

MICROTEK THE INTELLIGENT ALTERNATIVE.
ELECTRONICS, INC.

FCC PART 90
EVALUATION REPORT
Of
Model: Minilink 2.4TA-90IR

TABLE OF CONTENTS

1.0 Summary of Test

- 1.1 Administrative Data and Test description
- 1.2 Radiated Spurious
- 1.3 Conducted Spurious
- 1.4 Occupied Bandwidth/Modulation Characteristics
- 1.5 RF Power Output
- 1.6 Conducted Powerline
- 1.7 Temperature Stability
- 1.8 Voltage Stability

2.0

2.1 Test Equipment

1.1

Date: 2 Feb. 2000

FCC ID: JRR24TA-90IR

SUMMARY OF TEST

Administrative Data and Test Description

DEVISE TESTED: Video Transmitter
Model: Minilink 2.4TA-90IR

APPLICANT: MICROTEK ELECTRONICS, Inc.
P.O. Box 3464
San Clemente, CA 92672

GRANTEE CODE: JRR

FCC ID# REQUESTED: JRR24TA-90IR

CONTACT: Michael L. Henkoski

FREQUENCY RANGES: CONDUCTED: 0.45 – 30.0 mHz
RADIATED: 10-22,000 mHz

TEST LOCATION: 114 Olinda Drive, Brea, CA 92683

TEST DATE: January 10th, 2000

PURPOSE OF TEST: To demonstrate compliance with limits
of FCC Part 90

TESTS PERFORMED: 1) 2.995 Frequency Stability. -30 to +50 C
2) 2.993 Radiated Spurious Emissions.
3) 2.991 Conducted Spurious Emissions.
4) 2.989 Occupied Bandwidth.
5) 2.987 Modulation Characteristics.
6) 2.985 RF Power Output
7) 2.995 Voltage Stability

1.2 Radiated Spurious Emissions

3 Meters

	Antenna Polarity	Preamp Gain	Antenna Factor With Feedline		True Fieldstrength
2474 mHz -32.6	V	0	32.7	=	+0.1
4948 mHz -52.3	V	23.3	38.0	=	-37.6
2474 mHz -34.0	H	0	32.3	=	-1.3
4948 mHz -54.6	H	23.3	38.0	=	-39.9
2458 mHz -38.9	V	0	32.7	=	-6.2
4916 mHz -54.6	V	23.3	38.0	=	-39.9
2458 mHz -28.1	H	0	32.7	=	+4.6
4916 mHz -57.3	H	23.3	38.0	=	-42.6

$$\begin{aligned}
 \text{Field Strength} &= 1/D \sqrt{P_o \times R_L} \\
 &= 1/3 \sqrt{.250 \times 50\Omega} \\
 &= 1.177 \text{ V}@50\Omega \\
 &= 14.43 \text{ dBm}
 \end{aligned}$$

$$\begin{aligned}
 \text{FCC Limit} &= 43 + 10 \log (.250) \\
 &= -36.98 \text{ dBc} \\
 &= 14.43 \text{ dBm} - 36.98 \\
 &= -22.6 \text{ dBm}
 \end{aligned}$$

Spectrum scans were made up to the 10th harmonic as per section 2.997 with all radiated spurious emissions above the 2nd harmonic unmeasureable or greater than 20 dB below the limit.

RADIATED EMISSIONS

 COMPANY NAME: MICROTEK DATE: 1-10-00

 EUT: VIDEO TRANSMITTER EUT S/N: _____

 EUT MODEL: 2.4TA-90II LOCATION: BREA SILVERADO AGOURA

 SPECIFICATION: PART 90 CLASS: _____ TEST DISTANCE: 3M LAB: D

 ANTENNA: LOOP BICONICAL LOG HORN POLARIZATION: VERT HORIZ

 QUALIFICATION ENGINEERING MFG. AUDIT ENGINEER: KYLE F.

NOTES:

(dBm) (dBm)

Frequency (GHz)	Peak Reading (dBm)	Average Reading (dBm)	Antenna Height (meters)	Azimuth (degrees)	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	* Corrected Reading (dBuV)	Delta ** (dB)	Spec Limit (dBuV)
2.474	-34.0	-	1.0	90	28.2	4.5	0	-1.3	-	-
4.948	-54.6	-	1.0	90	32.3	5.7	23.3	-39.9	-17.3	-22.6
No Harmonics Past 2nd Harmonic Were Within 20dB of Limit										
3.458	-28.1	-	1.0	0	28.2	4.5	0	+4.6	-	-
4.916	-57.3	-	1.0	90	32.3	5.7	23.3	-42.6	-20.0	-22.6
No Harmonics Past 2nd Harmonic Were Within 20dB of Limit										
2.380	-33.1	-	1.5	0	28.2	4.5	0	-0.4	-	-
4.760	-60.3	-	1.5	90	32.3	5.7	23.3	-45.6	-23.0	-22.6
7.140	-52.1	-	3.5	0	36.1	13.1	23.1	-26.0	-3.4	-22.6
No Harmonics Past 3rd Harmonic Were Within 20dB of Limit										
2.364	-31.0	-	1.0	0	28.2	4.5	0	+1.7	-	-
4.728	-55.0	-	1.0	90	32.3	5.7	23.3	-40.3	-17.7	-22.6
7.092	-54.7	-	1.0	180	36.1	13.1	23.1	-28.6	-6.0	-22.6

 No Harmonics ~~Past~~ Past 3rd Harmonic Were Within 20dB of Limit

• CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = CORRECTED READING - SPECIFICATION LIMIT

RADIATED EMISSIONS

COMPANY NAME: MICROTEK DATE: 1-10-00

EUT: VIDEO TRANSMITTER EUT S/N: _____

EUT MODEL: 2.4TA-90II LOCATION: BREA SILVERADO AGOURA

SPECIFICATION: PART 90 CLASS: _____ TEST DISTANCE: 3M LAB: D

ANTENNA: LOOP BICONICAL LOG HORN POLARIZATION: VERT HORIZ

QUALIFICATION ENGINEERING MFG. AUDIT ENGINEER: KYLE F.

NOTES:

Frequency (GHz)	Peak Reading (dBm)	Average Reading (dBm)	Antenna Height (meters)	Azimuth (degrees)	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	* Corrected Reading (dBm)	Delta ** (dB)	Spec Limit (dBm)
2.474	-32.6	-	2.0	0	28.2	4.5	0	+0.1	-	-
4.947	-52.3	-	1.0	90	32.3	5.7	23.3	-37.6	-15.0	-22.6
No Harmonics Past 2nd Harmonic Were Within 20dB of Limit										
2.458	-38.9	-	1.0	90	28.2	4.5	0	-6.2	-	-
4.916	-54.6	-	1.0	270	32.3	5.7	23.3	-39.9	-17.3	-22.6
No Harmonics Past 2nd Harmonic Were Within 20dB of Limit										
2.380	-44.1	-	1.0	0	28.2	4.5	0	-11.4	-	-
4.760	-55.8	-	1.0	90	32.3	5.7	23.3	-41.1	-18.5	-22.6
7.139	-53.7	-	1.5	0	36.1	13.1	23.1	-27.6	-5.0	-22.6
No Harmonics Past 3rd Harmonic Were Within 20dB of Limit										
4.728	-41.9	-	2.0	90	28.2	4.5	0	-9.2	-	-
7.092	-59.7	-	1.0	90	32.3	5.7	23.3	-40.3	-17.7	-22.6
7.092	-59.7	-	1.5	0	36.1	13.1	23.1	-33.6	-11.0	-22.6

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = CORRECTED READING - SPECIFICATION LIMIT

1.3 Conducted Spurious Emissions

8 plots showing out of band Spurious Emissions at each channel setting 2458 mHz and 2474 mHz.

Spectrum scans were made up to the 10th harmonic as per section 2.997 with all spurious emissions above the 4th harmonic being unmeasureable or greater than 20 dB below the limit.

