

Königswinkel 10
32825 Blomberg, Germany
Phone +49 (0) 52 35 95 00-0
Fax +49 (0) 52 35 95 00-10
office@phoenix-testlab.de
www.phoenix-testlab.de

Test Report

Report Number:

F160921E1

Equipment under Test (EUT):

ODIN-W160

Applicant:

u-blox Malmö AB

Manufacturer:

u-blox Malmö AB

References

- [1] ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
- [2] FCC CFR 47 Part 15 (June 2015), Radio Frequency Devices

Test Result

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test.

The complete test results are presented in the following.

Test engineer:	Paul NEUFELD	P. Norfold	20.05.2016
	Name	Signature	Date
Authorized reviewer:	Bernd STEINER	B. Sh	20.05.2016
	Name	Signature	Date

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

This test report is valid in hardcopy form as well as in electronic form.

 Examiner:
 Paul NEUFELD
 Report Number:
 £160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 2 of 21

C	onten	ts		Page
1	lde	entific	cation	4
	1.1	App	licant	4
	1.2	Mar	nufacturer	4
	1.3	Tes	t Laboratory	4
	1.4	EU	Γ (Equipment Under Test)	5
	1.5	Tec	hnical Data of Equipment	6
	1.6	Date	es	7
2	Ор	erati	onal States	8
3	Ad	ditior	nal Information	9
4	Ov	ervie	ew	9
5	Re	sults	·	10
	5.1	Dut	y cycle	10
	5.2	Max	kimum conducted output power	10
	5.2	.1	Method of measurement	10
	5.2	.2	Test results	11
	5.3	UNI	I Bandwidth	12
	5.3	.1	Method of measurement	12
	5.3	.2	Test results	12
	5.4	Pea	k Power Spectral Density	14
	5.4	.1	Method of measurement	14
	5.4	.2	Test result	15
	5.5	Free	quency Stability	16
	5.6	Ban	d-edge compliance	16
	5.6	.1	Method of measurement (band edges next to unrestricted bands (conducted))	16
	5.6	.2	Test results	16
	5.7	Max	kimum unwanted emissions	19
	5.8	Con	nducted emissions on power supply lines (150 kHz to 30 MHz)	19
6	Te	st eq	uipment and ancillaries used for test	20
7	Re	port	History	21
Ω	Lic	t of /	Annovos	21

1 Identification

1.1 Applicant

Name:	u-blox Malmö AB
Address:	Östra Varvsgatan 4, 5 tr, 211 75 Malmö
Country:	Sweden
Name for contact purposes:	Mr. Mats Andersson
Phone:	+ 46 40 63 07 100
Fax:	+ 46 40 23 71 37
eMail Address:	mats.andersson@u-blox.com
Applicant represented during the test by the following person:	None

1.2 Manufacturer

Name:	u-blox Malmö AB
Address:	Östra Varvsgatan 4, 5 tr, 211 75 Malmö
Country:	Sweden
Name for contact purposes:	Mr. Mats Andersson
Phone:	+ 46 40 63 07 100
Fax:	+ 46 40 23 71 37
eMail Address:	mats.andersson@u-blox.com
Applicant represented during the test by the following person:	None

1.3 Test Laboratory

The tests were carried out by: PHOENIX TESTLAB GmbH

Königswinkel 10 32825 Blomberg Germany

Accredited by *Deutsche Akkreditierungsstelle GmbH* in compliance with DIN EN ISO/IEC 17025 under Reg. No. < *D-PL-17186-01-02* >.

 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 4 of 21

1.4 EUT (Equipment Under Test)

Test object: *	WLAN / Bluetooth module
Type: *	ODIN-W160
FCC ID: *	PVH0953
IC: *	5325A-0953
Serial number: *	WLAN: 29200625921
PCB identifier: *	0953-03
Hardware version: *	HW 3.1
Software version: *	FW 2.0

Channel 149	RX:	5745 MHz	TX:	5745 MHz
Channel 153	RX:	5765 MHz	TX:	5765 MHz
Channel 157	RX:	5785 MHz	TX:	5785 MHz
Channel 161	RX:	5805 MHz	TX:	5805 MHz
Channel 165	RX:	5825 MHz	TX:	5825 MHz

