

Test report No: 4915190.50

TEST REPORT

Radio Spectrum Matters (RF)

Identification of item tested	Cync Direct Connect Strip		
Trademark	GE		
Model and /or type reference	CSTR16CBDM, CSTR32CBDM		
FCC ID	PUU-STR-CBDM		
Features	120Vac, 60Hz		
Applicant's name / address	Savant Technologies LLC dba GE Lighting, a Savant company 1975 Noble Road, Cleveland, Ohio, United States, 44112		
Test method requested, standard	FCC CFR Title 47 Part15 Subpart C Section 15.247; KDB558074 D01v05r02;		
Verdict Summary	COMPLIANCE		
Tested by (name & signature)	Johnny Bo		
Approved by (name & signature)	Tim Yan		
Date of issue	2024-04-08		
Report template No	TRF_EMC 2017-06- FCC_Part15C_247		

INDEX

Gene	eral co	nditions	4
Unce	ertainty	/	4
Envi	ronme	ntal conditions	4
Poss	sible te	st case verdicts	4
Defir	nition c	f symbols used in this test report	5
Abbr	eviatio	ns	5
Docu	ument	History	5
Rem	arks a	nd Comments	5
Gene	eral Int	ormation	6
	1.1	General Description of the Item(s)	6
	1.2	Test data	8
	1.3	The environment(s) in which the EUT is intended to be used	8
	1.4	Channel List	8
2	Desc	ription of Test Setup	10
	2.1	Operating mode(s) used for tests	10
	2.2	Support / Auxiliary equipment / unit / software for the EUT	10
	2.3	Test Configuration / Block diagram used for tests	10
	2.4	Measurement procedure	10
3	Verd	ct summary section	11
	3.1	Standards	11
	3.2	Deviation(s) from the Standard(s) / Test Specification(s)	11
	3.3	Overview of results	11
4	Trans	smitter Test Results	12
	4.1	AC Power Line Conducted Emission	12
	4.2	Emissions in non-restricted frequency bands	15
	4.3	Emissions in restricted frequency bands	24
	4.4	Band Edge	31
	4.5	Duty cycle	34
	4.6	DTS Bandwidth	36
	4.7	Fundamental emission output power	40
	4.8	Power Density	43
5	Ident	fication of the Equipment Under Test	46
Anne	ex 1 –	Measurement Uncertainty	47
Anne	ex 2 - l	Jsed Equipment	48

GENERAL CONDITIONS

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or Competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA.
- 5. This report will not be used for social proof function in China market.

UNCERTAINTY

For all measurements where guidance for the calculation of the instrumentation uncertainty of a measurement is specified in EN 55016-4-2 (CISPR 16-4-2), EN/IEC 61000-4 series or a product standard, the measurement instrumentation uncertainty has been calculated and applied in accordance with these standards.

Uncertainties have been calculated according to the DEKRA internal document. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

ENVIRONMENTAL CONDITIONS

The climatic conditions during the tests are within the limits specified by the manufacturer for the operation of the EUT and the test equipment. The climatic conditions during the tests were within the following limits:

Ambient temperature	-40 °C – 105 °C
Relative Humidity air	30% - 60%
Atmospheric pressure	86 kPa – 106 kPa

If explicitly required in the basic standard or applied product / product family standard the climatic values are recorded and documented separately in this test report.

POSSIBLE TEST CASE VERDICTS

Test case does not apply to test object	N/A
Test object does meet requirement	P (Pass) / PASS
Test object does not meet requirement	F (Fail) / FAIL
Not tested	N/T

DEFINITION OF SYMBOLS USED IN THIS TEST REPORT

\boxtimes Indicates that the listed condition, standard or equipment is applicable for this report/test/EUT.				
Indicates that the listed condition, standard or equipment is not applicable for this report/test/EUT.				
Decimal separator used in this report 🛛 Comma (,) 🗌 Point (.)				

ABBREVIATIONS

For the purposes of the present document, the following abbreviations apply:

EUT	:	Equipment Under Test
QP	:	Quasi-Peak
CAV	:	CISPR Average
AV	:	Average
CDN	:	Coupling Decoupling Network
SAC	:	Semi-Anechoic Chamber
OATS	:	Open Area Test Site
BW	:	Bandwidth
AM	:	Amplitude Modulation
PM	:	Pulse Modulation
HCP	:	Horizontal Coupling Plane
VCP	:	Vertical Coupling Plane
UN	:	Nominal voltage
Тх	:	Transmitter
Rx	:	Receiver
N/A	:	Not Applicable
N/M	:	Not Measured

DOCUMENT HISTORY

Report nr.	Date	Description
4915190.50	2024-04-08	First release.

