

Trimble Navigation Limited MCS cB-0939

SAR Evaluation Report #: TRPO0083.1

Evaluated to the following SAR Specifications:

FCC 2.1093

Report Prepared By Northwest EMC Inc.

NORTHWEST EMC – (888) 364-2378 – www.nwemc.com

California – Minnesota – Oregon – New York – Washington

CERTIFICATE OF EVALUATION

Last Date of Test: February 20, 2013 Trimble Navigation Limited MCS Model: cB-0939

Applicable Standard

Test Description	Specification	Test Method	Pass/Fail
		FCC OET 65C:2001	
CAD Evaluation	FCC 2.1093:2013	IEEE Std 1528:2003	Pass
SAR Evaluation	FCC 15.247:2013	FCC KDB 447498 D01 v05	Pass
		FCC KDB 616217 D04 v01	

Highest SAR Values

Frequency	Head	Body	Limit	Exposure Environment
Bands	1g	1g	1g	
(GHz)	(W/kg)	(W/kg)	(W/kg)	
2.4	N/A	0.0094	1.6	General Population Uncontrolled

Deviations From Test Standards

None

Approved By:

Don Facteau, IS Manager

NN(PD

NVLAP Lab Code: 200630-0

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC Guide 65 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

KCC / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Hong Kong

OFTA - Recognized by OFTA as a CAB for the acceptance of test data.

Vietnam

MIC - Recognized by MIC as a CAB for the acceptance of test data.

Russia

GOST – Accredited by Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC to perform EMC and Hygienic testing for Information Technology products to GOST standards.

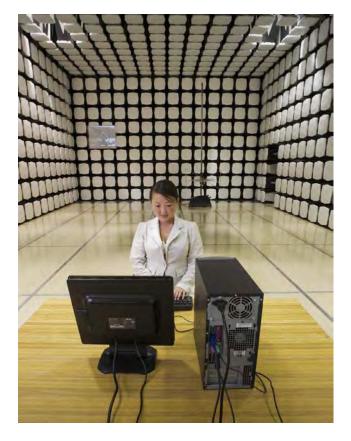
SCOPE

LOCATIONS

Oregon	C
Labs EV01-12	L
22975 NW Evergreen Pkwy	4
Hillsboro, OR 97124	I
(503) 844-4066	(

CaliforniaLabs OC01-13
41 Tesla
Irvine, CA 92618
(949) 861-8918

New York Labs WA01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796


Minnesota Labs MN01-08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281

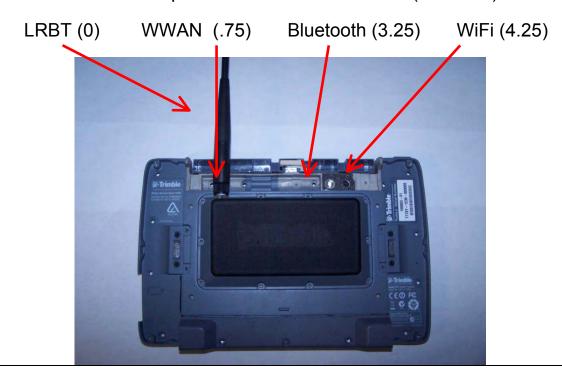
Washington Labs NC01-05,SU02,SU07 19201 120th Ave. NE Bothell, WA 98011 (425) 984-6600

(503) 844-4066	(949) 861-8918	(315) 685-0796	(763) 425-2281	(425) 984-6600			
VCCI							
A-0108	A-0029		A-0109	A-0110			
Industry Canada							
2834D-1, 2834D-2	2834B-1, 2834B-2, 2834B-3		2834E-1	2834C-1			

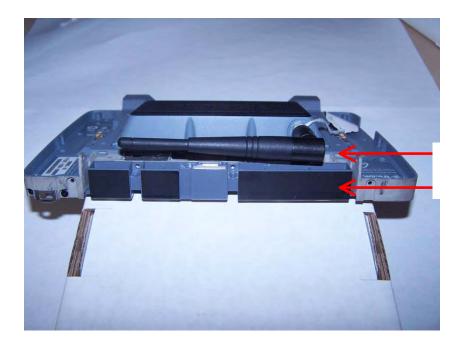
Client and Equipment Under Test (EUT) Information

Company Name:	Trimble Navigation Limited MCS
Address:	345 SW Avery Ave
City, State, Zip:	Corvallis, OR 97333
Test Requested By:	Bob Grant
Model:	cB-0939
First Date of Test:	February 20, 2013
Last Date of Test:	February 20, 2013
Receipt Date of Samples:	February 20, 2013
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test


Functional Description of the EUT (Equipment Under Test):

The EUT is connectBlue's Model cB-0939 Long Range Bluetooth (LRBT) radio module FCC ID: PVH0939. It has limited modular approval. A Class II Permissive change (C2PC) will be made to add this radio to Trimble's Yuma 2 tablet computer. FCC ID: S9E-Y2C3. In this configuration, it will be co-located with the Yuma 2's cellular WWAN and also with another modular radio, the Atheros Model AR5B22 Wi-Fi / Bluetooth combo module, FCC ID: PPD-AR5B22. Through a C2PC, the AR5B22 has been previously authorized for co-location with the Yuma 2. The Yuma 2 allows for a tether strap. This strap is non-conductive elastic material. However, in this configuration being evaluated the tether strap is not an option.


The LRBT radio has one external antenna (2 dBi, omni-directional) and operates in the 2.4 GHz band.

The closest antenna spacing's between the Long Range Bluetooth (LRBT) antenna and the other radio antennas is shown below:

Antenna Separation from LRBT antenna (in inches)

Antenna centerlines 875

Testing Objective:

To demonstrate compliance with the SAR requirements of FCC 2.1093. This evaluation will be used to support a C2PC for FCC ID: PVH0939.

Test Locations

The tablet's diagonal dimension is 27.29 cm. Since it is greater than 20 cm, KDB 941225 is not applicable and the SAR guidance of KDB 616217 D04 v01 is applied. Section 4.3:

The antennas in tablets are typically located near the back surface and/or along the edges of the devices; therefore, SAR evaluation is required for these configurations. Exposures from antennas through the front surface of the display section of a tablet are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary, except when continuous operations with the hand(s) next to the antenna(s) are required. When voice mode is supported on a tablet and it is limited to speaker mode or headset operations only, additional SAR testing for this type of voice use is not required...

The antennas embedded in tablets are typically \leq 5mm from the outer housing. When the dedicated host approach is applied, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom

The bottom face (referred to as "back" in this report) and the top edge were tested. The connectBlue's Model cB-0939 Long Range Bluetooth (LRBT) antenna swivels, so when it is horizontal, it is located closest to the top edge, and when it is vertical, it is closest to the back.

Simultaneous Transmission

During testing, a KDB analysis was done to determine whether a SAR evaluation is required for simultaneous transmission. Whether a SAR evaluation is required for simultaneous transmission is determined by the output power, antenna spacing, and SAR distributions of each antenna. KDB 616217 D04 v01 is applied. Section 4.3:

"The simultaneous transmission SAR test procedures described in KDB 447498 should be applied to determine if the test exclusion provisions can be used or the enlarged zoom scan measurement and volume scan post processing procedures are required. SAR test exclusion must be determined separately for the back surface and each edge, according to the simultaneous transmission requirements for each exposure position, which may involve antennas transmitting simultaneously on adjacent or multiple edges".