 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 5 of 21

1.5 Technical Data of Equipment

Fulfills WLAN specification: *	IEEE, 802.11b, 802.11g, 802.11n, 802.11a					
Antenna type: *	See Table 1					
Antenna gain: *	See Ta	ble 1				
Antenna connector: *	See Ta	ble 1				
Power supply - EUT	3.0 – 3	.6 VDC				
Power supply Host	U _{nom} =	5 V DC	U _{min} =	3.6 V DC	U _{max} =	6 V DC
Type of modulation: *	802.11a:OFDM 802.11b: CCK, DQPSK, DBPSK 802.11g: OFDM 802.11n: OFDM					
Operating frequency range:*	2412 MHz to 2462 MHz, 5180 MHz to 5240 MHz, 5260 MHz to 5320 MHz, 5500 MHz to 5700 MHz (except 5600 MHz to 5650 MHz) 5745 MHz to 5825 MHz				Hz)	
Number of channels: *	32					
Temperature range: *	-40 °C to +85 °C					
Lowest / highest Internal clock frequency: *	32768 Hz / 26.000 MHz					

^{*} declared by the applicant.

 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 6 of 21

Table 1 Antenna specifications

Antenna name	Manufacturer	Туре	Comment	Gain [dBi]
"InSide-EPA-WLAN"	ProAnt	Patch	circular polarization	3 dBi @ 5 GHz
InSide-WLAN	ProAnt Patch		dual band 10cm flying lead U.FL	3 dBi @ 2.4 GHz 3 dBi @ 5 GHz
Ex-IT WLAN - SMA - RP-SMA -MHF	ProAnt	Monopole	dual band SMA RSMA 10cm flying lead U.FL	3 dBi @ 2.4 GHz 3 dBi @ 5 GHz
InSide Fold-WLAN	ProAnt	Patch	10 cm flying lead U.FL	3 dBi @ 2.4 GHz 3 dBi @ 5 GHz
InSide-WLAN Square ProAnt Patch		10 cm flying lead U.FL	3 dBi @ 2.4 GHz 3 dBi @ 5 GHz	

The following external I/O cables were used:

Identification	Length	
DC power cable	2 m *	
RS232 cable	2 m *	

^{*:} Length during the test if not other specified.

1.6 Dates

Date of receipt of test sample:	09.05.2016
Start of test:	10.05.2016
End of test:	10.05.2016

 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 7 of 21

2 Operational States

The equipment under test (EUT) is a WLAN dual band and Bluetooth dual mode module soldered on to a carrier board. The WLAN / Bluetooth module is equipped with an U.FL. antenna connector. A RS232 connector and the power supply connector are located at the carrier board.

The tests were carried out with an unmodified sample of the EUT.

The carrier board was connected via a RS232 connection to a laptop computer. With a testsoftware running on the laptop the operation mode as seen in the table below could be chosen.

During the tests, the test samples were powered with 5 V via the power supply connection of the carrier board from a laboratory power supply.

The following operation modes were identified as worst case condition and used during the tests:

Operation	Description of the operation mode	WLAN	WLAN	Modulation	Data rate /
mode	Description of the operation mode	mode	channel	Modulation	Mbps
1	Continuous transmitting on 5745 MHz	а	149	OFDM	6 MBit/s
2	Continuous transmitting on 5785 MHz	а	157	OFDM	6 MBit/s
3	Continuous transmitting on 5825 MHz	а	165	OFDM	6 MBit/s
4	Continuous transmitting on 5745 MHz	n 20 MHz	149	OFDM	6.5 MBit/s
5	Continuous transmitting on 5785 MHz	n 20 MHz	157	OFDM	6.5 MBit/s
6	Continuous transmitting on 5825 MHz	n 20 MHz	165	OFDM	6.5 MBit/s
7	Normal operation Mode with automatic channel selection from Access Points	-	-	OFDM	-

 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 8 of 21

Additional Information

The power was set to the values shown in the table below.

Channel	149 - 165	
Power a/n20 modes (for 5 GHz)	18.0	

This report contains the results of the EUT operating in the UNII3 band only.

