

INFRASYS (HK) LTD.

Application
For
Certification

2.4GHz Direct Sequence Spread Spectrum Transmitter - Base Station

(FCC ID: PWE-INFRASYS-HB)

WO# 01095071
WL/Sandy
September 24, 2001

- The test results reported in this report shall refer only to the sample actually tested and shall not refer or be deemed to refer to bulk from which such a sample may be said to have been obtained.
- This report shall not be reproduced except in full without prior authorization from Giant Electronics Limited Limited

FCC ID: PWE-INFRASYS-HB

Intertek Testing Services Hong Kong Ltd.

2/F., Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong.
Tel: (852) 2173 8888 Fax: (852) 2741 1693

LIST OF EXHIBITS

INTRODUCTION

EXHIBIT 1: Summary of Tests

EXHIBIT 2: General Description

EXHIBIT 3: System Test Configuration

EXHIBIT 4: Measurement Results

EXHIBIT 5: Equipment Photographs

EXHIBIT 6: Product Labelling

EXHIBIT 7: Technical Specifications

EXHIBIT 8: Instruction Manual

INTERTEK TESTING SERVICE

MEASUREMENT/TECHNICAL REPORT

INFRASYS (HK) LTD. - MODEL: Chili Base Station HB100 FCC ID: PWE-INFRASYS-HB

This report concerns (check one) Original Grant Class II Change _____

Equipment Type: DSS-Part 15 Spread Spectrum Transmitter

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? Yes _____ No

If yes, defer until : _____
date

Company Name agrees to notify the Commission by: _____
date

of the intended date of announcement of the product so that the grant can be issued on
that date.

Transition Rules Request per 15.37? Yes _____ No

If no, assumed Part 15, Subpart C for intentional radiator - the new 47 CFR [10-1-96
Edition] provision.

Report prepared by:

Wilson Loke
Intertek Testing Service
2/F., Garment Centre,
576 Castle Peak Road,
Kowloon, Hong Kong.
Phone: 852-2173-8575
Fax: 852-2741-1693

Table of Contents

1.0 <u>Summary of Test</u>	2
2.0 <u>General Description</u>	4
2.1 Product Description	4
2.2 Related Submittal(s) Grants	5
2.3 Test Methodology	5
2.4 Test Facility	5
3.0 <u>System Test Configuration</u>	7
3.1 Justification	7
3.2 EUT Exercising Software	7
3.3 Support Equipment List and Description	8
3.4 Equipment Modification	9
4.0 <u>Measurement Results</u>	11
4.1 Maximum Conducted Output Power at Antenna Terminals	11
4.2 Minimum 6 dB RF Bandwidth	12
4.3 Maximum Power Density Reading	13
4.4 Out of Band Conducted Emissions	14
4.5 Out of Band Radiated Emissions	15
4.6 Transmitter Radiated Emissions in Restricted Bands	15
4.7 Field Strength Calculation	16
4.8 Radiated Emission Configuration Photograph	17
4.9 Radiated Emission Data	18
4.10 AC Line Conducted Emission	22
4.11 Line Conducted Configuration Photograph	23
4.12 Line Conducted Emission Data	24
4.13 Radiated Emissions from Digital Section of Transceiver(Transmitter)	25
4.14 Processing Gain Measurements	27
4.15 Transmitter Duty Cycle Calculation and Measurements	27
5.0 <u>Equipment Photographs</u>	32
6.0 <u>Product Labelling</u>	34
7.0 <u>Technical Specifications</u>	36
8.0 <u>Instruction Manual</u>	38

INTERTEK TESTING SERVICE

List of attached file

Exhibit type	File Description	filename
Test Report	Test Report	report.doc
Operation Description	Technical Description	descri.pdf
Test Setup Photo	Radiated Emission	Rconfig photos.doc
Test Report	Maximum Output Power Plot	bmaxop.pdf
Test Report	6 dB Bandwidth Plot	b6dB.pdf
Test Report	Maximum Power Density Plot	bpowden.pdf
Test Report	Out Band Antenna Conducted Emission Plot	bobantcon.pdf
Test Setup Photo	Conducted Emission	config photos.doc
Test Report	Conducted Emission Test Result	conduct.pdf
External Photo	External Photo	external photos.doc
Internal Photo	Internal Photo	internal photos.doc
Block Diagram	Block Diagram	block.pdf
Schematics	Circuit Diagram	circuit.pdf
ID Label/Location	Label Artwork and Location	label.pdf
User Manual	User Manual	manual.pdf
RF Exposure Info	RF Safety	RF exposure info.doc

