

APPLICATION CERTIFICATION FCC Part 15C On Behalf of HONG KONG NATURAL SOUND ELECTRONICS LIMITED

MID Model No.: PC1015BXC,Trio-Stealth G4 10.1,MST-1041

FCC ID: PWK-PC1015BXC

Prepared for	:	HONG KONG NATURAL SOUND ELECTRONICS LIMITED
Address	:	FLAT/RM M 4/F CONTINENTAL MANSION 300 KING'S ROAD HONG KONG
Prepared by Address		ACCURATE TECHNOLOGY CO., LTD F1, Bldg. A, Chan Yuan New Material Port, Keyuan Rd. Science & Industry Park, Nan Shan, Shenzhen, Guangdong P.R. China
		Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number	:	ATE20140662
Date of Test	:	May 01-16,2014
Date of Report	:	May 16,2014

TABLE OF CONTENTS

Description

Page

Т	est Re	eport Certification	
1.	GE	NERAL INFORMATION	5
	1.1.	Description of Device (EUT)	5
	1.2.	Carrier Frequency of Channels	5
	1.3.	Special Accessory and Auxiliary Equipment	
	1.4.	Description of Test Facility	
	1.5.	Measurement Uncertainty	
2.		ASURING DEVICE AND TEST EQUIPMENT	
3.	OP	ERATION OF EUT DURING TESTING	
	3.1.	Operating Mode	9
	3.2.	Configuration and peripherals	
4.	TE	ST PROCEDURES AND RESULTS	
5.	PO	WER LINE CONDUCTED MEASUREMENT	
	5.1.	Block Diagram of Test Setup	47
	5.2.	Power Line Conducted Emission Measurement Limits	
	5.3.	Configuration of EUT on Measurement	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
_	5.6.	Power Line Conducted Emission Measurement Results	
6.		B BANDWIDTH MEASUREMENT	
	6.1.	Block Diagram of Test Setup	
	6.2.	The Requirement For Section 15.247(a)(2)	
	6.3. 6.4.	EUT Configuration on Measurement Operating Condition of EUT	
	6.4. 6.5.	Test Procedure	
	6.6.	Test Result	
7.		XIMUM PEAK OUTPUT POWER	
	7.1.	Block Diagram of Test Setup	
	7.2.	The Requirement For Section 15.247(b)(3)	
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	14
	7.5.	Test Procedure	
	7.6.	Test Result	
8.	PO	WER SPECTRAL DENSITY MEASUREMENT	
	8.1.	Block Diagram of Test Setup	17
	8.2.	The Requirement For Section 15.247(e)	
	8.3.	EUT Configuration on Measurement	
	8.4.	Operating Condition of EUT	
	8.5. 8.6.	Test Procedure Test Result	
Δ			
9.		ND EDGE COMPLIANCE TEST	
	9.1.	Block Diagram of Test Setup	
	9.2. 9.3.	The Requirement For Section 15.247(d) EUT Configuration on Measurement	
	9.3. 9.4.	Operating Condition of EUT	
	Z.T.	operating condition of Do I	••••••

-		

9.5.	Test Procedure	
9.6.	Test Result	
10. RA	DIATED SPURIOUS EMISSION TEST	
10.1.	Block Diagram of Test Setup	
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	
10.4.	Configuration of EUT on Measurement	
10.5.	Operating Condition of EUT	
10.6.	Test Procedure	
10.7.	The Field Strength of Radiation Emission Measurement Results	
11. CO	NDUCTED SPURIOUS EMISSION COMPLIANCE TEST	43
11.1.	Block Diagram of Test Setup	
11.2.	The Requirement For Section 15.247(d)	
11.3.	EUT Configuration on Measurement	
11.4.	Operating Condition of EUT	44
11.5.	Test Procedure	44
		····································
11.6.	Test Result	
		44
	Test Result	44 51

Test Report Certification

Applicant	: HONG KONG NATURAL SOUND ELECTRONICS LIMITED
- pp	

Manufacturer : Natural Sound Electronics (Shenzhen) Co., Ltd.

EUT Description : MID

- (A) MODEL NO.: PC1015BXC, Trio-Stealth G4 10.1, MST-1041
- (B) Trade Name .: N/A
- (C) POWER SUPPLY: DC 3.7V (Powered by battery) or DC 5V (Powered by adapter)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4: 2009

The EUT was tested according to DTS test procedure of April 09, 2013 KDB558074 D01 DTS Meas Guidance v03 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :

Prepared by :

May 01-16,2014

(Engineer)

Approved & Authorized Signer :

(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT	:	MID
Model Number	:	PC1015BXC,Trio-Stealth G4 10.1,MST-1041 Note: These samples are same except for the model number is difference. So we prepare the PC1015BXC for test
Frequency Range	:	802.11b/g/n(20MHz): 2412-2462MHz 802.11n(40MHz): 2422-2452MHz Bluetooth 4.0: 2402-2480MHz
Number of Channels	:	802.11b/g/n (20MHz):11 802.11n (40MHz): 7 Bluetooth 4.0LE:40
Antenna Gain	:	1.0dBi
Power Supply	:	DC 5V (Power by adapter)&DC 3.7V(Battery)
Adapter	:	Model number: FY0502000 Input: AC 100-240V; 50/60Hz 0.6A Output: DC 5V/2.0A USB line: Non-shielded, Non-detachable, 1.5m
Modulation mode	:	GFSK DSSS,OFDM
Applicant	:	HONG KONG NATURAL SOUND ELECTRONICS LIMITED
Address	:	FLAT/RM M 4/F CONTINENTAL MANSION 300 KING'S ROAD HONG KONG
Manufacturer	:	Natural Sound Electronics (Shenzhen) Co., Ltd.
Address	:	4th Building, Xinyuan Industrial Zone, Gushu Village, Bao'an District, Shenzhen, China
Date of sample received	:	May 01, 2014
Date of Test	:	May 01-16,2014

Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channe 1	Frequceny (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.2.Carrier Frequency of Channels

1.3. Special Accessory and Auxiliary Equipment

N/A

1.4.Description of Test Facility

EMC Lab	:	Accredited by TUV Rheinland Shenzhen
		Listed by FCC The Registration Number is 752051
		Listed by Industry Canada The Registration Number is 5077A-2
		Accredited by China National Accreditation Committee for Laboratories The Certificate Registration Number is L3193
Name of Firm		ACCURATE TECHNOLOGY CO. LTD
Site Location	:	F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong
		Science & Industry Park, Nanshan, Shenzhen, Guangdong P.R. China

1.5.Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

				1	
Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 11, 2014	Jan. 10, 2015
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 11, 2014	Jan. 10, 2015
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2014	Jan. 10, 2015
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 11, 2014	Jan. 10, 2015
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2014	Jan. 14, 2015
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 15, 2014	Jan. 14, 2015
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 11, 2014	Jan. 10, 2015
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 11, 2014	Jan. 10, 2015
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 11, 2014	Jan. 10, 2015
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 11, 2014	Jan. 10, 2015

