

Königswinkel 10 32825 Blomberg Germany

Phone +49 5235 9500-0 Fax +49 5235 9500-10

TEST REPORT

Test Report Reference: F080826E01

Equipment under Test: cB-OHCI406

FCC ID: PVH092102

IC: 5325A-092102

Applicant: connectBlue AB

Manufacturer: connectBlue AB

Test Laboratory
(CAB)
accredited by
DATech in der TGA GmbH
in compliance with DIN EN ISO/IEC 17025
under the
Reg. No. DAT-P-105/99-21,

recognized by Bundesnetzagentur under the Reg.-No. BNetzA-CAB-02/21-104/1, FCC Test site registration number 90877 and Industry Canada Test site registration IC3469A-1

Contents	Page
1 IDENTIFICATION	4
1.1 APPLICANT	4
1.2 MANUFACTURER	4
1.3 DATES	4
1.4 TEST LABORATORY	5
1.5 RESERVATION	5
1.6 NORMATIVE REFERENCES	5
1.7 TEST RESULTS	5
2 TECHNICAL DATA OF EQUIPMENT	6
2.1 DEVICE UNDER TEST	6
2.2 PERIPHERY DEVICES	7
3 OPERATIONAL STATES AND PHYSICAL BOUNDARIES	8
4 ADDITIONAL INFORMATION	9
5 APPLICATION OVERVIEW	10
6 TEST RESULTS	11
6.1 20 dB BANDWIDTH	11
6.1.1 METHOD OF MEASUREMENT (20 dB BANDWIDTH)	11
6.1.2 TEST RESULTS (20 dB BANDWIDTH)	12
6.2 CARRIER FREQUENCY SEPARATION	14
6.2.1 METHOD OF MEASUREMENT (CARRIER FREQUENCY SEPARATION)	14
6.2.2 TEST RESULTS (CARRIER FREQUENCY SEPARATION)	
6.3 NUMBER OF HOPPING FREQUENCIES	17
6.3.1 METHOD OF MEASUREMENT (NUMBER OF HOPPING FREQUENCIES)	17
6.3.2 TEST RESULTS (NUMBER OF HOPPING FREQUENCIES)	18
6.4 DWELL TIME	
6.4.1 METHOD OF MEASUREMENT (DWELL TIME)	19
6.4.2 TEST RESULTS (DWELL TIME)	
6.5 MAXIMUM PEAK OUTPUT POWER	23
6.5.1 METHOD OF MEASUREMENT (MAXIMUM PEAK OUTPUT POWER)	23
6.5.2 TEST RESULTS (MAXIMUM PEAK OUTPUT POWER)	
6.6 CONDUCTED EMISSIONS (TRANSMITTER)	
6.6.1 METHOD OF MEASUREMENT (CONDUCTED EMISSIONS)	
6.6.2 TEST RESULTS (CONDUCTED EMISSIONS)	27

Contents (continued):	Page
6.7 BAND-EDGE COMPLIANCE	31
6.7.1 METHOD OF MEASUREMENT (BAND-EDGE COMPLIANCE (RADIATED))	31
6.7.2 TEST RESULT (BAND-EDGE COMPLIANCE (RADIATED))	32
6.8 RADIATED EMISSIONS	36
6.8.1 METHOD OF MEASUREMENT (RADIATED EMISSIONS)	36
6.8.2 TEST RESULTS (RADIATED EMISSIONS)	43
6.8.2.1 PRELIMINARY MEASUREMENT (9 kHz to 25 GHz)	43
6.8.2.2 FINAL MEASUREMENT (1 GHz to 25 GHz)	52
6.9 CONDUCTED EMISSIONS ON POWER SUPPLY LINES (150 kHz to 30 MHz)	55
6.9.1 METHOD OF MEASUREMENT	55
6.9.2 TEST RESULTS (CONDUCTED EMISSIONS ON POWER SUPPLY LINES)	56
7 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	58
8 LIST OF ANNEXES	59

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008

1 IDENTIFICATION

1.1 APPLICANT

Name:	connectBlue AB	
Address:	Norra Vallgatan 64 3V	
	Malmö SE-211 19	
Country:	Sweden	
Name for contact purposes:	Mr. Martin Engdahl	
Tel:	+ 46 40 63 07 100	
Fax:	+ 46 40 23 71 37	
e-mail address:	martin.engdahl@connectblue.se	

1.2 MANUFACTURER

Name:	connectBlue AB
Address:	Norra Vallgatan 64 3V
	Malmö SE-211 19
Country:	Sweden
Name for contact purposes:	Mr. Martin Engdahl
Tel:	+ 46 40 63 07 100
Fax:	+ 46 40 23 71 37
e-mail address:	martin.engdahl@connectblue.se

1.3 DATES

Date of receipt of test sample:	21 July 2008
Start of test:	21 July 2008
End of test:	21 August 2008

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 4 of 59

1.4 TEST LABORATORY

The tests were carried out at: PHOENIX TESTLAB GmbH

Königswinkel 10

D-32825 Blomberg Phone: +49 (0) 52 35 / 95 00-0 Germany Fax: +49 (0) 52 35 / 95 00-10

Test engineer: Dieter SÜTTHOFF 24 September 2008

Name Signature Date

Test report checked: Bernd STEINER 24 September 2008

Name Signature Date

PHOENIX TESTLAB GmbH Königswinkel 10 32825 Blomberg Tel. 0 52 35 / 95 00-0 Fax 0 52 35 / 95 00-10

Stamp

1.5 RESERVATION

This test report is only valid in its original form.

Any reproduction of its contents without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT REFERENCE.

1.6 NORMATIVE REFERENCES

- [1] **ANSI C63.4:2003** American National Standard for Methods of Measuring of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- [2] FCC 47 CFR Part 2 General Rules and Regulations
- [3] FCC 47 CFR Part 15 Radio Frequency Devices (Subpart B)
- [4] **RSS-210 Issue 7 June 2007** Low power Licence-Exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment
- [5] **RSS-Gen Issue 2 June 2007** General Requirements and Information for the Certification of Radiocommunication Equipment

1.7 TEST RESULTS

The requirements of this test document are fulfilled by the equipment under test with the measures described in chapter 4. The complete test results are presented in the following.

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 5 of 59

2 TECHNICAL DATA OF EQUIPMENT

2.1 DEVICE UNDER TEST

Type of equipment: *	Bluetooth module
Type designation: *	cB-OHCI406
FCC ID: *	PVH092102
IC: *	5325A-092102
Antenna type: *	FR05-01-N-0-104, Internal Patch SMD
Antenna gain: *	+0.3 dBi
Antenna connector: *	UFL connector (not in use)
Power supply: *	2.7 V DC to 3.6 V DC
Bluetooth standard: *	v2.1 + EDR
Type of modulation: *	Frequency Hopping Spread Spectrum (FHSS)
	GFSK (1Mbit/s), p/4-DQPSK (2Mbit/s), 8DPSK (3Mbit/s)
Operating frequency range:*	2.402 to 2.480 GHz
Number of channels: *	79
Temperature range: *	-30 °C to 85 °C

^{*:} declared by the applicant

Bluetooth operates in the unlicensed ISM band at 2.4 GHz. In North America (USA and Canada) a band with a width of 83.5 MHz is available. In this band 79 RF channels spaced 1 MHz apart are defined. The channel is represented by a pseudo random hopping sequence through the 79 channels. The normally occupancy time of one frequency will be $625 \, \mu s$. The ordinary hopping rate will be $1600 \, hops/s$. All frequencies will be used equally.

Used antennas:

model name*	Antenna type	Rated Antenna gain*
FR05-01-N-0-104	internal	+0.3 dBi

^{*:} declared by the applicant

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 6 of 59

The following external I/O cables were used:

Cable	Length	Shielding	Connector
DC in	2 m *	No	6.3 mm jack plug

^{*:} Length during the test if no other specified.

2.2 PERIPHERY DEVICES

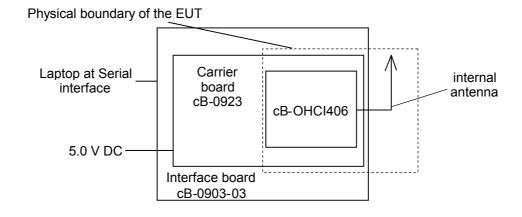
The following equipment was used as control unit and ancillary equipment:

- The Bluetooth module was connected to a carrier board (cB-0923), which was delivered by the applicant The carrier board was supplied via an external power supply with 5.0 V DC.
- The EUT with carrier board was mounted on a interface board (cB-0903-03) to adapt the serial interface RS-232 signal levels from the PC to the logic levels of the EUT.
- A personal computer with a terminal-software was connected temporary to the carrier board, for setting the equipment into the necessary operation mode. During the measurement procedures the personal computer was disconnected.