EXHIBIT 1

SUMMARY OF TEST RESULTS

1.0 Summary of Test

INFRASYS (HK) LTD. - MODEL: Chili Base Station HB100
FCC ID: PWE-INFRASYS-HB

TEST	REFERENCE	RESULTS
Max. Output power	15.247(b)	Pass
6 dB Bandwidth	15.247(a)(2)	Pass
Max. Power Density	15.247(d)	Pass
Out of Band Antenna Conducted Emission	15.247(c)	Pass
Out of Band Radiated Emission	15.247 (c)	Not Applicable
Radiated Emission in Restricted Bands	15.35 (b)(c)	Pass
AC Conducted Emission	15.207	Pass
Radiated Emission from Digital Part	15.109	Pass
Processing Gain Measurements	15.247(e)	Pass
Antenna Requirement	15.203	Pass (See Notes)

Notes: The EUT uses a permanently attached antenna which, in accordance to Section 15.203, is considered sufficient to comply with the provisions of this section.

EXHIBIT 2

GENERAL DESCRIPTION

2.0 General Description

2.1 Product Description

The Chili Base Station HB100 is a 2.4GHz Direct Sequence Spread Spectrum Transmitter operating at frequency range of 2423.808MHz to 2477.568MHz with 36 Channels. The EUT is powered by DC 9V (AC 120V 60Hz input, DC 9V 300mA output adaptor). It is a base station which is part of the Point of Sale (POS) System and is connected to computer through serial cable when use. It works with the hand terminal to perform functions like “take an order”, “check the bill”, etc.

The circuit description is saved with filename: descri.pdf

INTERTEK TESTING SERVICE

2.2 Related Submittal(s) Grants

This is an application for Certification of a DSS-Part 15 Spread Spectrum Transmitter. The receiver portion associated with the transmitter is subjected to verification process.

The hand terminal associated with EUT has the FCC ID: PWE-INFRASYS-HT and will be filed at the same time.

2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (1992). All measurements were performed in Open Area Test Sites. Preliminary scans were performed in the Open Area Test Sites only to determine worst case modes. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC.

EXHIBIT 3

SYSTEM TEST CONFIGURATION

3.0 System Test Configuration

3.1 Justification

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst case emissions. The EUT was powered by AC 120V 60Hz input, DC 9V 300mA output adaptor.

The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Detector function is in peak mode. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1MHz or greater for frequencies above 1000MHz. All emissions greater than 20 dB μ V/m are recorded.

Radiated emission measurement were performed from 30 MHz to tenth harmonics.

3.2 EUT Exercising Software

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The software, contained on a CD, was inserted into Drive A and was installed into the harddisk.

For simplicity of testing, the unit was set to run continuously.

INTERTEK TESTING SERVICE

3.3 Support Equipment List and Description

Support Equipment:

1. HP Computer
Model: D3397A
S/N: SG54500246
FCCID: K4UVECTRAVL5
2. Hitachi Monitor
Model: CM643ET
3. HP Mouse
Model: M-S34
S/N: LCA53438640
FCCID: DZL210582
4. HP Printer
Model: C2642A
S/N: SG67B131RY
FCCID: B94C2642X
5. CD-ROM
Model: CDU311
S/N: 5049187
FCCID: AK8CDU31110
6. HP Keyboard
Model: E03633QLUS
FCCID: CIGEO3614

Cables:

2 x 1m telephone line with termination
1 x serial cable(shielded) with 1 meter long
1 x parallel cable with 1 meter long

Software:

POS_ATE.exe, HT.exe

INTERTEK TESTING SERVICE

3.4 Equipment Modification

Any modifications installed previous to testing by INFRASYS (HK) LTD. will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services Hong Kong Ltd.

All the items listed under section 2.0 of this report are confirmed by:

Confirmed by:

*Wilson Loke
Manager
Intertek Testing Services Hong Kong Ltd.
Agent for INFRASYS (HK) LTD.*

_____Signature

_____September 24, 2001_____Date

EXHIBIT 4

MEASUREMENT RESULTS

INTERTEK TESTING SERVICE

Company: INFRASYS (HK) LTD.
Model: Chili Base Station HB100

Date of Test: August 29, 2001

4.0 Measurement Results

4.1 Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b) :

- [] The antenna power of the EUT was connected to the input of a power meter. Power was read directly and cable loss correction was added to the reading to obtain power at the EUT antenna terminals.
- [x] The antenna port of the EUT was connected to the input of a spectrum analyzer. The analyzer was set for maximum RES BW and power was read directly in dBm. External attenuation and cable loss were compensated by adding to SA raw reading.