REMARKS AND COMMENTS

The equipment under test (EUT) does meet the essential requirements of the stated standard(s)/test(s).

GENERAL INFORMATION

1.1 General Description of the Item(s)

Description of the item:	Cync Direct Connect Strip		
Trademark:	GE		
Model / Type number	CSTR16CBDM, CSTR32CBDM		
FCC ID	PUU-STR-CBDM		
Hardware:	N/A		
Software	N/A		
Firmware:	N/A		
Ratings	120Vac, 60Hz		
Manufacturer	Savant Technologies LLC, dba GE Lighting, a Savant company		
	1975 Noble Road, Cleveland, OH, 44112-1719, US		
Factory 1	Foshan Lighting Chanchang Optoelectronics Co., Ltd.		
	Hecheng Street, Cangjiang Industrial Park, Gaoming District, Foshan		
	City, Guangdong Province, P. R. China		
Factory 2	Foshan Electrical And Lighting Co.,Ltd.Gaoming Fitting Branch		
	Fuwan Industrial Zone, Hecheng Street, Gaoming District, Foshan,		
	Guangdong, China		
Factory 3	Foshan Electrical and Lighting Co.,Ltd. Gaoming Branch		
	No.19, Hengchang Road, Fuwan Industrial Park, Hecheng Street,		
	Gaoming District, Foshan, Guangdong, P.R.China		

Rated power supply:	Voltage and Frequency			Reference poles					
	volta	ge and frequency	L1	L2	L3	Ν	PE		
	\square	AC: 120 V, 60Hz	\boxtimes			\boxtimes			
		DC:							
		Battery:							
Mounting position:		Table top equipment							
	\square	Wall/Ceiling mounted equipment							
		Floor standing equipment							
		Hand-held equipment							
		Other: Built-in							

According to customer's declaration, the product contains RF module and the characteristics of radio module: BLE

Operating frequency range(s)	2402 MHz – 2480 MHz
Type of Modulation	GFSK
Maximum e.i.r.p	7,7 dBm
Antenna type	Integral Antenna
Operating Temperature Range:	-20 °C – 40 °C
Antenna gain	0.5 dBi

WIFI

B	
Frequency Band	2412 MHz-2462 MHz
	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK)
Type of Modulation	IEEE 802.11g: OFDM(64-QAM, 16-QAM, QPSK, BPSK)
	IEEE 802.11n-HT20: OFDM(64-QAM, 16-QAM, QPSK, BPSK)
	IEEE 802.11b: Up to 11 Mbps
Data Rate	IEEE 802.11g: Up to 54 Mbps
	IEEE 802.11n-HT20: Up to MCS7
Geo-location Capability	Not Support
Adaptivity	Adaptive
Maximum RF output power(EIRP):	17,0 dBm
Antenna type	Integral Antenna
Antenna gain	0.5 dBi
	IEEE 802.11b: 11
Number of channel	IEEE 802.11g: 11
	IEEE 802.11n-HT20: 11
Operating Temperature Range:	-20 °C – 40 °C

Intended use of the Equipment Under Test (EUT)

The apparatus as supplied for the test is Cync Direct Connect Strip intended for residential use.

Based on customer description: All model are identical except rangting power.

Hence, models CSTR16CBDM was chosen for full test, and the corresponding test data are also representative of the other models as well.

Copy of marking plate:

No provide.

1.2 Test data

Test Location	DEKRA Testing and Certification (Shanghai) Ltd. Guangzhou Branch Block 5, No.3, Qiyun Road, Huangpu District, Guangzhou, Guangdong, China FCC Designation Number: CN1324;
Date of receipt of test item	2024-01-29
Date (s) of performance of tests	2024-01-29 to 2024-02-19
	Normal sample: CSTR16CBDM (lab on.4915190-1)
Test sample	RF conducted sample: CSTR16CBDM (lab on.4915190-3)
	RF radiated sample: CSTR16CBDM (lab on.4915190-2)

1.3 The environment(s) in which the EUT is intended to be used

The equipment under test (EUT) is intended to be used in the following environment(s):

\boxtimes	Residential (domestic) environment.			
\boxtimes	Commercial and light-industrial environment.			
	Industrial environment.			