The LRBT, WWAN, WiFi /BT radios can transmit simultaneously. Simultaneous transmission of the WWAN, WiFi and Bluetooth radios was addressed in the SAR report filed in the original application for Trimble's Yuma 2, FCC ID: S9E-Y2C3. Section 11.2 of that SAR report (Sporton FCC Test Report No: FA280604A) contains tables where the stand-alone SAR values for each possible radio and antenna combination are summed. The worst case condition has a summed SAR value of 1.32 W/kg. See below:

<Ant. 1>

	V	/WAI	1	V	VLAN5G	Act of the last of		Scaled	WWAN		Scaled
Position	WWAN Band	Plot No	Max. WWAN SAR (W/kg)	Plot No	Max. WLAN SAR (W/kg)	Max. SAR Summation	Average Power (dBm)	Tune-up Limit (dBm)	Scaling Scaled WWAN Factor (W/kg)	WWAN + WLAN	
	GSM850	34	0.625	9	0.6	1.23	32.91	33.5	1.146	0.716	1.32
	GSM1900	43	0.424	9	0.6	1.02	30.94	31.5	1.138	0.482	1.08
Dattam Face	WCDMA V	37	0.332	9	0.6	0.93	24.16	24.5	1.081	0.359	0.96
Bottom Face	WCDMA IV	46	0.344	9	0.6	0.94	24.17	24.5	1.079	0.371	0.97
At 0cm	WCDMA II	40	0.446	9	0.6	1.05	24.44	25	1.138	0.507	1.11
	CDMA BC0	49	0.348	9	0.6	0.95	23.73	24	1.064	0.370	0.97
	CDMA BC1	52	0.435	9	0.6	1.04	23.72	24	1.067	0.464	1.06
	GSM850	-	0	10	0.035	0.04	0	0	1.000	0.000	0.04
	GSM1900	0	0	10	0.035	0.04	0	0	1.000	0.000	0.04
many i	WCDMA V	. 2.	0	10	0.035	0.04	0	0	1.000	0.000	0.04
Edge4	WCDMA IV	181	0	10	0.035	0.04	0	0	1.000	0.000	0.04
At 0cm	WCDMA II	15	0	10	0.035	0.04	0	0	1.000	0.000	0.04
	CDMA BC0	0	0	10	0.035	0.04	0	0	1.000	0.000	0.04
	CDMA BC1	-	0	10	0.035	0.04	0	0	1.000	0.000	0.04
	GSM850	35	0.415	12	0	0.42	32.91	33.5	1.146	0.475	0.48
	GSM1900	44	0.288	7.27	0	0.29	30.94	31.5	1.138	0.328	0.33
Ed0	WCDMA V	38	0.198	-	0	0.20	24.16	24.5	1.081	0.214	0.21
Edge2	WCDMA IV	47	0.616	12.1	0	0.62	24.17	24.5	1.079	0.665	0.67
At 0cm	WCDMA II	41	0.451	-	0	0.45	24.44	25	1.138	0.513	0.51
	CDMA BC0	50	0.193	10-2	0	0.19	23.73	24	1.064	0.205	0.21
	CDMA BC1	53	0.436	12	0	0.44	23.72	24	1.067	0.465	0.47

The highest stand-alone SAR value for the connectBlue's Model cB-0939 Long Range Bluetooth (LRBT) radio as documented in this SAR report is 0.19 W/kg. The summation of the worst-case values: 1.32 + 0.009 = 1.329 W/kg.

Since the sum of the highest SAR from each of the individual antennas is less than 1.6 W/kg, per item 4.3.2 of KDB 447498 D01 v05, simultaneous transmission SAR evaluation is not required:

"When the sum of 1-g or 10-g SAR of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration."

Scope

The SAR evaluation documented in this report is for the connectBlue's Model cB-0939 Long Range Bluetooth (LRBT) radio installed in Trimble's Yuma 2 tablet computer.

CONFIGURATIONS

Configuration TRPO0083-1

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Bluetooth radio	connectBlue AB	cB-0939	None			

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
AC Adapter	LiteOn	PA-1061-0	L21225043118			

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Power	No	1.5m	PA	AC Adapter	Handheld Device	
AC Power	No	1.8m	No	AC Adapter	AC Mains	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2/20/2013	SAR	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.

OUTPUT POWER

2.4 GHz Band

Per FCC KDB 447498, the conducted output power was measured at the lowest, a middle, and the highest channels in the operational band. Measurements for each channel were made while the EUT was transmitting at the available data rate.

Per FCC KDB 447498, among the channels required for normal testing, SAR must be measured on the highest output channel (highlighted). When the SAR measured on the highest output channel is >0.4 W/kg, SAR evaluation for the other required test channels is necessary.

Output power measurements are on the following page.

OUTPUT POWER

EUT:	Bluetooth Module, Model cB-0939		Work Order:	TRPO0083			
Serial Number:	None		Date:	2/20/2013			
Customer:	Trimble Navigation Limited MCS		Temperature:	20.3°C			
Attendees:	None		Relative Humidity:	34%			
Customer Project:	None	Bar. Pressure:	1007 mb				
Tested By:	Ethan Schoonover		Job Site:	EV08			
Power:	110VAC/60Hz	Configuration:	TRPO0083-1				
TEST SPECIFICATIONS							
Specification:		Method:					
FCC 2.1093:2013		FCC OET 65C:2001 IEEE Std 1528:2003					

COMMENTS

Conducted output power

DEVIATIONS FROM TEST STANDARD

None

RESULTS

_KESUL1S	
Low Channel, DH5 Ch. 0 (2402 MHz)	12.06 dBm
Mid Channel, DH5 Ch. 37 (2441 MHz)	11.42 dBm
High Channel, DH5 Ch. 74 (2480 MHz)	10.82 dBm
Low Channel, 2DH5 Ch. 0 (2402 MHz)	6.30 dBm
Mid Channel, 2DH5 Ch. 37 (2441 MHz)	5.68 dBm
High Channel, 2DH5 Ch. 74 (2480 MHz)	5.14 dBm
Low Channel, 3DH5 Ch. 0 (2402 MHz)	6.32dBm
Mid Channel, 3DH5 Ch. 37 (2441 MHz)	5.78 dBm
High Channel, 3DH5 Ch. 74 (2480 MHz)	5.23 dBm
·	

Tested By

TISSUE – EQUIVALENT LIQUID

Characterization of tissue-equivalent liquid dielectric properties

Per IEEE 1528: 2003, Section 5.2.2, the permittivity and conductivity of the tissue material should be measured at least within 24 hours of any full-compliance test. The measured values must be within +/- 5% of the target values. The temperature variation in the liquid during SAR measurements must be within +/- 2 degrees C of that recorded when the dielectric properties were measured.

The dielectric parameters of the tissue-equivalent liquids were measured within 24 hours of the start of testing using the HP85070E dielectric probe kit. The dielectric measurements were made across the frequency range of the liquid. The attached data sheets show that the dielectric parameters of the liquid were within the required 5% tolerances.

Target values of dielectric parameters

Per FCC OET 65C, Appendix C:

"The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in P1528."

Target Frequency	H	ead	B	ody
(MHz)	εr	σ (S/m)	$\epsilon_{\rm r}$	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

 $(\varepsilon_r = \text{relative permittivity}, \sigma = \text{conductivity and } \rho = 1000 \text{ kg/m}^3)$

TISSUE – EQUIVALENT LIQUID

Composition of Ingredients for Liquid Tissue Phantoms

Northwest EMC uses tissue-equivalent liquids prepared by SPEAG and confirmed by them to be within +/- 5% from the target values. Their recipes are based upon the following formulations as found in FCC OET 65C, Appendix C:

"The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation."