Table 1: List of Test and Measurement Equipment

3. OPERATION OF EUT DURING TESTING

3.1.Operating Mode

The mode is used: **BLE Transmitting mode** Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

3.2. Configuration and peripherals

	EUT]	
Figure 1 S	Setup: Transm	nitting mode	

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Power Line Conducted Emission	Compliant
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 6DB BANDWIDTH MEASUREMENT

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1.Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2.Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

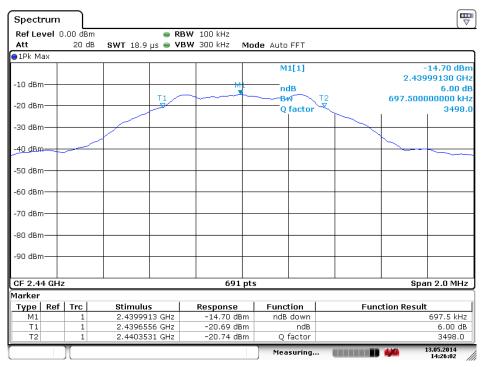
5.5.Test Procedure

- 5.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to300 kHz.
- 5.5.3.The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

5.6.Test Result

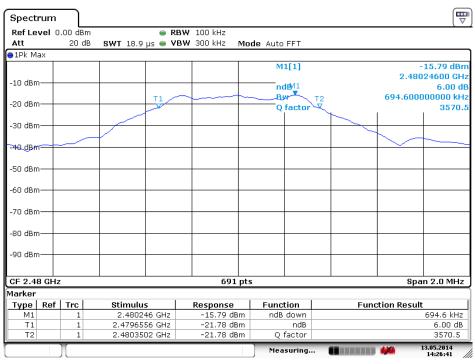
Channel	Frequency (MHz)	6 dB Bandwith (MHz)	Minimum Limit(MHz)	PASS/FAIL
0	2402	0.6975	0.5	PASS
19	2440	0. 6975	0.5	PASS
39	2480	0. 6946	0.5	PASS

The spectrum analyzer plots are attached as below.


Spect	rum										
Ref Le	vel 0	.00 dBm		e R	BW 100 kHz						
Att		20 dB	SWT 18.9	µs 👄 🗸	BW 300 kHz	Mo	de Auto	FFT			
∋1Pk M	ах										
						Т	Mi	l[1]			-14.63 dBm
-10 dBm										2.40	224600 GHz
-10 uBn							nd				6.00 dB
-20 dBm				T1		Τ-	Br	· \	T2	697.500	000000 kHz
-20 UBII				-			Q	factor			3443.9
-30 dBm											
-30 UBI											
-40 dBm			1								
-40 UBII											\sim
-50 dBm											
-эр авп											
-60 dBm											
-00 UBII											
-70 dBm											
-70 ubii											
-80 dBm											
-00 0011											
-90 dBm											
-90 UDII	·										
CF 2.40	02 GH	lz			69:	1 pts	;			Sp	an 2.0 MHz
Marker											
Туре	Ref	Trc	Stimulu	s	Response		Funct	ion	Fur	nction Resu	t (
M1		1	2.4022		-14.63 d		ndB	down			697.5 kHz
Τ1		1	2.40165		-20.65 d			ndB			6.00 dB
T2		1	2.40235	31 GHz	-20.67 d	Bm	Qf	actor			3443.9
)[]					Meas	suring			13.05.2014 14:24:56

channel 0

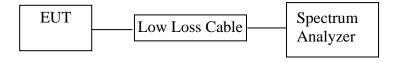
Date: 13.MAY.2014 14:24:57



channel 19

Date: 13.MAY.2014 14:26:02

channel 39



Date: 13.MAY.2014 14:26:40

6. MAXIMUM PEAK OUTPUT POWER

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

6.4.1.Setup the EUT and simulator as shown as Section 6.1.

- 6.4.2.Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

6.5.Test Procedure

- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Test method is options 1 from KDB558074 D01 DTS Meas Guidance v03
- 6.5.3.Set RBW of spectrum analyzer to 1 MHz and VBW to 3 MHz.
- 6.5.4.Measurement the maximum peak output power.

6.6.Test Result

Channel	Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Pass / Fail
0	2402	-9.12	30	PASS
19	2440	-9.09	30	PASS
39	2480	-8.64	30	PASS

The spectrum analyzer plots are attached as below.

Spectrum								
Ref Level 0.00 dBr	n	● RBW 11	MH ₂					(*
Att 20 d		е VBW Зг		le Auto Sv	/een			
1Pk Max	- 01111113	<u> </u>		o Hato of	, oop			
		T T			M1[1]			-9.12 dBn
					M1		2.40	219680 GH
-10 dBm					¥			
								<u> </u>
-20 dBm								
-30 dBm								
-30 UBIII								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
00 d0								
-80 dBm								
-90 dBm								
CF 2.402 GHz			691	nts		I	Sn	an 2.0 MHz
								13.05.2014
				Me	asuring			14:28:55

channel 0

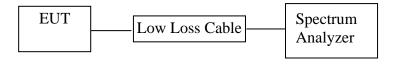
Date: 13.MAY.2014 14:28:55

channel 19

Ref Level 0.00 dBm								
		RBW 1 MHz						
Att 20 dB	SWT 1 ms 👄	VBW 3 MHz	Mode	e Auto Swe	эер			
1Pk Max								
				M M1	1[1]		9.440	-9.09 dBm 15050 GHz
				INIT.	<u> </u>	+	2.440	13030 GH2
20 dBm								
30 dBm								
+0 dBm								
50 dBm						-		
50 dBm						_		
70 dBm								
30 dBm								
90 dBm								
F 2.44 GHz			691	\	suring			n 2.0 MHz

Date: 13.MAY.2014 14:29:39

channel 39


Spectrum	<u>]</u>				
Ref Level 0.00 Att		RBW 1 ms = VBW	1 MHz 3 MHz Mod	e Auto Sweep	
1Pk Max		1 110 0 1011			
			M1	M1[1]	 -8.64 dBm 2.47983210 GHz
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
-80 dBm					
-90 dBm					
CF 2.48 GHz			691	pts	Span 2.0 MHz
				Measuring.	 13.05.2014 14:28:28

Date: 13.MAY.2014 14:28:29

7. POWER SPECTRAL DENSITY MEASUREMENT

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.3.EUT Configuration on Measurement

The equipment is installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

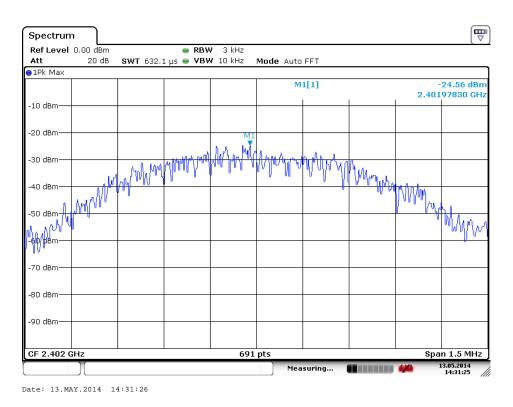
7.4. Operating Condition of EUT

- 7.4.1.Setup the EUT and simulator as shown as Section 8.1.
- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