The aim of this report is a class 2 permissive change. Only the measurements that were changed from the old UNII rules to the new ones were repeated in this report.

Overview

		1		1	
Application	Frequency range [MHz]	FCC 47 CFR Part 15 section [2]	RSS 247 [4] or RSS-Gen, Issue 3 [5]	Status	Refer page
Maximum Output Power	5725 - 5850	15.407 (a)	6.2.1 (1)[3] 6.2.2 (1)[3] 6.2.3 (1)[3] 6.2.4 (1)[3]	Passed	10 et seq
UNII Bandwidth	5725 - 5850	15.403 (i)	- - - 6.2.4 (1) [3]	Passed	12 et seq
Peak Power Spectral Density	5725 - 5850	15.407 (a)(5)	6.2.1 (1)[3] 6.2.2 (1)[3] 6.2.3 (1)[3] 6.2.4 (1)[3]	Passed	14 et seq
Frequency Stability	15.407 (g)	15.407 (g)	-	Passed*	16 et seq.
Band edge compliance	5725 - 5850	15.407 (b)	6.2.1 (2)[3] 6.2.2 (2)[3] 6.2.3 (2)[3] 6.2.4 (2)[3]	Passed* ²	16 et seq.
Radiated emissions (transmitter)	0.009 - 40,000	15.407 (b) 15.205 (a) 15.209 (a)	7.2.2 [4], 6.2.1 (2)[3] 6.2.2 (2)[3] 6.2.3 (2)[3] 6.2.4 (2)[3]	Passed*	19 et seq.
Conducted emissions on supply line	0.15 - 30	15.207 (a)	7.2.4 [4]	Passed*	19 et seq.

Examiner: Paul NEUFELD Date of issue: 20.05.2016 Report Number: E160912E1 Order Number: 16-110912 page 9 of 21

^{*} Not performed See report F136117E2 *2 Passed with spectrum mask criteria

5 Results

5.1 Duty cycle

The EUT was transmitting with a duty cycle higher than 99.9 % duty cycle, therefore no duty cycle measurements and duty cycle related reductions needed to be performed for the following test cases.

5.2 Maximum conducted output power

5.2.1 Method of measurement

The EUT has to be connected to the power meter via a low loss cable.

Acceptable measurement configurations

The measurement procedures described herein are based on the use of an antenna-port conducted test configuration.

"Measurement using a power meter (PM)" was used for this test. The procedure is described in chapter 12.3.3.1 of document [1].

The measurement will be performed at the upper and lower end and the middle of the assigned frequency band.

Test set-up:

 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 10 of 21

5.2.2 Test results

Ambient temperature	22 °C		Relative humidity	62 %
---------------------	-------	--	-------------------	------

The highest antenna gain is 3 dBi. Therefore no reduction of the power limit is necessary.

Operation Mode	Antenna gain combined [dBi]	Maximum average output power [dBm]	Margin [dB]	Average power limit [dBm]
1	3	21.7	8.3	30
2	3	21.4	8.64	30
3	3	21.1	8.9	30
4	3	21.7	8.3	30
5	3	21.4	8.6	30
6	3	21.1	8.9	30
Measure	ment uncertaint	У	+0.66 dB / -0.	72 dB

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

60, 61

 Examiner:
 Paul NEUFELD
 Report Number:
 £160912E1

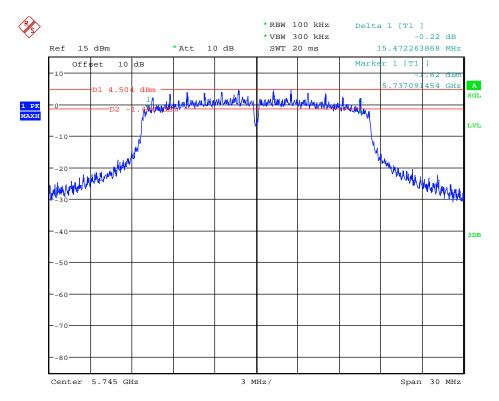
 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 11 of 21

5.3 UNII Bandwidth

5.3.1 Method of measurement

The relating measurements were carried out in a conducting manner. Therefore, the antenna connector was directly connected to a spectrum analyser. The measurement procedure refers to part 12.4.1 of document [1].