Ingredients	Frequency (MHz)										
(% by weight)	450		835		9	915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: 99 $^{+}$ % Pure Sodium Chloride Sugar: 98 $^{+}$ % Pure Sucrose Water: De-ionized, 16 M Ω^{+} resistivity HEC: Hydroxyethyl Cellulose DGBE: 99 $^{+}$ % Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyllether

TISSUE – EQUIVALENT LIQUID

Tissue:	Body	Work Order:	TRPO0083
Serial Number:	None	Date:	02/20/2013
Customer:	Trimble Navigation Limited MCS	Temperature:	22.3°C
Customer Project:	None	Liquid Temperature:	21.4°C
Tested By:	Ethan Schoonover	Relative Humidity:	33.4%
Job Site:	EV08	Bar. Pressure:	2450

TEST SPECIFICATIONS

Specification:	Method:
FCC 2.1093:2013	FCC OET 65C:2001 IEEE Std 1528:2003

RESULTS

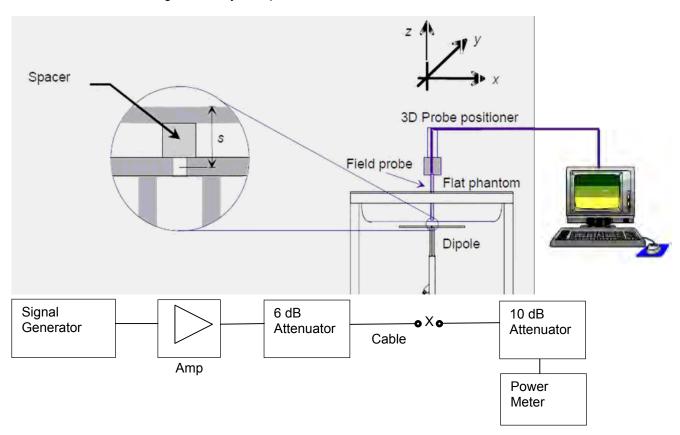
		Actual Values		Actual Values Target Values			Deviation (%)		
	Frequency (MHz)	Relative Permittivity	Conductivity	Relative Permittivity	Conductivity	Relative Permittivity	Conductivity		
-	2450	51	2.028	52.7	1.95	3.23	-4		

Frequency	Relative	Conductivity
(MHz)	Permittivity	Conductivity
1900	67.9	4.316
1925	56.8	1.012
1950	57	0.939
1975	56.7	0.962
2000	56.7	1.016
2025	56.5	1.074
2050	56.3	1.132
2100	55.7	1.262
2125	55.4	1.326
2150	55.1	1.389
2175	54.8	1.45
2200	54.4	1.517
2225	54	1.579
2250	53.7	1.643
2300	52.9	1.758
2325	52.5	1.813
2350	52.1	1.855
2375	51.7	1.895
2400	51.4	1.929
2425	51.3	1.977
2450	51	2.028
2500	50.4	2.141
2525	50	2.194
2550	49.7	2.25
2575	49.3	2.299
2600	48.9	2.347
2625	48.5	2.39
2675	47.7	2.461
2700	47.4	2.495

REQUIREMENT

Per IEEE 1528, Section 8.2.1, "System checks are performed prior to compliance tests and the results must always be within ± 10% of the target value corresponding to the test frequency, liquid, and the source used. The target values are 1 g or 10 g averaged SAR values measured on systems having current system validation and calibration status, and using the system check setup as shown in Figure 14. These target values should be determined using a standard source."

TEST DESCRIPTION


Within 24 hours of a measurement, then every 72 hours thereafter, Northwest EMC used the system validation kit (calibrated reference dipole) to test whether the system was operating within its specifications. The validation was performed in the indicated bands by making SAR measurements of the reference dipole with the phantom filled with the tissue-equivalent liquid. First, a signal generator and power amplifier were used to produce a 100mW level as measured with a power meter at the antenna terminals of the dipole (X). Then, the reference dipole was positioned below the bottom of the phantom and centered with its axis parallel to the longest side of the phantom. A low loss and low relative permittivity spacer was used to establish the correct distance between the center axis of the reference dipole and the liquid.

For the reference dipoles, the spacing distance s is given by:

s = 15mm, +/- 0.2mm for 300MHz ≤ $f \ge 1000$ MHz:

s = 10mm, +/- 0.2mm for 1000MHz \leq f \geq 6000MHz

The measured 1 g and 10 g spatial average SAR values were normalized to a 1W dipole input power for comparison to the calibration data. The results are summarized in the attached table. The deviation is less than 10% in all cases, indicating that the system performance check was within tolerance.

EUT:	Yuma 2 - Bluetooth Module	Work Order:	TRPO0083
Customer:	Trimble Navigation Limited MCS	Job Site:	EV08
Attendees:	None	Customer Project:	None

TEST SPECIFICATIONS

Specification:	Method:
FCC 2.1093:2013	FCC OET 65C:2001 IEEE Std 1528:2003

COMMENTS

None

DEVIATIONS FROM TEST STANDARD

None

RESULTS

Date Liquid part number and frequency		Conducted Power into the Dipole (dBm)	Correction Factor	Meas	sured		lized to W	(Normaliz Get fror	rget led to 1W) in Dipole in Certificate	% Diffe	erence
	frequency		1 actor	1g	10g	1g	10g	1g	10g	1g	10g
2/20/2013	MSL 2450	20	10	4.94	2.27	49.4	22.7	50.4	23.7	-1.98	-4.22

Tested By:	Ethan Schoonover	Room Temperature (°C):	23.2°C
Date:	2/20/2013	Liquid Temperature (°C):	21.2°C
Serial Number:	ADL	Humidity (%RH):	33.8%
Configuration:	N/A	Bar. Pressure (mb):	1008 mb
Comments:	None		

MSL2450 System Check

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:ADL

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2450

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2450 MHz; $\sigma = 2.028 \text{ S/m}$; $\varepsilon_r = 51.008$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters

used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

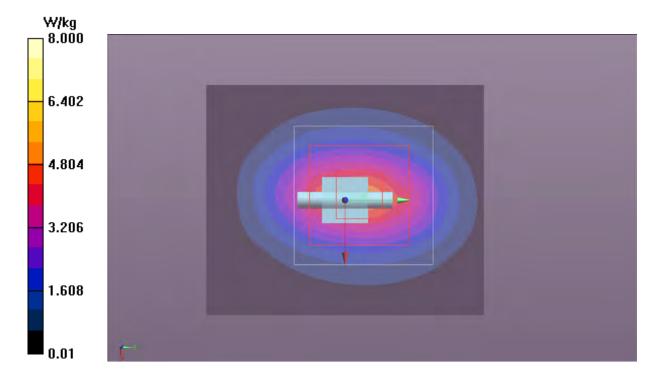
• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

System Check/System Check/Area Scan (51x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.19 W/kg

System Check/System Check/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of Total (measured) = 71.07 V/m

System Check/System Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 48.697 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 10.2 W/kg

SAR(1 g) = 4.94 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 4.93 W/kg Maximum value of SAR (measured) = 10.2 W/kg

Approved By

MSL2450 System Check

Test Configurations

Test Locations

The EUT's diagonal dimension is 27.29 cm. Since it is greater than 20 cm, KDB 941225 is not applicable and the SAR guidance of KDB 616217 D04 v01 Section 4.3 is applied. The bottom face (referred to as "back" in this report) and the top edge were tested. The connectBlue's Model cB-0939 Long Range Bluetooth (LRBT) antenna swivels, so when it is horizontal, it is located closest to the top edge, and when it is vertical, it is closest to the back.

Simultaneous Transmission

During testing, a KDB analysis was done to determine whether a SAR evaluation is required for simultaneous transmission. KDB 616217 D04 v01Section 4.3 is applied Whether a SAR evaluation is required for simultaneous transmission is determined by the output power, antenna spacing, and SAR distributions of each antenna.

The LRBT, WWAN, WiFi /BT radios can transmit simultaneously. Simultaneous transmission of the WWAN, WiFi and Bluetooth radios was addressed in the SAR report filed in the original application for Trimble's Yuma 2, FCC ID: S93-Y2C3. Section 11.2 of that SAR report (Sporton FCC Test Report No: FA280604A) contains tables where the stand-alone SAR values for each possible radio and antenna combination are summed. The worst case condition has a summed SAR value of 1.32 W/kg.