1.4 Channel List

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	14	2430	28	2458
1	2404	15	2432	29	2460
2	2406	16	2434	30	2462
3	2408	17	2436	31	2464
4	2410	18	2438	32	2466
5	2412	19	2440	33	2468
6	2414	20	2442	34	2470
7	2416	21	2444	35	2472
8	2418	22	2446	36	2474
9	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454	-	-
13	2428	27	2456	-	-

The radio module (Bluetooth) operating channels are:

The radio module (WIFI) operating channels are:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	-	-

2 DESCRIPTION OF TEST SETUP

2.1 Operating mode(s) used for tests

During the tests the following operating mode(s) has(have) been used.

Operating mode	Operating mode description	Used for methos			
		Conducted	Radiated		
1	Transmitting at BLE	\boxtimes	\boxtimes		
2					
3					
4					
Supplemen	Supplemental information:				

2.2 Support / Auxiliary equipment / unit / software for the EUT

Auxiliary equipment / unit / software	Type / Version	Manufacturer	Supplied by
Laptop	Latitude 5488	DELL	DEKRA
Serial Port Utility (soft ware)	V5.0.1.1117		DEKRA
Supplemental information:			

The EUT has been tested with the following auxiliary equipment / unit / software:

2.3 Test Configuration / Block diagram used for tests

Refer to Annex 3.

2.4 Measurement procedure

The EUT was controlled by a serial PCB(TELINK BDT) which provided by manufacturer which connected to laptop through the com port. After connected, run the software "Serial Port Utility" supplied by manufacturer to control the EUT work in required test mode as below table.

RF Mode	Set_channel(MHz)	
	2402	
BLE_1M	2440	
	2480	
	2412	
IEEE 802.11 b/g/n20	2442	
	2462	

3 VERDICT SUMMARY SECTION

This chapter presents an overview of standards and results. Refer to the next chapters for details of measured test results and applied test levels.

3.1 Standards

Standard	Year	Description
FCC CFR Title 47 Part 15	2024	Operation within the bands 902–928 MHz, 2400–2483.5 MHz, and
Subpart C Section 15.247		5725–5850 MHz.
KDB 558074 D01 v05r02	2019	Guidance for performing compliance measurements on Digital
		Transmission System (DTS) operating under section 15.247
ANSI C63.10	2013	American National Standard of Procedures for Compliance Testing
		of Unlicensed Wireless Devices

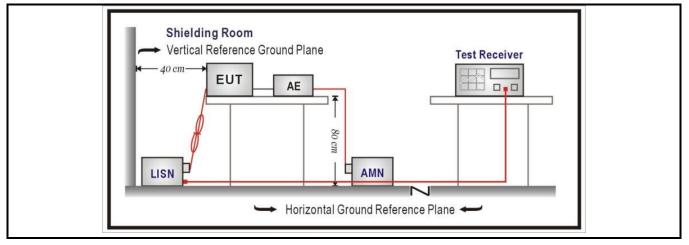
3.2 Deviation(s) from the Standard(s) / Test Specification(s)

The following deviation(s) was / were made from the published requirements of the listed standards: N/A.

3.3 Overview of results

Requirement – Test case	Basic standard(s)	Verdict	Remark	
AC Power Line Conducted Emission	FCC 15.207	PASS		
Emissions in non-restricted frequency bands	FCC 15.247(d), FCC 15.209	PASS		
Emissions in restricted frequency bands	FCC 15.247(b)(3)	PASS		
Duty cycle	ANSI C63.10:2013	PASS		
Band Edge	FCC 15.247(d)	PASS		
Fundamental emission output power	FCC 15.247(d), FCC 15.209	PASS		
DTS Bandwidth	FCC 15.247(a)(2)	PASS		
Power Spectral Density	FCC 15.247(e)	PASS		
Antenna Requirement	FCC 15.203	PASS		