- Set RBW = approximately 1% of the emission bandwidth.
- Set the VBW > RBW.
- Detector = Peak.
- Trace mode = max hold.
- Measure the maximum width of the emission that is 26 dB or 6 dB down from the peak of the emission. Compare this with the RBW setting of the analyser. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.


The measurements were carried out at each antenna port separately.

5.3.2 Test results

Ambient temperature	22 °C	Relative humidity	62 %
---------------------	-------	-------------------	------

The following results were measured at the antenna port of the EUT. The plot shows an exemplary measurement result for the worst documented case. The other results are listed in the following table.

OdinW160__6dB-BW_a_149.wmf: UNII Bandwidth (operation mode 1):

 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 12 of 21

Operation Mode	Nominal Channel frequency [MHz]	99% Bandwidth [MHz]	6 dB Bandwidth [MHz]	Limit 6 dB Bandwidth [MHz]	Result
1	5745 MHz	18.200	15.472	0.5	Passed
2	5785 MHz	18.150	15.637	0.5	Passed
3	5825 MHz	18.100	15.472	0.5	Passed
4	5745 MHz	19.350	16.162	0.5	Passed
5	5785 MHz	19.100	15.637	0.5	Passed
6	5825 MHz	19.100	15.472	0.5	Passed
Measu	rement uncertainty		+0.66 dB /	-0.72 dB	

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

30

 Examiner:
 Paul NEUFELD
 Report Number:
 £160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 13 of 21

5.4 Peak Power Spectral Density

5.4.1 Method of measurement

The relating measurements were carried out in a conducting manner. Therefore, the antenna connector was directly connected to a spectrum analyser. The measurement procedure refers to part 12.5 of document [1].

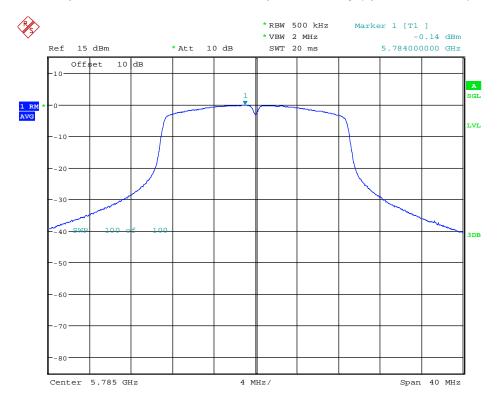
Method SA-2 was used for this measurement.

- Measure the duty cycle D of the transmitter output signal as described in 12.2.
- Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
- Set RBW = 1 MHz.
- Set VBW ≥ 3 MHz.
- Number of points in sweep ≥ [2 x span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- Sweep time = auto.
- Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.Do not use sweep triggering. Allow the sweep to "free run."
- Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.
- Use the peak search function on the instrument to find the peak of the spectrum.
- add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.
- The result is the PPSD.

The measurements were carried out at each antenna port separately.

 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 14 of 21


5.4.2 Test result

Ambient temperature	22 °C	Relative humidity	59 %
---------------------	-------	-------------------	------

The following results were measured at the antenna port of the EUT. The plot shows an exemplary measurement result for the worst documented case. The other results are listed in the following table.

The highest antenna gain is 3 dBi. Therefore no reduction of the Peak power limit is necessary.

OdinW160_PeakPwrSpecDens_n20_157.wmf: Power Spectral Density (operation mode 5):

Operation Mode	Nominal Channel frequency [MHz]	Peak Frequency [MHz]	Power Spectral Density Limit [dBm / 500 kHz]	Peak Power Spectral Density Level [dBm / 500 kHz]	Margin [dB]	Result
1	5745 MHz	5743.770	30	0.7	29.3	Passed
2	5785 MHz	5783.980	30	0.1	29.9	Passed
3	5825 MHz	5823.650	30	-0.6	30.6	Passed
4	5745 MHz	5744.080	30	0.3	29.7	Passed
5	5785 MHz	5783.840	30	1.6	28.4	Passed
6	5825 MHz	5823.840	30	1.2	28.8	Passed