7.5.Test Procedure

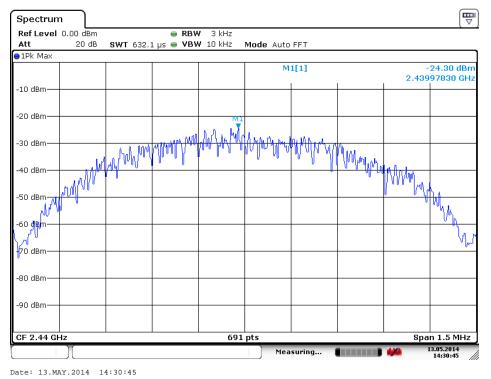
- 7.5.1.The EUT was tested according to DTS test procedure of April 09, 2013 KDB558074 D01 DTS Meas Guidance v03 for compliance to FCC 47CFR 15.247 requirements.
- 7.5.2.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.3.Measurement Procedure PKPSD:

This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.

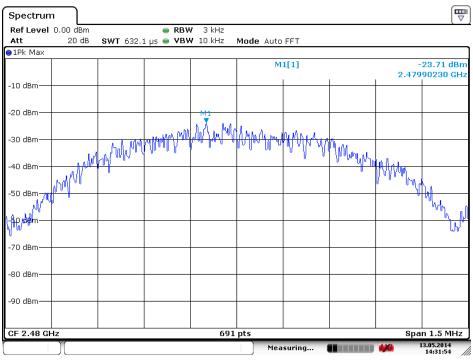

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 7.5.4.Measurement the maximum power spectral density.

7.6.Test Result

CHANNEL NUMBER	FREQUENCY (MHz)	PSD (dBm/3KHz)	LIMIT (dBm/3KHz)	PASS/FAIL
0	2402	-24.56	8	PASS
19	2440	-24.30	8	PASS
39	2480	-23.71	8	PASS

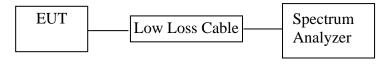

The spectrum analyzer plots are attached as below.

channel 0



channel 19

channel 39



Date: 13.MAY.2014 14:31:53

8. BAND EDGE COMPLIANCE TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.209(a).

8.3.EUT Configuration on Measurement

The equipment is installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4.Operating Condition of EUT

- 8.4.1.Setup the EUT and simulator as shown as Section 9.1.
- 8.4.2.Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

8.5.Test Procedure

Conducted Band Edge:

- 8.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 8.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.

Radiate Band Edge:

- 8.5.3. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 8.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 8.5.5. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 8.5.6. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

RBW=1MHz, VBW=1MHz

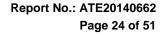
8.5.7.The band edges was measured and recorded.

8.6.Test Result

Pass

Channel	Frequency	Delta peak to band emission	Limit(dBc)
0	2386.0MHz	57.87	20
39	2483.8MHz	55.55	20

channel 0


Ref Leve	0.00 dBm	🖷 R	BW 100 kHz			
Att	20 dB	SWT 113.8 µs 👄 V	BW 300 kHz	Mode Auto FFT		
∎1Pk Max						
				M3[1]		-68.16 dBn
-10 dBm—						2.3860969 GH
				M1[1]		-10.29 dBr 2.4020150 GH
-20 dBm—						2.4020130 GH
-30 dBm—						
-40 dBm—						
-50 dBm—						
-50 aBm—						
-60 dBm—						
				M		1 4 4
-70 dBm	-	mound	on wearson	manne	M2	munum
		and the second second	~~~~ [~	Man an	and a second sec	
-80 dBm—			++			
-90 dBm—						
Start 2.35	GHz	•	691 p	ts		Stop 2.405 GHz
1arker						
	ef Trc	Stimulus	Response	Function	Functi	ion Result
M1	1	2.402015 GHz	-10.29 dBm			
M2 M3	1	2.39 GHz 2.386096 GHz	-71.98 dBm -68.16 dBm			
1913	1	2.300090 GH2	-08.10 UBII			

Date: 13.MAY.2014 14:46:25

channel 39

Spectrum									
Ref Level (_	RBW 100 kHz						
Att	20 dB	SWT 56.8 µs 👄	VBW 300 kHz	Moe	de Auto FFT				
●1Pk Max									
					M2[1]				-70.60 dBm
-10 dBm		MB		_	M1[1]				338470 GHz -72.20 dBm
					mili				335000 GHz
-20 dBm		1 1		-				1	
-30 dBm									
-40 dBm									
-to doin			}						
-50 dBm			4	_					
-60 dBm				-					
		\wedge	ų į	M ^{M2}					
-79 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	Vww	wh	m	mo	mm	turn	mm
-80 dBm									
oo abiii									
-90 dBm				_					
CF 2.4835 (GHz		69	1 pts				Spar	20.0 MHz
Marker									
Type Ref	Trc	Stimulus	Respons		Function		Fun	ction Resul	t
M1	1	2.4835 GHz							
M2 M3	1	2.483847 GHz 2.479998 GHz							
M13		2.479998 GH2	-15.05	uвт					10.05.0014
	Л				Measuri	ng (444	13.05.2014 14:47:28

Date: 13.MAY.2014 14:47:28

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows: Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

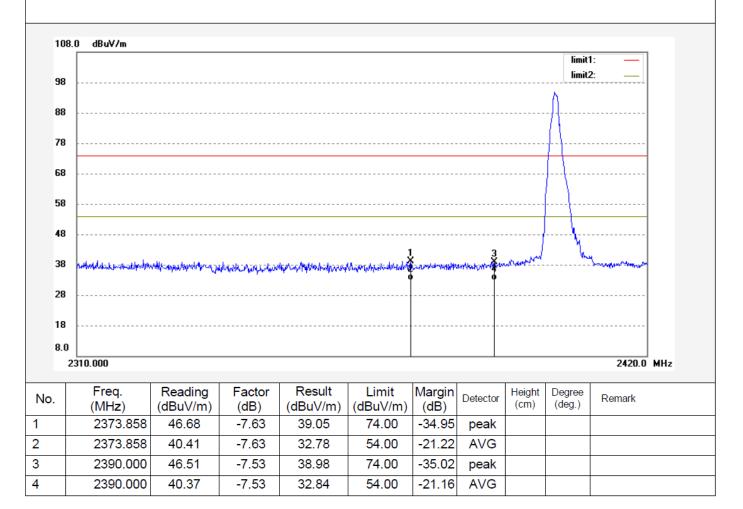
Model:

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky #1343 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 23 C / 49 % EUT: MID Mode: TX 2402MHz


Power Source: DC 3.7V Date: 14/05/16/ Time: 9/16/25 Engineer Signature: Ricky Distance: 3m

Horizontal

Polarization:

Report No.:ATE20140662 Note:

PC1015BXC Manufacturer: Natural Sound

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.Chin Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

	_	Sc	ience & Ind	dustry Park,I	Nanshan Sh	enzhen,	P.R.Chi	na	Fax	:+86-0755-265	0339
Job No	o.: ricky #134	2				F	Polarizati	ion: \	/ertical		
Standa	ard: FCC PK					F	ower So	ource:	DC 3.7	V	
est ite	em: Radiatio										
Temp.	(C)/Hum.(%) 23 C/4	9 %			Т	ime: 9/1	5/24			
EUT:	MID					E	Ingineer	Signat	ure: R	licky	
/lode:	TX 2402M	1Hz				C)istance:	3m			
Nodel:	PC1015B	XC									
∕lanufa	acturer: Natur	ral Sound									
lote:	Report No.:	ATE201406	62								
	·										
108	.0 dBu∀/m										
									limit limit		
98											
88									·A		
									[]		
78									1-1		
68									<u></u>		
50									$ \rangle$		
58											
48											
38							1 X.3	aturnel	h.	unipeda and	
30	monomorphistoph	wiki wakaji katika	4/11/19/19/19/19/19/19/19/19/19/19/19/19/	twatter anna _d again	Marchine Marca And	with the second states	A B				
28											
18											
8.0											
	2310.000									2420.0 MHz	
		Γ	Γ	1	1			1			
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	2384.838	46.83	-7.56	39.27	74.00	-34.73	peak	(/	(3-)		

2

3

4

2384.838

2390.000

2390.000

40.20

44.16

38.92

-7.56

-7.53

-7.53

32.64

36.63

31.39

54.00

74.00

54.00

-21.36

-37.37

-22.61

AVG

peak

AVG

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

		Sc	ience & Ind	dustry Park,I	Nanshan Sh	nenzhen	,P.R.Chi	na	Fax	(:+86-0755-26	5033
ob No	o.: ricky #134	1				F	Polarizat	on: \	/ertical		
tanda	ard: FCC PK					F	Power So	ource:	DC 3.7	V	
est ite	em: Radiatio	on Test				[Date: 14/	05/16/			
emp.	(C)/Hum.(%) 23 C/4	9 %			٦	Time: 9/1	4/24			
UT:	MID					E	Engineer	Signat	ure: R	licky	
/lode:	TX 2480M	1Hz				[Distance	3m			
Nodel:	PC1015B	XC									
/lanufa	acturer: Natu	ral Sound									
lote:	Report No.:	ATE201406	62								
108	0.0 dBu∀/m								limit	1]	
98									limit		
36					\wedge						
88					{}						
78					/						
10					<u> </u>						
68				/							
58					<u> </u>						
				{		1					
48						4 3 \ X					
38	manuthermonth	Muchan maker	an believe and	mml		" Thur	mannesty	munsher	en sen andere	starth weberster and	
28											
18											
8.0											
	2460.000									2500.0 Mi	łz
	Freq.	Reading	Factor	Result	Limit	Margin		Hojaht	Dograc		
No.	(MHz)	(dBuV/m)	ractor (dB)	(dBuV/m)	(dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	2483.500	55.21	-7.37	47.84	74.00	-26.16	peak				

2

3

4

2483.500

2484.814

2484.814

49.28

51.97

45.25

-7.37

-7.38

-7.38

41.91

44.59

37.87

54.00

74.00

54.00

-12.09

-29.41

-16.13

AVG

peak

AVG

Page 27 of 51

ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20140662

		50	ence & ind	austry Park,	vansnan Sr	enznen	,P.R.Chi	na	1 47	
b No.: rick	y #134	0				F	Polarizati	on: H	Iorizont	al
tandard: FC	C PK					F	Power So	ource:	DC 3.7	V
est item: R	adiatio	n Test				[Date: 14/	05/16/		
emp.(C)/H	um.(%)) 23 C/4	9 %			٦	Time: 9/1	3/41		
EUT: MI	ID					E	Engineer	Signat	ure: R	Ricky
/lode: TX	2480M	Hz				[Distance:	3m		
Nodel: PC	1015B>	(C								
lanufacturer:	Natur	al Sound								
lote: Repo	ort No.:/	ATE201406	62							
108.0 dBuV	Um									
100.0 0004	/								limit	1: —
98									limit	2:
					\wedge					
88					1					
78					l					
68				/						
00					\ \					
58				····· / -···						
48					le la	l (3				
10				1 Marthan	2	The contract of the contract o				utup/Solumphoneus
38	nguddyrhij/ti.toti	paymentances	and the second second second	างหม่			where you	well have been a series of the	Stan Manual And	shape the shape of the second
28										
18										
8.0										
2460.000										2500.0 MHz
No. Free		Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark
(IVIH		(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg.)	
	3.500	55.98	-7.37	48.61	74.00	-25.39	-			
	3.500	50.03	-7.37	42.66	54.00	-11.34				
248	4.091	52.89	-7.38	45.51	74.00	-28.49	peak			

4

2484.091

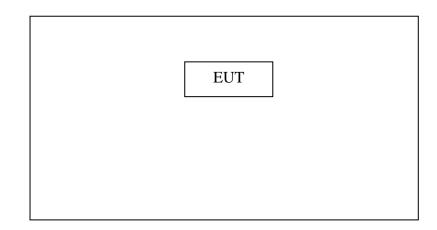
48.11

-7.38

40.73

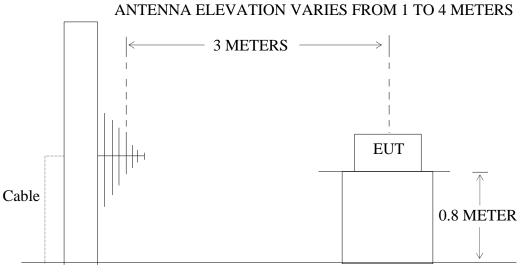
54.00

-13.27


AVG

9. RADIATED SPURIOUS EMISSION TEST

9.1.Block Diagram of Test Setup


9.1.1.Block diagram of connection between the EUT and peripherals

Setup: Transmitting mode

(EUT: MID)

9.1.2.Semi-Anechoic Chamber Test Setup Diagram

GROUND PLANE

9.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3.Restricted bands of operation

9.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
$^{1}0.495-0.505$	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

2 Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

9.4. Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.5. Operating Condition of EUT

- 9.5.1.Setup the EUT and simulator as shown as Section 10.1.
- 9.5.2.Turn on the power of all equipment.
- 9.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

9.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 9 kHz in below 30MHz. and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9 kHz to 25GHz is checked.