For antennas with gains of 6 dBi or less, maximum allowed transmitter output is 1 watt (+30 dBm).

For antennas with gains greater than 6 dBi, transmitter output level must be decreased by an amount equal to (GAIN - 6) dBm.

Antenna Gain = 2 dB (loss)		
Frequency (MHz)	Output in dBm	Output in mWatt
Low Channel: 2423.808	14.35	27.2
Middle Channel: 2449.920	14.05	25.4
High Channel: 2477.568	12.88	19.4

Cable loss : 1.0 dB External Attenuation : 0 dB

Cable loss, external attenuation: [] included in OFFSET function
[x] added to SA raw reading

Please refer to the attached plots for details:

Plot B1a: Low Channel Output Power
Plot B1b: Middle Channel Output Power
Plot B1c: High Channel Output Power

For electronic filing, the above plots are saved with filename: bmaxop.pdf

For RF Safety, the information is saved with filename: RF exposure info.doc

INTERTEK TESTING SERVICE

Company: INFRASYS (HK) LTD.
Model: Chili Base Station HB100

Date of Test: August 29, 2001

4.2 Minimum 6 dB RF Bandwidth, FCC Rule 15.247(a)(2):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RES BW was set to 100kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK output reading was taken, a DISPLAY line was drawn 6 dB lower than PEAK level. The 6dB bandwidth was determined from where the channel output spectrum intersected the display line.

Frequency (MHz)	6 dB Bandwidth (kHz)
2477.568	789

Refer to the following plots for 6 dB bandwidth sharp:

Plot B2a: Low Channel 6 dB RF Bandwidth

Plot B2b: Middle Channel 6 dB RF Bandwidth

Plot B2c: High Channel 6 dB RF Bandwidth

For electronic filing, the above plots are saved with filename: b6dB.pdf

INTERTEK TESTING SERVICE

Company: INFRASYS (HK) LTD.
Model: Chili Base Station HB100

Date of Test: August 29, 2001

4.3 Maximum Power Density Reading, FCC Rule 15.247(d) :

The spectrum analyzer RES BW was set to 3 kHz. The START and STOP frequencies were set to the band edges of the maximum output passband. If there is no clear maximum amplitude in any given portion of the band, it may be necessary to make measurements at a number of bands defined by several START and STOP frequency pairs. The specification calls for a 1 second interval at each 3 kHz bandwidth; total SWEEP TIME is calculated as follows:

$$\text{SWEEP TIME (SEC)} = (\text{Fstop, kHz} - \text{Fstart, kHz})/3\text{kHz}$$

Antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated by adding to the SA raw reading.

Frequency (MHz)	Power Density (dBm)
2423.808	6.48

Frequency Span = 1500kHz

Sweep Time = Frequency Span/3kHz
= 500 seconds

Cable Loss: 1.0 dB

Refer to the following plots for power density data :

Plot B3a: Low Channel 6 dB power density

Plot B3b: Middle Channel 6 dB power density

Plot B3c: High Channel 6 dB power density

For electronic filing, the above plots are saved with filename: bpowden.pdf

INTERTEK TESTING SERVICE

Company: INFRASYS (HK) LTD.
Model: Chili Base Station HB100

Date of Test: August 29, 2001

4.4 Out of Band Conducted Emissions, FCC Rule 15.247(c):

In any 100 kHz bandwidth outside the EUT passband, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20dB below that of the maximum in-band 100 kHz emission, or else shall meet the general limits for radiated emissions at frequencies outside the passband, whichever results in lower attenuation.

All other types of emissions from the EUT shall meet the general limits for radiated frequencies outside the passband.

Refer to the following plots for out of band conducted emissions data:

Plot B4a.1 - B4a.2: Low Channel Emissions
Plot B4b.1 - B4b.2: Middle Channel Emissions
Plot B4c.1 - B4c.2: High Channel Emissions
Plot B4d.1 - B4d.2: Modulation Products Emissions

The plots showed the 2nd harmonic and modulation products at the band edges of 2400 MHz and 2483.5 MHz. In addition, all spurious emission and up to the tenth harmonic was measured and they were found to be at least 40 dB below the highest level of the desired power in the passband.