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 7 of 59

3 OPERATIONAL STATES AND PHYSICAL BOUNDARIES

The EUT is intended to be used in several bluetooth applications. Because the cB-OHCI406 is a module, which will be implemented in a final application, it was mounted on a carrier board to change the operation modes of the EUT from a Laptop with test software. The tests were carried out with one unmodified sample with an internal antenna (sample marked with "4")


During the tests the test sample was powered by an external power supply via the carrier board with 5.0 V DC.

If not otherwise stated, for modulating the transmitter, a pseudo random bit sequence with a length of 27 byte and with a pattern type DH5 was used.

For selecting an operation mode, a personal computer with a software delivered by the applicant was connected to the carrier board. After adjusting the operating mode, the personal computer was removed. To do this the test-engineer was instructed by the applicant.

The following operation modes were used during the tests:

Operation mode	Description of the operation mode	Modulation	Data rate / Mbps
1	Continuous transmitting on 2402 MHz	GFSK	1
1a		p/4-DQPSK	2
1b		8DPSK	3
2	Continuous transmitting on 2441 MHz	GFSK	1
2a		p/4-DQPSK	2
2b		8DPSK	3
3	Continuous transmitting on 2480 MHz	GFSK	1
3a		p/4-DQPSK	2
3b		8DPSK	3
4	Transmitter hopping on all channels	Auto	Auto
5	Continuous receiving on 2441 MHz		

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 8 of 59

The following testmodes were done during the tests:

Preliminary teats were performed in different data rate to find worst radiation emission. The data rate shown in the table below it the worst case rate with respect to specific test item. Investigation has been done on all the possible configurations for searching the worst case. The following table is a list of the test modes shown in this report.

Test items	Operation mode
20 dB bandwitdh	1b, 2b, 3b (3 MBps)
Carrier frequency separation	1b, 2b, 3b (3 MBps)
Number of hopping channels	1, 2, 3 (1 MBps)
Dwell time	1, 2, 3 (1 MBps)
Maximum peak output power	1, 1a, 1b, 2, 2a, 2b, 3, 3a and 3b (1-, 2- and 3 MBps)
Conducted emissions (transmitter)	1, 2, 3 (1 MBps)
Band edge compliance (radiated)	1b, 3b (3 MBps), 4
Radiated emissions (transmitter)	1, 2, 3 (1 MBps)
Conducted emissions on supply line	4
Radiated emissions (receiver)	5

4 ADDITIONAL INFORMATION

Measures to fullfill the requirements

Antenna matching: 2.2 pF pass element, 2.2 nH shunt element.

Power setting ext.: 255, power setting int.: 58

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 9 of 59

5 APPLICATION OVERVIEW

	_		RSS 210, Issue 7 [4]		
Application	Frequency range	FCC 47 CFR	or	Status	Refer page
	[MHz]	Part 15 section	RSS-Gen, Issue 2 [5]		
20 dB bandwitdh	General	15.247 (a) (1)	A8.1 (b) [4]	Passed	11 et seq.
Carrier frequency separation	General	15.247 (a) (1)	A8.1 (b) [4]	Passed	14 et seq.
Number of hopping channels	2400.0 - 2483.5	15.247 (a) (1) (iii)	A8.1 (d) [4]	Passed	17 et seq.
Dwell time	2400.0 - 2483.5	15.247 (a) (1) (iii)	A8.1 (d) [4]	Passed	19 et seq.
Maximum peak output power	2400.0 – 2483.5	15.247 (b) (1)	A8.4 (2) [4]	Passed	23 et seq.
Conducted emissions (transmitter)	0.009 - 25,000	15.247 (d)	A8.5 [4]	Passed	26 et seq.
Band edge compliance (radiated)	2400.0 – 2483.5	15.247 (d)	A8.5 [4]	Passed	31 et seq.
Radiated emissions (transmitter)	0.009 - 25,000	15.205 (a) 15.209 (a)	A8.5 [4] 2.6 [4]	Passed	35 et seq.
Conducted emissions on supply line	0.15 - 30	15.207 (a)	7.2.2 [5]	Passed	55 et seq.
Radiated emissions (receiver)	0.009 - 25,000	15.109 (a)	6 [5] 2.6 [4]	Passed	1 et seq. of R080826E01 Annex D

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 10 of 59

6 TEST RESULTS

6.1 20 dB BANDWIDTH

6.1.1 METHOD OF MEASUREMENT (20 dB BANDWIDTH)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disenabled, the transmitter shall work with its maximum data rate.

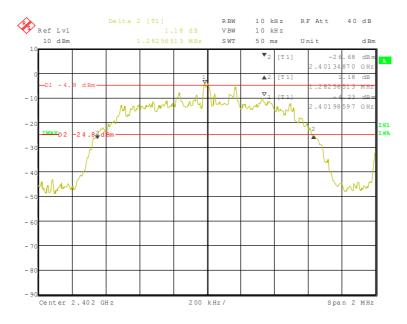
The following spectrum analyser settings shall be used:

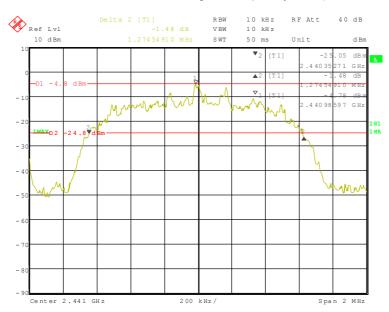
- Span: App. 2 to 3 times the 20 dB bandwidth, centred on the actual hopping channel.
- Resolution bandwidth: ≥ 1 % of the 20 dB bandwidth.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The first display line has to be set on this value. The second display line has to be set 20 dB below the first line (or the peak marker). The frequency lines shall be set on the intersection points between the second display line and the measured curve.

The measurement will be performed at the upper, the lower end and the middle of the assigned frequency band.

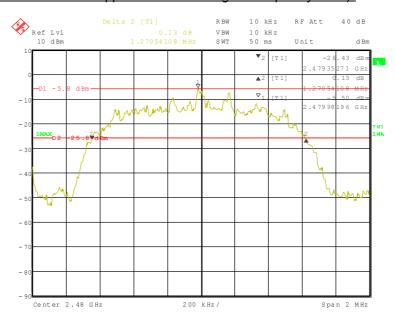
Test set-up:


Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 11 of 59


6.1.2 TEST RESULTS (20 dB BANDWIDTH)

Ambient temperature	22 °C	Relative humidity	55 %
---------------------	-------	-------------------	------

8082626e.wmf: (20 dB bandwidth at the lower end of the assigned frequency band):


8082628e.wmf: (20 dB bandwidth at the middle of the assigned frequency band):

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 12 of 59

8082627e.wmf: (20 dB bandwidth at the upper end of the assigned frequency band):

Channel number Channel frequency [MHz]		20 dB bandwidth [kHz]
0	2402	1282.565
39	2441	1274.549
78	2480	1270.541

TEST EQUIPMENT USED FOR THE TEST:

31, 46, 54	
31, 40, 34	

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 13 of 59

6.2 CARRIER FREQUENCY SEPARATION

6.2.1 METHOD OF MEASUREMENT (CARRIER FREQUENCY SEPARATION)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser settings shall be used:

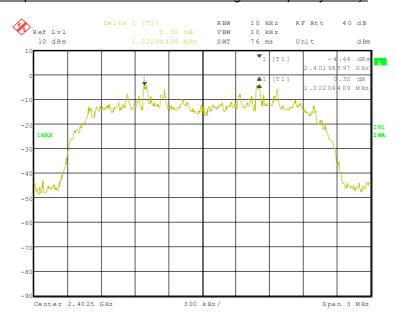
- Span: Wide enough to capture the peaks of two adjacent channels.
- Resolution bandwidth: ≥ 1 % of the span.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.Trace mode: Max hold.

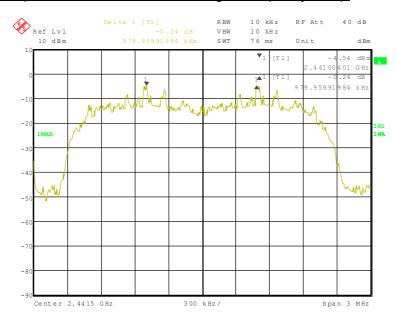
After trace stabilisation the marker and the delta marker function will be used to determine the separation between the peaks of two adjacent channel signals.

The measurement will be performed at the upper, the lower end and the middle of the assigned frequency band.