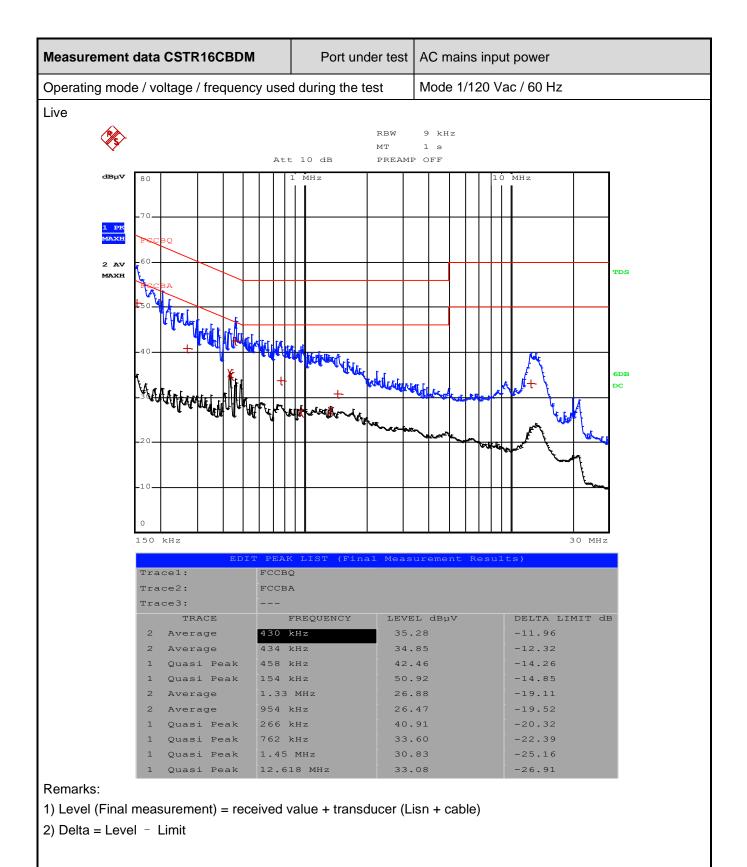
The measurement result is considered in conformance with the requirement if it is within the prescribed limit, It is not necessary to calculate the uncertainty associated with the measurement result.


4 TRANSMITTER TEST RESULTS

4.1 AC Power Line Conducted Emission VERDICT: PASS

Limits

FCC Part 15 Subpart C Paragraph 15.207							
Frequency range [MHz]	Limit: QP [dB(µV) ¹⁾]	Limit: AV [dB(µV) 1)]	IF BW	Detector(s)			
0,15 - 0,50	66 – 56 ²⁾	56 - 46 ²⁾	9 KHz	QP, AV			
0,50 - 5,0	56	46	9 KHz	QP, AV			
5,0 - 30 60 50 9 KHz QP, AV							
 ¹⁾ At the transition frequency, the lower limit applies. ²⁾ The limit decreases linearly with the logarithm of the frequency. 							


Test Configuration

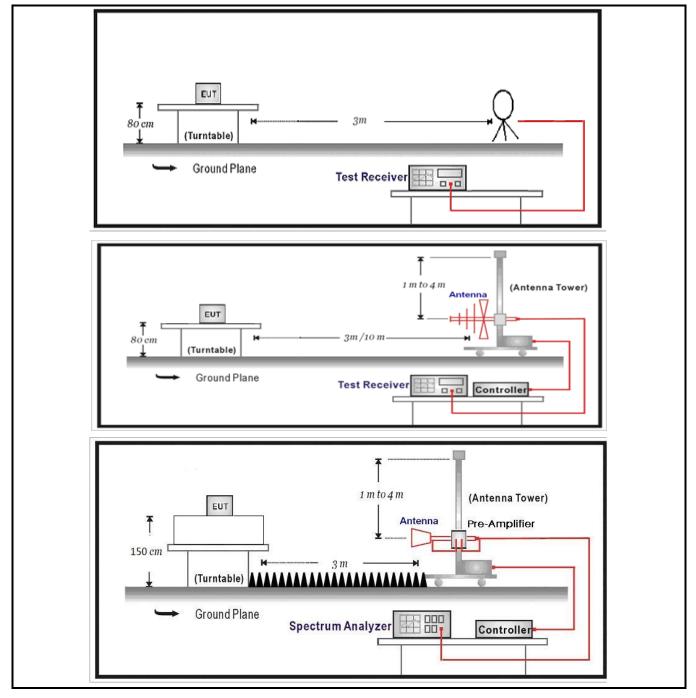
Performed measurements

Port under test			Terminal							
AC mains input power	AC mains input power			N	\square	L1		L2		L3
DC input power	DC input power			Positive	(+)			Nega	tive (-)
Test method applied		Artificial mains net	work							
		Voltage probe								
Test setup	\boxtimes	Table top	Artificial hand applied							
		Floor standing	Other:							
	Refe	r to the Annex 2 for	test se	etup photo	o(s).					
	Made									
Operating mode(s) used Mode 1		9 1								
Envirment condition (temperature; humidiry) 23,0 °C; 45,0 %										
Remark										