For electronic filing, the above plots are saved with filenames: bobantcon.pdf.

INTERTEK TESTING SERVICE

Company: INFRASYS (HK) LTD.
Model: Chili Base Station HB100

Date of Test: August 29, 2001

4.5 Out of Band Radiated Emissions (for emissions in 4.4 above that are less than 26dB below carrier), FCC Rule 15.247(c):

For out of band emissions that are close to or that exceed the 20dB attenuation requirement described in the specification, radiated measurements were performed at a 3m separation distance to determine whether these emissions complied with the general radiated emission requirement.

- Not required
- See attached data sheet

4.6 Transmitter Radiated Emissions in Restricted Bands, FCC Rule 15.35(b), (c):

Radiated emission measurements were performed from 30 MHz to 10000 MHz. Analyzer resolution is 100 kHz or greater for 30 MHz to 1000 MHz, 1 MHz for >1000 MHz.

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detection unless otherwise specified.

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

4.7 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:-

$$FS = RR + LF$$

where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RR = $RA - AG$ in $\text{dB}\mu\text{V}$

LF = $CF + AF$ in dB

Assume a receiver reading of 52.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ was converted to its corresponding level in $\mu\text{V}/\text{m}$.

$$RA = 52.0 \text{ dB}\mu\text{V}/\text{m}$$

$$AF = 7.4 \text{ dB}$$

$$RR = 23.0 \text{ dB}\mu\text{V}$$

$$CF = 1.6 \text{ dB}$$

$$LF = 9.0 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = RR + LF$$

$$FS = 23 + 9 = 32 \text{ dB}\mu\text{V}/\text{m}$$

$$\text{Level in } \mu\text{V}/\text{m} = \text{Common Antilogarithm} [(32 \text{ dB}\mu\text{V}/\text{m})/20] = 39.8 \mu\text{V}/\text{m}$$

INTERTEK TESTING SERVICE

4.8 Radiated Emission Configuration Photograph

Worst Case Radiated Emission
at
7271.871MHz

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: Rconfig photos.doc

INTERTEK TESTING SERVICE

4.9 Radiated Emission Data

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

Judgement : Passed by 3.6 dB

TEST PERSONNEL:

Tester Signature

Ben W.K. Ho, Compliance Engineer
Typed/Printed Name

August 29, 2001
Date

INTERTEK TESTING SERVICE

Company: INFRASYS (HK) LTD.
Model: Chili Base Station HB100
Mode : TX-Channel 1

Date of Test: August 29, 2001

Table 1

Radiated Emissions

Polarity	Frequency (M Hz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
H	*1211.979	51.3	25.5	34	42.8	54.0	-11.2
V	*3635.936	42.0	32.8	34	40.8	54.0	-13.2
V	*4847.914	40.2	34.0	34	40.2	54.0	-13.8
V	*7271.871	47.4	37.0	34	50.4	54.0	-3.6

NOTES: 1. Peak Detector data

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna and average detector are used for the emission over 1000MHz.

* Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Ben W.K. Ho

INTERTEK TESTING SERVICE

Company: INFRASYS (HK) LTD.
Model: Chili Base Station HB100
Mode : TX-Channel 18

Date of Test: August 29, 2001

Table 2

Radiated Emissions

Polarity	Frequency (M Hz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
H	*1225.026	50.6	25.5	34	42.1	54.0	-11.9
V	*3675.130	41.9	32.8	34	40.7	54.0	-13.3
V	*4900.109	39.5	34.0	34	39.5	54.0	-14.5
V	*7350.164	46.4	37.0	34	49.4	54.0	-4.6

NOTES: 1. Peak Detector data

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna and average detector are used for the emission over 1000MHz.

* Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Ben W.K. Ho

INTERTEK TESTING SERVICE

Company: INFRASYS (HK) LTD.
Model: Chili Base Station HB100
Mode : TX-Channel 36

Date of Test: August 29, 2001

Table 3

Radiated Emissions

Polarity	Frequency (MHz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
H	*1238.846	46.1	25.5	34	37.6	54.0	-16.4
V	*3716.561	40.0	32.8	34	38.8	54.0	-15.2
V	*4955.411	47.7	34.0	34	47.7	54.0	-6.3
V	*7433.117	44.8	37.0	34	47.8	54.0	-6.2

NOTES: 1. Peak Detector data

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna and average detector are used for the emission over 1000MHz.

* Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Ben W.K. Ho

INTERTEK TESTING SERVICE

Company: INFRASYS (HK) LTD.
Model: Chili Base Station HB100

Date of Test: August 29, 2001

4.10 AC Line Conducted Emission, FCC Rule 15.207:

Not required; battery operation only

Test data attached

INTERTEK TESTING SERVICE

4.11 Line Conducted Configuration Photograph

Worst Case Line-Conducted Configuration
at
6.895 MHz

For electronic filing, the worst case line conducted configuration photographs are saved with filename: config photos.doc

INTERTEK TESTING SERVICE

4.12 Line Conducted Emission Data

The data saved with filename: conduct.pdf list the significant emission frequencies, the limit, and the margin of compliance.

Judgement : Passed by 17.8 dB margin

TEST PERSONNEL:

Tester Signature

Ben W.K. Ho, Compliance Engineer
Typed/Printed Name

August 29, 2001

Date

INTERTEK TESTING SERVICE

Company: INFRASYS (HK) LTD.
Model: Chili Base Station HB100

Date of Test: August 29, 2001

4.13 Radiated Emissions from Digital Section of Transceiver(Transmitter), FCC Ref: 15.109

- Not required - No digital part
- Test results are attached
- Included in the separated DOC report.

INTERTEK TESTING SERVICE

Company: INFRASYS (HK) LTD.
Model: Chili Base Station HB100

Date of Test: August 29, 2001

Table 4

Radiated Emissions

Polarity	Frequency (M Hz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
H	31.604	33.6	11.6	16	29.2	40.0	-10.8
H	49.436	34.5	11.9	16	30.4	40.0	-9.6
H	52.491	34.9	11.7	16	30.6	40.0	-9.4
H	65.636	36.9	8.5	16	29.4	40.0	-10.6
H	70.776	45.9	7.1	16	37.0	40.0	-3.0

NOTES:

1. Peak Detector data
2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna and average detector are used for the emission over 1000MHz.

* Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Ben W.K. Ho

INTERTEK TESTING SERVICE

Company: INFRASYS (HK) LTD.
Model: Chili Base Station HB100

Date of Test: August 29, 2001

4.14 Processing Gain Measurements, FCC Ref: 15.247(e)

The processing gain shall be determined from the ratio in dB of the signal to noise ratio with the system spreading code turned OFF, to the signal to noise ratio with the system spreading code turned ON, as measured at the demodulated output of the receiver. The processing gain shall be at least 10 dB for a direct sequence spread spectrum system.

X	Refer to attached test procedure and data sheets.
	Refer to circuit analysis and processing gain data provided by manufacturer

4.15 Transmitter Duty Cycle Calculation and Measurements, FCC Rule 15.35(b), (c)

The EUT antenna output port was connected to the input of the spectrum analyzer. The analyzer center frequency was set to EUT RF channel carrier. The SWEP function on the analyzer was set to ZERO SPAN. The transmitter ON time was determined from the resultant time-amplitude display:

Duty cycle = Maximum ON time in 100 msec/100

Duty cycle correction, dB = $20 * \log (DC)$

	See attached spectrum analyzer chart (s) for transmitter timing
	See transmitter timing diagram provided by manufacturer
X	Not applicable, duty cycle was not used.

Test Setup Description:

The processing gain was measured using the CW jamming margin method described by FCC recommended test procedure, as described FCC-97-114.

All test equipment and the EUT were allowed to warm up for one hour prior to start of test to minimize drift over time. All test equipment had valid calibration. Calibration of carrier and interferer levels was performed several times during testing with no observed changes.

The measurements were performed at the mid center channel at 2449.92 MHz, over a range of 2449.32 to 2450.52 MHz. The measurements made across the center (+/-) 0.6 MHz should be used for calculation of Gp since that bandwidth represents the receiver passband.

The Processing Gain was measured using the CW jamming margin method. The test consists of stepping a signal generator in 50 kHz increments across the passband of the system. At each point, the generator level required to produce the recommended Bit Error Rate (BER) (set at $BER=10^{-3}$) is recorded. This level is the jamming level. The output power of the transmitting unit is measured at the same point. The Jammer to Signal (J/S) ratio is then calculated. Discard the worst 20% of the J/S data points. The lowest remaining J/S ratio is used to calculate the processing gain.