The highest stand-alone SAR value for the connectBlue's Model cB-0939 Long Range Bluetooth (LRBT) radio as documented in this SAR report is 0.19 W/kg. The summation of the worst-case values: 1.32 + 0.009 = 1.329 W/kg.

Since the sum of the highest SAR from each of the individual antennas is less than 1.6 W/kg, per item 4.3.2 of KDB 447498 D01 v05, simultaneous transmission SAR evaluation is not required.

Summary

The following table summarizes the measured SAR values.

Per FCC KDB 447498 D01 v05, Section 4.3.3, SAR must be measured on the channel with the highest conducted output power. When the SAR measured on the highest output channel is >0.4 W/kg, SAR evaluation for the other required test channels is necessary.

EUT:	cB-0939 – Bluetooth Module	Work Order:	TRPO0083
Customer:	Trimble Navigation Limited MCS	Job Site:	EV08
Attendees:	None	Customer Project:	None

TEST SPECIFICATIONS

Specification:	Method:
FCC 2.1093:2013 FCC 15.247:2013	FCC OET 65C:2001 IEEE Std 1528:2003 FCC KDB 447498 D01 v05 FCC KDB 616217 D04 v01

COMMENTS

None

DEVIATIONS FROM TEST STANDARD

None

RESULTS

Test Configuration	Frequency Band	Transmit Frequency (MHz)	Transmit Channel	EUT Position	Antenna Position	SAR Drift During Test (dB)	Measured 10g SAR Level (mW/g)	Test#
Body	2.4GHz	2402	1	Тор	Horizontal	Note 2	Note 1	1
Body	2.4GHz	240G	1	Back	Horizontal	Note 2	Note 1	2
Body	2.4GHz	2402	1	Back	Vertical	Note 2	<mark>0.0094</mark>	3

Note 1: Zoom scan measurement was not performed because the area scan results were less than 0.1 mW/g Note 2: Power drift measurement was not performed because the area scan results were less than 0.1 mW/g

Tested By:	Ethan Schoonover	Room Temperature (°C):	23.3
Date:	2/20/2013 2:46:48 PM	Liquid Temperature (°C):	21.4
Serial Number:	None	Humidity (%RH):	34.1
Configuration:	TRPO0083-1	Bar. Pressure (mb):	1008
Comments:	None		_

Test 1

DUT: Bluetooth radio, Model cB-0939; Serial: None

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2402

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 2402 MHz; $\sigma = 1.933$ S/m; $\varepsilon_r = 51.433$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Body/Body/Reference scan (41x101x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

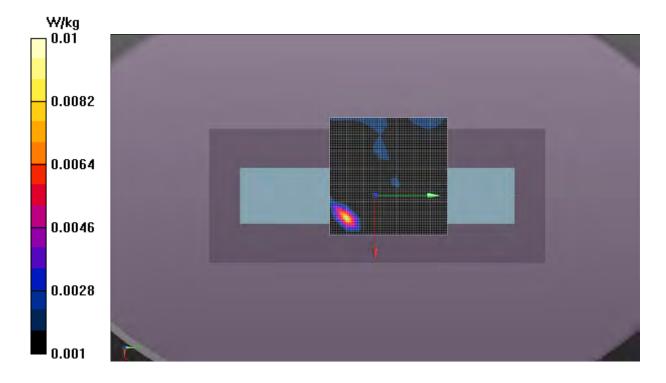
Maximum value of SAR (interpolated) = 0 W/kg

Body/Body/Area scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.00860 W/kg

Body/Body/Area scan (8x8x1): Measurement grid: dx=15mm, dy=15mm


Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.00860 W/kg

Approved By

Test 1

Tested By:	Ethan Schoonover	Room Temperature (°C):	23.3
Date:	2/20/2013 3:13:47 PM	Liquid Temperature (°C):	21.4
Serial Number:	None	Humidity (%RH):	34.1
Configuration:	TRPO0083-1	Bar. Pressure (mb):	1008
Comments:	None		

Test 2

DUT: Bluetooth radio, Model cB-0939; Serial: None

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2402

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 2402 MHz; $\sigma = 1.933 \text{ S/m}$; $\varepsilon_r = 51.433$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

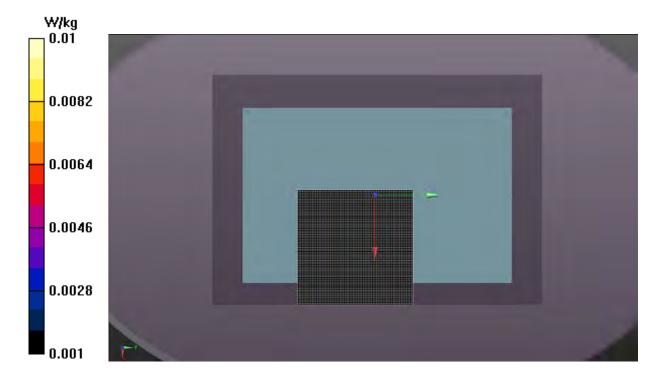
DASY Configuration:

• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Body/Body/Reference scan (71x101x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0 W/kg


Body/Body/Area scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation.

Approved By

Test 2

Tested By:	Ethan Schoonover	Room Temperature (°C):	23.5
Date:	2/20/2013 3:13:47 PM	Liquid Temperature (°C):	21.3
Serial Number:	None	Humidity (%RH):	34.1
Configuration:	TRPO0083-1	Bar. Pressure (mb):	1008
Comments:	None		

Test 3

DUT: Bluetooth radio, Model cB-0939; Serial: None

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2402

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³, Medium parameters used (interpolated): f = 2402

MHz; σ = 1.933 S/m; ε_r = 51.433; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of Total (measured) = 0.6598 V/m

Body/Body/Reference scan (81x101x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0 W/kg

Body/Body/Area scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation.

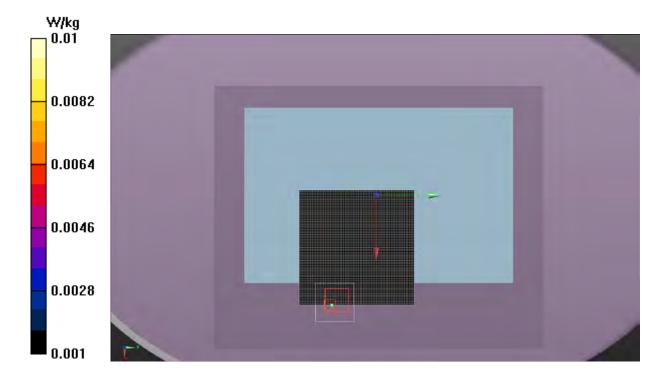
Maximum value of SAR (interpolated) = 0.0000673 W/kg

Body/Body/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.859 V/m; Power Drift = -10.88 dB

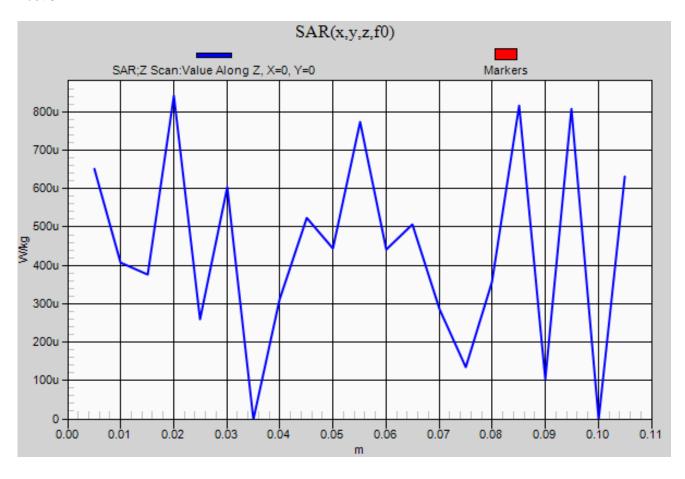
Peak SAR (extrapolated) = 0.0110 W/kg

SAR(1 g) = 0.00939 W/kg; SAR(10 g) = 0.00862 W/kg


Info: Interpolated medium parameters used for SAR evaluation.

