

APPLICATION CERTIFICATION FCC Part 15C On Behalf of HONG KONG NATURAL SOUND ELECTRONICS LIMITED

MID Model No.: PC1016BXC, Trio Stealth G5 10

FCC ID: PWK-PC1016BXC

Prepared for	:	HONG KONG NATURAL SOUND ELECTRONICS LIMITED
Address	:	FLAT/RM M 4/F CONTINENTAL MANSION 300 KING'S ROAD HONG KONG
Prepared by Address		ACCURATE TECHNOLOGY CO., LTD F1, Bldg. A, Chan Yuan New Material Port, Keyuan Rd. Science & Industry Park, Nan Shan, Shenzhen, Guangdong P.R. China
		Tel: (0755) 26503290

Fax: (0755) 26503396

Report Number	:	ATE20151402
Date of Test	:	Jun 25-Jul 06,2015
Date of Report	:	Jul 07,2015

TABLE OF CONTENTS

Description

Page

Test R	eport Certification	
1. Gl	ENERAL INFORMATION	
1.1.	Description of Device (EUT)	
1.2.	Carrier Frequency of Channels	
1.3.	Special Accessory and Auxiliary Equipment	
1.4.	Description of Test Facility	
1.5.	Measurement Uncertainty	
	EASURING DEVICE AND TEST EQUIPMENT	
3. Ol	PERATION OF EUT DURING TESTING	9
3.1.	Operating Mode	9
3.2.	Configuration and peripherals	9
4. TH	EST PROCEDURES AND RESULTS	
5. 6D	B BANDWIDTH MEASUREMENT	
5.1.	Block Diagram of Test Setup	
5.2.	The Requirement For Section 15.247(a)(2)	
5.3.	EUT Configuration on Measurement	
5.4.	Operating Condition of EUT	
5.5.	Test Procedure	
5.6.	Test Result	
6. M	AXIMUM PEAK OUTPUT POWER	
6.1.	Block Diagram of Test Setup	
6.2.	The Requirement For Section 15.247(b)(3)	
6.3.	EUT Configuration on Measurement	
6.4.	Operating Condition of EUT	
6.5.	Test Procedure	
6.6.	Test Result	
7. PC	OWER SPECTRAL DENSITY MEASUREMENT	
7.1.	Block Diagram of Test Setup	
7.2.	The Requirement For Section 15.247(e)	
7.3.	EUT Configuration on Measurement	
7.4.	Operating Condition of EUT	
7.5.	Test Procedure	
7.6.	Test Result	
8. BA	AND EDGE COMPLIANCE TEST	
8.1.	Block Diagram of Test Setup	
8.2.	The Requirement For Section 15.247(d)	
8.3.	EUT Configuration on Measurement	
8.4.	Operating Condition of EUT	
8.5.	Test Procedure	
8.6.	Test Result	
9. R A	ADIATED SPURIOUS EMISSION TEST	
9.1.	Block Diagram of Test Setup	
9.2.	The Limit For Section 15.247(d)	
9.3.	Restricted bands of operation	
9.4.	Configuration of EUT on Measurement	
ID: PWK-PC	1016BXC AC	CURATE TECHNOLOGY CO., LTD

Report No.: ATE20151402 Page 3 of 53

ATC		Report No.: ATE20151402 Page 3 of 53
9.5.	Operating Condition of EUT	•
9.6.	Test Procedure	
9.7.	The Field Strength of Radiation Emission Measurement Results	
10. CO	NDUCTED SPURIOUS EMISSION COMPLIANCE TEST	
10.1.	Block Diagram of Test Setup	
10.2.	The Requirement of Section 15.247(d)	
10.3.	EUT Configuration on Measurement	
10.4.	Operating Condition of EUT	
10.5.	Test Procedure	
10.6.	Test Result	
11. PO	WER LINE CONDUCTED MEASUREMENT	
11.1.	Block Diagram of Test Setup	
11.2.	Power Line Conducted Emission Measurement Limits	
11.3.	Configuration of EUT on Measurement	
11.4.	Operating Condition of EUT	
11.5.	Test Procedure	
11.6.	Power Line Conducted Emission Measurement Results	
12. AN	TENNA REQUIREMENT	
12.1.	The Requirement	
12.2.	Antenna Construction	

Test Report Certification

Applicant	: HONG KONG NATURAL SOUND ELECTRONICS LIMITED
Applicant	; HONG KONG NATUKAL SOUND ELECTRONICS LIMITED

Manufacturer : Natural Sound Electronics (Shenzhen) Co., Ltd.

EUT Description : MID

- (A) MODEL NO.: PC1016BXC, Trio Stealth G5 10
- (B) Trade Name .: N/A
- (C) POWER SUPPLY: DC 3.7V (Powered by battery) or DC 5V (Powered by adapter)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of Jun 05, 2014 KDB558074 D01 DTS Meas Guidance v03r02 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test : Date of Report:

Prepared by :

Jun 25-Jul 06,2015 Jul 07,2015

Z-z zhang

(Eric Zhang, Engineer)

Approved & Authorized Signer :

(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT	:	MID
Model Number	:	PC1016BXC, Trio Stealth G5 10 Note: These samples are same except for the model number is difference. So we prepare the PC1016BXC for test
Frequency Range	:	802.11b/g/n(20MHz): 2412-2462MHz 802.11n(40MHz): 2422-2452MHz Bluetooth 4.0: 2402-2480MHz
Number of Channels	:	802.11b/g/n (20MHz):11 802.11n (40MHz): 7 Bluetooth 4.0: 40
Antenna Gain	:	0dBi
Power Supply	:	DC 5V (Power by adapter)&DC 3.7V(Battery)
Adapter	:	Model number: AW010WR-0500200UU Input: AC 100-240V; 50/60Hz 0.4A Output: DC 5V/2A USB line: Non-shielded, Non-detachable, 1.5m
Modulation mode	:	GFSK DSSS,OFDM
Applicant	:	HONG KONG NATURAL SOUND ELECTRONICS LIMITED
Address	:	FLAT/RM M 4/F CONTINENTAL MANSION 300 KING'S ROAD HONG KONG
Manufacturer	:	Natural Sound Electronics (Shenzhen) Co., Ltd.
Address	:	4th Building, Xinyuan Industrial Zone, Gushu Village, Bao'an District, Shenzhen, China
Date of sample received Date of Test	:	Jun 25,2015 Jun 25-Jul 06,2015

Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channe 1	Frequceny (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.2.Carrier Frequency of Channels

1.3. Special Accessory and Auxiliary Equipment

N/A

1.4.Description of Test Facility

EMC Lab	:	Accredited by TUV Rheinland Shenzhen
		Listed by FCC The Registration Number is 752051
		Listed by Industry Canada The Registration Number is 5077A-2
		Accredited by China National Accreditation Committee for Laboratories The Certificate Registration Number is L3193
Name of Firm Site Location	:	ACCURATE TECHNOLOGY CO. LTD F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong P.R. China

1.5.Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 10, 2015	One Year
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 10, 2015	One Year
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 10, 2015	One Year
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 10, 2015	One Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2015	One Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2015	One Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2015	One Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1067	Jan. 15, 2015	One Year
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 10, 2015	One Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 10, 2015	One Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 10, 2015	One Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 10, 2015	One Year
Switch Unit with OSP-B157	Rohde & Schwarz	OSP120	101130	Jan. 10, 2015	One Year

Table 1: List of Test and Measurement Equipment

3. OPERATION OF EUT DURING TESTING

3.1.Operating Mode

The mode is used: **BLE Transmitting mode** Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