Test set-up:

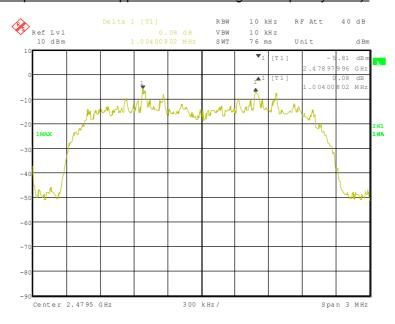
EUT	Spectrum analyser


Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 14 of 59


6.2.2 TEST RESULTS (CARRIER FREQUENCY SEPARATION)

Ambient temperature	22 °C		Relative humidity	60 %	ì
---------------------	-------	--	-------------------	------	---

80826_29.wmf: (channel separation at the lower end of the assigned frequency band):


8082630e.wmf: (channel separation at the middle of the assigned frequency band):

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 15 of 59

80826_31.wmf: (channel separation at the upper end of the assigned frequency band):

Channel number	Channel frequency [MHz]	Channel separation [kHz]	Minimum limit [kHz]
0	2402	1002.004	855.043 (2/3 * 20 dB bandwidth)
39	2441	997.996	849.699 (2/3 * 20 dB bandwidth)
78	2480	1002.004	847.027 (2/3 * 20 dB bandwidth)

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

31, 46, 54

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 16 of 59

6.3 NUMBER OF HOPPING FREQUENCIES

6.3.1 METHOD OF MEASUREMENT (NUMBER OF HOPPING FREQUENCIES)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

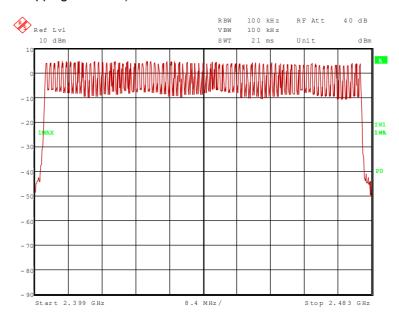
The following spectrum analyser settings shall be used:

- Span: Equal to the assigned frequency band.
- Resolution bandwidth: ≥ 1 % of the span.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: Peak.
- Trace mode: Max hold.

After trace stabilisation the number of hopping channels could be counted. It might be possible to divide the span into some sub ranges in order to clearly show all hopping frequencies.

Test set-up:

EUT	Spectrum analyser


Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 17 of 59

6.3.2 TEST RESULTS (NUMBER OF HOPPING FREQUENCIES)

Ambient temperature	22 °C	Relative humidity	60 %
---------------------	-------	-------------------	------

80826_32.wmf (number of hopping channels):

Number of hopping channels	Limit
79	At least 15

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

31, 46, 54

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 18 of 59

6.4 DWELL TIME

6.4.1 METHOD OF MEASUREMENT (DWELL TIME)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser settings shall be used:

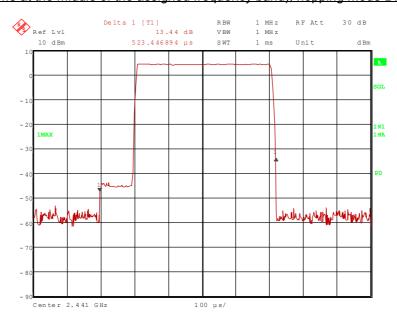
- Span: Zero, centred on a hopping channel.
- Resolution bandwidth: 1 MHz.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: As necessary to capture the entire dwell time per hopping channel.
- Detector function: peak.
- Trace mode: Max hold.

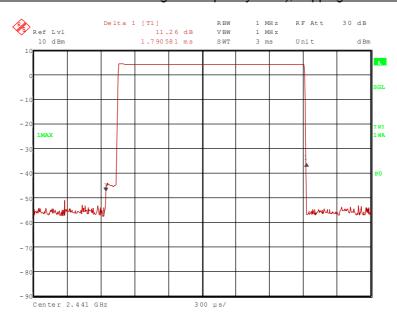
The marker and delta marker function of the spectrum analyser will be used to determine the dwell time.

The measurement will be performed at the upper and lower end and the middle of the assigned frequency band.

If the EUT is possible to operate with different mode of operation (data rates, modulation formats etc.) the test will be repeated with every different operation mode of the EUT.

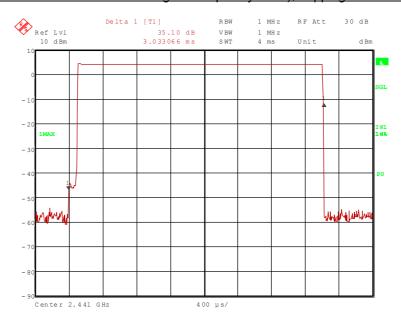
Test set-up:


Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 19 of 59


6.4.2 TEST RESULTS (DWELL TIME)

Ambient temperature	22 °C		Relative humidity	60 %
---------------------	-------	--	-------------------	------

80826_33.wmf: Dwell time at the middle of the assigned frequency band), hopping mode DM1:


80826 34.wmf: Dwell time at the middle of the assigned frequency band), hopping mode DM3:

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 20 of 59

80826_35.wmf: Dwell time at the middle of the assigned frequency band), hopping mode DH5:

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 21 of 59

The dwell time is calculated with the following formula:

Dwell time = $t_{pulse} \times n_{hops}$ / number of hopping channels x 31.6 (equal to 0.4 s x number of hopping channels)

Where:

 t_{pulse} is the measured pulse time (pls. refer the plots of the spectrum analyser above) [s], n_{hops} is the number of hops per second in the actual operating mode of the transmitter [1/s].

The hopping rate of the system is 1600 hops per second and the system uses 79 channels. For this reason one time slot has a length of $625 \, \mu s$.

With the used hopping mode (DM1) a packet need 1 timeslot for transmitting and the next timeslot for receiving. So the system makes in worst case 800 hops per second in transmit mode ($n_{hops} = 800 \text{ 1/s}$).

With the used hopping mode (DM3) a packet need 3 timeslots for transmitting and the next timeslot for receiving. So the system makes in worst case 400 hops per second in transmit mode (n_{hops} = 400 1/s).

With the used hopping mode (DH5) a packet need 5 timeslots for transmitting and the next timeslot for receiving. So the system makes in worst case 300 hops per second in transmit mode ($n_{hoos} = 266.7 \text{ 1/s}$).

	Hopping mode DM1					
Channel number	Channel frequency [MHz]	t _{pulse} [μ s]	Dwell time [ms]	Limit [ms]		
39	2441	523.447	167.503	400		
		Hopping mode DI	M3			
Channel number	Channel frequency [MHz]	t _{oulse} [µs]	Dwell time [ms]	Limit [ms]		
39	2441	1790.581	286.493	400		
		Hopping mode DI	H5			
Channel number	Channel frequency [MHz]	t _{oulse} [µs]	Dwell time [ms]	Limit [ms]		
39	2441	3033.066	323.527	400		
Measurement uncertainty			<1	0 ⁻⁷		

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

31, 46, 54

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 22 of 59

6.5 MAXIMUM PEAK OUTPUT POWER

6.5.1 METHOD OF MEASUREMENT (MAXIMUM PEAK OUTPUT POWER)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disenabled.

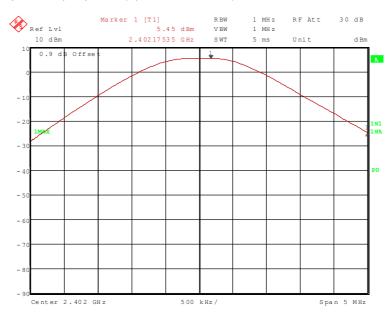
The following spectrum analyser settings shall be used:

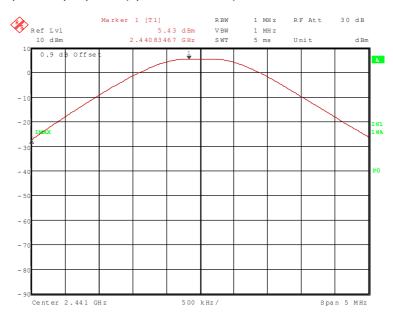
- Span: Approx. 5 times the 20 dB bandwidth, centred on a hopping channel.
- Resolution bandwidth: > the 20 dB bandwidth of the emission being measured.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The indicated level is the peak output power, which has to be corrected with the value of the cable loss and an external attenuation (if necessary).

The measurement will be performed at the upper and lower end and the middle of the assigned frequency band.

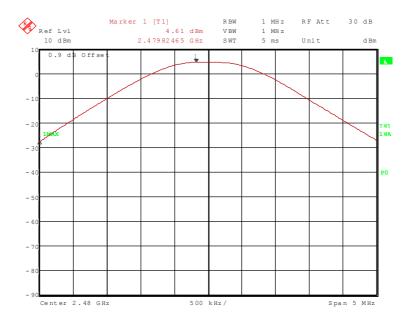
Test set-up:


Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 23 of 59


6.5.2 TEST RESULTS (MAXIMUM PEAK OUTPUT POWER)

Ambient temperature	22 °C		Relative humidity	60 %	
---------------------	-------	--	-------------------	------	--

80826_37.wmf Maximum peak output power (operation mode 1):


80826_38.wmf Maximum peak output power (operation mode 2):

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 24 of 59

80826_39.wmf Maximum peak output power (operation mode 3):

Operaton mode	Channel number	Channel frequency [MHz]	Maximum peak output power [dBm]	Antenna gain [dBi]	Peak power limit [dBm]
1	0	2402	5.5	0.3	30.0
1a			3.8		
1b			3.8		
2	39	2441	5.4	0.3	30.0
2a			4.9		
2b			5.4		
3	78	2480	4.6	0.3	30.0
3a			3.5		
3b			4.3		

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

31, 46, 54

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 25 of 59

6.6 CONDUCTED EMISSIONS (TRANSMITTER)

6.6.1 METHOD OF MEASUREMENT (CONDUCTED EMISSIONS)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disenabled.

The following spectrum analyser settings shall be used:

In the frequency range from 9 kHz to 1 MHz:

- Start frequency: 9 kHz.
- Stop frequency: 1 MHz.
- Resolution bandwidth: 200 Hz.
- Video bandwidth: 200 Hz.
- Sweep: Auto.
- Detector function: Peak.
- Trace mode: Max hold.

