30 dBm									
-40 dBm									
-50 dBm									M1
-50 dBm	who and the second	Hoper and the parts	al like affective design in the	Werner	MANNIN	Murrison	about any	yormeneted	awatter the
-70 dBm									
Start 3.0 G	Hz							Stop	13.0 GHz

Note: Sweep Points=100000

Spectrum	Г								
Ref Level 20	0.00 dBm		😑 RBV	♥ 100 kHz					,
Att 🗧	30 dB	6₩ T 120	ms 👄 VBV	₩ 300 kHz	Mode Aut	to Sweep			
😑 1Pk Max									
					M	1[1]			49.58 dBm 7.9930 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	-15.620 dB	m							
-30 dBm									
-40 dBm									
-50 dBm	العداريم والعدا	alor Mr		M1 Murunya	ant permanan	Manthe when	ا	المعرور والمسترور والم	a mil allaphilitik
-60 dBm						and the second	and the states		
-70 dBm									
Start 13.0 GH	2							Stop	25.0 GHz



Spectrum	ر آ								(₩)
	20.00 dBm		_	Y 100 kHz					
e Att	30 dB	6₩ T 9.3	7 ms 😑 VBV	₩ 300 kHz	Mode Aut	ю Swaep			
😑 1Pk Max									
					м	1[1]			58.32 dBm 29.10 MHz
10 dBm									
0 dBm									
-10 dBm	01 -14.660	d8m							
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									M1
No. Barton	gj,iinhienhurgenstaf	nundryhyligenet	-yuulaan in	nya dalahan dalam da	apartata ang ang ang ang ang ang ang ang ang an	ana ann an Ann	and the states of the states o	-(Martha Paralpa	ast and the second second
-70 dBm									
Start 30.0	Start 30.0 MHz Stop 1.0 GHz								

The High Channel 39(1Mbps): 2480MHz

Report No.: E-F1512021-2 Page 42 of 42 Rev: 00

Spectrum	, J								₽
Ref Level	20.00 dBm	1	👄 RB\	₩ 100 kHz					
🛢 Att	30 dB	6WT 100) ms 👄 VBV	W 300 kHz	Mode Au	to Sweep			
🔵 1Pk Max									
					М	1[1]			52.45 dBm).6770 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	01 -14.660	d8m							
-30 dBm									
-40 dBm									
-50 dBm							M1		
And the state of the	-	www.www.	Handright	a production	whenter	Myulugan	M1 Normer Man	whethere	here a start of the second
-70 dBm									
Start 3.0 G	Hz							Stor	13.0 GHz

Note: Sweep Points=100000

10 dBm M1[1] -48.89 dBm 10 dBm 20.1290 GHz 0 dBm 0 -10 dBm 0 -10 dBm 0 -20 dBm 0 -30 dBm 0 -50 dBm 0 -60 dBm 0	Spectrum				
10 dBm M1[1] -48.89 dBm 10 dBm 20.1290 GHz 0 dBm 0 -10 dBm 0 -20 dBm 0 -20 dBm 0 -30 dBm 0 -50 dBm 0 -60 dBm 0	Ref Level 20.00 c	iBm 🛛 👄 RBV	₩ 100 kHz		
10 dBm M1[1] -48.89 dBm 10 dBm 20.1290 GHz 0 dBm 0 -10 dBm 0 -10 dBm 0 -20 dBm 0 -30 dBm 0 -50 dBm 0 -60 dBm 0		dB 🛛 6W T 120 ms 👄 VBV	W 300 kHz - Mode Au	ito Sweep	
10 dBm 20.1290 GHz 0 dBm 0 dBm -10 dBm 01 -14.660 dBm -20 dBm 01 -14.660 dBm -30 dBm 01 -14.660 dBm -50 dBm 01 -14.660 dBm	😑 1Pk Max				
0 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -60 dBm			м	11[1]	-48.89 dBm 20.1290 GHz
-10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -60 dBm	10 dBm				
-20 dBm	0 dBm				
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm	-10 dBm				
-30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm		i60 dBm			
-40 dBm	-20 0611				
-50 dBm	-30 dBm				
-50 dBm	-40 dBm				
and a set a	-50 dBm				
	Hand to a start of the second start and a	atter which a north which which while	Caller Control and a star	a have been where	margulanter
-70 dBm	-60 dBm				
	-70 dBm				
Start 13.0 GHz Stop 25.0 GHz	Start 13.0 GHz				Stop 25 II CUp