3.2. Configuration and peripherals

	EUT]	
Figure 1 S	Setup: Transm	nitting mode	

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Power Line Conducted Emission	Compliant
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 6DB BANDWIDTH MEASUREMENT

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(2)

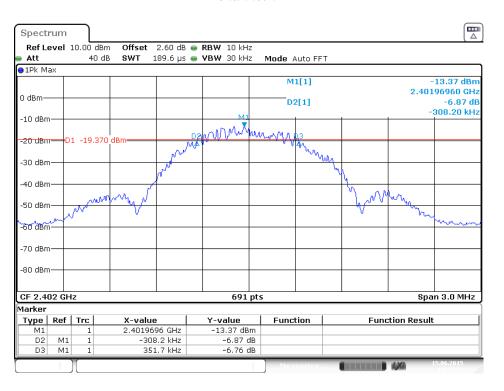
Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

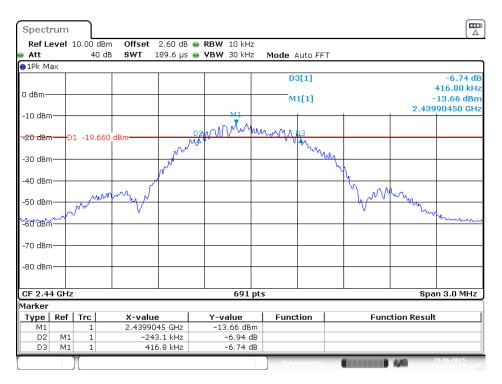
- 5.4.1.Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2.Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

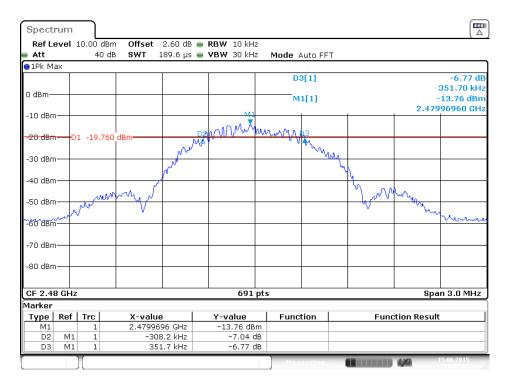

5.5.Test Procedure

- 5.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 10 kHz and VBW to30 kHz.
- 5.5.3.The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

5.6.Test Result

Channel	Frequency (MHz)	6 dB Bandwith (MHz)	Minimum Limit(MHz)	PASS/FAIL
0	2402	0.6599	0.5	PASS
19	2440	0.6599	0.5	PASS
39	2480	0.6599	0.5	PASS


The spectrum analyzer plots are attached as below.


channel 0

channel 19

channel 39

6. MAXIMUM PEAK OUTPUT POWER

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

6.4.1.Setup the EUT and simulator as shown as Section 6.1.

- 6.4.2.Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

6.5.Test Procedure

6.5.1.Set the RBW \geq DTS bandwidth. VBW \geq 3 × RBW.

6.5.2.Set span \geq 3 x RBW

6.5.3.Sweep time = auto couple.

6.5.4.Detector = peak.

6.5.5.Trace mode = max hold.

6.5.6.Allow trace to fully stabilize.

6.5.7.Use peak marker function to determine the peak amplitude level.

6.6.Test Result

Channel	Frequency (MHz)	Peak Power Output (dBm)	Peak Output Power (mW)	Peak Power Limit (dBm)	Pass / Fail
0	2402	-3.36	0.46	30	PASS
19	2440	-3.63	0.43	30	PASS
39	2480	-3.82	0.41	30	PASS

The spectrum analyzer plots are attached as below.

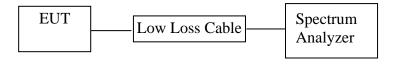
channel 0

Spectrum			
Ref Level 10.00 dBm Att 40 dB	Offset 2.60 dB ● RBW 1 MHa SWT 1 ms ● VBW 3 MHa		×
●1Pk Max			
		M1[1]	-3.36 dBm 2.40201740 GHz
0 dBm		M1	
-10 dBm			
-20 dBm-			
-30 dBm			
-40 dBm			
-50 dBm-			
-60 dBm			
-70 dBm			
-80 dBm			
CF 2.402 GHz	69	1 pts	Span 3.0 MHz
)[Measuring	

 \frown

channel 19

Spectrum			 				
Ref Level Att	10.00 dBm 40 dB	SWT	BW 1 MHz BW 3 MHz	Mode /	Auto Sweep		
⊖1Pk Max					F		
					M1[1]	2.440	-3.63 dBm)13890 GHz
0 dBm				M1 T	+		
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							
-80 dBm							
CF 2.44 GH	2		691	ots		Spa	in 3.0 MHz
)[]			M	easuring	1,70	14120140



Spectrum			
RefLevel 10.00 dBm Att 40 dB			
●1Pk Max	1 1		0.00 10
		M1[1]	-3.82 dBm 2.48011290 GHz
0 dBm		Mi	
-10 dBm			
20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
-80 dBm			
-00 ubiii			
CF 2.48 GHz		691 pts	Span 3.0 MHz
		Measuring	()

7. POWER SPECTRAL DENSITY MEASUREMENT

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.3.EUT Configuration on Measurement

The equipment is installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

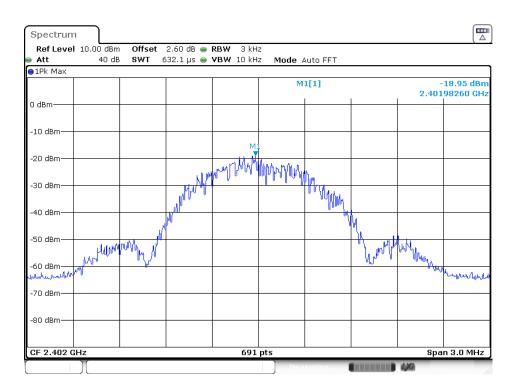
7.4. Operating Condition of EUT

- 7.4.1.Setup the EUT and simulator as shown as Section 8.1.
- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

7.5.Test Procedure

- 7.5.1.The EUT was tested according to DTS test procedure of KDB558074 D01 DTS Meas Guidance v03r02 for compliance to FCC 47CFR 15.247 requirements.
- 7.5.2.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.3.Measurement Procedure PKPSD:

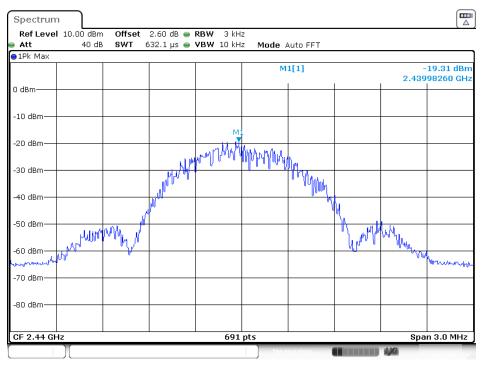
This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.

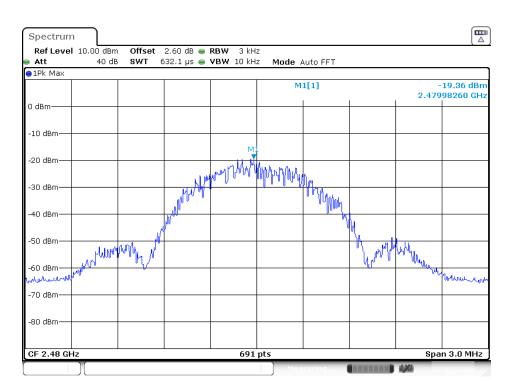

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 7.5.4.Measurement the maximum power spectral density.