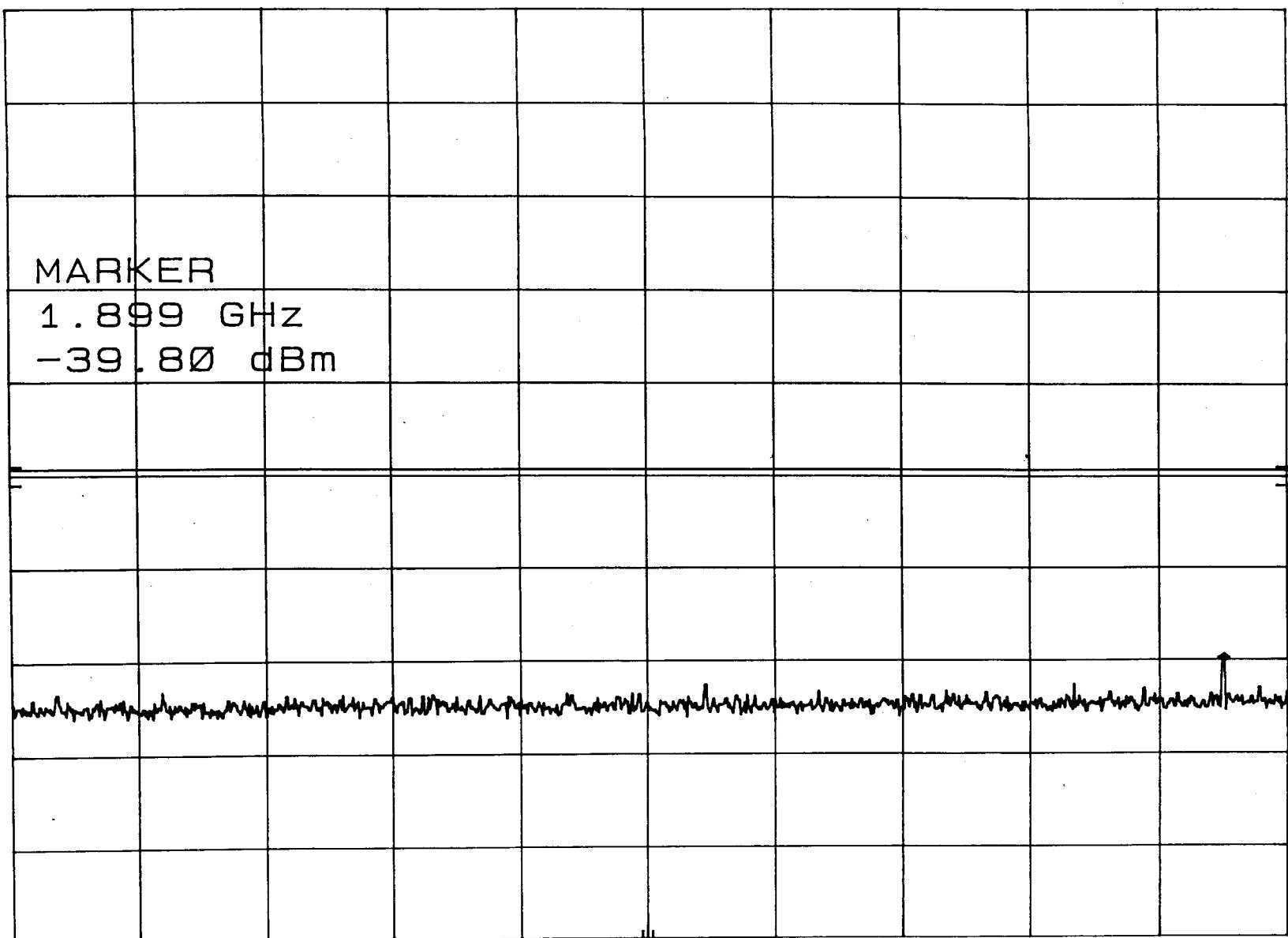
CONDUCTED SPURIOUS 2.474 GHz
REF 30.0 dBm ATTEN 30 dB