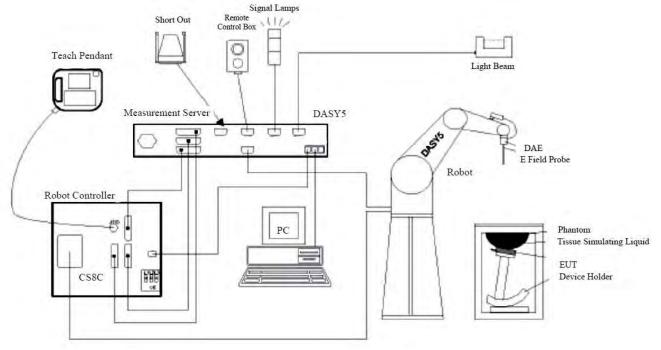
Maximum value of SAR (measured) = 0.00996 W/kg Maximum value of SAR (measured) = 0.000841 W/kg

Approved By



Test 3

Test 3


SYSTEM AND TEST SITE DESCRIPTION

SAR MEASUREMENT SYSTEM

Schmid & Partner Engineering AG, DASY52

Northwest EMC selected the leader in SAR evaluation systems to provide the measurement tools for this evaluation. SPEAG's DASY52 is the fastest and most accurate scanner on the market. It is fully compatible with all world-wide standards for transmitters operating at the ear or within 20cm of the body. It provides full compatibility with IEC 62209-1, IEC 62209-2, IEEE 1528 as well as national adaptations such as FCC OET-65c and Korean Std. MIC #2000-93

The DASY52 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion,
 offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with
 standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom, oval flat phantom, device holder, tissue simulating liquids, and validation dipole kits.

SYSTEM AND TEST SITE DESCRIPTION

TEST SITE

Northwest EMC, Lab EV08

The SAR measurement system is located in a semi-anechoic chamber. This provides an ambient free environment that also eliminates reflections.

The chamber is 12 ft wide by 16 ft long x 8 ft high. A dedicated HVAC unit provides +/- 1 degree C temperature control.

TEST EQUIPMENT

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Dipole 2450MHz SAR	SPEAG	D2450V2	ADL	12/10/2012	12 mo
Humidity Temperature Meter	Omegaette	HH311	DTX	03/29/2011	24 mo
Humidity Temperature Meter	Omegaette	HH311	DTY	03/29/2011	24 mo
Dielectric Probe Kit	Agilent	85070E	IPP	09/08/2010	36 mo
Network Analyzer	Hewlett Packard	N5230A	NAD	06/19/2012	12 mo
Robot Arm	Staeubli	TX60LSPEAG	SAA	NCR	0 mo
Phantom, 2mm Oval ELI4 (Body)	SPEAG	QD OVA 001 BB	SAC	NCR	0 mo
Light Beam Unit	SPEAG	SE UKS 030 AA	SAD	NCR	0 mo
SAR Probe	SPEAG	EX3DV4	SAG	11/14/2012	12 mo
DAE	SPEAG	SD 000 D04 EJ	SAH	11/02/2012	12 mo
Robot Controller	Staeubli	CS8C	SAI	NCR	0 mo
Robot Chasis and power Supply	Staeubli	N/A	SAJ	NCR	0 mo
DASY5 Measurement Server	Staeubli	DAYS5	SAK	NCR	0 mo
				Within 24 h	ours of a
Body Solution	SPEAG	MSL 2450	SAM	measur	ment
Device Holder	SPEAG	N/A	SAW	NCR	0 mo
Power Sensor	Agilent	E9300H	SQO	06/06/2011	24 mo
Power Meter	Agilent	N1913A	SQR	06/06/2011	24 mo
MXG Analog Signal Generator	Agilent	N5181A	TIG	NCR	0 mo
Amplifier	Mini Circuits	ZVE-3W-83+	TTA	NCR	0 mo

MEASUREMENT UNCERTAINTY

MEASUREMENT UNCERTAINTY BUDGETS PER IEEE 1528:2003

300-3000 MHz Range

Uncertainty Component	Tolerance (+/- %)	Probability Distribution	Divisor	c _i (1g)	c _i (10g)	u _i (1g) (+/-%)	u _i (10g) (+/-%)	Vi
Measurement System								
Probe calibration (k=1)	5.5	normal	1	1	1	5.5	5.5	8
Axial isotropy	4.7	rectangular	1.732	0.707	0.707	1.9	1.9	8
Hemispherical isotropy	9.6	rectangular	1.732	0.707	0.707	3.9	3.9	8
Boundary effect	1.0	rectangular	1.732	1	1	0.6	0.6	80
Linearity	4.7	rectangular	1.732	1	1	2.7	2.7	8
System detection limits	1.0	rectangular	1.732	1	1	0.6	0.6	8
Readout electronics	0.3	normal	1	1	1	0.3	0.3	8
Response time	0.8	rectangular	1.732	1	1	0.5	0.5	8
Integration time	2.6	rectangular	1.732	1	1	1.5	1.5	8
RF ambient conditions - noise	1.7	rectangular	1.732	1	1	1.0	1.0	8
RF Ambient Reflections	0.0	rectangular	1.732	1	1	0.0	0.0	8
Probe positioner mechanical tolerance	0.4	rectangular	1.732	1	1	0.2	0.2	8
Probe positioner with respect to phantom shell	2.9	rectangular	1.732	1	1	1.7	1.7	8
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	1.0	rectangular	1.732	1	1	0.6	0.6	8
Test Sample Related								
Device Positioning	2.9	normal	1	1	1	2.9	2.9	145
Device Holder	3.6	normal	1	1	1	3.6	3.6	5
Power Drift	5.0	rectangular	1.732	1	1	2.9	2.9	8
Phantom and tissue parameters								
Phantom Uncertainty - shell thickness tolerances	4.0	rectangular	1.732	1	1	2.3	2.3	8
Liquid conductivity - deviation from target values	5.0	rectangular	1.732	0.64	0.43	1.8	1.2	8
Liquid conductivity - measurement uncertainty	6.5	normal	1	0.64	0.43	4.2	2.8	8
Liquid permittivity - deviation from target values	5.0	rectangular	1.732	0.6	0.49	1.7	1.4	8
Liquid permittivity - measurement uncertainty	3.2	normal	1	0.6	0.49	1.9	1.6	8
Combined Standard Uncertainty	RSS				11.2	10.6	387	
Expanded Measurement Uncertainty (95% Co	onfidence/	normal (k=2)			22.5	21.2		

PROBE CALIBRATION

P	rol	he i	Cal	ih	rati	on

Please see attached calibration data.