The maximum implementation loss a system can claim in calculating processing gain is 2 dB. The equation to calculate the processing gain (Gp) is the following:

$$Gp = (S/N)_o + Mj + Lsys$$

Where Lsys = System losses,

Mj = jamming margin (J/S) in dB,

$(S/N)_o$ = signal to noise ratio required for a GFSK system with $BER = 10^{-3} = 11.0$ dB

Therefore, the Processing gain

$$Gp = 11.0 \text{ dB} + Mj + 2 \text{ dB}$$

Test Equipment:

Signal Generator, Model No. E4421B, Brand: Agilent
Spectrum Analyzer, Model No.: R3271, Band: Advantest

Explanation of Results:

The following notations are used on the spreadsheet data:

Pg: Power at Generator in dBm (as indicated by generator display)

Pj: Power of interferer

Ps: Power of carrier at power meter test report (initial calibration)

J/S: Jammer to Signal ratio, Pj-Ps (dB) (calculated in spreadsheet)

Gp: Processing Gain = (S/N)o + Lsys + J/S:

Where Lsys = 2 dB (system loss);

$$Gp = 11.0 + 2 + J/S = 13 + J/S$$

All measurements inside the (+/-) 0.6 MHz passband of the receiver give Gp results that exceed the minimum required value of 10 dB. Elimination of the worst 20% measurements was therefore not needed in order to meet the requirements (see spreadsheet and plotted results).

INTERTEK TESTING SERVICE

Company: INFRASYS (HK) LTD.
 Model: Chili Base Station HB100

Date of Test: August 29, 2001

Table 5
Processing Gain Measurement

Frequency (MHz)	PgdBm (dBm)	Pj (dBm)	Psa (dBm)	Ps (dBm)	J/S (dB)
2449.32	-7.00	-36.00	-26.00	-43.00	20.00
2449.37	-7.50	-36.50	-26.00	-43.00	19.50
2449.42	-7.50	-36.50	-26.00	-43.00	19.50
2449.47	-7.50	-36.50	-26.00	-43.00	19.50
2449.52	-7.00	-36.00	-26.00	-43.00	20.00
2449.57	-7.00	-36.00	-26.00	-43.00	20.00
2449.62	-7.50	-36.50	-26.00	-43.00	19.50
2449.67	-6.50	-35.50	-26.00	-43.00	20.50
2449.72	-5.00	-34.00	-26.00	-43.00	22.00
2449.77	-5.50	-34.50	-26.00	-43.00	21.50
2449.82	-5.00	-34.00	-26.00	-43.00	22.00
2449.87	-5.50	-34.50	-26.00	-43.00	21.50
2449.92	-5.00	-34.00	-26.00	-43.00	22.00
2449.97	-5.00	-34.00	-26.00	-43.00	22.00
2450.02	-8.00	-37.00	-26.00	-43.00	19.00
2450.07	-7.50	-36.50	-26.00	-43.00	19.50
2450.12	-7.50	-36.50	-26.00	-43.00	19.50
2450.17	-7.00	-36.00	-26.00	-43.00	20.00
2450.22	-6.50	-35.50	-26.00	-43.00	20.50
2450.27	-7.50	-36.50	-26.00	-43.00	19.50
2450.32	-7.00	-36.00	-26.00	-43.00	20.00
2450.37	-6.50	-35.50	-26.00	-43.00	20.50
2450.42	-6.00	-35.00	-26.00	-43.00	21.00
2450.47	-5.50	-34.50	-26.00	-43.00	21.50
2450.52	-5.00	-34.00	-26.00	-43.00	22.00

EXHIBIT 5

EQUIPMENT PHOTOGRAPHS

5.0 Equipment Photographs

For electronic filing, the photographs are saved with filename: external photos.doc & internal photos.doc

EXHIBIT 6

PRODUCT LABELLING

6.0 Product Labelling

For electronic filing, the FCC ID label artwork and location is saved with filename: label.pdf

EXHIBIT 7

TECHNICAL SPECIFICATIONS

7.0 Technical Specifications

For electronic filing, the block diagram and circuit diagram are saved with filename: block.pdf and circuit.pdf respectively.

EXHIBIT 8

INSTRUCTION MANUAL

8.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.