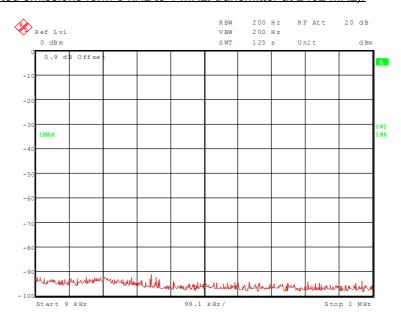
In the frequency range from 1 MHz to 25 GHz:

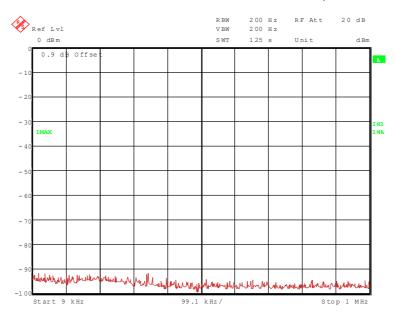
- Start frequency: 1 MHz.
- Stop frequency: 25 GHz.
- Resolution bandwidth: 100 kHz.
- Video bandwidth: 100 kHz.
- Sweep: Auto.
- Detector function: Peak.
- Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The first display line has to be set 20 dB below the peak marker. Every emission has to be below the display line.

The measurement will be performed with the EUT operates at the middle, the upper and lower end of the assigned frequency band and with hopping off.

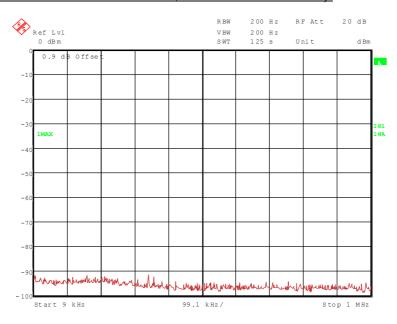
Test set-up:

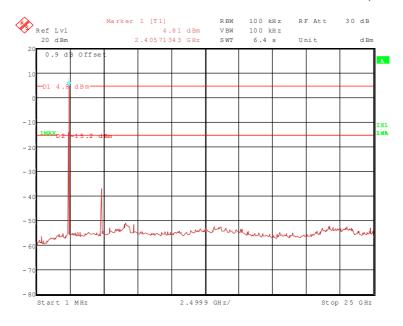

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 26 of 59


6.6.2 TEST RESULTS (CONDUCTED EMISSIONS)

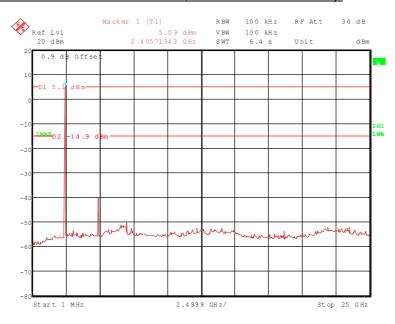
Ambient temperature	20 °C		Relative humidity	55 %	
---------------------	-------	--	-------------------	------	--

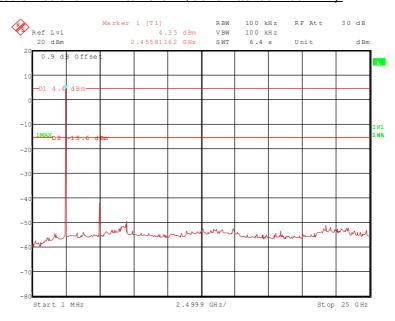
80826_45.wmf (conducted emissions form 9 kHz to 1 MHz, transmitter at 2402 MHz):


80826_46.wmf (conducted emissions 9 kHz to 1 MHz, transmitter at 2441 MHz):


Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 27 of 59

80826_47.wmf (conducted emissions 9 kHz to 1 MHz, transmitter at 2480 MHz):


80826 50.wmf (conducted emissions form 1 MHz to 25 GHz, transmitter at 2402 MHz):


Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 28 of 59

80826_49.wmf (conducted emissions 1 MHz to 25 GHz, transmitter at 2441 MHz):

80826 48.wmf (conducted emissions 1 MHz to 25 GHz, transmitter at 2480 MHz):

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 29 of 59

Conducted emissions with transmitter operates at 2402 MHz									
Frequency	Result dBm	Limit dBm	Margin Reading C		Cable loss dB *	Reference level [dBm]			
4.804 GHz	-36.8	-15.2	21.6	-37.0	0.2	4.8			
Conducted emissions with transmitter operates at 2441 MHz									
Frequency	Result dBm	Limit dBm	Margin dB	Reading dBm	Cable loss dB *	Reference level [dBm]			
4.882 GHz	-40.0	-14.9	25.1	-40.2	0.2	5.1			
	Condu	cted emissi	ons with tra	nsmitter opera	tes at 2480 MHz	<u>.</u>			
Frequency	Result dBm	Limit dBm	Margin dB	Reading dBm	Cable loss dB *	Reference level [dBm]			
4.960 GHz	-41.3	-15.6	25.7	-41.5	0.2	4.4			

*.	Cable loss	including	the display	offset	(0.0 dB)
	Cubic 100	, ii ioiaaii ig	ti ic diopid	OHOCE	(O.O GD)

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

31, 46, 54

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 30 of 59

6.7 BAND-EDGE COMPLIANCE

6.7.1 METHOD OF MEASUREMENT (BAND-EDGE COMPLIANCE (RADIATED))

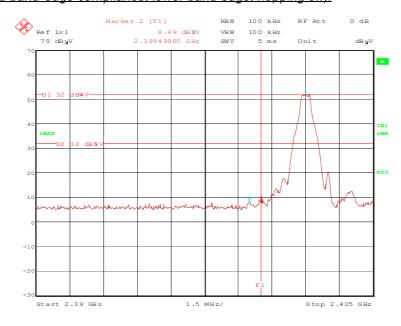
The same test set-up as used for the final radiated emission measurement shall be used (refer also subclause 5.8.1 of this test report). The measurements shall be carried out with using a resolution bandwidth of 100 kHz.

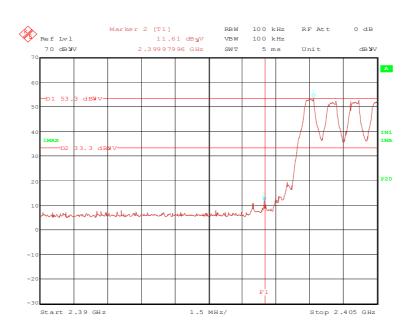
The following spectrum analyser settings shall be used:

- Span: Wide enough to capture the peak level of the emission on the channel closest to the band-edge, as well as any modulation products, which fall outside the assigned frequency band.
- Resolution bandwidth: 100 kHz.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: Peak.Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The first display line has to be set on this value. The second display line has to be set 20 dB below the first line (or the peak marker). The frequency line shall be set on the edge of the assigned frequency band. Set the second marker on the emission at the band-edge, or on the highest modulation product outside of the band, if this level is higher than that at the band-edge. This frequency shall be measured with the EMI receiver as described in subclause 5.8.1 of this test report, but 100 kHz resolution bandwidth shall be used.

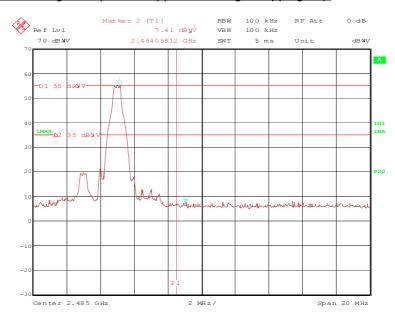
The measurement will be performed at the upper end of the assigned frequency band and with hopping on and off.