Equipment ID: SAG

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Northwest EMC

Certificate No: EX3-3746_Nov12

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3746

Calibration procedure(s)

QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

November 14, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Name Function Signature
Calibrated by: Claudic Leubler Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: November 14, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3746_Nov12

Page 1 of 11

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z

tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

CF

crest factor (1/duty_cycle) of the RF signal

A, B, C

modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z:* Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

EX3DV4 - SN:3746

Probe EX3DV4

SN:3746

Manufactured:

March 26, 2010

Calibrated:

November 14, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3746_Nov12

Page 3 of 11

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.49	0.47	0.50	± 10.1 %
DCP (mV) ^B	106.9	94.9	95.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc [⊨] (k=2)
0	CW	0.00	Х	0.0	0.0	1.0	159.2	±3.0 %
			Υ	0.0	0.0	1.0	155.6	
			Z	0.0	0.0	1.0	159.2	
10061	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	3.60	Х	17.25	98.2	29.4	112.3	±3.5 %
			Υ	3.25	68.3	18.0	146.5	
			Z	3.72	68.7	17.9	111.5	
10069	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	10.57	Х	12.24	71.2	23.8	124.4	±4.4 %
			Υ	10.68	68.7	22.7	105.1	
			Z	12.12	70.7	23.6	122.9	
	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	11.00	Х	11.29	70.7	24.0	106.9	±4.1 %
			Υ	10.72	71.0	24.7	131.8	
			Z	11.13	70.1	23.6	105.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Parameter Determined in Head Tissue Simulating Media

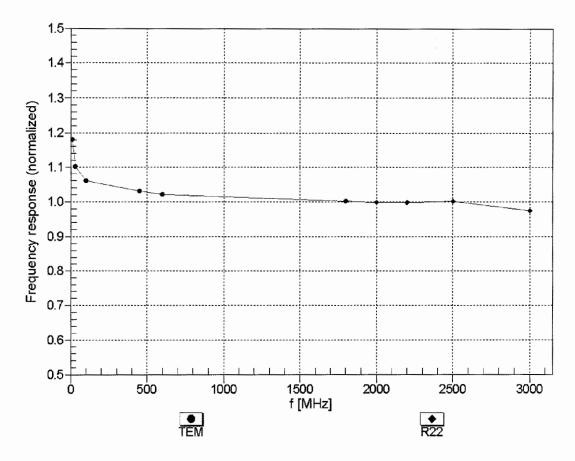
	Deletive	Complexativity	I			T	D41-	Unat
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
2450	39.2	1.80	6.70	6.70	6.70	0.44	0.77	± 12.0 %
5200	36.0	4.66	4.95	4.95	4.95	0.37	1.80	± 13.1 %
5300	35.9	4.76	4.65	4.65	4.65	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.60	4.60	4.60	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.43	4.43	4.43	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.37	4.37	4.37	0.39	1.80	± 13.1 %

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Calibration Parameter Determined in Body Tissue Simulating Media

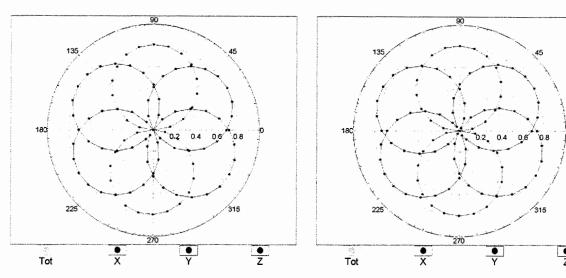

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
2450	52.7	1.95	6.88	6.88	6.88	0.80	0.58	± 12.0 %
5200	49.0	5.30	4.39	4.39	4.39	0.41	1.90	± 13.1 %
5300	48.9	5.42	4.03	4.03	4.03	0.47	1.90	± 13.1 %
5500	48.6	5.65	3.91	3.91	3.91	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.78	3.78	3.78	0.42	1.90	± 13.1 %
5800	48.2	6.00	4.15	4.15	4.15	0.45	1.90	± 13.1 %

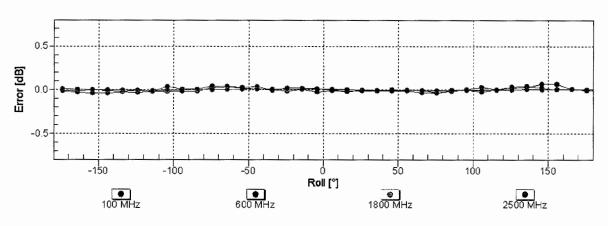
^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^c At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

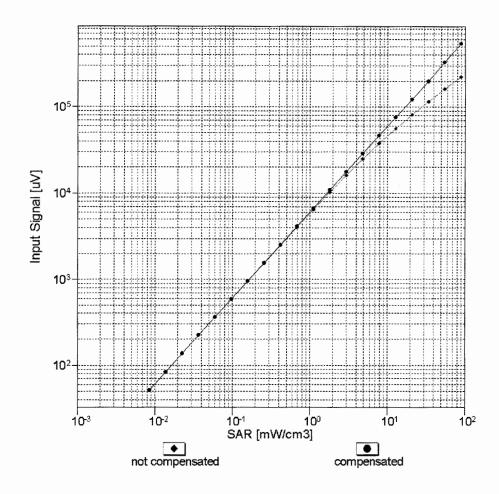
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

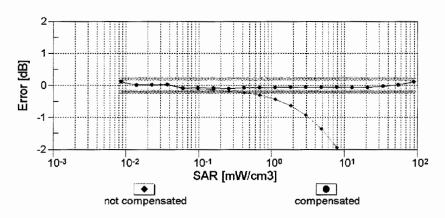



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

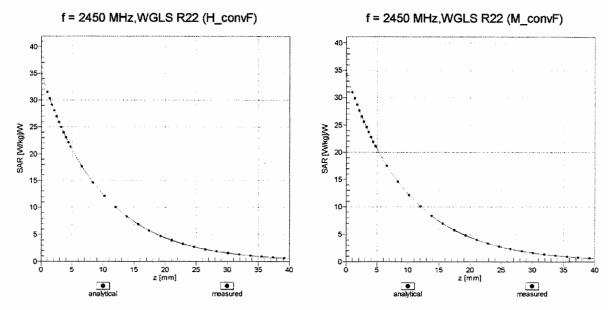
f=600 MHz,TEM

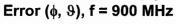

f=1800 MHz,R22

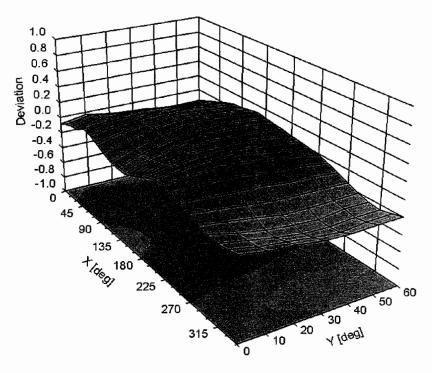


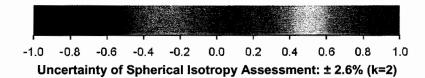
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


EX3DV4-SN:3746


Conversion Factor Assessment

Deviation from Isotropy in Liquid

Other Probe Parameters

Triangular
45.8
enabled
disabled
337 mm
10 mm
9 mm
2.5 mm
1 mm
1 mm
1 mm
2 mm

DIPOLE CALIBRATION

Dipole Calibration

Key points:

- 1. Dipoles need to be sent to the manufacturer for calibration every 3 years.
- 2. For those years where they are not sent to the manufacturer the following two parameters are verified annually:
 - a. The return-loss. If it deviates by more than 20% from the calibration data or does not meet the required -20 dB return-loss specification, then it fails the verification and must be sent to the manufacturer for repair and calibration.
 - b. The real and imaginary parts of the impedance. If it deviates by more than 5 Ω from the calibration data, then it fails the verification and must be sent to the manufacturer for repair and calibration.

The return loss and complex impedance were verified to meet the FCC's criteria within one year of the manufacturer's calibration. The calibration data is used for the SAR system verification. The verification data shows that the dipole characteristics have not changed and the calibration data continues to be valid.

Please see attached calibration and verification data.