MKR 1.899 GHz
-39.80 dBm

hp

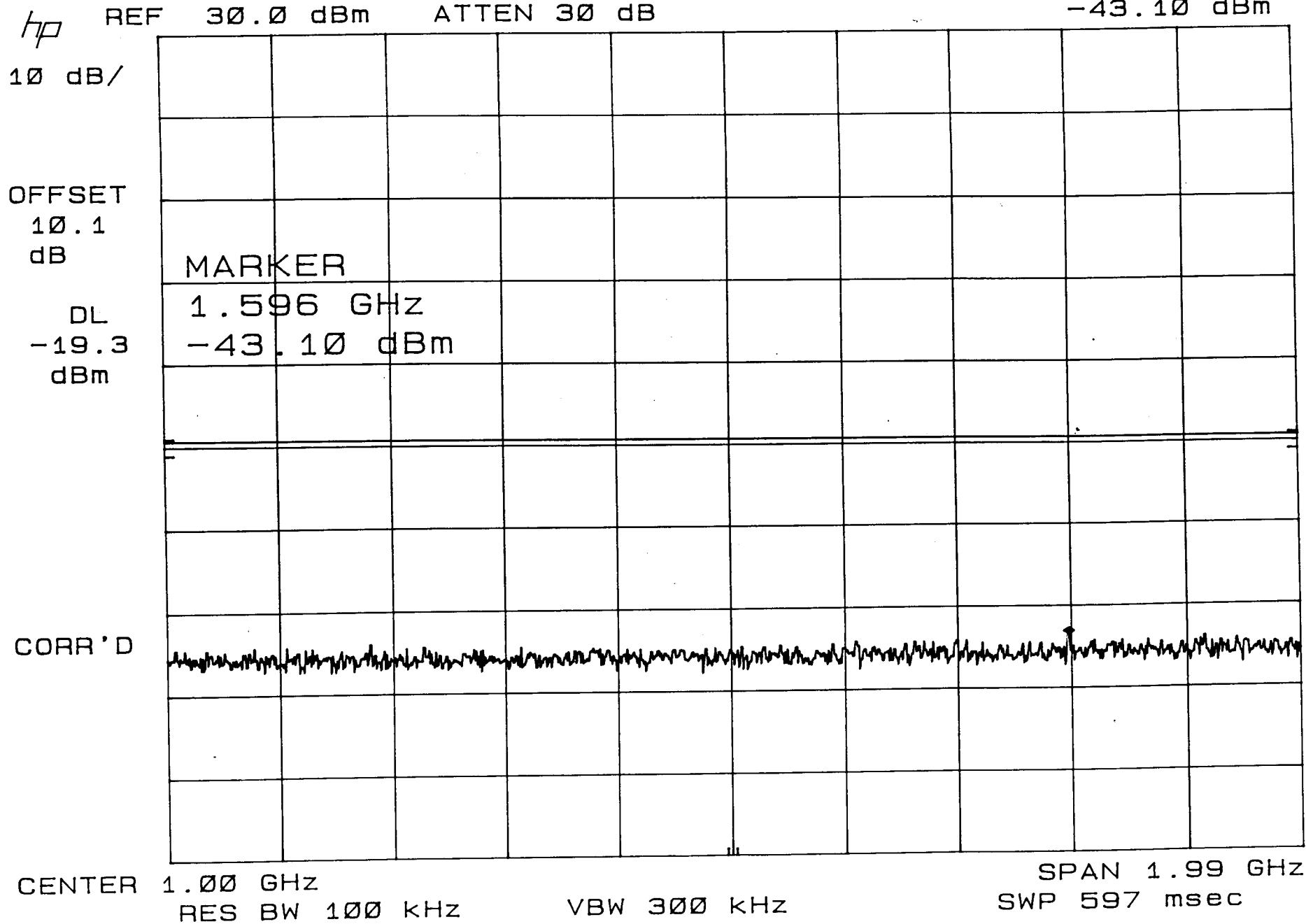
10 dB/

OFFSET
10.1
dB

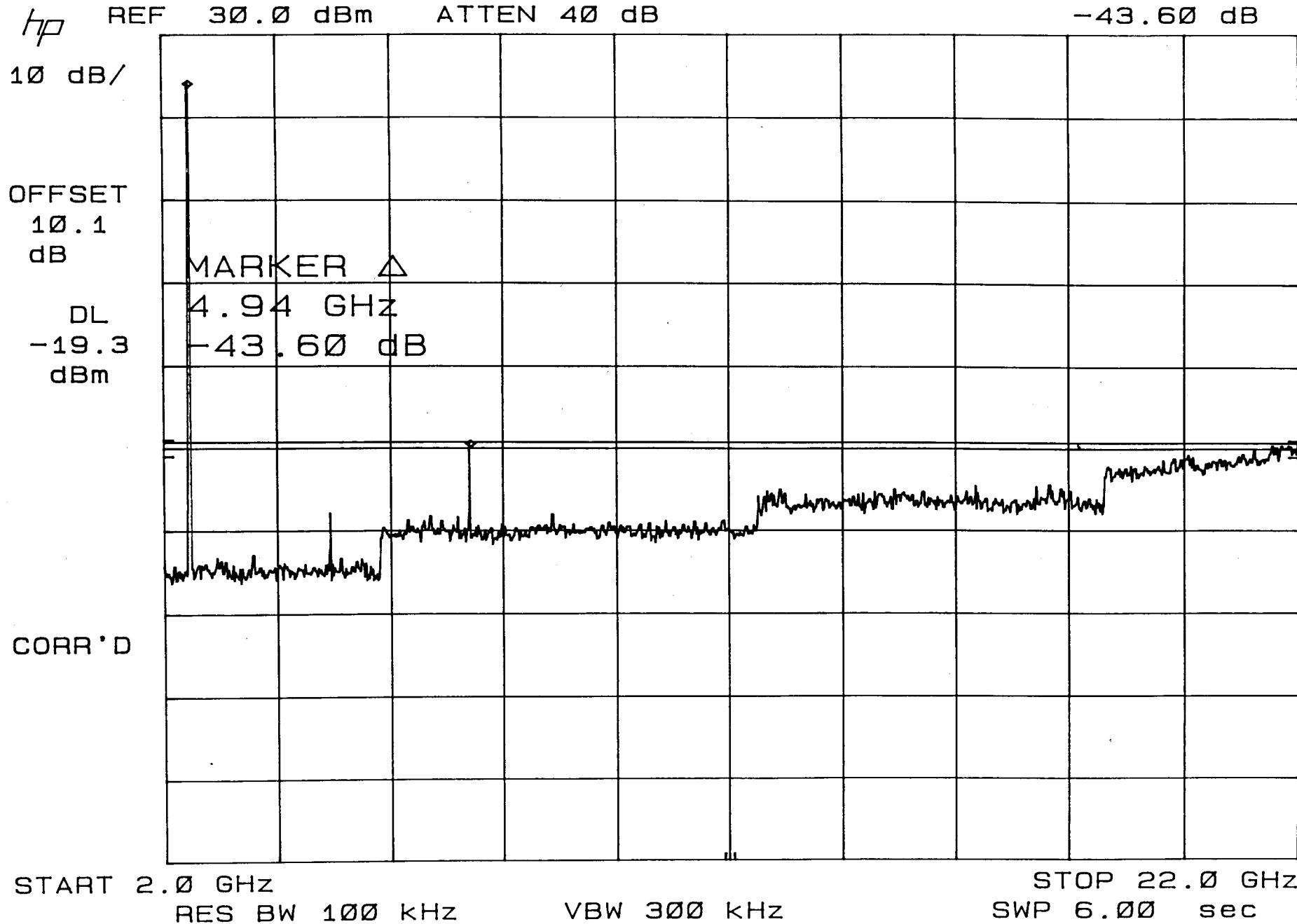

DL
-19.3
dBm

CORR'D

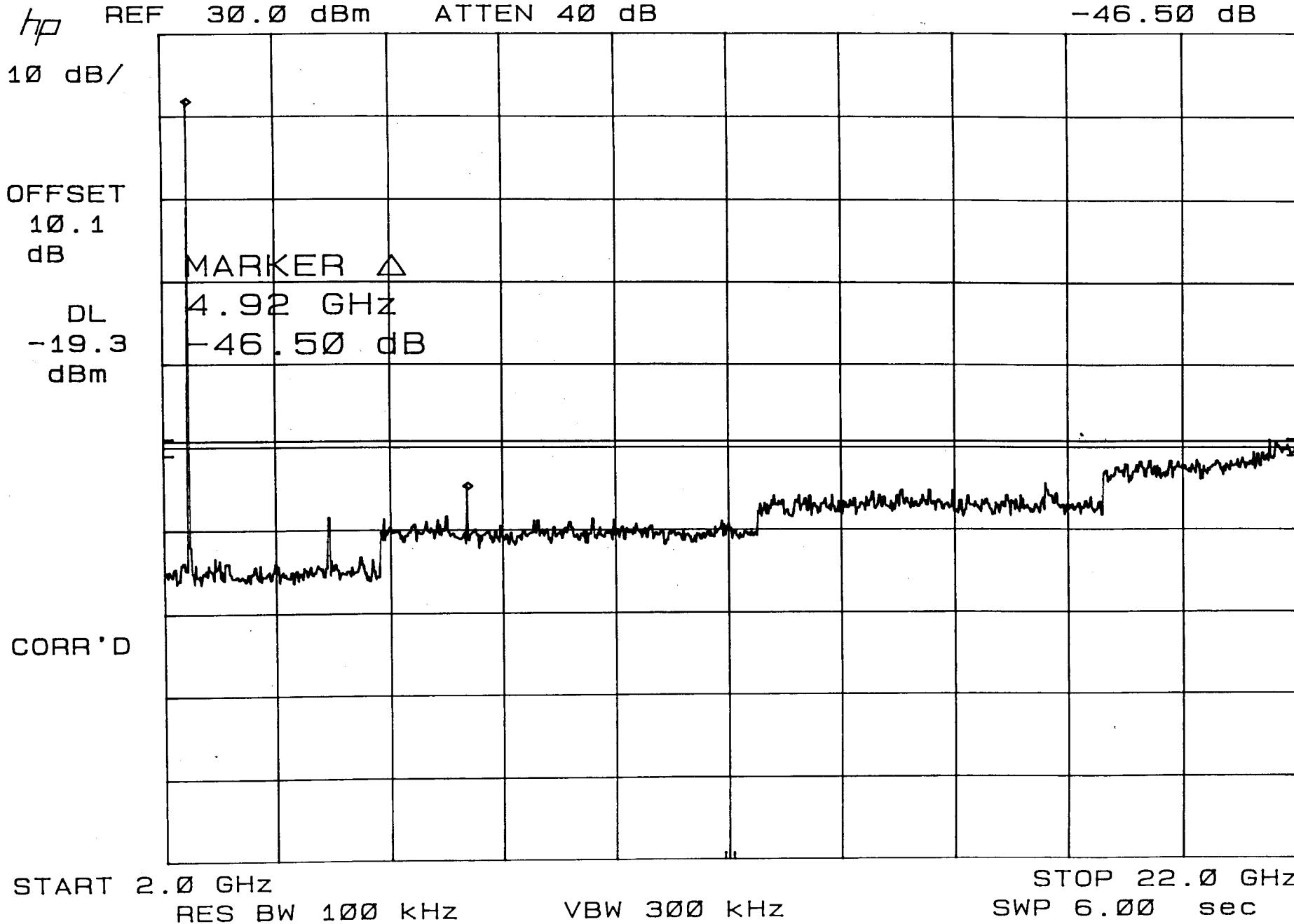
CENTER 1.00 GHz
RES BW 100 kHz


VBW 300 kHz

SPAN 1.99 GHz
SWP 597 msec


CONDUCTED SPURIOUS 2.458 GHz
REF 30.0 dBm ATTEN 30 dB

MKR 1.596 GHz
-43.10 dBm


CONDUCTED SPURIOUS 2.474 GHz
REF 30.0 dBm ATTEN 40 dB

MKR Δ 4.94 GHz
-43.60 dB

CONDUCTED SPURIOUS 2.458 GHZ
REF 30.0 dBm ATTEN 40 dB

MKR Δ 4.92 GHz
-46.50 dB

1.4 Occupied Bandwidth and Modulation Characteristics

2 Plots showing Occupied BW and Modulation at each channel setting. 2458 mHz and 2474 mHz.

The emissions designator 16MOF3F was arrived at by the following method:

1. Bandwidth was determined using the following formula:

$2M + 2D = \text{Necessary Bandwidth}$, where $M = \text{highest modulation frequency}$ and $D = \text{peak deviation}$.