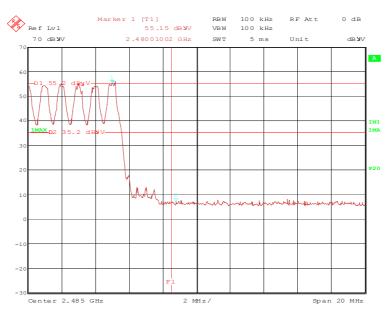

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 31 of 59


6.7.2 TEST RESULT (BAND-EDGE COMPLIANCE (RADIATED))

Ambient temperature	20 °C		Relative humidity	56 %
---------------------	-------	--	-------------------	------

80826_40.wmf (radiated band-edge compliance, lower band edge, hopping off):


80826_41.wmf (radiated band-edge compliance, lower band edge, hopping on):


Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 32 of 59

80826_41.wmf (radiated band-edge compliance, upper band edge, hopping off):

80826_42.wmf (radiated band-edge compliance, upper band edge, hopping on):

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 33 of 59

The plots on the page before are showing the radiated band-edge compliance for the upper band-edge, with and without hopping. The display line 1 (D1) in these plots represents the highest level within the assigned frequency band. The display line 2 (D2) represents the 20 dB offset to this highest level and shows the compliance with FCC 47 CFR Part 15.247 (d). The frequency line 1 (F1) shows the edge of the assigned frequency.

	Band-edge compliance (lower band edge, hopping disenabled)									
	Result measured with the peak detector:									
Frequency	Corr.	Limit	Margin	Readings	Antenna factor	Preamp	Cable	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
2.441	88.9	-	-	56.3	28.9	0.0	3.7	150	Vert.	carrier
2.400	45.5	74.0	28.5	12.8	29.0	0.0	3.7	150	Vert.	No
		F	Result me	easured with	the avera	ge detecto	r:			
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
2.402	83.9	-	-	51.4	28.8	0.0	3.7	150	Hor.	carrier
2.400	39.6	63.9	24.3	7.9	28.8	0.0	3.7	150	Vert.	No
		Measure	ement un	certainty				+2.2 dB	/ -3.6 dE	3

	Band-edge compliance (lower band edge, hopping enabled)									
	Result measured with the peak detector:									
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
2.441	88.9	ı	-	56.3	28.9	0.0	3.7	150	Vert.	carrier
2.400	46.3	74.0	27.7	14.6	28.8	0.0	3.7	150	Vert.	No
		F	Result me	easured with	the avera	ge detecto	r:			
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
2.402	47.1	ı	-	14.6	28.8	0.0	3.7	150	Hor.	carrier
2.400	24.6	54.0	29.4	-7.9	28.8	0.0	3.7	150	Vert.	No
		Measure	ement un	certainty				+2.2 dB	/ -3.6 dE	3

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 34 of 59

	Band-edge compliance (upper band edge, hopping disenabled)									
	Result measured with the peak detector:									
Frequency GHz	Corr. value dBµV/m	Limit dBµV/m	Margin dB	Readings dB _µ V	Antenna factor 1/m	Preamp dB	Cable loss dB	Height cm	Pol.	Restr. Band
2.480	90.4	-	-	57.6	29.0	0.0	3.8	150	Vert.	carrier
2.484	42.8	74.0	31.2	10.0	29.0	0.0	3.8	150	Vert.	Yes
		F	Result me	easured with	the avera	ge detecto	r:			
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
2.480	87.4	-	-	54.6	29.0	0.0	3.8	150	Vert.	carrier
2.484	39.8	54.0	14.2	7.0	29.0	0.0	3.8	150	Vert.	Yes
		Measure	ement un	certainty				+2.2 dB	/ -3.6 dE	3

	Band-edge compliance (upper band edge, hopping enabled)										
	Result measured with the peak detector:										
Frequency	Corr.	Limit	Margin	Readings	Antenna	Preamp	Cable	Height	Pol.	Restr.	
	value				factor		loss			Band	
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm			
2.480	90.4	-	-	57.6	29.0	0.0	3.8	150	Vert.	carrier	
2.480	42.6	74.0	26.2	9.8	29.0	0.0	3.8	150	Vert.	Yes	
		F	Result me	easured with	n the avera	ge detecto	r:				
Frequency	Corr.	Limit	Margin	Readings	Antenna	Preamp	Cable	Height	Pol.	Restr.	
611	value				factor		loss			Band	
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm			
2.480	43.2	ı	-	10.4	29.0	0.0	3.8	150	Vert.	carrier	
2.480	27.0	54.0	27.0	-5.8	29.0	0.0	3.8	150	Vert.	Yes	
		Measure	ement un	certainty				+2.2 dB	/ -3.6 dE	3	

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

 $29,\,31-37,\,39,\,43,\,46,\,49-51,\,54$

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 35 of 59

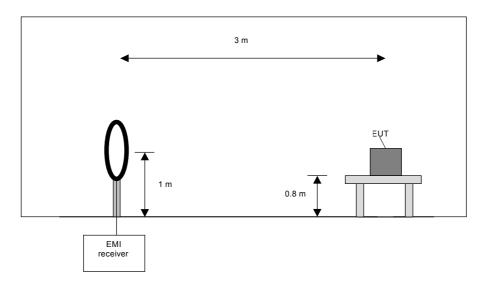
6.8 RADIATED EMISSIONS

6.8.1 METHOD OF MEASUREMENT (RADIATED EMISSIONS)

The radiated emission measurement is subdivided into five stages.

- A preliminary measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 9 kHz to 1 GHz.
- A final measurement carried out on an outdoor test side without reflecting ground plane and a fixed antenna height in the frequency range 9 kHz to 30 MHz.
- A final measurement carried out on an open area test side with reflecting ground plane and various antenna height in the frequency range 30 MHz to 1 GHz.
- A preliminary measurement carried out in a fully anechoic chamber with a variable antenna distance and height in the frequency range 1 GHz to 25 GHz.
- A final measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 1 GHz to 25 GHz.

All measurements will be carried out with the EUT working on the middle and upper and lower edge of the assigned frequency band. For this reason the hopping function of the EUT has to be disenabled.


Preliminary measurement (9 kHz to 30 MHz):

In the first stage a preliminary measurement will be performed in a shielded room with a measuring distance of 3 meters. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003 [1].

The frequency range 9 kHz to 30 MHz will be monitored with a spectrum analyser while the system and its cables will be manipulated to find out the configuration with the maximum emission levels if applicable. The EMI Receiver will be set to MAX Hold mode. The EUT and the measuring antenna will be rotated around their vertical axis to found the maximum emissions.

The resolution bandwidth of the spectrum analyser will be set to the following values:

Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	10 kHz

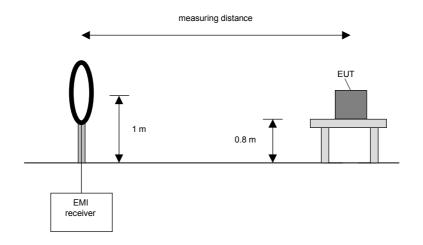
Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 36 of 59

Preliminary measurement procedure:

Prescans were performed in the frequency range 9 kHz to 150 kHz and 150 kHz to 30 MHz.

The following procedure will be used:

- 1) Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2) Manipulate the system cables within the range to produce the maximum level of emission.
- 3) Rotate the EUT by 360 ° to maximize the detected signals.
- 4) Make a hardcopy of the spectrum.
- 5) Measure the frequencies of highest detected emission with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 6) Repeat steps 1) to 5) with the other orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).
- 7) Rotate the measuring antenna and repeat steps 1) to 5).


Final measurement (9 kHz to 30 MHz):

In the second stage a final measurement will be performed on an open area test site with no conducting ground plane in a measuring distances of 3 m, 10 m and 30 m. In the case where larger measuring distances are required the results will be extrapolated based on the values measured on the closer distances according to Section 15.31 (f) (2) [2]. The final measurement will be performed with a EMI Receiver set to Quasi Peak detector except for the frequency bands 9 kHz to 90 kHz and 110 kHz to 490 kHz where an average detector will be used according Section 15.209 (d) [2].

On the during the preliminary measurement detected frequencies the final measurement will be performed while rotating the EUT and the measuring antenna in the range of 0 ° to 360 ° around their vertical axis until the maximum value is found.

The resolution bandwidth of the EMI Receiver will be set to the following values:

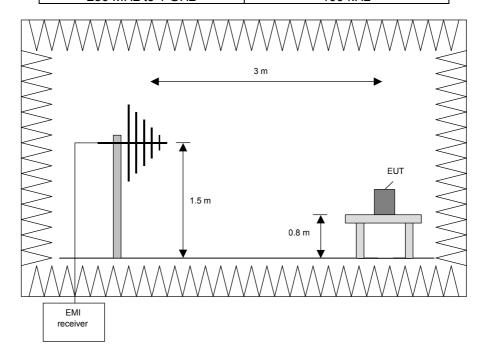
Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 37 of 59

Final measurement procedure:

The following procedure will be used:

- 1) Monitor the frequency range with the measuring antenna at vertical orientation parallel to the EUT at an azimuth of 0 °
- 2) Rotate the EUT by 360 ° to maximize the detected signals and note the azimuth and orientation.
- 3) Rotate the measuring antenna to find the maximum and note the value.
- 4) Rotate the measuring antenna and repeat steps 1) to 3) until the maximum value is found.
- 5) Repeat steps 1) to 4) with the other orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).