Dipole Calibration

Performed by SPEAG (the manufacturer)

ADL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Northwest EMC

Certificate No: D2450V2-855_Dec11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 855

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: December 09, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	D. Hiser
Approved by:	Katja Pokovic	Technical Manager	and the

issued: December 9, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",

February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	946	***

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.38 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.3 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.7 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	9917	119 11 200

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	50.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.02 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.7 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 4.5 jΩ				
Return Loss	- 25.7 dB				

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.4 Ω + 5.3 jΩ				
Return Loss	- 25.5 dB				

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns
Lieutical Delay (one direction)	1.107 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG				
Manufactured on	November 10, 2009				

DASY5 Validation Report for Head TSL

Date: 09.12.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 855

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.87 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011

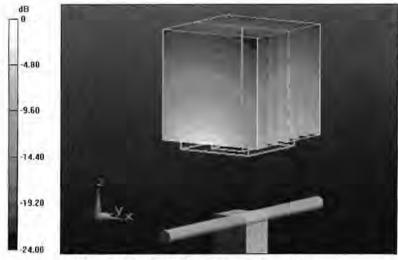
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

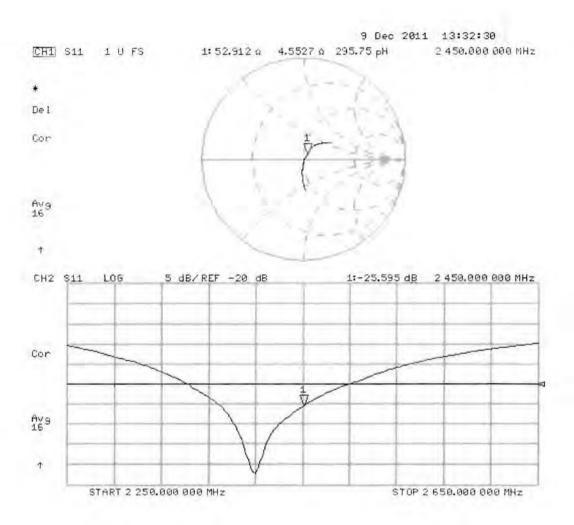
DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.7 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 28.3310


SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.38 mW/g

Maximum value of SAR (measured) = 17.684 mW/g

0 dB = 17.680 mW/g = 24.95 dB mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.12.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 855

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.04 \text{ mho/m}$; $\varepsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 29.04.2011

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

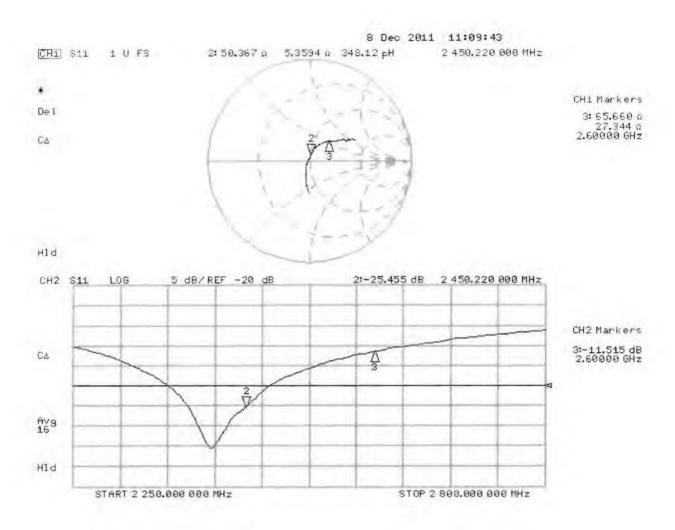
DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.074 V/m; Power Drift = -0.0092 dB

Peak SAR (extrapolated) = 27.0840


SAR(1 g) = 13 mW/g; SAR(10 g) = 6.02 mW/g

Maximum value of SAR (measured) = 17.188 mW/g

0 dB = 17.190 mW/g = 24.71 dB mW/g

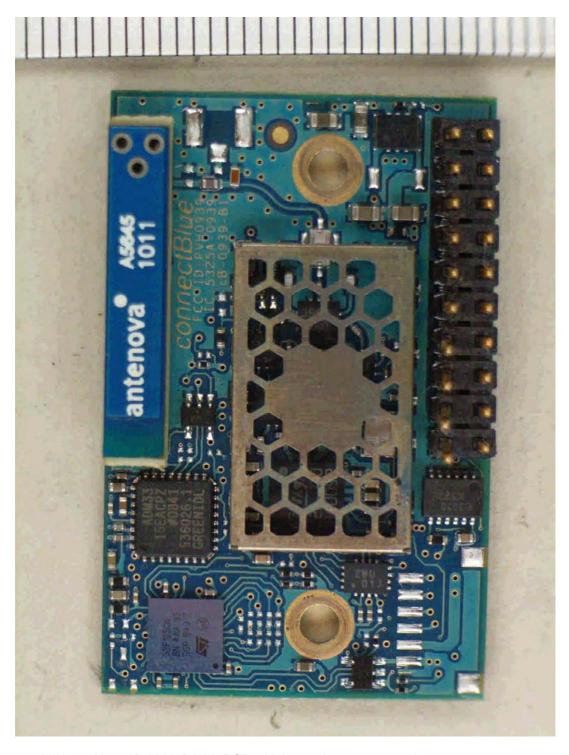
Impedance Measurement Plot for Body TSL

Dipole Verification

Performed by Northwest EMC, Inc.

ADL

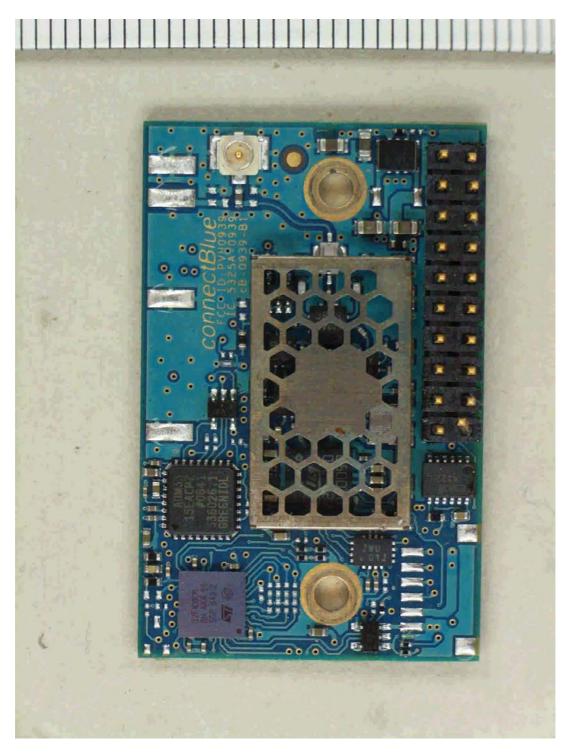
NORTHWEST								٥. ٦					
EMC				C	alıbratı	on Cer	tificate	& Repo	ort				03/27/02dmt
	Device	Dinole Anten	ına		SPEAG	SAR2450							03/27/02dmt
Device Dipole Antenna SPEAG Equipment Code: ADL				OAKE400					Cal Date:	121012			
	,										Temperature:		
	Customer: Northwest EMC					Tester:	Varuzhan Ko	charyan			Humidity:		
C	ertificate No.:		121012			Power:	N/A			Job Site: EV04			
TEST SPECIF	ICATIONS												
5	Specification:	Northwest El	ис	Year:				Method:	KDB 450824 I	002 Dipole SA	R Validation V	/erification v0	1r01
TEST PARAM	IETERS												
Dev	ice Received	In Tolerance:	Yes			Calibratio	n Frequency :	2450MHz					
					Eq	uipment Used	to perform ca	libration					T
Item:		Network	Analyzer		Identifier:	NAJ	Model:		Agilent E5061E	3	Cal	I. Due Date:	3/24/2014
Item:			ermination		Identifier:	NAHA	Model:	Agi	ilent 85032-60	017		I. Due Date:	
Item:			ttenuator		Identifier:	RCD	Model:		SA6021-10			I. Due Date:	
Item:			d TSL		Identifier:	SAL	Model:		Head Solution			tion Period	
Item:			y TSL		Identifier:	SALA	Model:		Body Solution		Calibra	tion Period	24 hours
COMMENTS,	OPINIONS and	INTERPRET	ATIONS										
Measurement	t Uncertainty												
			Probability	Distribution	Impeda	nce (dB)	Return L	oss (dB)					1
			1 TODGDIIIT)	Diotribution	mpoda	impedance (db)							
	Expanded uncertainty U (level of normal (k=2)		TBD		TBD								
- connactice	30 70)		<u> </u>										l
DEVIATIONS I	FROM TEST S	TANDARD											
None													
RESULTS													
Pass													
This me	asureme	nt was a	calibrati	on verific	cation. (In	strumen	paramet	ers are w	vithin tole	rances.)			
							. pa. a						
										29	<i>V</i>		
Qan	Am	Telm	-							Varuza	nkorarje	m	
Van	4	1000								U			