Maximum modulation frequency = 4 mHz video modulation.
Deviation = 4 mHz.

$$\begin{aligned} 2 \times 4,000,000 &= 8,000,000 + 2 \times 4,000,000 = 16 \text{ mHz} \\ &= 16 \text{ MO} \end{aligned}$$

2. Modulation type is Frequency modulation, one analog channel Television.

= F3F

3. Emission designator is: 16MOF3F

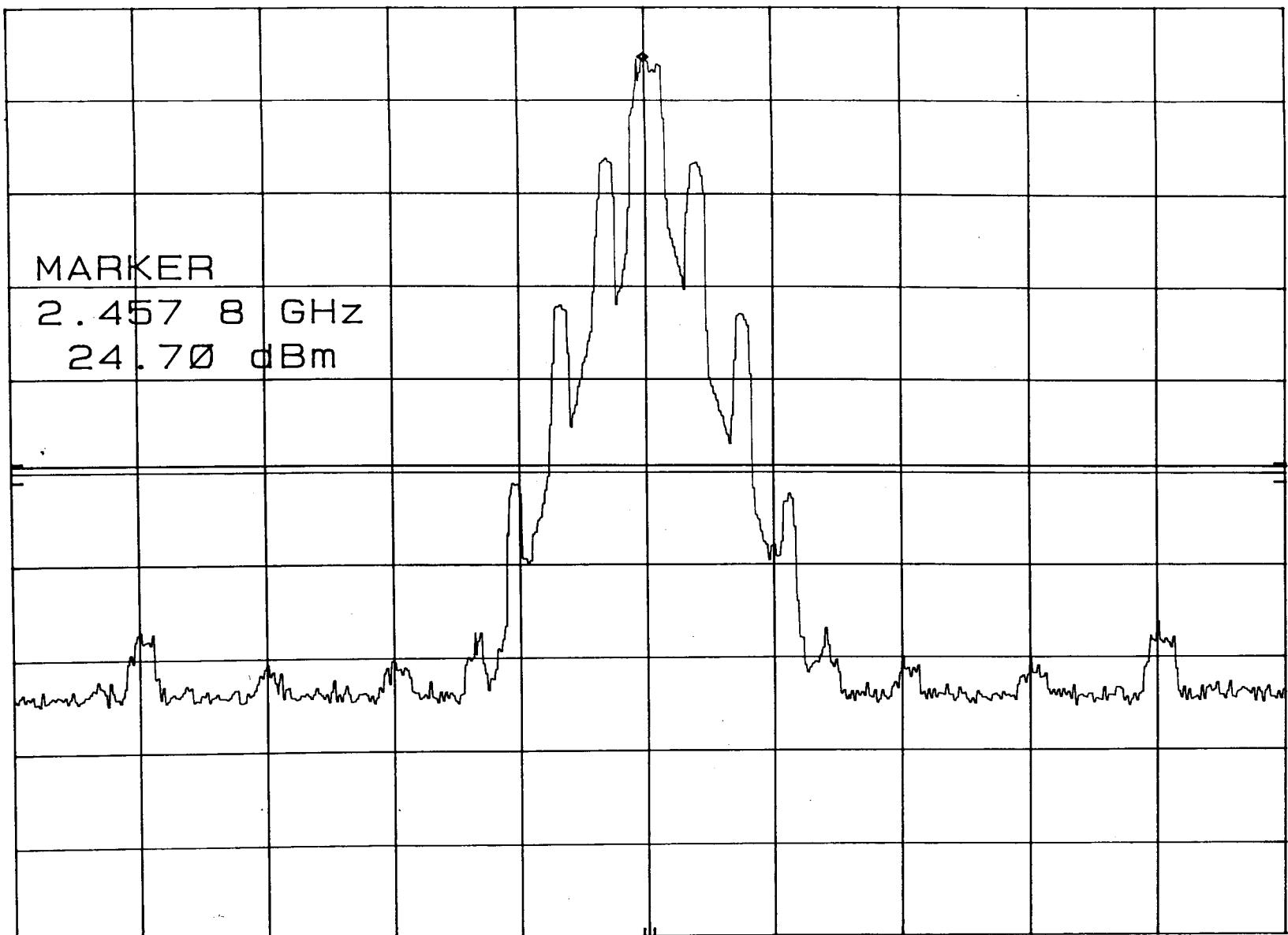
MODULATION CHAR. 2.458 GHZ
REF 30.0 dBm ATTEN 30 dB

MKR 2.457 8 GHz
24.70 dBm

hp

10 dB/

OFFSET
10.1
dB


DL
-19.3
dBm

CORR'D

CENTER 2.458 GHz
RES BW 100 kHz

VBW 300 kHz

SPAN 100 MHz
SWP 30.0 msec

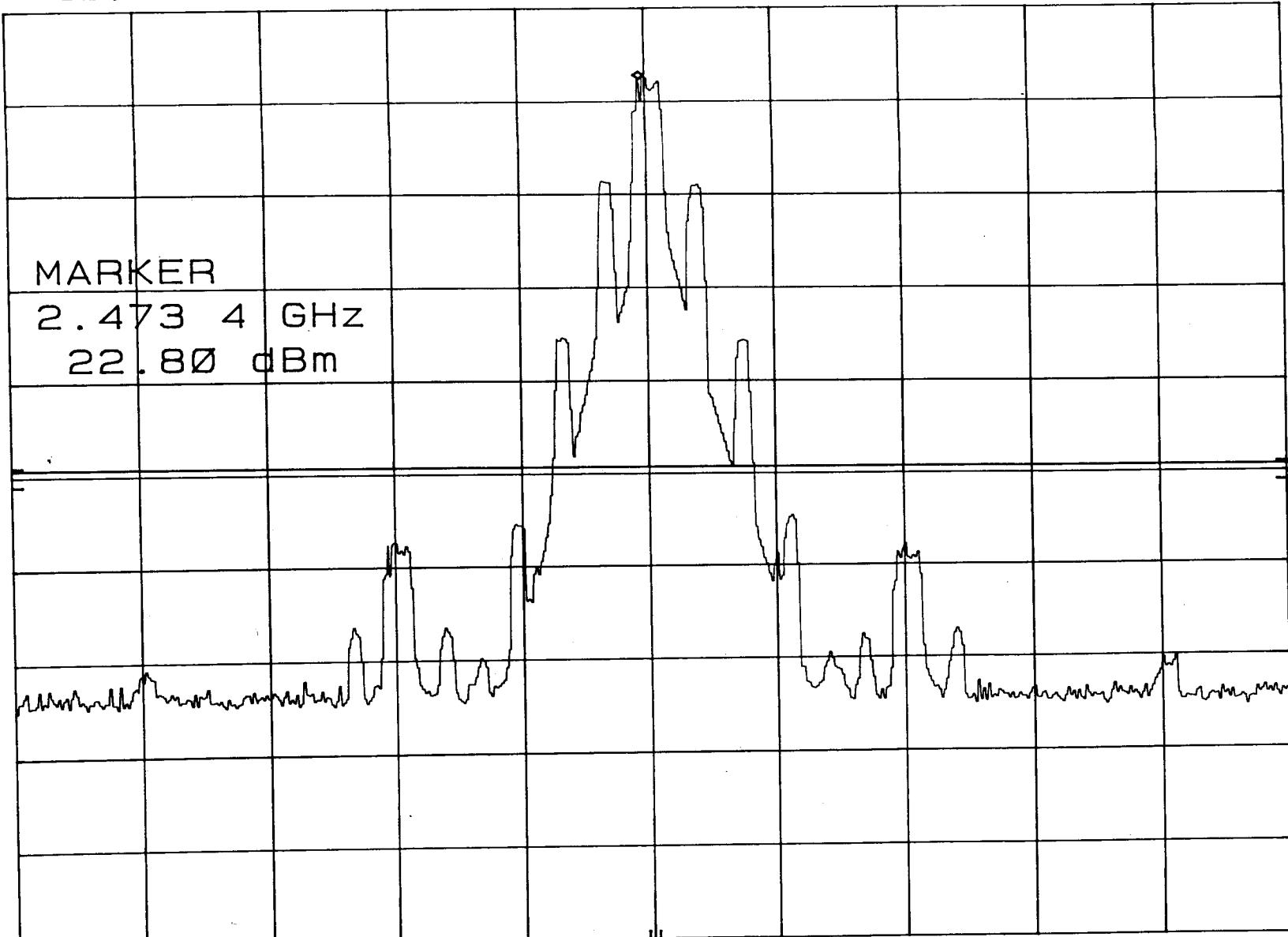
MODULATION CHAR. 2.474 GHZ
REF 30.0 dBm ATTEN 30 dB