Preliminary measurement (30 MHz to 1 GHz)

In the first stage a preliminary measurement will be performed in a fully anechoic chamber with a measuring distance of 3 meter. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003 [1].

The frequency range 30 MHz to 1 GHz will be measured with an EMI Receiver set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 °.

The resolution bandwidth of the EMI Receiver will be set to the following values:

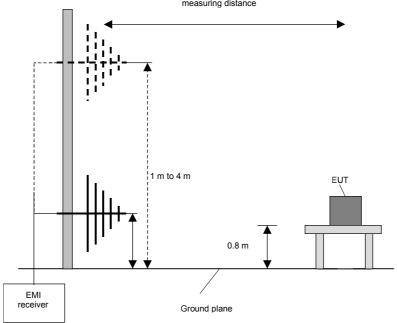
Frequency range	Resolution bandwidth
30 MHz to 230 MHz	100 kHz
230 MHz to 1 GHz	100 kHz

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 38 of 59

Procedure preliminary measurement:

Prescans were performed in the frequency range 30 MHz to 230 MHz and 230 MHz to 1 GHz. The following procedure will be used:

- 1. Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2. Manipulate the system cables within the range to produce the maximum level of emission.
- 3. Rotate the EUT by 360 ° to maximize the detected signals.
- 4. Make a hardcopy of the spectrum.
- 5. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 6. Repeat 1) to 4) with the other orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).
- 7. Repeat 1) to 5) with the vertical polarisation of the measuring antenna.


Final measurement (30 MHz to 1 GHz)

A final measurement on an open area test site will be performed on selected frequencies found in the preliminary measurement. During this test the EUT will be rotated in the range of

0 ° to 360 °, the measuring antenna will be set to horizontal and vertical polarisation and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
30 MHz to 1 GHz	120 kHz
mea	suring distance

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 39 of 59

Procedure final measurement:

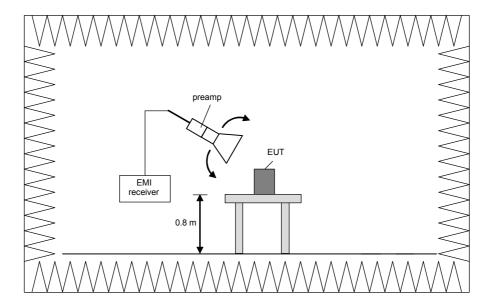
The following procedure will be used:

- 1) Measure on the selected frequencies at an antenna height of 1 m and a EUT azimuth of 23 °.
- 2) Move the antenna from 1 m to 4 m and note the maximum value at each frequency.
- 3) Rotate the EUT by 45 ° and repeat 2) until an azimuth of 337 ° is reached.
- 4) Repeat 1) to 3) for the other orthogonal antenna polarization.
- 5) Move the antenna and the turntable to the position where the maximum value is detected.
- 6) Measure while moving the antenna slowly +/- 1 m.
- 7) Set the antenna to the position where the maximum value is found.
- 8) Measure while moving the turntable +/- 45 °.
- 9) Set the turntable to the azimuth where the maximum value is found.
- 10) Measure with Final detector (QP and AV) and note the value.
- 11) Repeat 5) to 10) for each frequency.
- 12) Repeat 1) to 11) for each orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).

Preliminary and final measurement (1 GHz to 25 GHz)

This measurement will be performed in a fully anechoic chamber. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003 [1].

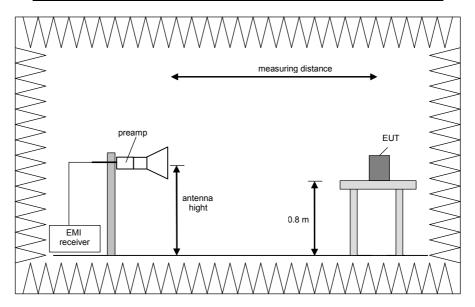
Preliminary measurement (1 GHz to 25 GHz)


The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The spectrum analyser set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna, the antenna close to the EUT and while moving the antenna over all sides of the EUT. With the spectrum analyser in CLEAR / WRITE mode the cone of the emission should be found and than the measuring distance will be set to 3 m with the receiving antenna moving in this cone of emission. At this position the final measurement will be carried out.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
1 GHz to 4 GHz	100 kHz
4 GHz to 12 GHz	100 kHz
12 GHz to 18 GHz	100 kHz
18 GHz to 25 GHz	100 kHz

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 40 of 59



Final measurement (1 GHz to 25 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1 MHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 ° in order to have the antenna inside the cone of radiation.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
1 GHz to 4 GHz	1 MHz
4 GHz to 12 GHz	1 MHz
12 GHz to 18 GHz	1 MHz
18 GHz to 25 GHz	1 MHz

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 41 of 59

Procedure of measurement:

The measurements were performed in the frequency range 1 GHz to 4 GHz, 4 GHz to 12 GHz, 12 GHz to 18 GHz and 18 GHz to 25 GHz.

The following procedure will be used:

- 1) Monitor the frequency range at horizontal polarisation and move the antenna over all sides of the EUT (if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarisation and repeat 1) with vertical polarisation.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear / Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3 m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarisation and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

Step 1) to 6) are defined as preliminary measurement.

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 42 of 59

6.8.2 TEST RESULTS (RADIATED EMISSIONS)

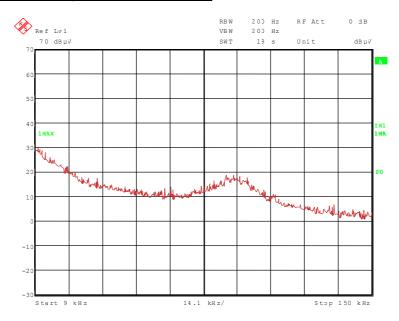
6.8.2.1 PRELIMINARY MEASUREMENT (9 kHz to 25 GHz)

Ambient temperature 25 C Relative numbers	Ambient temperature	23 °C	Relative humidity	57 %
---	---------------------	-------	-------------------	------

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The distance

between EUT and antenna was 3 m.

Cable guide: The cable of the EUT was fixed on the non-conducting table. For further information of

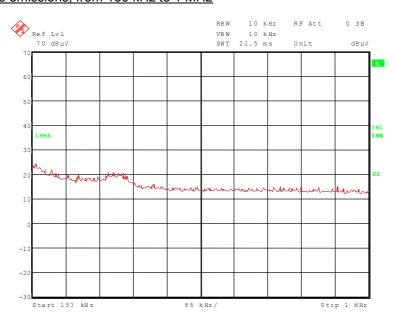

the cable guide refer to the pictures in annex A of this test report.

Test record: Where not otherwise stated the test was carried out in test mode 2 of the EUT, because

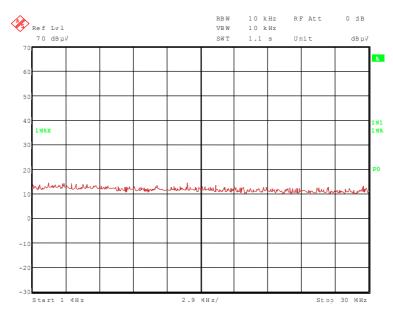
there was no difference to the other test modes. All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 5.0 V DC via the carrier board.

80826_17.wmf: Spurious emissions, from 9 kHz to 150 kHz

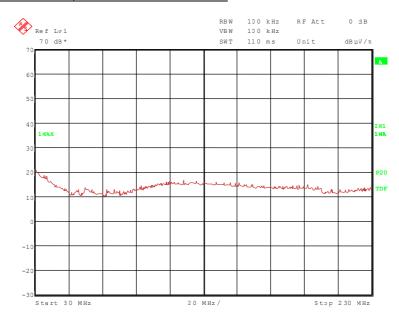

TEST EQUIPMENT USED FOR THE TEST:

29, 31 - 37, 39, 43, 46, 49 - 51, 54

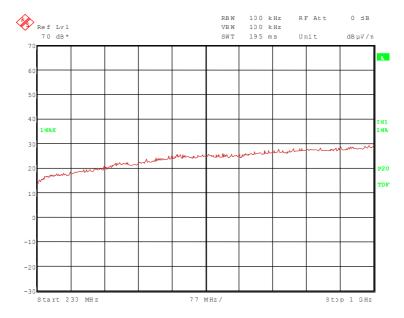

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 43 of 59

80826_18.wmf: Spurious emissions, from 150 kHz to 1 MHz

80826_19.wmf: Spurious emissions, from 1 MHz to 30 MHz

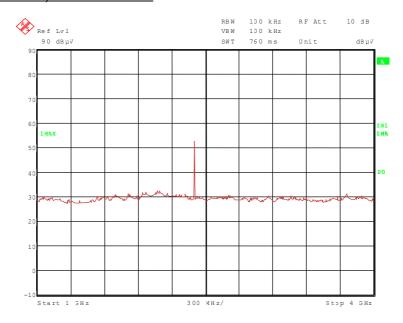


No significant frequencies above the noise floor of the system were found during the preliminary radiated emission test, so no measurements were carried out on the outdoor test site.