7.6.Test Result

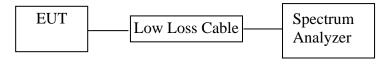
CHANNEL NUMBER	FREQUENCY (MHz)	PSD (dBm/3KHz)	LIMIT (dBm/3KHz)	PASS/FAIL
0	2402	-18.95	8	PASS
19	2440	-19.31	8	PASS
39	2480	-19.36	8	PASS

The spectrum analyzer plots are attached as below.


channel 0


FCC ID: PWK-PC1016BXC

channel 19


channel 39

8. BAND EDGE COMPLIANCE TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.209(a).

8.3.EUT Configuration on Measurement

The equipment is installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4.Operating Condition of EUT

- 8.4.1.Setup the EUT and simulator as shown as Section 9.1.
- 8.4.2.Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

8.5.Test Procedure

Conducted Band Edge:

- 8.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 8.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.

Radiate Band Edge:

- 8.5.3. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 8.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 8.5.5. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 8.5.6. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

RBW=1MHz, VBW=1MHz

8.5.7.The band edges was measured and recorded.

8.6.Test Result

Pass

Channel	Delta peak to band emission	Limit(dBc)
0	41.89	20
39	43.21	20

channel 0

Spectrur	n												
Ref Leve	el 10.00) dBm	Offset	2.60 dB	RBW	100 kHz							<u> </u>
Att 🗧		40 dB	SWT	1 ms	e vbw	300 kHz	Mode	Auto S	weep				
⊖1Pk Max													
							I	M4[1]				-46.70 c	
0 dBm												2.320810	
							ſ	м1[1]				-4.11 c	
-10 dBm—								1				2.402030	GHIZ
													11
-20 dBm—								-					╈
00 ID													11
-30 dBm—													Ħ
-40 dBm—													()
to abili	M4									43	M2		
-50 ⁴ 8m	when	vvm~4v	all and a start of the	mone	Hermond	muchilized	mound	mandown	werget	Tunnedot		un hand and a second	11
-60 dBm—													
-70 dBm—								-					
-80 dBm													
-ou ubiii													
Start 2.31	L GHZ					691 p	ots				St	op 2.404 G	Hz
Marker							1 -					•	
	ef Trc		X-valu	-		value		ction		Fu	nction Re	sult	
M1 M2	1			203 GHz .39 GHz		-4.11 dBn 48.55 dBn							
M2 M3		-		27 GHz		17.23 dBn							
M4	1)81 GHz		46.70 dBn							
) [A.MA		-
											14		

channel 39

Spectrum	ı							
Ref Leve			.60 dB 🧉	• RBW 100 kHz				(=
Att 🗧	40	dB SWT 5	6.9 µs 🧉	• VBW 300 kHz	Mode Auto Fi	FT		
⊖1Pk Max								
					M4[1]			-47.62 dBm
0 dBm							2	.4885540 GHz
J ubiii	1				M1[1]			-4.41 dBm
-10 dBm	{						- 2	2.4799900 GHz
	1							
-20 dBm	1							
-30 dBm								
2	5							
-40 dBm		M2	Ma	3 M4				
		MI2	~ .X					
-50' dBm	~~~		And a start			- Andrews		*****
-60 dBm								
-00 00111								
-70 dBm								
-80 dBm								
Start 2.47	B GHz			691 pts	5			Stop 2.5 GHz
Marker					-			
Type Re	f Trc	X-value	1	Y-value	Function	1	Function Re	sult
M1	1	2.4799	9 GHz	-4.41 dBm	. unotion			
M2	1		5 GHz	-49.15 dBm				
MЗ	1	2.48603	9 GHz	-48.24 dBm				
M4	1	2.48855	4 GHz	-47.62 dBm				
)[Measuring		100	
)			

Radiated Band Edge Result

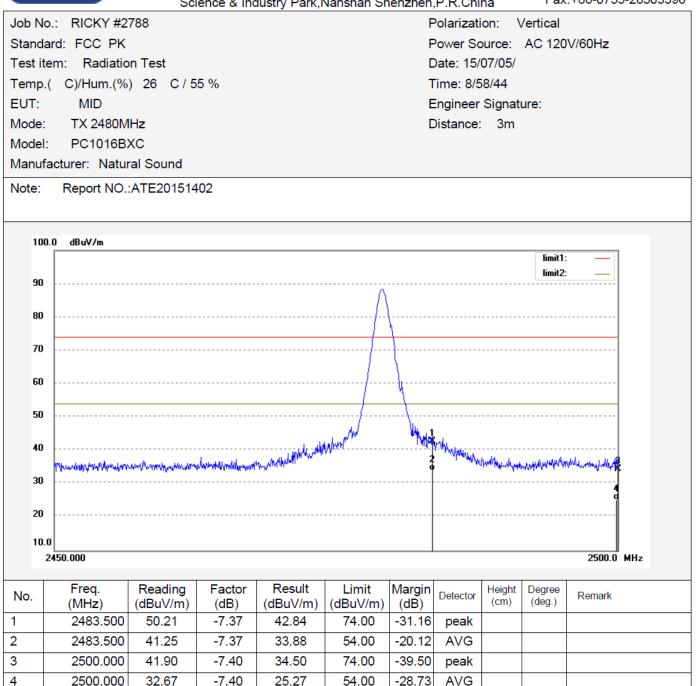
Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows: Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

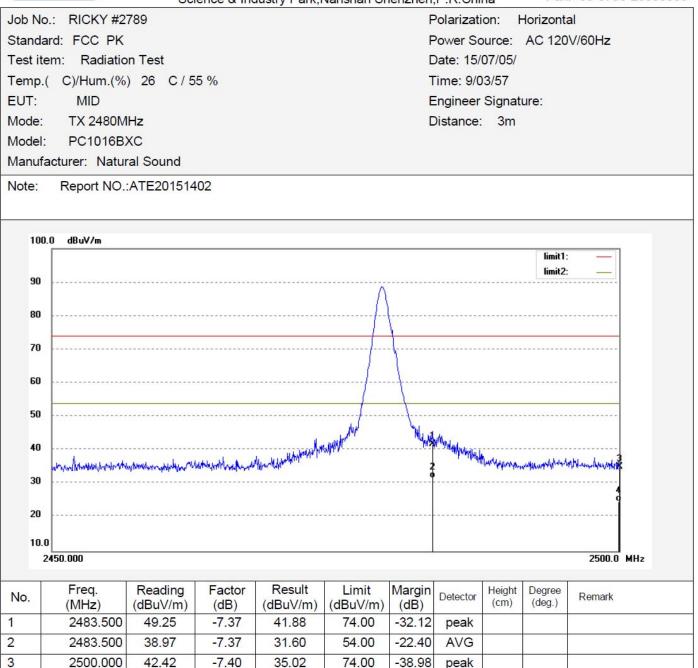
A	TC®	F1	,Bldg,A,Cł	TE TECH nangyuan Ne dustry Park,N	ew Material	Port Ke	yuan Rd	,		Site: 1# Chamber :+86-0755-26503290 ::+86-0755-26503396
Job No	b.: RICKY #2	786				F	Polarizati	on: \	/ertical	
Standa	ard: FCC PK					F	Power So	ource:	AC 120)V/60Hz
Test ite	em: Radiatio	on Test				0	Date: 15/	07/05/		
Temp.	(C)/Hum.(%)) 26 C/5	5 %			г	ime: 8/5	60/13		
EUT:	MID					E	Engineer	Signat	ure:	
Mode:	TX 2402M	Hz				0	Distance	3m		
Model:	PC1016B	XC								
Manufa	acturer: Natur	ral Sound								
Note:	Report NO.:	:ATE201514	102							
100).0 dBuV/m								1-24	
									limit1: limit2:	
90										
80						۸.				
00						·····]]				
70										
60										
						×				
50						,				
						/1				
40	new many with the state			. I	and a colorado	MM	Whythem		un And	
30	Calculation of the condition	bernerferner af fusier an alleft	Manadista A rtikatika	area la fan an a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		a date		and sharted	**************************************
					2					
20										
10.0 2	0									2450.0 MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	42.58	-7.53	35.05	74.00	-38.95	peak			
2	2390.000	33.09	-7.53	25.56	54.00	-28.44	AVG			
3	2400.000	62.53	-7.46	55.07	74.00	-18.93	peak			
4	2400.000	53.10	-7.46	45.64	54.00	-8.36	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Report No.: ATE20151402 Page 25 of 53