MKR 2.473 4 GHz
22.80 dBm

hp

10 dB/

OFFSET
10.1
dB

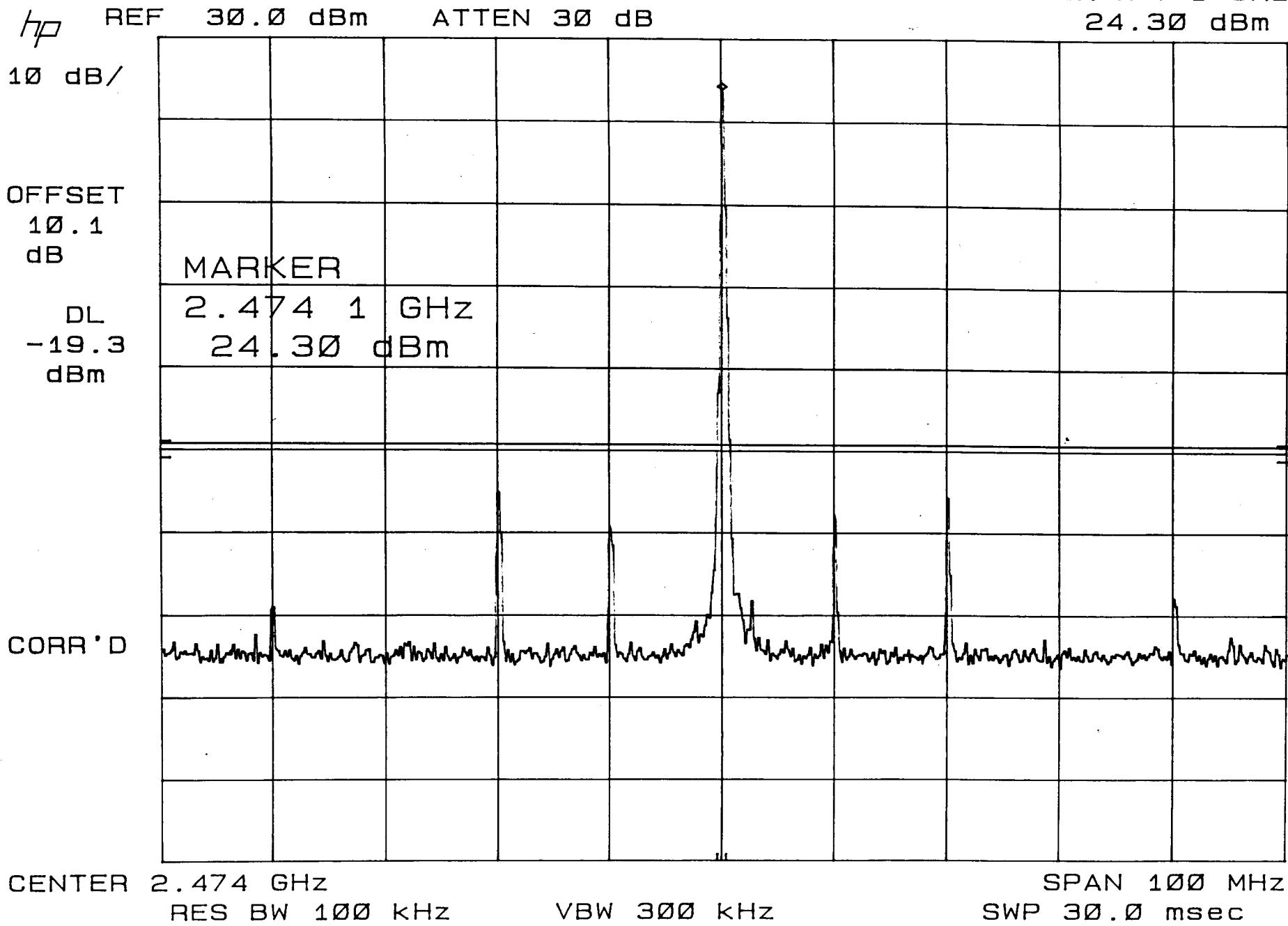

DL
-19.3
dBm

CORR'D

CENTER 2.474 GHz
RES BW 100 kHz

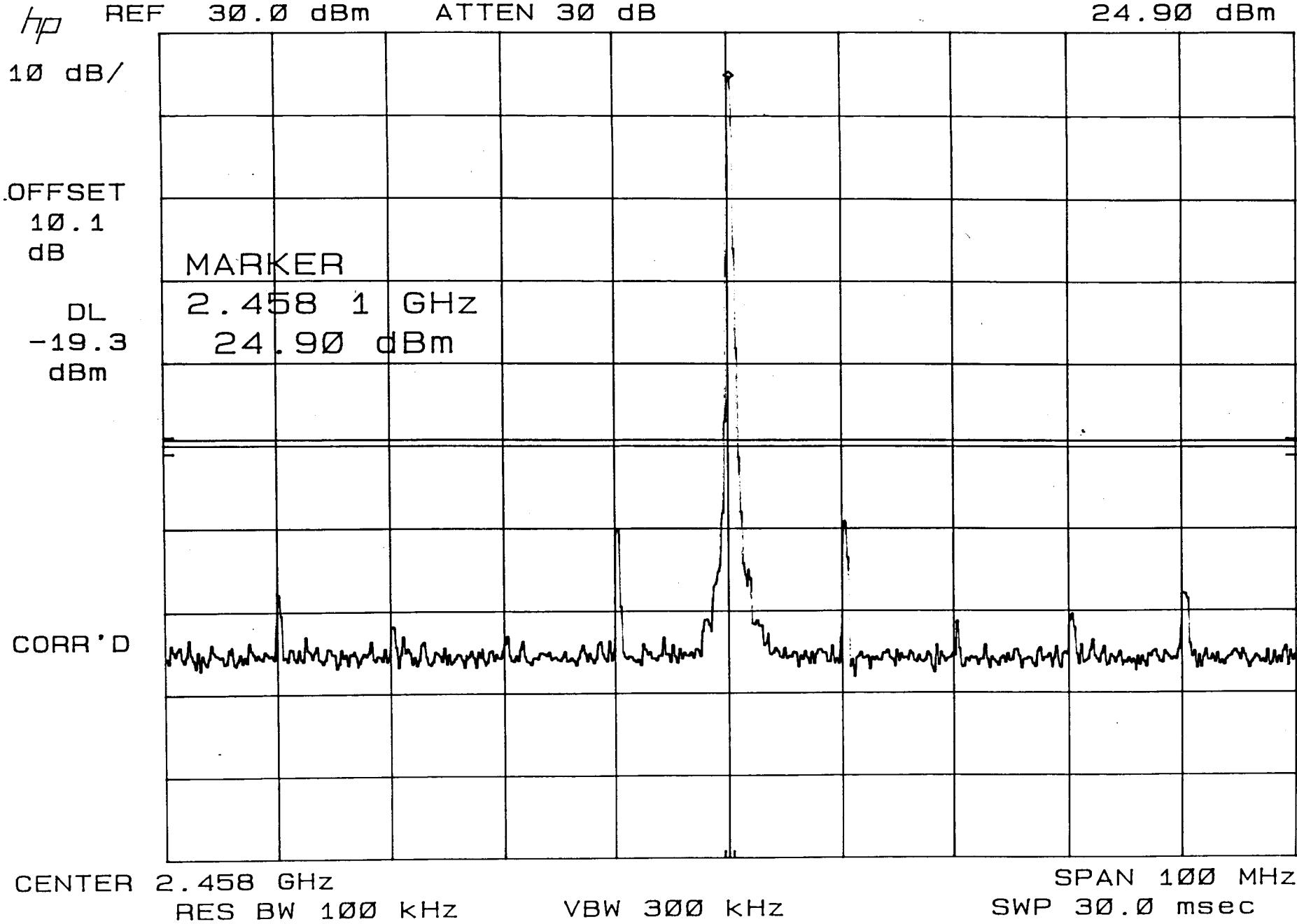
VBW 300 kHz

SPAN 100 MHz
SWP 30.0 msec



1.5 RF Power Output

2 plots showing RF Power Output at each channel setting.
2458 mHz and 2474 mHz.


FUNDAMENTAL OUTPUT 2.474 GHZ
REF 30.0 dBm ATTEN 30 dB

MKR 2.474 1 GHz
24.30 dBm

FUNDAMENTAL OUTPUT 2.458 GHZ
REF 30.0 dBm ATTEN 30 dB

MKR 2.458 1 GHz
24.90 dBm

1.6 Conducted Powerline

4 plots showing Conducted Powerline for both White and Black leads at each channel setting.
2458 mHz and 2474 mHz.

**COMPATIBLE
ELECTRONICS**

MICROTEK ELECTRONICS, INC.