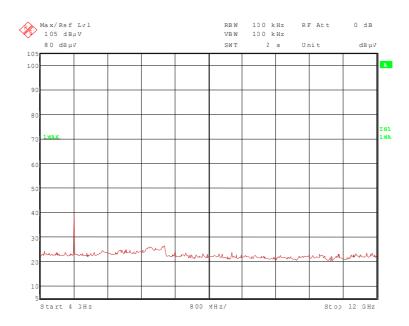

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 44 of 59

80826_15.wmf: Spurious emissions, from 30 MHz to 230 MHz

80826_16.wmf: Spurious emissions, from 230 MHz to 1 GHz

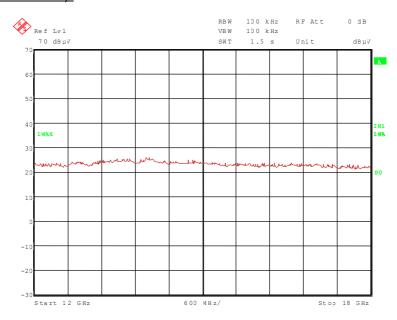

No significant frequencies above the noise floor of the system were found during the preliminary radiated emission test, so no measurements were carried out on the open area test site.

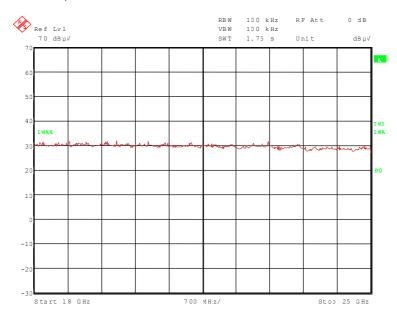
Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 45 of 59



Transmitter operates at the lower end of the assigned frequency band (operation mode 1)

80826_9.wmf (1 GHz to 4 GHz) internal antenna:


80826 11.wmf (4 GHz to 12 GHz):


Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 46 of 59

80826_22.wmf (12 GHz to 18 GHz):

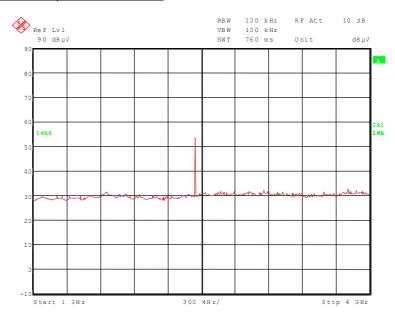
80826_23.wmf (18 GHz to 25 GHz):

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

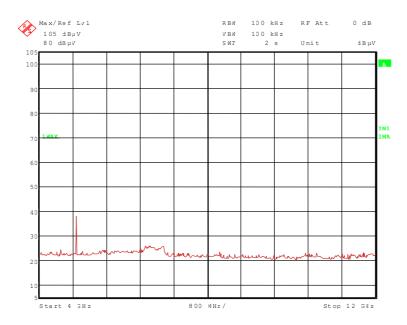
- 4.804 GHz

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- none

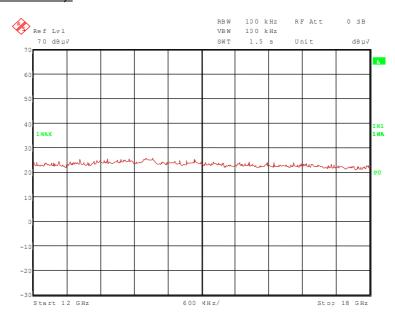

These frequencies have to be measured in a final measurement. The results were presented in the following.

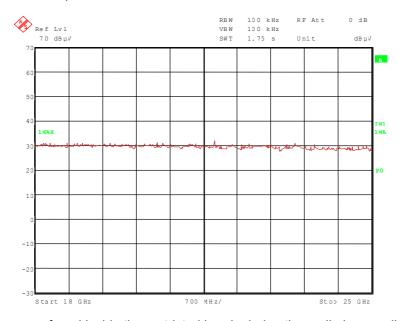
Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 47 of 59



Transmitter operates at the middle of the assigned frequency band (operation mode 2)

80826_14.wmf (4 GHz to 12 GHz) internal antenna:


80826 10.wmf (4 GHz to 12 GHz):


Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 48 of 59

80826_21.wmf (12 GHz to 18 GHz):

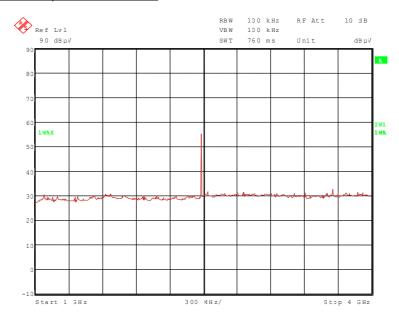
80826_20.wmf (18 GHz to 25 GHz):

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

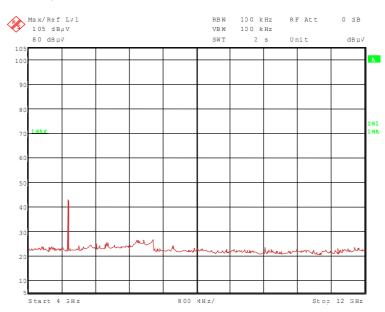
- 4.882 GHz

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- none

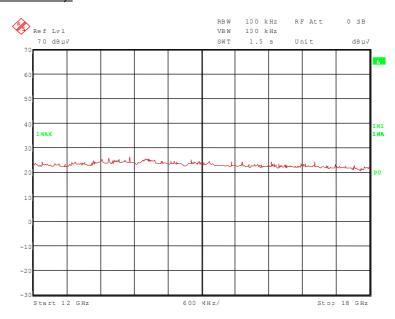

These frequencies have to be measured in a final measurement. The results were presented in the following.

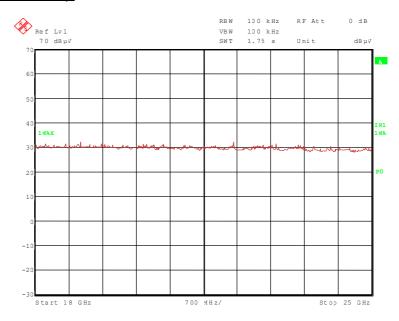
Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 49 of 59



Transmitter operates at the upper end of the assigned frequency band (operation mode 3)

80826_13.wmf (1 GHz to 4 GHz) internal antenna:


80826_12.wmf (4 GHz to 12 GHz):


Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 50 of 59

80826_25.wmf (12 GHz to 18 GHz):

80826 24.wmf (18 GHz to 25 GHz):

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

- 4.960 GHz

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- none

These frequencies have to be measured in a final measurement. The results were presented in the following.

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 51 of 59

6.8.2.2 FINAL MEASUREMENT (1 GHz to 25 GHz)

23 °C	Relative humidity	57 %
	23 °C	23 °C Relative humidity

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The distance

between EUT and antenna was 3 m.

Supply voltage: During all measurements the EUT was supplied with 5.0 V DC via the carrier board.

Resolution bandwidth: For all measurements a resolution bandwidth of 1 MHz was used.

Transmitter operates at the lower end of the assigned frequency band (operation mode 1)

Result measured with the peak detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
MHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
2402	86.8	-	-	54.3	28.8	0.0	5.3	150	Hor.	carrier
4804	66.8	74.0	7.2	53.5	33.7	25.7	5.3	150	Hor.	Yes
Measurement uncertainty							+2.2	dB / -3.6	dB	

Result measured with the average detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
MHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		Barra
2402	83.9	-	-	51.4	28.8	0.0	3.7	150	Hor.	carrier
4804	46.6	54.0	7.4	33.3	33.7	25.7	5.3	150	Hor.	Yes
	Measurement uncertainty							dB / -3.6	dB	

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 52 of 59

Transmitter operates at the middle of the assigned frequency band (operation mode 2)

Result measured with the peak detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable	Height	Pol.	Restr. Band
MHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	Cm		
2441	88.9	-	-	56.3	28.9	0.0	3.7	150	Vert.	cerrier
4882	67.0	74.0	7.0	53.6	33.8	25.7	5.3	150	Hor.	Yes
Measurement uncertainty							+2.2	dB / -3.6	dB	

Result measured with the average detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
MHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	Cm		
2441	85.9	-	-	53.3	28.9	0.0	3.7	150	Vert.	cerrier
4882	49.0	54.0	5.0	35.6	33.8	25.7	5.3	150	Hor.	Yes
Measurement uncertainty							+2.2	dB / -3.6	dB	

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 53 of 59

Transmitter operates at the upper end of the assigned frequency band (operation mode 3)

Result measured with the peak detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
MHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
2480	90.4	-	-	57.6	29.0	0.0	3.8	150	Vert.	cerrier
4960	66.5	74.0	7.5	52.8	34.0	25.6	5.3	150	Hor.	Yes
	Me	asuremen	t uncerta		+2.2	dB / -3.6	dB			

Result measured with the average detector:

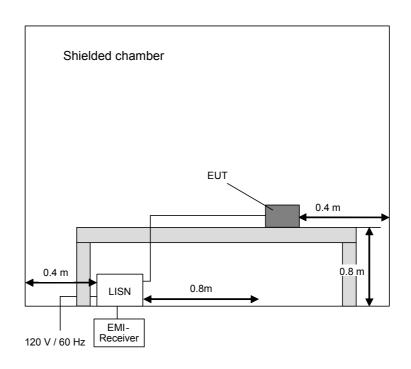
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
MHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
2480	87.4	-	-	54.6	29.0	0.0	3.8	150	Vert.	cerrier
4960	46.4	54.0	7.6	32.7	34.0	25.6	5.3	150	Hor.	Yes
Measurement uncertainty						+2.2	dB / -3.6	dB		

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

29, 31 - 37, 39, 43, 46, 49 - 51, 54

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 54 of 59


6.9 CONDUCTED EMISSIONS ON POWER SUPPLY LINES (150 kHz to 30 MHz)

6.9.1 METHOD OF MEASUREMENT

This test will be carried out in a shielded chamber. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm above the ground plane. Floor-standing devices will be placed directly on the ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003 [1].