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396


		30	ence a mo	usily raik,	Valislian SI	lenznen	F.R.CIII	la		
Job N	o.: RICKY #2	787				F	^o olarizati	on: H	lorizonta	al
Stand	ard: FCC PK					F	Power Sc	ource:	AC 120	V/60Hz
Test it	em: Radiatio	n Test				0	Date: 15/	07/05/		
Temp.	(C)/Hum.(%) 26 C/5	5 %			Г	ime: 8/5	64/19		
EUT:	MID					E	Ingineer	Signat	ure:	
Mode:	TX 2402M	Hz					Distance:	3m		
Model	: PC1016B	xc								
Manuf	acturer: Natur	al Sound								
Note:	Report NO.	ATE201514	02							
10).0 dBu∀/m									
									limit1:	-
90									limit2:	
						٨				
80						······				
70										
60										
						3				
50										
						A				
40	Ange Anno Anno Anno Anno Anno Anno Anno Ann		uto model to a da		when a wat In	WWW	Warrythicas	all in male	the state of the state	
30	is a development of the series	. Annual And Managed Link	auros de la tella Academi	Maleri ale cale de contrales en	al and a state of the state of			wa Michielian	Linken (Staffan a	Alleneddoden J
					4					
20										
10.	0									
	2310.000									2450.0 MHz
									[]	
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	42.37	-7.53	34.84	74.00	-39.16	peak			

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	42.37	-7.53	34.84	74.00	-39.16	peak			
2	2390.000	33.24	-7.53	25.71	54.00	-28.29	AVG			
3	2400.000	61.55	-7.46	54.09	74.00	-19.91	peak			
4	2400.000	52.10	-7.46	44.64	54.00	-9.36	AVG			


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Report No.: ATE20151402 Page 27 of 53

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

4

2500.000

32.10

-7.40

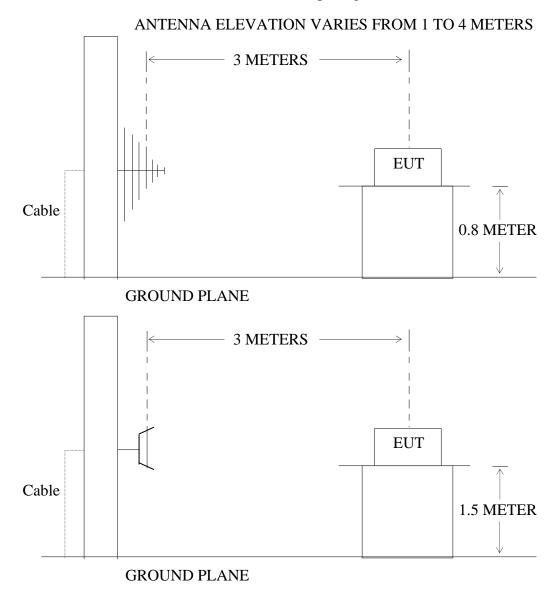
24.70

54.00

-29.30

AVG

9. RADIATED SPURIOUS EMISSION TEST


9.1.Block Diagram of Test Setup

9.1.1.Block diagram of connection between the EUT and peripherals

Setup: Transmitting mode

9.1.2.Semi-Anechoic Chamber Test Setup Diagram

9.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3.Restricted bands of operation

9.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
$^{1}0.495-0.505$	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

2 Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

9.4. Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.5. Operating Condition of EUT

- 9.5.1.Setup the EUT and simulator as shown as Section 10.1.
- 9.5.2.Turn on the power of all equipment.
- 9.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

9.6.Test Procedure

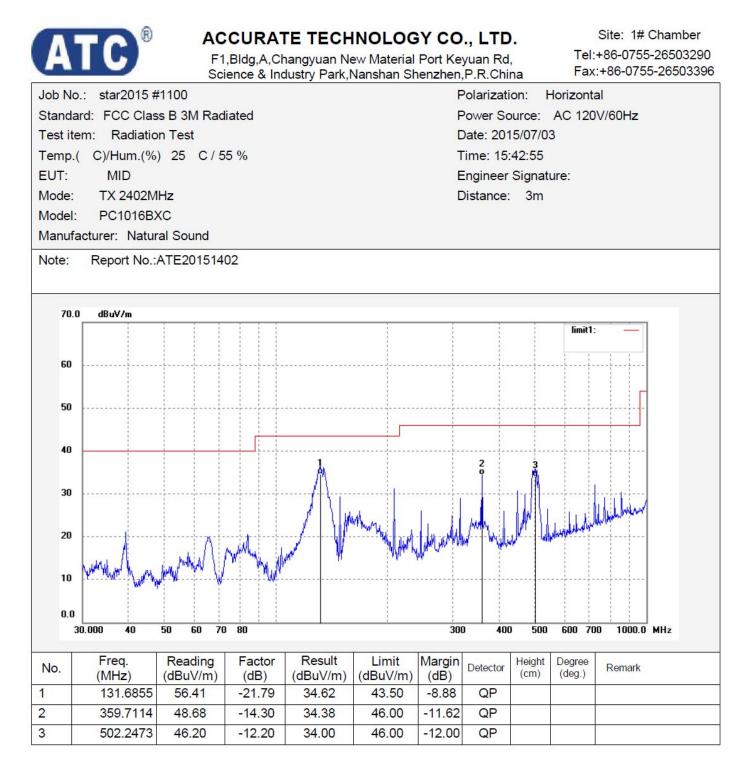
The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna.