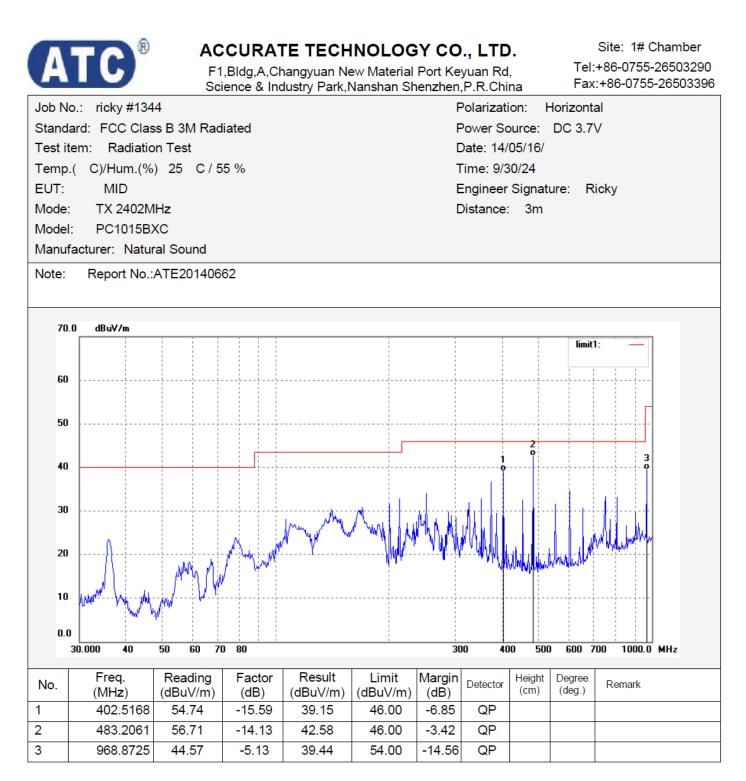
The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

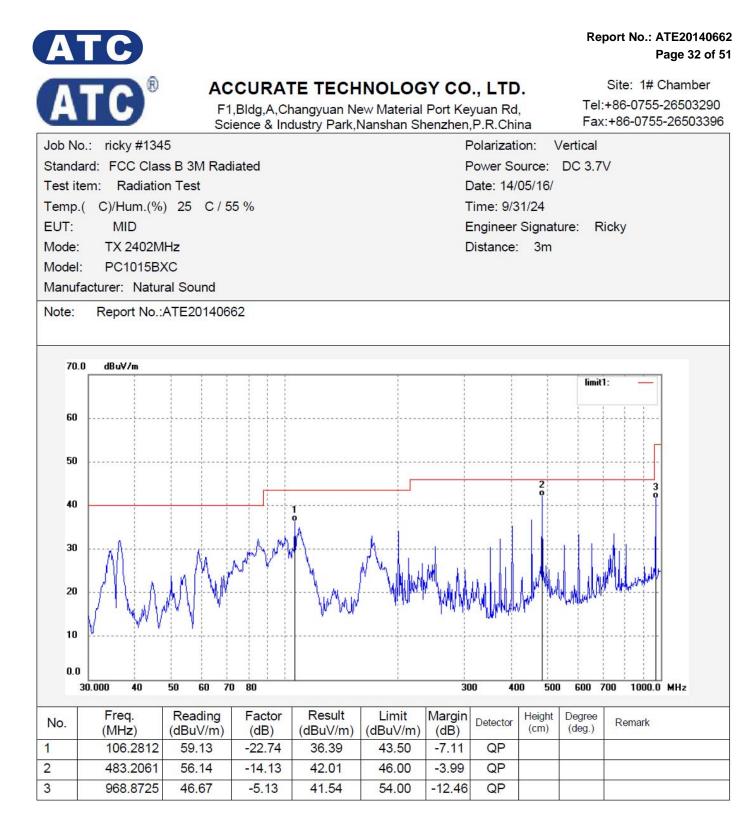
The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

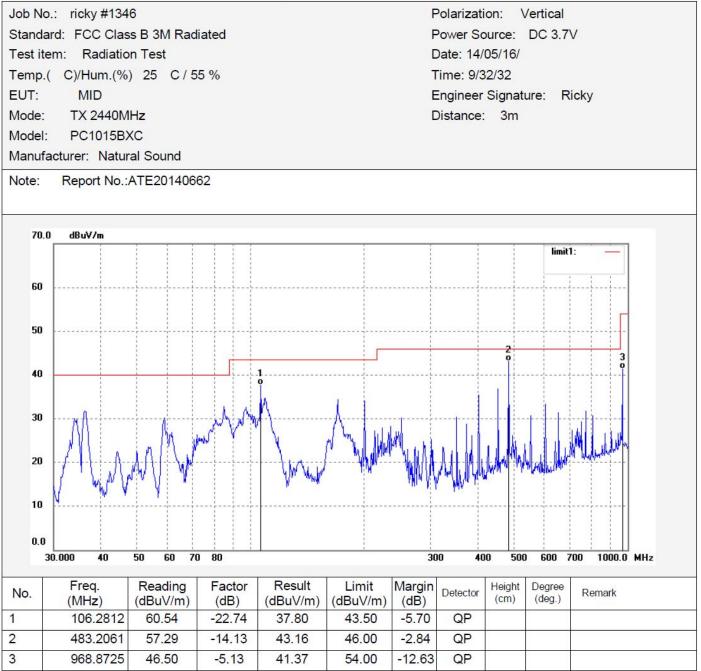
9.7. The Field Strength of Radiation Emission Measurement Results


Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

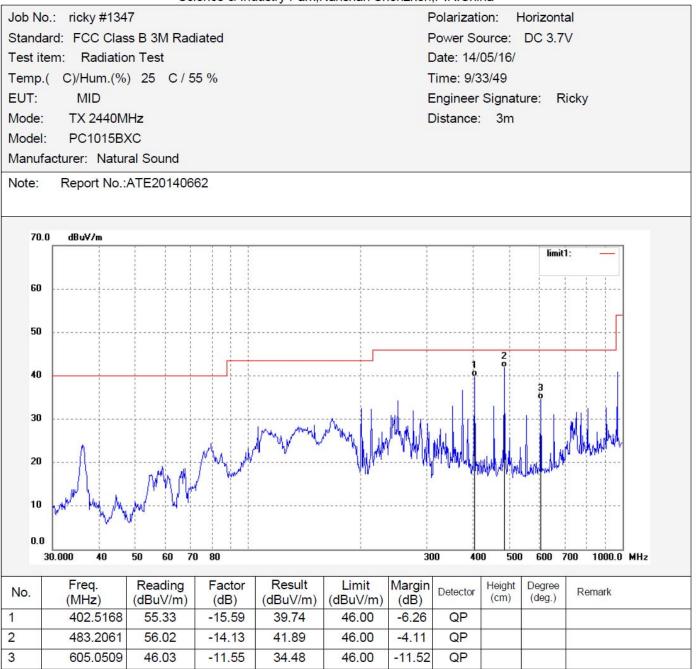

2. The EUT is tested radiation emission at Low, Middle, High channel in three axes. The worst emissions are reported in all channels. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots.