VIDEO TRANSMITTER

MODEL: MINILINK 2.4TA-90 II

FCC B - WHITE LEAD

TEST ENGINEER: Kyle Fujimoto
KYLE FUJIMOTO

1/10/2000 14:42:22

26 highest peaks above -50.00 dB of CLASS B limit line

Peak criteria : 0.80 dB, Curve : Peak

Peak# Freq(MHz)Amp(dBuV)Limit(dB) Delta(dB)

1	0.466	48.09	48.00	0.09
2	0.507	47.68	48.00	-0.32
3	0.450	47.49	48.00	-0.51
4	0.577	47.38	48.00	-0.62
5	0.609	47.08	48.00	-0.92
6	0.652	46.67	48.00	-1.33
7	0.688	46.37	48.00	-1.63
8	14.272	46.30	48.00	-1.70
9	0.697	46.07	48.00	-1.93
10	0.761	44.77	48.00	-3.23
11	0.778	44.37	48.00	-3.63
12	0.797	44.07	48.00	-3.93
13	0.853	41.87	48.00	-6.13
14	0.889	41.58	48.00	-6.42
15	0.908	41.38	48.00	-6.62
16	0.967	39.78	48.00	-8.22
17	0.954	39.28	48.00	-8.72
18	1.017	38.68	48.00	-9.32
19	1.030	38.38	48.00	-9.62
20	0.988	38.28	48.00	-9.72
21	28.550	38.17	48.00	-9.83
22	1.056	38.08	48.00	-9.92
23	1.074	37.18	48.00	-10.82
24	1.168	37.09	48.00	-10.91
25	17.832	37.06	48.00	-10.94
26	1.198	36.89	48.00	-11.11

SEE Q.P. ON NEXT
PAGE AND ON PLOT

SEE Q.P.

**COMPATIBLE
ELECTRONICS**

MICROTEK ELECTRONICS, INC.

VIDEO TRANSMITTER

MODEL: MINILINK 2.4TA-90 II

FCC B - WHITE LEAD

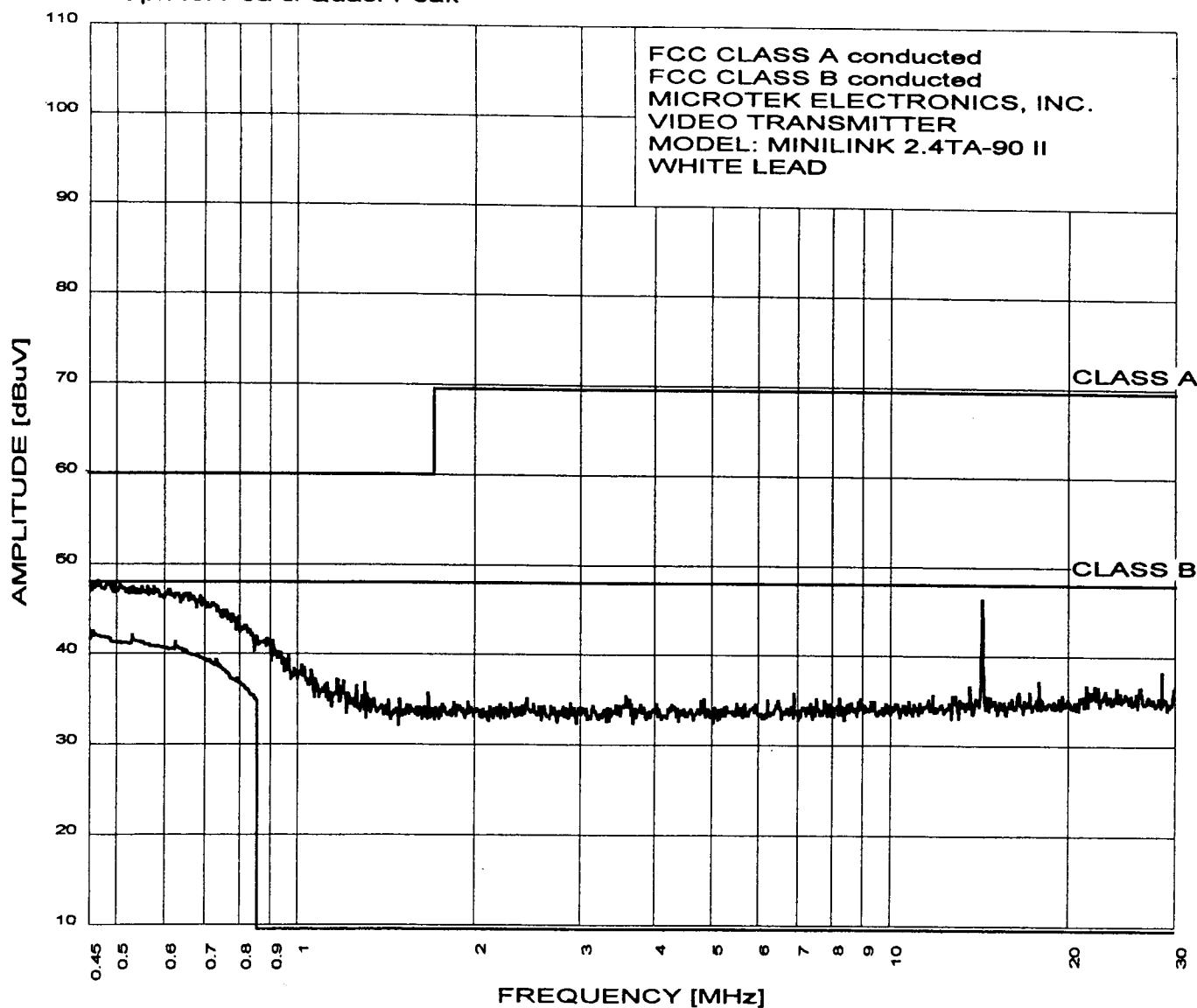
TEST ENGINEER: Kyle Fujimoto
KYLE FUJIMOTO

1/10/2000 14:42:22

9 highest peaks above -50.00 dB of CLASS B limit line

Peak criteria : 0.10 dB, Curve : Quasi-peak

Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)
-------	-----------	-----------	-----------	-----------


1	0.454	42.39	48.00	-5.61
2	0.460	42.07	48.00	-5.93
3	0.530	41.97	48.00	-6.03
4	0.450	41.62	48.00	-6.38
5	0.625	41.21	48.00	-6.79
6	0.712	39.29	48.00	-8.71
7	0.730	39.25	48.00	-8.75
8	0.739	38.69	48.00	-9.31
9	0.791	37.19	48.00	-10.81

COMPATIBLE
ELECTRONICS

EMISSION LEVEL [dBuV] PEAK
Graph for Pea & Quasi-Peak

1/10/2000 14:42:22

COMPATIBLE

ELECTRONICS

MICROTEK ELECTRONICS, INC.

VIDEO TRANSMITTER

MODEL: MINILINK 2.4TA-90 II

FCC B - BLACK LEAD

TEST ENGINEER: Kyle Fujimoto
KYLE FUJIMOTO

1/10/2000 14:35:11

25 highest peaks above -50.00 dB of CLASS B limit line

Peak criteria: 0.80 dB, Curve: Peak

Peak# Freq(MHz)Amp(dBuV)Limit(dB) Delta(dB)

1	0.466	45.80	48.00	-2.20	SEE Q, P,
2	14.272	45.58	48.00	-2.42	
3	0.478	45.30	48.00	-2.70	
4	0.454	45.10	48.00	-2.90	
5	0.522	44.90	48.00	-3.10	
6	0.489	44.80	48.00	-3.20	
7	0.507	44.70	48.00	-3.30	
8	0.513	44.30	48.00	-3.70	
9	0.544	44.30	48.00	-3.70	
10	0.565	44.30	48.00	-3.70	
11	0.539	44.20	48.00	-3.80	
12	0.558	43.40	48.00	-4.60	
13	0.612	43.30	48.00	-4.70	
14	0.597	43.00	48.00	-5.00	
15	0.604	42.60	48.00	-5.40	
16	0.625	42.00	48.00	-6.00	
17	0.632	42.00	48.00	-6.00	
18	0.660	41.70	48.00	-6.30	
19	0.679	41.30	48.00	-6.70	
20	0.691	40.90	48.00	-7.10	
21	0.697	40.90	48.00	-7.10	
22	0.718	39.70	48.00	-8.30	
23	0.730	39.40	48.00	-8.60	
24	0.739	39.40	48.00	-8.60	
25	0.768	39.00	48.00	-9.00	

SEE QUASI-PEAK
ON NEXT PAGE AND
ON PLOT

**COMPATIBLE
ELECTRONICS**

MICROTEK ELECTRONICS, INC.