For emission measurements above 1 GHz, the EUT shall be placed at a height of 1.5 m above the floor on a support that is RF transparent for the frequencies of interest. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector. When average radiated emissions measurements are specified there is also a limit on the peak emissions level which is 20 dB above the applicable maximum permitted average emission limit

RBW (120 kHz), VBW (300 kHz) for QP detector below 1GHz Peak detector above 1GHz RBW (1 MHz), VBW (3MHz) for Peak measurement RBW (1 MHz), VBW (10Hz) for AV measurement

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

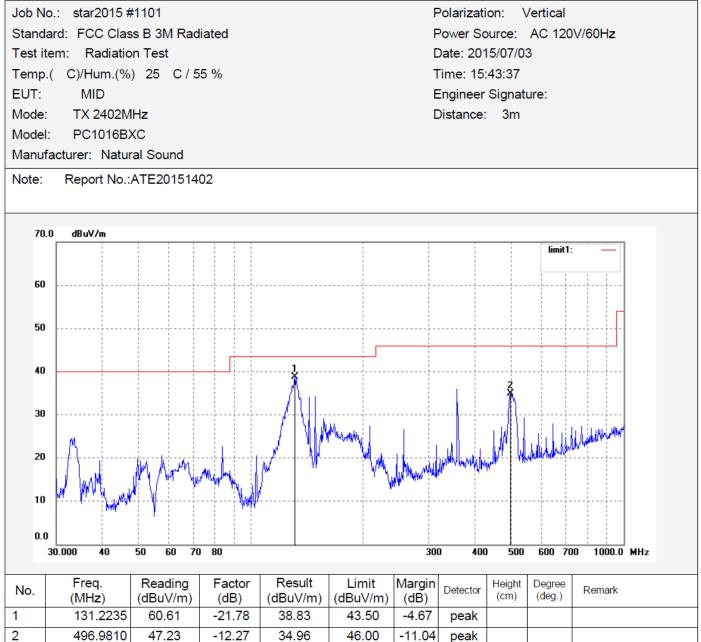

9.7. The Field Strength of Radiation Emission Measurement Results

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The EUT is tested radiation emission at Low, Middle, High channel in three axes. The worst emissions are reported in all channels. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots.

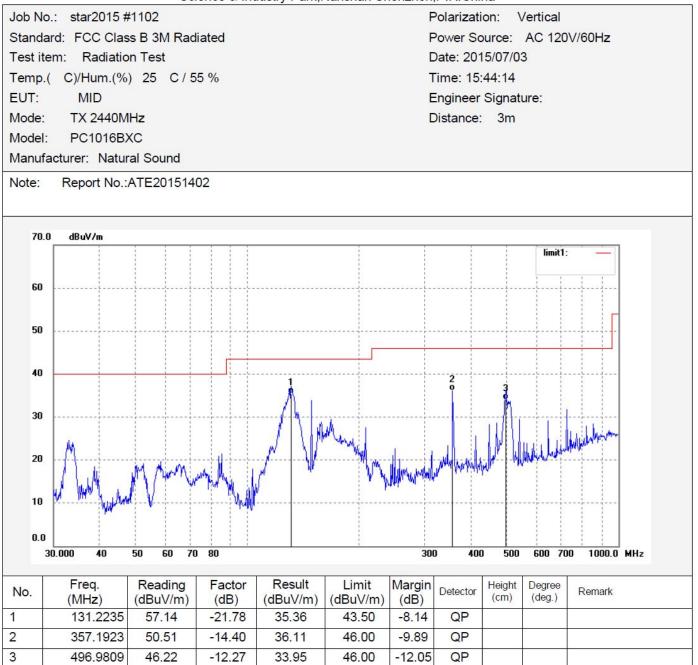
3. The radiation emissions from 18-25GHz are not reported, because the test values lower than the limits of 20dB.

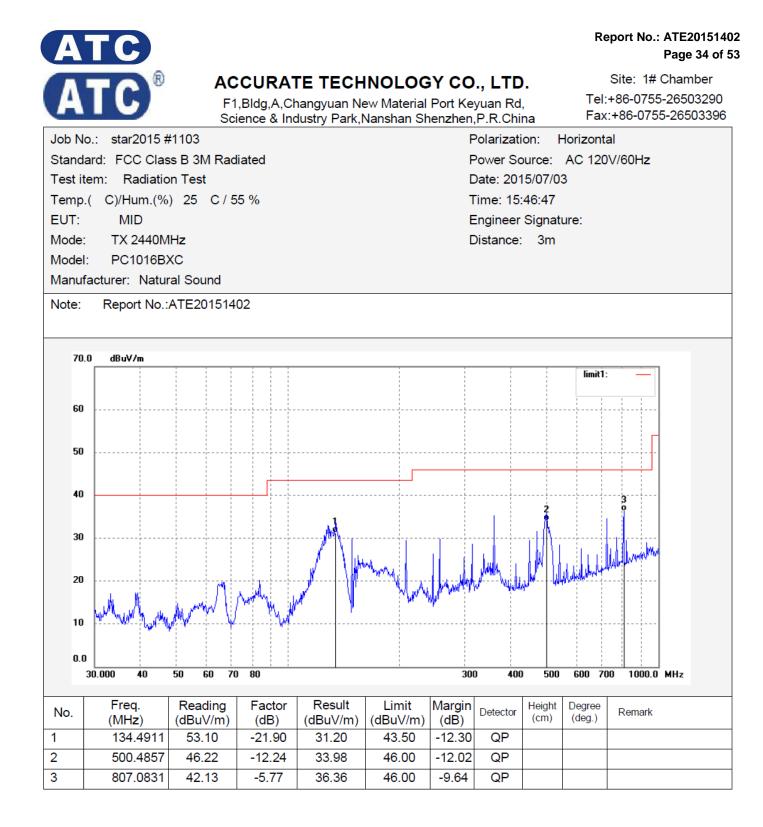
4. The average measurement was not performed when peak measured data under the limit of average detection.