Block 5, No.3, Qiyun Road, Huangpu District, Guangzhou, Guangdong, China Tel +86 20 6661 2000 Fax +86 20 6661 2001 https://www.dekra.com

4.2 Emissions in non-restricted frequency bands

VERDICT: PASS


Emissions Limit 15.209(a)							
Frequency (MHz)	Field strength (µV/m)	Field strength (dBµV/m)	Measurement distance (m)				
. ,	, , , , , , , , , , , , , , , , , , ,						
0.009 - 0.49 0.49 - 1.705	2400/F(kHz) 24000/F(kHz)	<u>48.5 – 13.8</u> <u>33.8 - 23</u>	300(Note 1) 30(Note 1)				
1.705 - 30	30	29.5	30(Note 1)				
30 - 88	100	40	3 (Note 2)				
88 - 216	150	43.5	3(Note 2)				
216 - 960	200	46	3(Note 2)				
Above 960	500	54	3 (Note 2)				

Note 1: At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade).

Note 2: At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

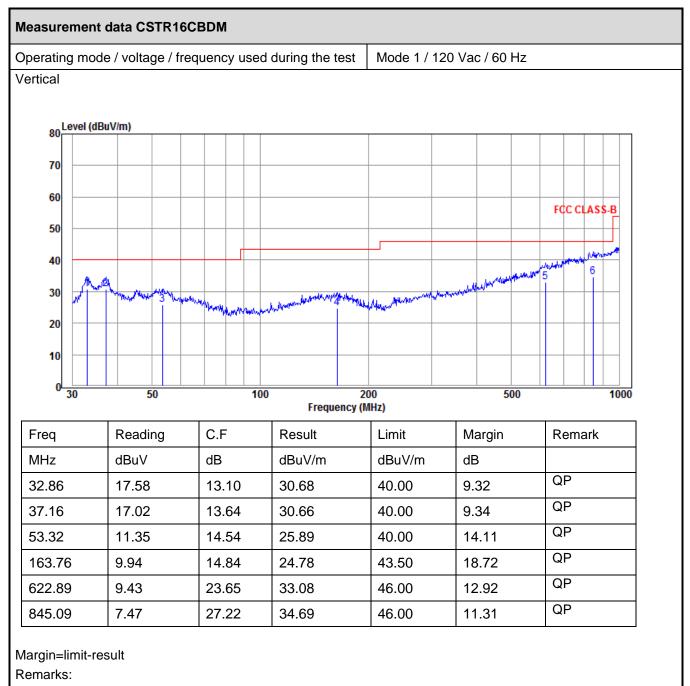
Test Configuration

Performed measurements

Port under test	Enclo	Enclosure port				
Test method applied		Conducted measurement				
	\square	Radiated measurement				
Test setup	Refe	Refer to the Annex 3 for test setup photo(s).				
Operating mode(s) used	Mode	Mode 1				
	1)The test frequency range, 9kHz~30MHz, 18GHz~26GHz, both of the wors					
case are at least 20dB below the limits, therefore no data appear in the re						
Remark						
	2)The EUT are tested in three orientations. The record is the worst orier					
	whick	n refer to the Annex 3 for test setup photo(s).				

Results of 30 – 1000 MHz

easurement	t data CSTR16C	BDM				
perating mod	de / voltage / free	quency used	during the test	Mode 1 / 120) Vac / 60 Hz	
orizontal						
80 Level (dE	3uV/m)					
70						
60						
60						FCC CLASS-B
50						
40						weller when we will be and
30	hall have been fulled and a second		weather and any first and man	A second material large services	Warner 4 5	
20	had a har an a had a star and a star and a	Manna M T	www.http://www.and	Ante Ante and a second second		
10						
0 30	50	100	20 Frequency (M		500	1000
Freq	Reading	C.F	Result	Limit	Margin	Remark
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Remark
46.50	8.32	14.46	22.78	40.00	17.22	QP
96.44	16.22	9.55	25.77	40.00	17.73	QP
158.67	8.93	14.96	23.89	43.50	19.61	QP
468.88	8.59	20.04	28.63	46.00	17.37	QP
400.00 539.48	8.03	20.04	29.85	46.00	16.15	QP
955.44	9.83	27.95	37.78	46.00	8.22	QP
	8.64	28.51	37.15	54.00	16.85	QP


Margin=limit-result

Remarks:

1) C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

2) Result = Reading + C.F (Correction Factor)

1) C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

2) Result = Reading + C.F (Correction Factor)

No other significant emissions were measured at the frequency range of interest employing the QP detector.