VIDEO TRANSMITTER

MODEL: MINILINK 24TA-90:U

FCC B - BLACK LEAD

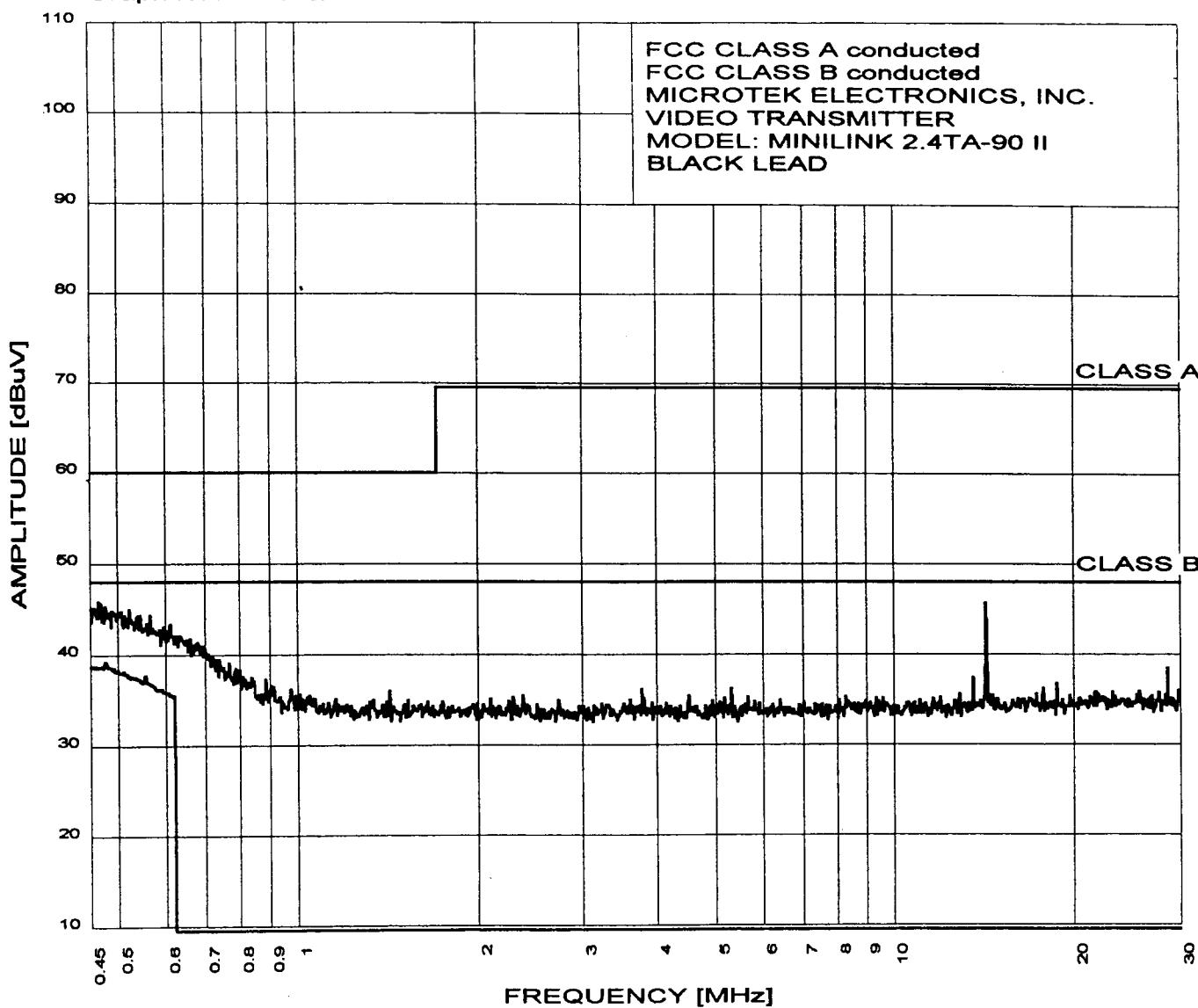
TEST ENGINEER: *Kyle Fujimoto*
KYLE FUJIMOTO

1/10/2000 14:35:11

7 highest peaks above -50.00 dB of CLASS B limit line

Peak criteria : 0.10 dB, Curve : Quasi-peak

Peak# Freq(MHz)Amp(dBuV)Limit(dB) Delta(dB)


Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)
1	0.478	39.17	48.00	-8.83
2	0.472	38.64	48.00	-9.36
3	0.492	38.48	48.00	-9.52
4	0.498	38.22	48.00	-9.78
5	0.511	38.08	48.00	-9.92
6	0.556	37.64	48.00	-10.36
7	0.526	37.55	48.00	-10.45

COMPATIBLE
ELECTRONICS

EMISSION LEVEL [dBuV] PEAK
Graph for Pea & Quasi-Peak

1/10/2000 14:35:11

1.7 Temperature Stability 2.995 (a) (1)

Minilink 2.4-101 Transmitter

+50 C	2457.9045 mHz
+40 C	2457.9069 mHz
+30 C	2457.9093 mHz
+20 C	2457.9120 mHz
+10 C	2457.9146 mHz
0 C	2457.9179 mHz
-10 C	2457.9209 mHz
-20 C	2457.9237 mHz
-30 C	2457.9265 mHz

Voltage Stability

Minilink 2.4-101 Transmitter

Battery Supply 2.995 (d) (2)

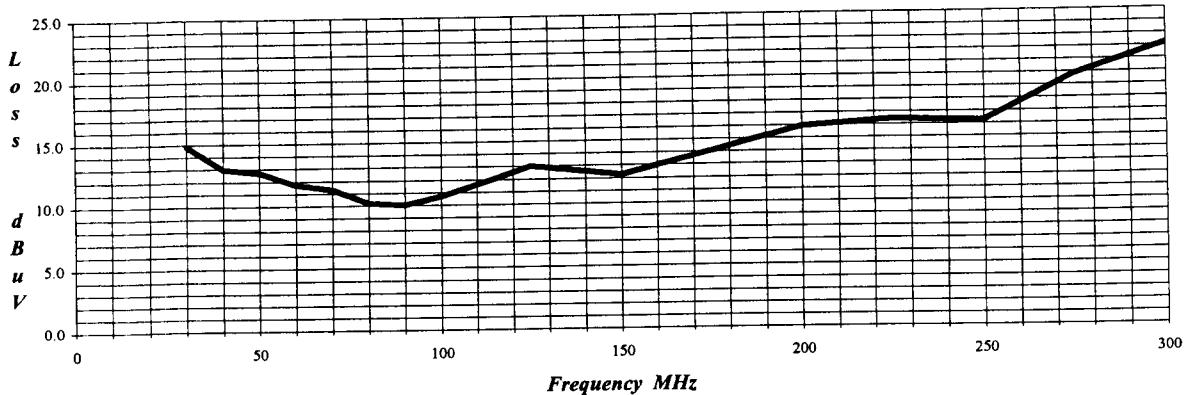
8.5VDC 2457.915 mHz and 2473.925 mHz

Primary AC supply 2.995 (d) (2)