3. The radiation emissions from 18-25GHz are not reported, because the test values lower than the limits of 20dB.

4. The average measurement was not performed when peak measured data under the limit of average detection.

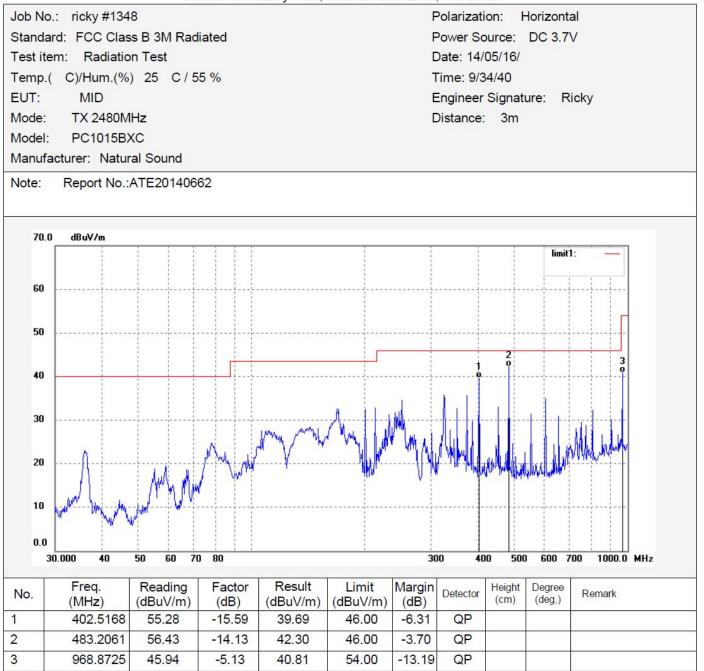


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Report No.: ATE20140662 Page 33 of 51


Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Report No.: ATE20140662 Page 34 of 51

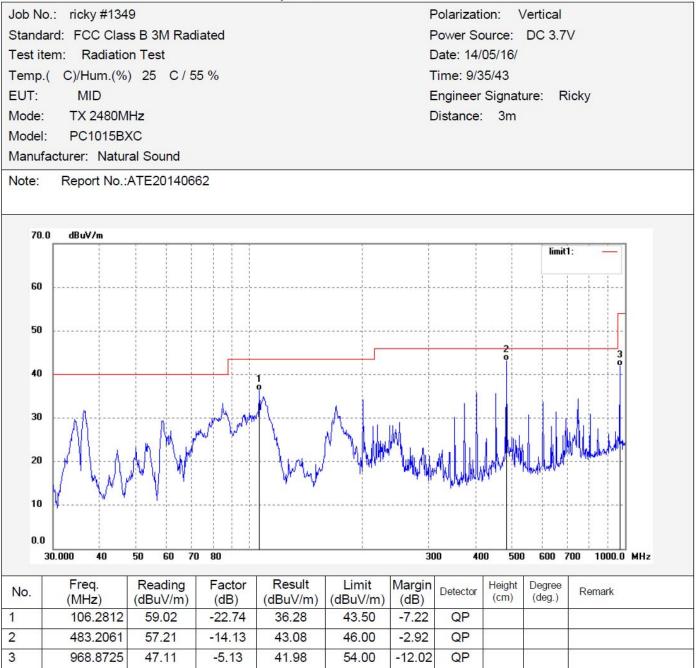
Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396



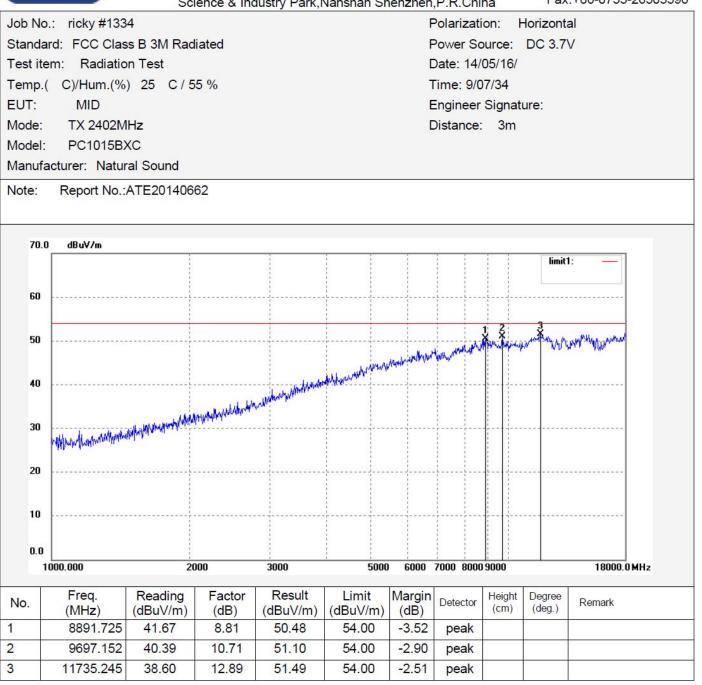
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20140662

Page 35 of 51



F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396


Report No.: ATE20140662

Page 36 of 51

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Page 38 of 51 Site: 1# Chamber

Report No.: ATE20140662

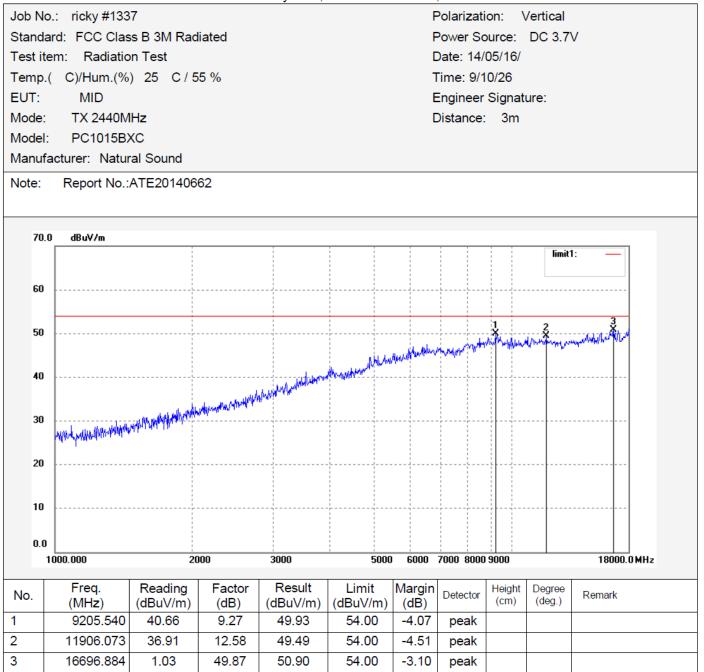
Tel:+86-0755-26503290 Fax:+86-0755-26503396