CALIBRATION DATA ATTACHED

Tested By

Approved By

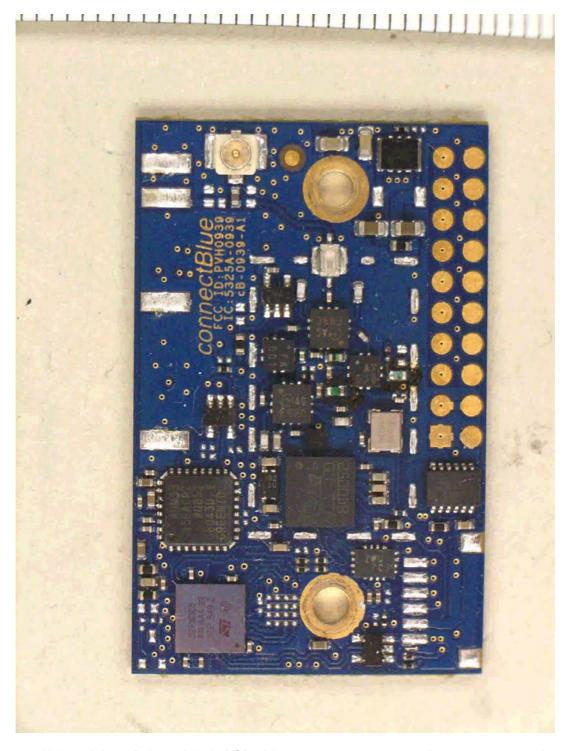
EUT Dipole Antenna	Verification Data
Dipolo / interina	
Model SAR2450	Antenna Parameters with Head TSL
S/N ADL	Impedance 53.5 +j2.3
Manufacturer SPEAG	Return Loss -24.7 dB
Date 121012	
	Antenna Parameters with Body TSL
Temperature 21C	Impedance, Ohms 52.6+j0.8
Humidity 38%	Return Loss, dB -25.5 dB
Operator Varuzhan Kocha	yan



101347_d.jpg: cB-0939-B1-01, PCB with internal antenna, top view

 Test engineer:
 Thomas KÜHN
 Report Number:
 F101347E3

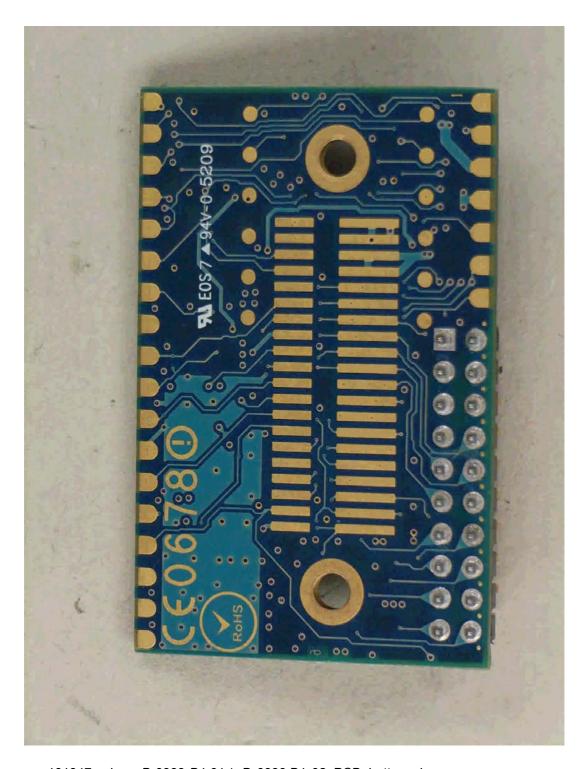
 Date of issue:
 23 August 2010
 Order Number:
 101347
 page 1 of 7



101347_f.jpg: cB-0939-B1-02, PCB with antenna connector, top view

 Test engineer:
 Thomas KÜHN
 Report Number:
 F101347E3

 Date of issue:
 23 August 2010
 Order Number:
 101347
 page 2 of 7



101347_h.jpg: cB-0939-A1-02, PCB with antenna connector, top view, cover removed

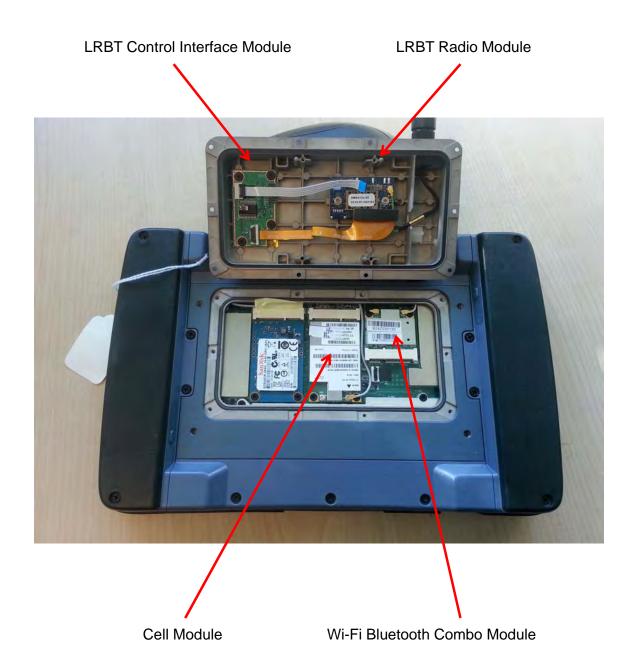
 Test engineer:
 Thomas KÜHN
 Report Number:
 F101347E3

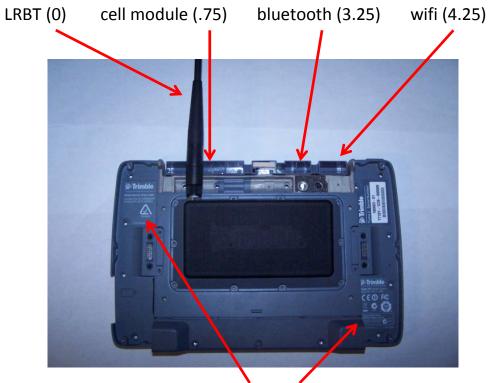
 Date of issue:
 23 August 2010
 Order Number:
 101347
 page 3 of 7

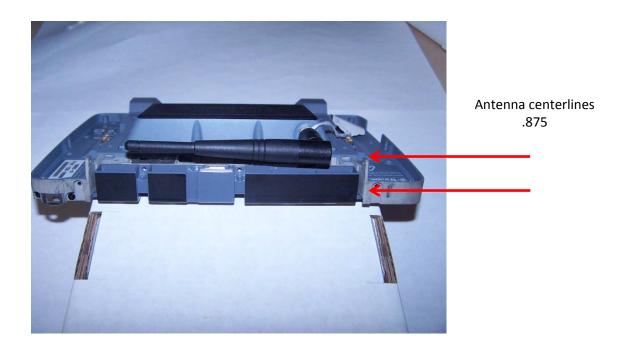
101347_e.jpg: cB-0939-B1-01 / cB-0939-B1-02, PCB, bottom view

 Test engineer:
 Thomas KÜHN
 Report Number:
 F101347E3

 Date of issue:
 23 August 2010
 Order Number:
 101347
 page 4 of 7






Yuma 2 Long Range Bluetooth

ANTENNAS (and separation from LRBT antenna in inches)

REGULATORY LABELS (2) UNDER BATTERIES