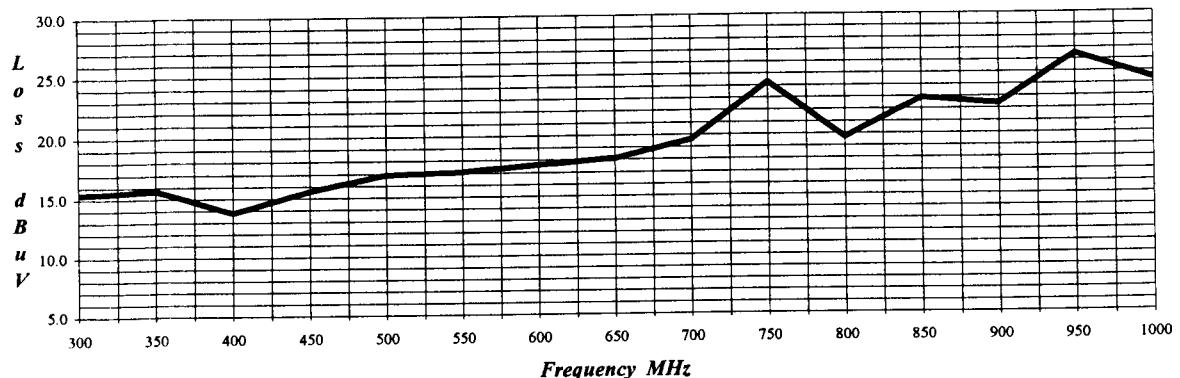
102 VAC 2457.915 mHz and 2473.925 mHz

123 VAC 2457.915 mHz and 2473.925 mHz

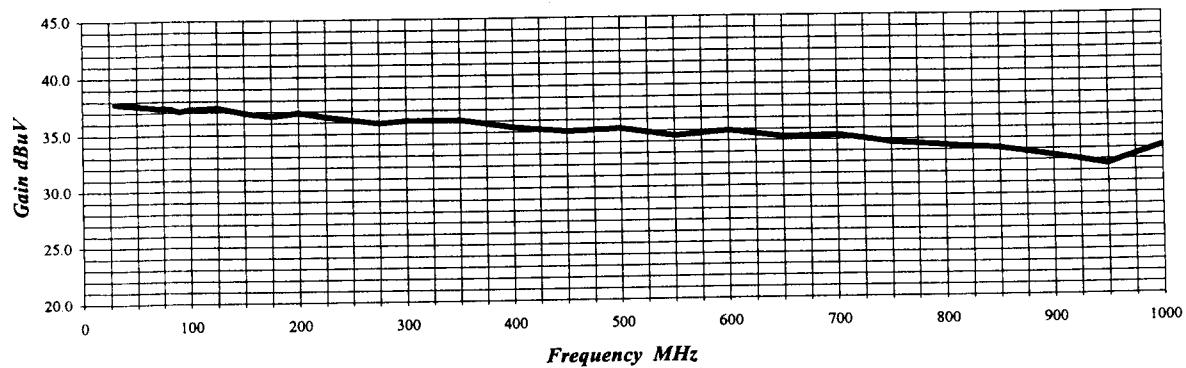
141 VAC 2457.915 mHz and 2473.925 mHz


Note:

The stability is due to the double internal regulation design, 8-volt feeding 78L05.


2.1 TEST EQUIPMENT

1. CHART WITH LOG, BICONICAL, AND PREAMPLIFIER FACTORS
2. RADIATED AND CONDUCTED TEST PROCEDURE
3. MICROWAVE PREAMPLIFIER FACTORS
4. LOOP FACTORS
5. HORN ANTENNA FACTORS
6. TESTING EQUIPMENT USED FOR THE TEST


LAB "D" BICONICAL ANTENNA AB-100 S/N 01548 Cal: 10-14-99

LAB "D" LOG PERIODIC ANTENNA AL-100 S/N 16039 Cal: 10-14-99

PREAMPLIFIER EFFECTIVE GAIN AT 3 METERS PA-102 S/N: 1017 Lab "D"
Effective 1-16-99

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A 10 dB attenuation pad was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4: 1992. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the HP software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave.

7.2

Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, and the Com-Power Microwave Preamplifier Model: PA-122 was used for frequencies above 1 GHz. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps.

For the peak readings below 1000 MHz that were within 3 dB of the spec limit or higher, the quasi-peak adapter was used.

For the peak readings above 1000 MHz that were within 3dB of the spec limit or higher, the readings were averaged manually by narrowing the video filter down to 1 Hz and slowing the sweep time to keep the amplitude reading calibrated.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
9 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 22 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 1992. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance to obtain final test data.

HEWLETT PACKARD 8349B
MICROWAVE PREAMPLIFIER

S/N: 2548A00432

CALIBRATION DATE: JANUARY 7, 2000

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
1.0	10.7	8	23.5
1.1	18.4	8.5	22.8
1.2	22.3	9.0	23.6
1.3	25.1	9.5	23.2
1.4	27.3	10.0	23.9
1.5	29.5	10.5	27.3
1.6	28.7	11.0	28.0
1.7	28.8	11.5	27.6
1.8	29.0	12.0	23.2
1.9	29.1	12.5	19.3
2.0	28.8	13.0	22.1
2.5	26.8	13.5	20.7
3.0	28.2	14.0	23.2
3.5	24.2	14.5	23.8
4.0	25.8	15.0	23.8
4.5	22.1	15.5	25.0
5.0	23.3	16.0	22.7
5.5	21.7	16.5	22.8
6.0	21.8	17.0	23.6
6.5	22.9	17.5	22.2
7.0	21.8	18.0	20.4
7.5	25.0	18.5	18.4
19.0	17.9	19.5	18.9
20.0	13.1		

E-FIELD ANTENNA FACTOR CALIBRATION

$$E(\text{dB V/m}) = Vo(\text{dB V}) + AFE(\text{dB/m})$$

Model number : DRG-118/A

Frequency GHz	AFE dB/m	Gain dBi
1	22.3	8.0
2	26.7	9.5
3	29.7	10.1
4	29.5	12.8
5	32.3	12.0
6	32.4	13.4
7	36.1	11.0
8	37.4	10.9
9	36.8	12.5
10	39.5	10.7
11	39.6	11.5
12	39.8	12.0
13	39.7	12.8
14	41.8	11.3
15	41.9	11.9
16	38.1	16.3
17	41.0	13.9
18	46.5	8.9

Serial number : 1053
Job number : 96-092
Remarks : 3 meter calibration
Standards : LPD-118/A, TE-1000

Temperature : 72° F
Humidity : 56 %
Traceability : A01887
Date : December 08, 1995

Calibrated By

Com-Power Corporation

(949) 587-9800

Antenna Calibration

Antenna Type:	Loop Antenna	
Model:	AL-130	
Serial Number:	25369	
Calibration Date:	4/13/99	
Frequency MHz	Magnitude (dBi/s)	Phase (deg)
0.01	-40.6	10.9
0.02	-41.5	10.0
0.03	-39.9	11.6
0.04	-40.2	11.3
0.05	-41.5	10.0
0.06	-41.1	10.4
0.07	-41.3	10.2
0.08	-41.6	9.9
0.09	-41.7	9.8
0.1	-41.7	9.8
0.2	-44.0	7.5
0.3	-41.6	9.9
0.4	-41.6	9.9
0.5	-41.7	9.8
0.6	-41.5	10.0
0.7	-41.4	10.1
0.8	-41.5	10.0
0.9	-41.6	9.9
1	-41.2	10.3
2	-40.5	11.0
3	-40.8	10.7
4	-41.0	10.5
5	-40.5	11.0
6	-40.5	11.0
7	-40.7	10.8
8	-40.8	10.7
9	-40.1	11.4
10	-40.4	11.1
12	-41.0	10.5
14	-42.1	9.4
15	-42.3	9.2
16	-42.7	8.8
18	-41.0	10.5
20	-41.1	10.4
25	-43.4	8.1
30	-45.3	6.2

Trans. Antenna Height

2 meter

Receiving Antenna Height

2 meter

EMI Test Equipment

EQUIPMENT TYPE	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. CYCLE
Spectrum Analyzer	Hewlett Packard	8566B	3638A08789	July 28, 1999	1 Year
Preamplifier	Com Power	PA-102	1017	January 16, 1999	1 Year
Quasi-Peak Adapter	Hewlett Packard	85650A	3303A01688	November 10, 1999	1 Year
RF Attenuator	Sertek	412-10	N/A	November 22, 1999	1 Year
LISN	Com Power	LI-215	12075	November 13, 1999	1 Year
LISN	Com Power	LI-215	12078	November 13, 1999	1 Year
Biconical Antenna	Com Power	AB-100	1548	October 14, 1999	1 Year
Log Periodic Antenna	Com Power	AL-100	16039	October 14, 1999	1 Year
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A
Turntable	Com Power	TT-100	N/A	N/A	N/A
Computer	Hewlett Packard	D5251A 888	US74458128	N/A	N/A
Printer	Hewlett Packard	C5886A	SG7CM1P090	N/A	N/A
Monitor	Hewlett Packard	D5258A	DK74889705	N/A	N/A
Microwave Preamplifier	Hewlett Packard	8349B	2548A00432	January 7, 2000	1 Year
Horn Antenna	Antenna Research	DRG-118/A	1053	December 8, 1995	N.C.R.
Loop Antenna	Com-Power	AL-130	25309	April 13, 1999	1 Year