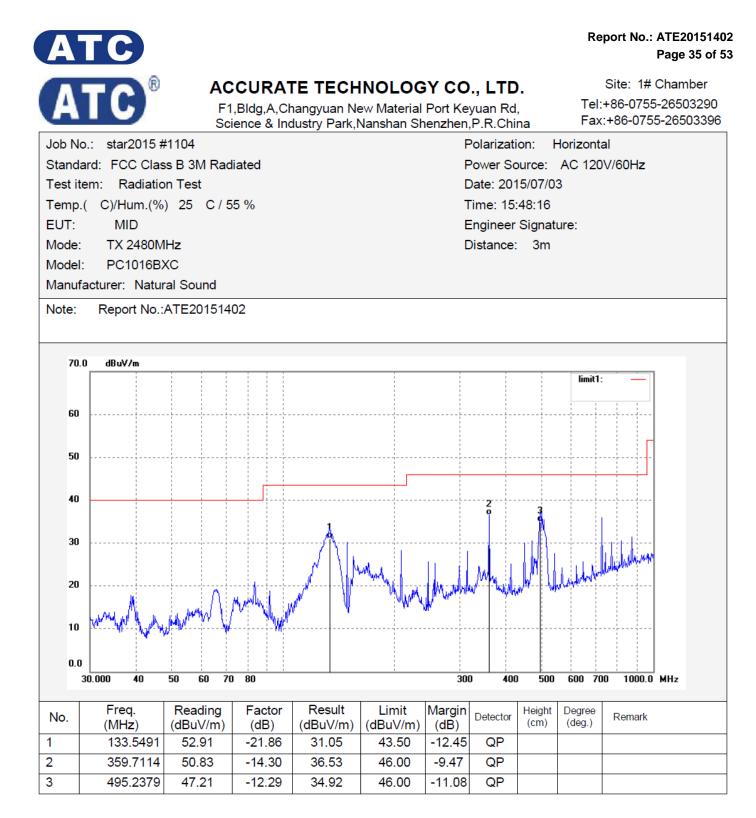

FCC ID: PWK-PC1016BXC

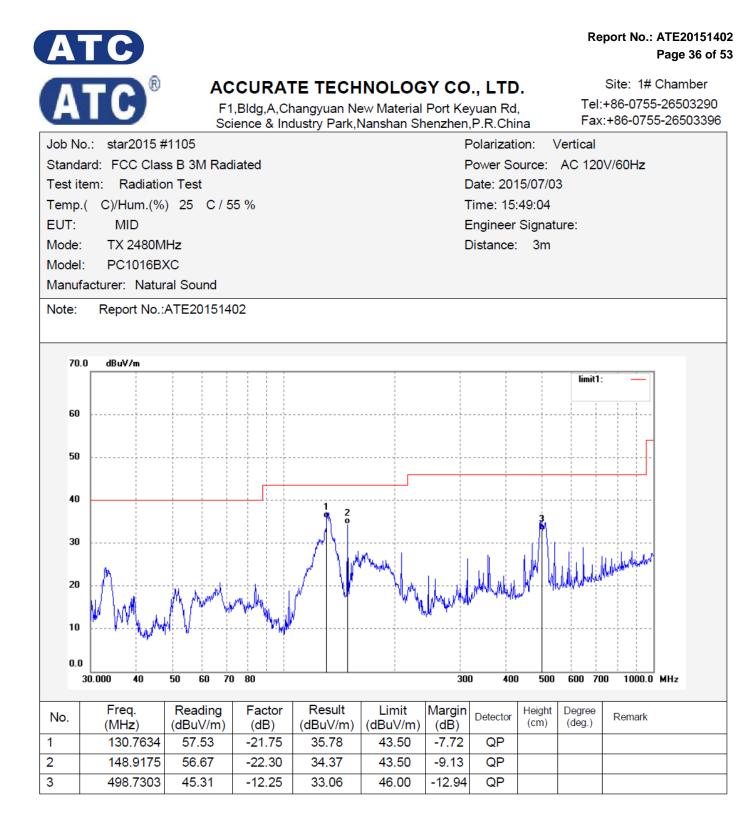
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20151402


Page 32 of 53






F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Report No.: ATE20151402 Page 33 of 53

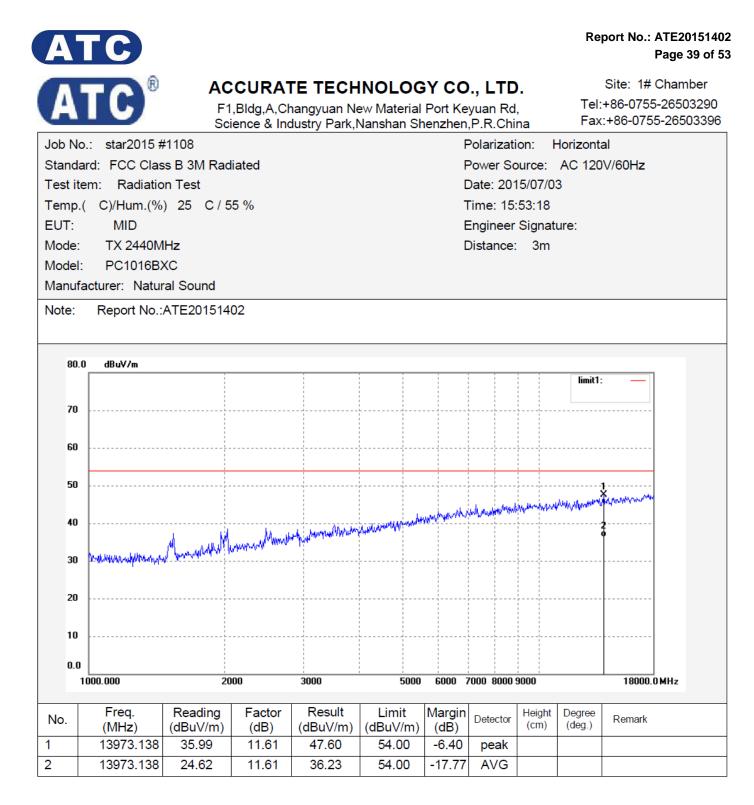
Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20151402 Page 37 of 53

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

o No.: st	ar2015 #			austry i ark,i			Polarizati		/ertical	
		s B 3M Rad	diated				Power So			V/60Hz
st item:							Date: 201			
mp.(C)/	Hum.(%) 25 C/5	55 %			-	Time: 15	51:01		
	MID					E	Engineer	Signat	ure:	
de: T)	K 2402M	Hz					Distance:			
del: P	C1016B>	(C								
nufacture	r: Natur	al Sound								
te: Rep	ort No.:	ATE201514	02							
80.0 dB	uV/m			1					limit1:	_
70										
60										
60										
50										1-
								haberrown	physical Man Hard Mars	manufacture
40				viden hilfer hunde	Una manufactorial ville	ruhupm/u/my	Professionance in . 4.1			
		M. wald	WHAT ANY MUNICIPALITY	which we want	and the set					
30 Million	here of the second states and the second sec	1 Managara								
20						1				
10										
0.0			000	2000	FOCO	C000	7000 0000	0000		10000 0141
1000.000	,	2	000	3000	5000	6000	7000 8000	3000		18000.0 MHz
	eq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark
(IVI	Hz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg.)	
	231.008	32.07	15.91	47.98	54.00	-6.02	peak			
	231.008	23.14	15.91	39.05	54.00	-14.95		0	s	