The frequency range 150 kHz to 30 MHz will be measured with an EMI Receiver set to MAX Hold mode with peak and average detector and a resolution bandwidth of 9 kHz. A scan will be carried out on the phase (or plus pole in case of DC powered devices) of the AC mains network. If levels detected 10 dB below the appropriable limit, this emission will be measured with the average and quasi-peak detector on all lines.

Frequency range	Resolution bandwidth
150 kHz to 30 MHz	9 kHz

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 55 of 59

6.9.2 TEST RESULTS (CONDUCTED EMISSIONS ON POWER SUPPLY LINES)

Ambient temperature	21 °C	Relative humidity	58 %
7 ambient temperature		r tolative mannaty	00 70

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m.

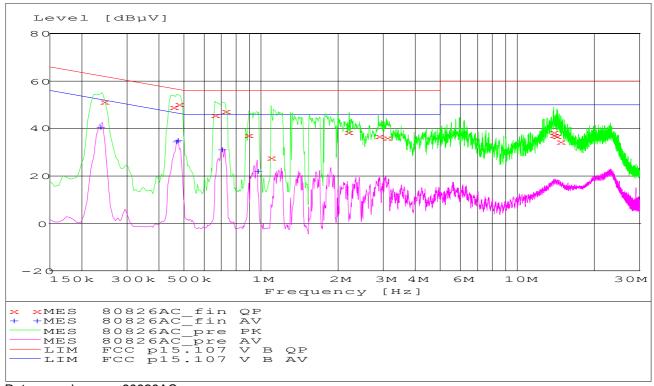
Cable guide: The cable of the EUT was fixed on the non-conducting table. For further information of

the cable guide refer to the pictures in annex A of this test report.

Test record: All results are shown in the following.

Title: Mains terminal disturbance voltage measurement

with protective ground conductor simulation


EUT: cB-OHCI406
Manufacturer: connectBlue AB
Operating Condition: 120 V / 60 Hz

Test site: PHOENIX TESTLAB Blomberg M4

Operator: D. Sütthoff

Test Specification: Bluetooth link active (Echo)

The curves in the diagram only represent for each frequency point the maximum measured value of all preliminary measurements which were made for each power supply line. The top measured curve represents the peak measurement and the bottom measured curve the average measurement. The quasi-peak measured points are marked by x and the average measured points by +.

Data record name: 80826AC

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 56 of 59

Result measured with the quasipeak detector: (These values are marked in the above diagram by \mathbf{x})

Frequency MHz	Level dBµV	Transducer dB	Limit dBµV	Margin dB	Line	PE
0.243780 0.453930 0.477060 0.660210 0.724110 0.893310 1.087890 2.203710 2.872230 3.113610	51.50 49.50 50.70 45.80 47.60 37.50 27.80 38.30 36.70 36.20	0.9 0.9 0.8 0.8 0.7 0.8 0.8 0.9	62.0 56.8 56.4 56.0 56.0 56.0 56.0 56.0 56.0	10.5 7.3 5.7 10.2 8.4 18.5 28.2 17.7 19.3 19.8	L1 L1 L1 L1 L1 L1 L1 L1	FLO FLO FLO FLO FLO FLO FLO FLO FLO
13.847910 13.877430 14.250750	37.50 38.30 36.70	1.9 1.9 1.9	60.0 60.0 60.0	22.5 21.7 23.3	N N N	FLO FLO FLO
14.722350	34.70	1.9	60.0	25.3	N	FLO

Data record name: 80826AC_fin QP

Result measured with the average detector:

(These values are marked in the above diagram by +)

Frequency MHz	Level dBµV	Transducer dB	Limit dBµV	Margin dB	Line	PE
0.236850	41.00	1.0	52.2	11.2	L1	FLO
0.466440	34.70	0.9	46.6	11.9	L1	FLO
0.471660	35.40	0.9	46.5	11.1	L1	FLO
0.704490	31.50	8.0	46.0	14.5	L1	FLO
0.964770	22.20	0.8	46.0	23.8	L1	FLO

Data record name: 80826AC_fin AV

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

1 - 3, 5, 6

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 57 of 59

7 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No.	Test equipment	Туре	Manufacturer	Serial No.	PM. No.	Cal. Date	Cal. due
14	Open area test site	-	Phoenix Test-Lab	-	480085	Weekly verification (system cal.)	
15	Measuring receiver	ESCS30	Rohde & Schwarz	828985/014	480270	02/27/2008	02/2010
16	Controller	HD100	Deisel	100/670	480139	-	-
17	Turntable	DS420HE	Deisel	420/620/80	480087	-	-
18	Antenna support	AS615P	Deisel	615/310	480086	-	-
19	Antenna	CBL6111 A	Chase	1643	480147	08/01/2007	08/2012
20	EMI Software	ES-K1	Rohde & Schwarz	-	480111	-	-
29	Fully anechoic chamber M20	-	Albatross Projects	B83107-E2439-T232	480303	Weekly ve (system	
31	Measuring receiver	ESI 40	Rohde & Schwarz	100064	480355	02/25/2008	02/2010
32	Controller	HD100	Deisel	100/670	480326	-	
33	Turntable	DS420HE	Deisel	420/620/80	480315	-	
34	Antenna support	AS615P	Deisel	615/310	480187	-	
35	Antenna	CBL6112 B	Chase	2688	480328	10/11/2005	10/2010
36	Antenna	3115 B	EMCO	9609-4922	480184	09/11/2008	09/2013
37	Standard Gain Horn 11.9 GHz – 18 GHz	18240-20	Flann Microwave	483	480294	Six month verification (system cal.)	
39	Standard Gain Horn 17.9 GHz – 26.7 GHz	20240-20	Flann Microwave	411	480297	Six month verification (system cal.)	
43	RF-cable No. 30	RTK 081	Rosenberger	-	410141	Weekly verification (system cal.)	
44	RF-cable No. 31	RTK 081	Rosenberger	-	410142	Weekly verification (system cal.)	
46	RF-cable 1m	KPS-1533-400- KPS	Insulated Wire	-	480301	Six month verification (system cal.)	
49	Preamplifier	JS3-00101200- 23-5A	Miteq	681851	480337	Six month verification (system cal.)	
50	Preamplifier	JS3-12001800- 16-5A	Miteq	571667	480343	Six month verification (system cal.)	
51	Preamplifier	JS3-18002600- 20-5A	Miteq	658697	480342	Six month verification (system cal.)	
54	Power supply	TOE 8852	Toellner	51712	480233	11/27/2006	11/2008

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 58 of 59

8 LIST OF ANNEXES

ANNEX A	PHOTOGRAPHS OF THE TEST SET-UPS:	7 pages
	EUT, test set-up fully anechoic chamber EUT, test set-up conducted emission measurement	80826_20.jpg 80826_21.jpg 80826_22.jpg 80826_23.jpg 80826_24.jpg 80826_25.jpg 80826_26.jpg
ANNEX B	INTERNAL PHOTOGRAPHS OF THE TEST SAMPLE:	6 pages
	cB-OHCl406 mounted on carrier board, top view with interface board cB-OHCl406, with removed shielding, mounted on the carrier board cB-OHCl406, rear view Carrier board, rear view Interface board, pop view Interface board, rear view	80826_1.jpg 80826_3.jpg 80826_2.jpg 80826_4.jpg 80826_28.jpg 80826_27.jpg
ANNEX C	EXTERNAL PHOTOGRAPHS OF THE TEST SAMPLE:	- pages
	Because the EUT is a module, which is intended to be implemented inside a final application, no external photographs were available	
ANNEX D	ADDITIONAL RESULTS FOR INDUSTRY CANADA:	5 pages

Examiner: Dieter SUETTHOFF Date of issue: 24 September 2008 Page 59 of 59