					Valisian Of					
	.: ricky #133						Polarizati		/ertical	
									DC 3.7	V
	em: Radiatio						Date: 14/			
mp.((C)/Hum.(%)) 25 C/5	55 %			Т	Time: 9/0	8/48		
JT:	MID					E	Engineer	Signat	ure:	
ode:	TX 2402M	Hz				C	Distance:	3m		
odel:	PC1015B)	KC								
anufa	acturer: Natur	al Sound								
ote:	Report No.:.	ATE201406	i62							_
70.0) dBuV/m			1					limit1	:
60										
						1				
50							*	head	2 X	
						. Hugher	mayor	AND MANYAMAN	Amanaha	Advertight in
40					Strangeton United	devous				
				alution of house and and a series of						
-		a a whow	hider and a should be	**************************************						
30	and patrolline salation	WIN WINDOW								
20			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
10										
0.0										
1	000.000	2	000	3000	5000	6000	7000 8000	9000		18000.0 MHz
b .	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark
0.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Delector	(cm)	(deg.)	Kendik
	8082.803	42.22	8.47	50.69	54.00	-3.31	peak			
	11906.073	38.41	12.58	50.99	54.00	-3.01	peak			
	16696.884	2.03	49.87	51.90	54.00	-2.10	peak			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Page 39 of 51 Site: 1# Chamber

Report No.: ATE20140662

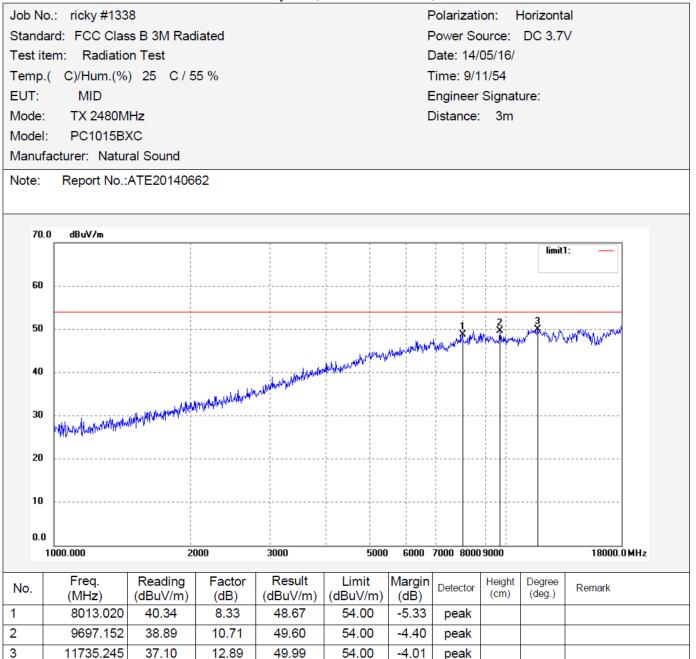
Tel:+86-0755-26503290 Fax:+86-0755-26503396


oh	No	: ricky #133			aotry i ant,i			Polarizati		Horizonta	al
		d: FCC Clas		liated				Power Sc			
		m: Radiatio		lateu				Date: 14/		00 3.7	v
		C)/Hum.(%		55 %				Time: 9/0			
EUT		MID) 25 070	JJ 70				Engineer		uro:	
Лоd		TX 2440M	U -					Distance:	-	ure.	
Лос Лос		PC1015B					L	Jistance.	SIII		
		cturer: Natur									
lote	e:	Report No.:	ATE201406	62							
	70.0	dBu∀/m									
										limit	1: —
	60										
	60										
									1 2		
	50	nthilwindhanturaatteentee						المحمد المد	Mr. Marry	and the second	HUMAN WWW.
						and a support of the support	multinetite	Mar Andrews			
	40				where where the state						
				an whether fight the had	, All and a second s						
:	30	where all a supplify the	March March March								
		ullhete leature									
	20										
	10										
	0.0										
	10	000.000	2	000	3000	5000	6000	7000 8000	9000		18000.0 MHz
۷o.		Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark
	_	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg.)	
	+	8891.725	40.17	8.81	48.98	54.00	-5.02	peak			
2	_	9697.152	38.39	10.71	49.10	54.00	-4.90	peak			
		17948.048	-0.38	51.56	51.18	54.00	-2.82	peak			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20140662

Page 40 of 51



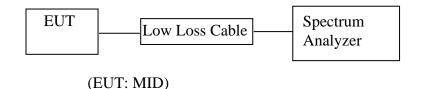
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20140662

Page 41 of 51

Report No.: ATE20140662 Page 42 of 51

ACCURATE TECHNOLOGY CO., LTD.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky #1339		a maasay r ano,		Polar		/ertical				
	-						Power Source: DC 3.7V			
Test item: Radiation	n Test			Date	14/05/16/					
Temp.(C)/Hum.(%)	25 C/55%			Time	9/12/18					
EUT: MID				Engir	eer Signat	ure:				
Mode: TX 2480M	Ηz			Dista	nce: 3m					
Model: PC1015BX	C									
Manufacturer: Natura	al Sound									
Note: Report No.:/	ATE20140662									
70.0 dBuV/m										
						limit	I: <u> </u>			
60										
00										
50					2 3					
50				4. Annua	Auror March March	multinger	www.hillington			
			the asker the has	ANY MANAGE AND						
40		1 h water for the laborer	Acc-49482							
	and all which had have	14hrth Walter								
30	And Mandal and	Antholy Marine and a service and								
20										
10										
0.0										
1000.000	2000	3000	5000	6000 7000	8000 9000		18000.0 MHz			
No. Freq. (MHz)		ctor Result B) (dBuV/m)	Limit (dBuV/m)	Margin (dB)	ctor Height (cm)	Degree (deg.)	Remark			
1 6526.373	43.14 4.	45 47.59	54.00	-6.41 pe	ak					
2 8082.803	40.22 8.	47 48.69	54.00	-5.31 pe	ak					
3 9205.540	39.66 9.	27 48.93	54.00	-5.07 pe	ak					

10.CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

10.1.Block Diagram of Test Setup

10.2. The Requirement of Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

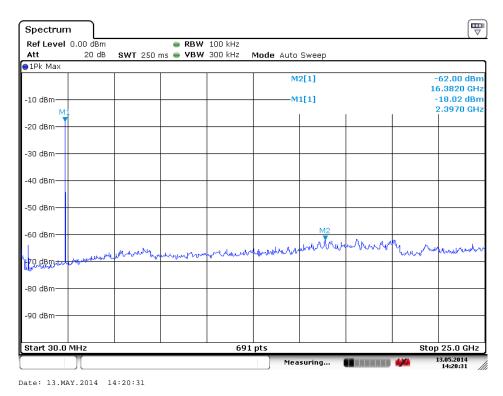
10.4.Operating Condition of EUT

10.4.1.Setup the EUT and simulator as shown as Section 11.1.