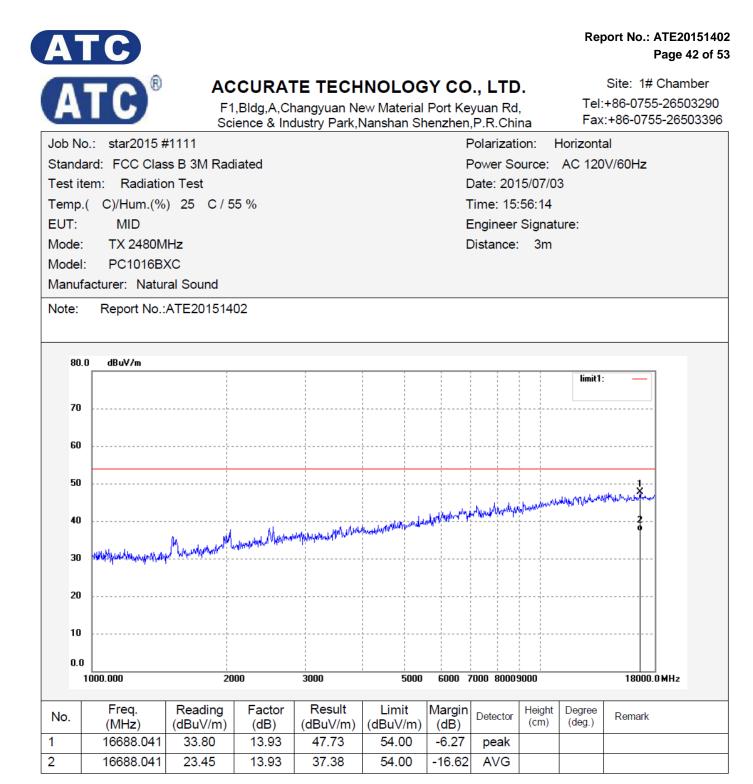


Report No.: ATE20151402 Page 38 of 53

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

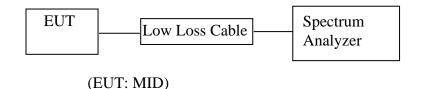
							,						
Job N	o.: star2015 #	¢1107					Polarization: Horizontal						
Stand	ard: FCC Clas	s B 3M Rad	diated				Power Source: AC 120V/60Hz						
Test if	em: Radiatio	n: Radiation Test						Date: 2015/07/03					
Temp	.(C)/Hum.(%	C)/Hum.(%) 25 C / 55 %											
EUT:	MID						Engineer	Signat	ure:				
Mode	TX 2402M	Hz					Distance:	3m					
Model	: PC1016B	XC											
Manu	acturer: Natur	al Sound											
Note:	Report No.:	ATE201514	02										
Note.	Report No		102										
80	0dBuV/m												
									limit1:	—			
70													
		1											
60													
						-							
50										1			
	adalastellarasiasiasiasiasiasi						and the mill month	anninh	when have not the	Marriage Province			
40					u. Not Adamptor	handrum	THINKIN A MILL						
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AB March	Contraction Manager	An Windowskin Municipal						e			
30	and the state of t	1 Martin States					$= \frac{1}{1} = - = - = \frac{1}{1} = - = -$						
		1											
20													
						1							
10													
0.0	ī												
	1000.000	20	DOO	3000	5000	6000	7000 8000	9000		18000.0 MHz			
	Free	Decili	Factor	Desult	1.1		-1						
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margir (dB)	Detector	Height (cm)	Degree (deg.)	Remark			
1	15882.369	34.27	12.75	47.02	54.00	-6.98	peak						
2	15882.369	23.65	12.75	36.40	54.00	-17.60							


Report No.: ATE20151402 Page 40 of 53

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

		Science & In	dustry Park,	vansnan Sr				T QA				
ob No.: star2	: star2015 #1109						Polarization: Vertical					
tandard: FCC	: FCC Class B 3M Radiated						ource:	AC 120	V/60Hz			
est item: Ra	diation Test				I	Date: 201	15/07/0	3				
emp.(C)/Hu	m.(%) 25 (C/55%			-	Time: 15	:54:07					
UT: MIE)				I	Engineer	Signat	ure:				
ode: TX 2	440MHz				I	Distance:	: 3m					
odel: PC10	16BXC											
anufacturer:	Natural Soun	d										
ote: Repor	No.:ATE201	51402										
80.0 dBuV/	n											
								limit1:				
70												
60				ļ								
50									t			
		a Human March			um	Annowant	www.www.uhala	performance and the second	and the second and the second s			
40			1 million and MARTIN	h with a highly deally	WWW PAPER				2			
بالبنارية المم	W. J. L. Marrier	A. HANNAND MILLING	NV - LADANNE - H.									
30 millionalification	KANAMAN - MARINE - T											
20												
10												
0.0		2000	2000	EOCO	C000	7000 0000	0000		10000 0 411-			
1000.000		2000	3000	5000	6000	7000 8000	5000		18000.0 MHz			
o. Freq			Result	Limit	Margin	Detector	Height	Degree	Remark			
					(dB)	000000	(cm)	(deg.)				
(IVIHZ			(dBuV/m)	(dBuV/m)			(em)	(uog.)				
(MHz 14219 14219	.315 34.5	1 12.84	(dBuV/m) 47.35 36.53	(dBuV/m) 54.00 54.00	-6.65		(cm)	(dog.)				



10.CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

10.1.Block Diagram of Test Setup

10.2. The Requirement of Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.4.Operating Condition of EUT

10.4.1.Setup the EUT and simulator as shown as Section 11.1.

- 10.4.2.Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

10.5.Test Procedure

- 10.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 10.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz
- 10.5.3. The Conducted Spurious Emission was measured and recorded.

10.6.Test Result

Pass.

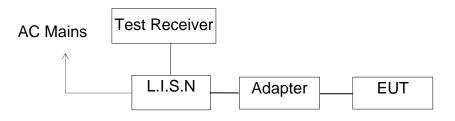
The spectrum analyzer plots are attached as below.

BLE Channel Low 2402MHz

Spectrur	n									
Ref Leve Att				 RBW 100 kH VBW 300 kH 		de Auto Sv	veep			
∋1Pk Max										
						M4[1]				-39.14 dBm
0 dBm -M	1					_				18.0150 GH
						M1[1]				-4.55 dBn
-10 dBm—										2.3860 GH
-20 dBm										
-30 dBm										
So abiii							M4			
-40 dBm—		M2		M3		MAAA	. Malan	why	h a	
	- un erun	mandertalie	morte	Mundul	when	March 1 and		° ~ ~~	marken	Horn Ma
450 ⁴ 88m										
-60 dBm—										
-00 0011										
-70 dBm—										
-80 dBm—										
Start 30.0	MHz		•	691	pts				Sto	p 26.5 GHz
Marker										
	ef Trc	X-valu		Y-value		unction		Fun	ction Resu	lt
M1	1		86 GHz	-4.55 dB						
M2 M3	1		23 GHz 15 GHz	-42.65 dB -42.93 dB						
M3	1		15 GHz	-39.14 dB						
	7						1			

BLE Channel Middle 2440MHz

Spectrum										
Ref Level	10.00	dBm Offset	t 2.60 dB (RBW 100 kHz						<u> </u>
🔵 Att	4	O dB SWT	265 ms (> VBW 300 kHz	Mode A	uto Sw	еер			
●1Pk Max										
_					M	3[1]			-39.66 c	
0 dBm M1									16.4060	
V GDINI MIL					M	l[1]			-5.19 c	
-10 dBm									2.4240	GHz
-20 dBm										
-30 dBm										
-40 dBm——		M2				МЗ	M4			
-40 0011			mound	~ more union	mangeneralish	mu	man	maron	moderwordburk	un
~597dBrff	mun									_
-60 dBm			_							
-70 dBm										
-80 dBm										
			1							
Start 30.0	MHz			691 p	ots				Stop 26.5 G	Hz
Marker										
Type Ref	Trc	X-va	ue	Y-value	Funct	ion		Function	Result	
M1	1	2	.424 GHz	-5.19 dBm						
M2	1		6.6 GHz	-43.82 dBm						
M3	1		.406 GHz	-39.66 dBm						
M4	1	18	.092 GHz	-39.54 dBm	n					
					Mea	suring				


BLE Channel High 2480MHz

Spectrum										
Ref Level	10.00 dBm	Offset 2	2.60 dB 🧉	RBW	100 kHz					
Att 🛛	40 dE	SWT 2	265 ms 🧉	VBW	300 kHz	Mode	Auto Sv	veep		
∋1Pk Max										
						IM	14[1]		-	-39.00 dBn
0 dBm									2	0.0070 GH
T I I I I I I I I I I I I I I I I I I I						IV	1[1]			-4.58 dBr
-10 dBm				_			1		1	2.4620 GH
-20 dBm				_						
-30 dBm								M4		
-40 dBm		M2					M3	T		
-40 ubiii		monther	mound	una.	mund	mound	nom	~ Mr what when all as	and	mound
50'dBm lill	walker	1 · · · · · · · · · · · · · · · · ·		×						
-60 dBm				_						
-70 dBm										
00 d0										
-80 dBm										
Start 30.0 N	1Hz				691 p	ts			Stop	26.5 GHz
Marker										
Type Ref		X-value			/alue	Fund	tion	Fun	ction Result	t
M1	1		52 GHz		4.58 dBm					
M2 M3	1		33 GHz 74 GHz		3.66 dBm 9.89 dBm					
M3 M4	1		74 GHZ		9.89 aBm 9.00 dBm					
		20.00			5.56 abiii	<u> </u>				
	Л					Me			4/4	

11.POWER LINE CONDUCTED MEASUREMENT

11.1.Block Diagram of Test Setup

(EUT: MID)

11.2.Power Line Conducted Emission Measurement Limits

Frequency	Limit dB(µV)					
(MHz)	Quasi-peak Level	Average Level				
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *				
0.50 - 5.00	56.0	46.0				
5.00 - 30.00 60.0 50.0						
NOTE1: The lower limit shall apply at the transition frequencies. NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.						