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

30

 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1

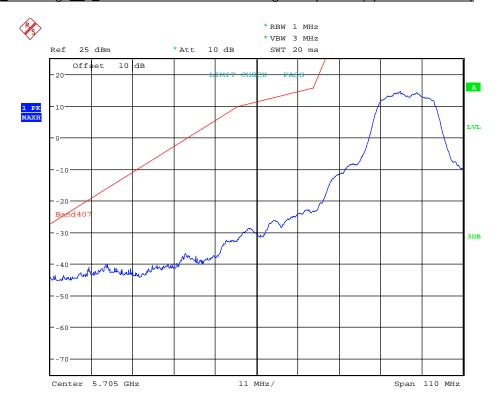
 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 15 of 21

5.5 Frequency Stability

The frequency stability was already performed in the test report F136117E2 by PHOENIX TESTLAB GmbH. The test procedures did not change compared to the new procedures, therefore these tests were not repeated in this report.

5.6 Band-edge compliance

In the original report (F136117E2 by PHOENIX TESTLAB GmbH), there were not found any emissions at the band edges during the radiated measurements, therefore these measurements don't need to be repeated in this report.

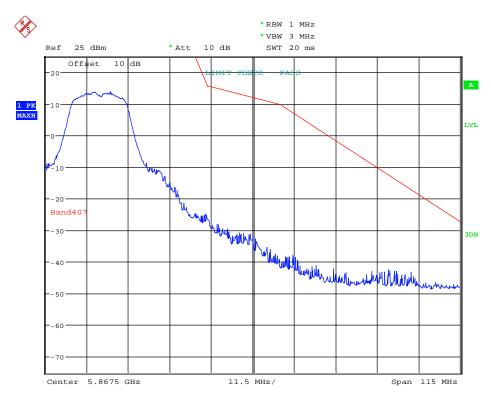

5.6.1 Method of measurement (band edges next to unrestricted bands (conducted))

The tests were performed, following the presentation U-NII DFS Bin 5 Test Frequencies and Memorandum Opinion & Order (FCC 16-24) U-NII-3 Band" at the 2016/04 TCB Council Workshop. Pages 9 & 10 of this presentation define a limit line for the band-edge limits for the UNII-3 band.

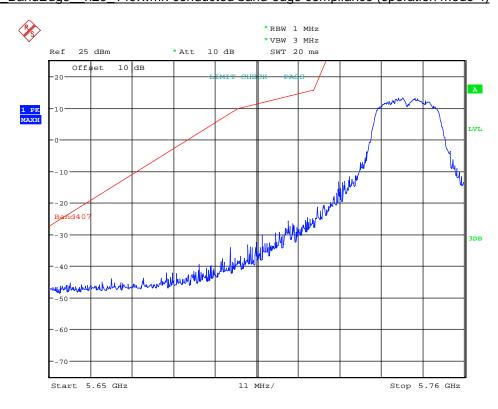
The tests were performed as conducted measurement. The successful limit check shows, that the limit line was not violated by the observed signal.

5.6.2 Test results

OdinW160 BandEdge a 149.wmf: conducted band-edge compliance (operation mode 1)

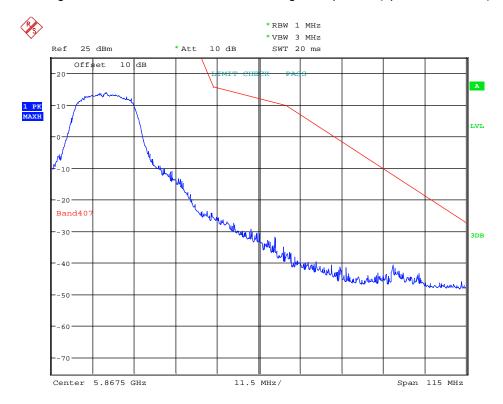


 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1


 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 16 of 21

OdinW160 BandEdge a 165.wmf: conducted band-edge compliance (operation mode 2)

OdinW160_BandEdge__n20_149.wmf: conducted band-edge compliance (operation mode 4)



 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 17 of 21

OdinW160 BandEdge n20 165.wmf: conducted band-edge compliance (operation mode 6)

TEST EQUIPMENT USED FOR THE TEST:M20

30

 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 18 of 21

5.7 Maximum unwanted emissions

The procedure for the maximum emissions did not change compared to the one already performed in the test report F136117E2 by PHOENIX TESTLAB GmbH, therefore these tests are not repeated in this report.