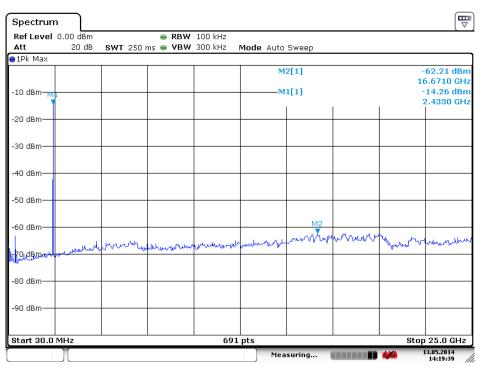
- 10.4.2.Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

10.5.Test Procedure

- 10.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 10.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz
- 10.5.3. The Conducted Spurious Emission was measured and recorded.


10.6.Test Result

Pass.

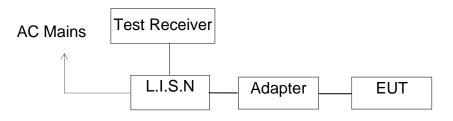

The spectrum analyzer plots are attached as below.

BLE Channel Low 2402MHz

BLE Channel Middle 2440MHz

Date: 13.MAY.2014 14:19:37

BLE Channel High 2480MHz


Ref Level ().00 dBm		🖷 RBW	100 kHz					('
Att	20 dB	SWT 250 r	ns 👄 VBW	300 kHz	Mode Auto	Sweep			
∋1Pk Max									
					M	2[1]			64.67 dBr
.									5.4320 GH
-10 dBm					M	1[1]			17.28 dBr 2.4690 GH
MIL T							I	1	2.4090 GH
-20 dBm									
-30 dBm —									
-40 dBm									
-50 dBm									
-30 abiii									
-60 dBm									
-60 uBili		M2 With Mary				us Mr. A. a	Menter	n .	
. I.	where of	white may	bookenbour	wohnter	alubrandowan	and of our	or shalls	Twoweb and	Murrison
₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	AP-10- 10- 1								
·									
-80 dBm									
-90 dBm									
Start 30.0 M	411-7			691	nte			Stor	25.0 GHz
start 30.0 P				091	prs				13.05.2014

Date: 13.MAY.2014 14:21:15

11.POWER LINE CONDUCTED MEASUREMENT

11.1.Block Diagram of Test Setup

(EUT: MID)

11.2.Power Line Conducted Emission Measurement Limits

Frequency	Limit d	Β(μV)							
(MHz)	Quasi-peak Level	Average Level							
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *							
0.50 - 5.00	46.0								
5.00 - 30.00	60.0	50.0							
NOTE1: The lower limit shall apply at the transition frequencies. NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.									

11.3.Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

- 11.4.Operating Condition of EUT
 - 11.4.1.Setup the EUT and simulator as shown as Section 5.1.
 - 11.4.2.Turn on the power of all equipment.
 - 11.4.3.Let the EUT work in test mode and measure it.

11.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2009 on Conducted Emission Measurement.

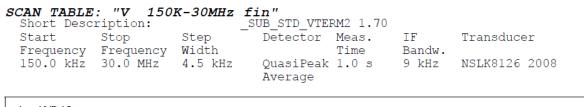
The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

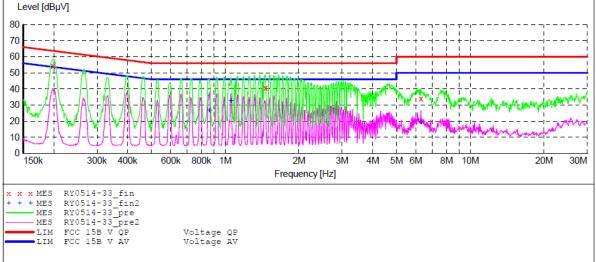
The frequency range from 150kHz to 30MHz is checked.

11.6.Power Line Conducted Emission Measurement Results

PASS.

Emissions attenuated more than 20 dB below the permissible value are not reported.


The spectral diagrams are attached as below.



CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: MID M/N:PC1015BXC Manufacturer: Natural Sound Operating Condition: Operation Test Site: 1#Shielding Room Operator: Ricky Test Specification: N 120V/60Hz Comment:

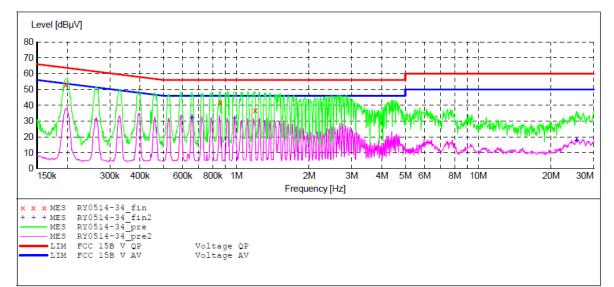
Report No.:ATE20140662

MEASUREMENT RESULT: "RY0514-33 fin"

5/14/2014 4:26PM

Frequency MHz	Level dBµV	Limit dBµV	Margin dB	Detector	Line	PE
0.198359 1.459848 6.292837	40.70	56	9.5 15.3 25.8	ÕР	N N N	GND GND GND

MEASUREMENT RESULT: "RY0514-33 fin2"


5/14/2014 4:26PM Frequency Level Transd Limit Margin Detector Line PE MHz dBµV dB dBµV dB 19.2 AV 13.4 AV 30.9 AV 0.861901 26.80 10.8 46 Ν GND 10.9 1.056518 32.60 46 Ν GND 6.292837 19.10 11.2 50 Ν GND

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: MID M/N:PC1015BXC Manufacturer: Natural Sound Operating Condition: Operation Test Site: 1#Shielding Room Operator: Ricky Test Specification: L 120V/60Hz Comment: Report No.:ATE20140662

Scan TABLE Short Desc		K-30MHz	fin" _SUB_STD_VTERM2 1.7	70	
	Stop Frequency	-	Detector Meas. Time	IF Bandw.	Transducer
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak 1.0 s Average	9 kHz	NSLK8126 2008

MEASUREMENT RESULT: "RY0514-34 fin"

5/14/2014 4:3 Frequency MHz				Margin dB	Detector	Line	PE
0.196781 0.858467 1.195699	53.10 41.70 36.80	10.5 10.8 10.9	56	10.6 14.3 19.2	ΏΡ	L1 L1 L1	GND GND GND

MEASUREMENT RESULT: "RY0514-34 fin2"

5/14/2014 4:30PM

Frequency MHz	Level dBµV		Limit dBµV	2	Detector	Line	PE
0.654382 0.983264 25.447547	31.60	10.8	46	14.0 14.4 32.3	AV	L1 L1 L1	GND GND GND

12.ANTENNA REQUIREMENT

12.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

12.2.Antenna Construction

Device is equipped with unique antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement of Section 15.203.

Antenna