11.3.Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

- 11.4.Operating Condition of EUT
 - 11.4.1.Setup the EUT and simulator as shown as Section 5.1.
 - 11.4.2.Turn on the power of all equipment.
 - 11.4.3.Let the EUT work in test mode and measure it.

11.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

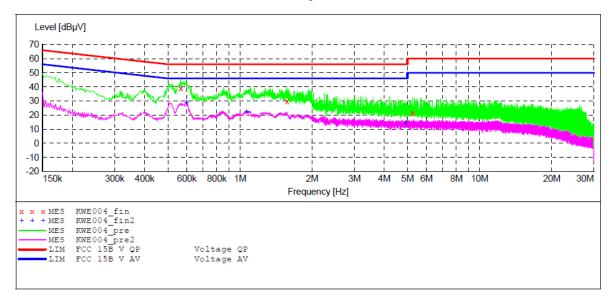
The frequency range from 150kHz to 30MHz is checked.

11.6.Power Line Conducted Emission Measurement Results

PASS.

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	MID M/N:PC1016BXC
Manufacturer:	Natural Sound
Operating Condition:	BT
Test Site:	2#Shielding Room
Operator:	star
Test Specification:	L 120V/60Hz
Comment:	Report No.:ATE20151402
Start of Test:	2015-7-2 / 10:17:25

SCAN TABLE: "V 150K-30MHz fin"

	Description:		_SUB_STD_VTE	RM2 1.70			
Start	Stop	Step	Detector	Meas.	IF	Transducer	
Freque	ncy Frequency	Width		Time	Bandw.		
150.0	kHz 30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	LISN(ESH3-Z5)	

MEASUREMENT RESULT: "KWE004_fin"

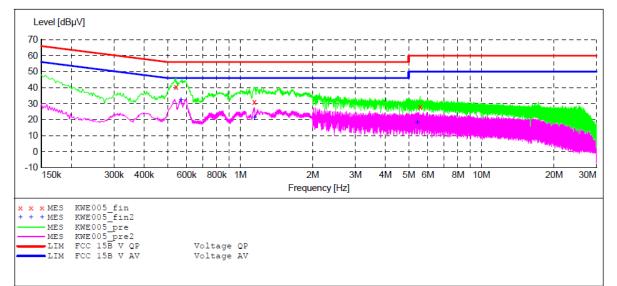
2015-7-2 10:19 Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line
	38.90 29.80	11.5 11.6		17.1 26.2	~	L1 L1
5.262500	21.30	11.8	60	38.7	OP	L1

MEASUREMENT RESULT: "KWE004 fin2"

2015-7-2 10:19

Frequency MHz	Level dBµV			2	Detector	Line	PE
1.064000	22.20	11.5 11.6 11.8	46	23.8	AV	L1 L1 L1	GND GND GND

ΡE


GND GND GND

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	MID M/N:PC1016BXC
Manufacturer:	Natural Sound
Operating Condition:	BT
Test Site:	2#Shielding Room
Operator:	star
Test Specification:	N 120V/60Hz
Comment:	Report No.:ATE20151402
Start of Test:	2015-7-2 / 10:19:48

SCAN TABLE: "V 150K-30MHz fin" _SUB_STD_VTERM2 1.70 Short Description: Start Stop Step Detector Meas. IF Transducer Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kH Bandw. Time 4.5 kHz QuasiPeak 1.0 s 9 kHz LISN(ESH3-Z5) Average

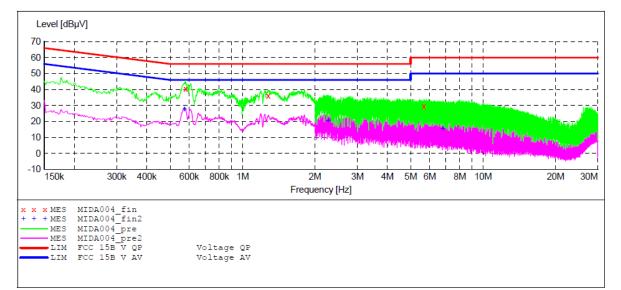
MEASUREMENT RESULT: "KWE005 fin"

2015-7-2 10:21

Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
0.542000 1.144000 5.573000	31.10	11.5 11.6 11.8	56	15.6 24.9 32.0	ÕР	N N N	GND GND GND

MEASUREMENT RESULT: "KWE005 fin2"

2015-7-2 10:21 Frequency Level Transd Limit Margin Detector Line PE MHz dBµV dB dBµV dB 0.568000 32.20 46 13.8 AV 11.5 GND Ν 1.146000 21.40 11.6 46 24.6 AV Ν GND 11.8 5.429000 18.10 50 31.9 AV Ν GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	MID M/N:PC1016BXC
Manufacturer:	Natural Sound
Operating Condition:	BT
Test Site:	2#Shielding Room
Operator:	star
Test Specification:	L 240V/60Hz
Comment:	Report No.:ATE20151402
Start of Test:	2015-7-3 / 9:21:53

SCAN TABLE: "V 150K-30MHz fin"

COULT TUDED.						
Short Descr	ciption:	_	SUB_STD_VTE	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	LISN(ESH3-Z5)
			Average			

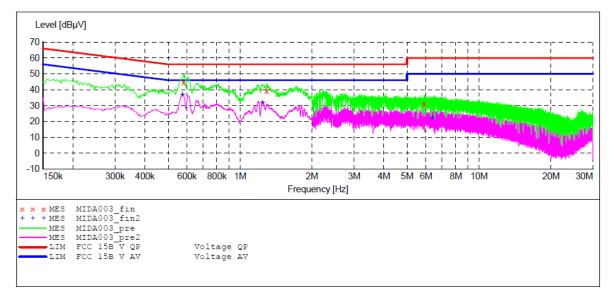
MEASUREMENT RESULT: "MIDA004_fin"

2015-7-3 9:23

Frequency MHz	Level dBµV			Margin dB	Detector	Line	PE
1.278000	36.00	11.5 11.6 11.8	56	20.0	QP	L1 L1 L1	GND GND GND

MEASUREMENT RESULT: "MIDA004_fin2"

2015-7-3 9:23 Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
2.265500		11.5 11.7 11.8		25.6	AV	L1 L1 L1	GND GND GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	MID M/N:PC1016BXC
Manufacturer:	Natural Sound
Operating Condition:	BT
Test Site:	2#Shielding Room
Operator:	star
Test Specification:	N 240V/60Hz
Comment:	Report No.:ATE20151402
Start of Test:	2015-7-3 / 9:19:25

SCAN TABLE: "V 150K-30MHz fin"

Short Desc		K SOMIZ	SUB STD VTER	M2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	LISN(ESH3-Z5)
			Average			

MEASUREMENT RESULT: "MIDA003 fin"

2015-7-3 9:21

Frequency MHz	Level dBµV			Margin dB	Detector	Line	PE
0.580000 1.292000 5.901500	44.90 39.10 31.00	11.6	56		ÕР	N N N	GND GND GND

MEASUREMENT RESULT: "MIDA003_fin2"

2015-7-3 9:21 Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
0.574000 1.242000 6.369500	37.10 31.70 21.90	11.5 11.6 11.8	46 46 50		AV	N N N	GND GND GND

12.ANTENNA REQUIREMENT

12.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

12.2.Antenna Construction

Device is equipped with unique antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement of Section 15.203.