5.8 Conducted emissions on power supply lines (150 kHz to 30 MHz)

Since the measurement procedures for conducted emission on power supply lines were not changed when comparing the old ANSI 63.4 2009 and the recent ANSI 63.10-2013, these measurements were not repeated in this test report.

 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 19 of 21

6 Test equipment and ancillaries used for test

No.	Test equipment	Туре	Manufacturer	Serial No.	PM. No.	Cal. Date	Cal. Due
29	Fully anechoic chamber M20	-	Albatross Projects	B83107-E2439-T232	480303	,	erification m cal.)
30	Spectrum analyser	FSU	Rohde & Schwarz	200125	480956	17.02.2016	17.02.2017
31	Measuring receiver	ESI 40	Rohde & Schwarz	100064	480355	16.04.2016	16.04.2017
32	Controller	MCU	Maturo	MCU/043/971107	480832	-	-
33	Turntable	DS420HE	Deisel	420/620/80	480315	-	-
34	Antenna support	AS615P	Deisel	615/310	480187	-	-
36	Antenna	3115 A	EMCO	9609-4918	480183	10.11.2014	10.11.2016
37	Standard Gain Horn 11.9 GHz – 18 GHz	18240-20	Flann Microwave	483	480294		verification m cal.)
39	Standard Gain Horn 17.9 GHz – 26.7 GHz	20240-20	Flann Microwave	411	480297		verification m cal.)
40	Standard Gain Horn Antenne 26.4 – 40.1 GHz	22240-20	Flann Microwave	469	480299		verification m cal.)
41	RF-cable No. 3	Sucoflex 106B	Huber&Suhner	0563/6B / Kabel 3	480670	Weekly v (syste	erification m cal.)
42	RF-cable No. 40	Sucoflex 106B	Huber&Suhner	0708/6B / Kabel 40	481330		erification m cal.)
46	RF-cable 2 m	KPS-1533- 800-KPS	Insulated Wire	-	480302		verification m cal.)
49	Preamplifier	JS3- 00101200- 23-5A	Miteq	681851	480337	18.02.2016	18.02.2018
50	Preamplifier	JS3- 12001800- 16-5A	Miteq	571667	480343	18.02.2016	18.02.2018
51	Preamplifier	JS3- 18002600- 20-5A	Miteq	658697	480342	17.02.2016	17.02.2018
60	Power Meter	NRVD	Rohde & Schwarz	833697/030	480589	18.02.2016	18.02.2018
61	Thermal Power Sensor	NRV-Z51	Rohde & Schwarz	825948/004	480247	18.02.2016	18.02.2018
72	4 GHz High Pass Filter	WHKX4.0/18 G-8SS	Wainwright Instruments	1	480587		erification m cal.)
80	High-pass Filter	H26G40G1	Microwave Circuits, Inc.	33471	480593		verification m cal.)

 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912

 page 20 of 21
 page 20 of 21

7 Report History

Date	Comment
20.05.2016	Initial Test Report

8 List of Annexes

ANNEX A TEST SETUP PHOTOS 1 page

160912_1.jpg Test setup - conducted tests

ANNEX B EXTERNAL PHOTOS 2 pages

160912_2.jpg EUT + test PCB – top view 160912_3.jpg EUT + test PCB – bottom view

ANNEX C INTERNAL PHOTOS 3 pages

160912_4.jpg EUT – Top View with shielding

160912_5.jpg EUT – bottom view

160912_6.jpg EUT – Top View without shielding

 Examiner:
 Paul NEUFELD
 Report Number:
 E160912E1

 Date of issue:
 20.05.2016
 Order Number:
 16-110912
 page 21 of 21