Remark

Results of 1 – 18 GHz

Model	CSTR16CBDM
Operation Mode (worst case)	Mode 1 @2402 MHz
Test voltage	3.3 Vdc

Results

Н	o	IZ	or	itai	

Spectrum	,)								
Ref Level Att TDF	84.00 dBµ∨ 0 dB		● RB ms ● VB	WIMHZ WI3MHZ M	ode Auto :	Sweep			
⊖1Pk Max⊕:	2Av Max								
80 dBµV					M	3[1]			53.07 dBµV
6 I .					M	2[2]			66770 GHz 48.52 dBµV
<mark>fçc-pk</mark> зµV					171	2[2]			188580 GHz
						Ì	Ĩ	1	
60 dBµV—									M3
fcc-av _{3µV} —									
					00000 0000	and the	CALLS		CALL WAY SHALL MAN
40 dBµV			mulut	demandante			was break and the first	11	
	IN STREET, STRE	1.	WARAWARA	di de la deservición de la deservición Contra de la deservición de la deservic			And all the second second	1. 31.4r	
BOLDE			illister	and, and districts.					
BUT CONVERSE									
120 dBµ∨—									
10 dBµV									
Ο dBµV									
-10 dBµV—									
-10 UBHV									
Start 1.0 G	Hz			32000) pts			Stop	18.0 GHz
Marker									
Type Ref		X-value		Y-value	Func	tion	Fun	ction Result	
M2	2	17.9885		48.52 dBµ					
M3	1	17.5667	GHZ	53.07 dBµ	V				

Remarks:

1) Due to the spectrum display limitation, the unit dBuV in test figure is dBuV/m actually.

2) Y-Value (dBuV/m)= received value (dBuV)+ Correction Factor (Antenna factor (dBuV/m)+ Cable loss (dB)- Preamp gain (dB))

Vertical

Spectrum									
Ref Level & Att TDF	34.00 dBµV 0 dB		e RBW ms e VBW	/1MHz /3MHz N×	lode Auto S	Sweep			
●1Pk Max●2	Av Max								
80 dBµV					M	3[1]			53.55 dBµV
00 app.									48200 GHz
fcc-pk _{3µV}					M	2[2]			48.66 dBµV
						ì	ĩ	17.7	66520 GHz
60 dBµV									M
fcc-av _{3µV}						12	in the state	LI ASAAL JALLA MARKA	
				in the second state	A MARINE MARINE	MUMUL		A PROPERTY OF A PROPERTY OF	
40 dBµV	ALL DUCKLER	International	MANNANA MAN	" ann an				Mana and a	
and the deside	White Street		MANANA IN	A LEAST AND A LEAST AND A	dia mandri da da				
BRIT HANNET	Munul.								
20 dBµV									
10 dBµV					-				
0 dBµV									
-10 dBµV									
Start 1.0 Gi	1-			3200	Inte			Ptor	18.0 GHz
Marker	72			3200	n hra			SLUE	10.0 GHZ
	Trc	X-value		Y-value	Func	tion (E	nction Result	. 1
Type Ref M2	2	17.766!		48.66 dBL		uuu	Fu	iction Result	
M3	1		32 GHz	53.55 dBL					

Remarks:

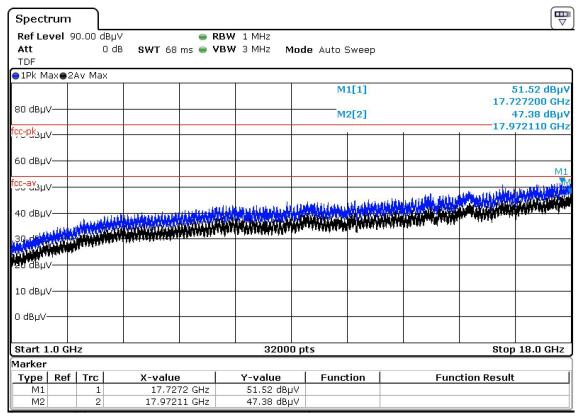
1) Due to the spectrum display limitation, the unit dBuV in test figure is dBuV/m actually.

2) Y-Value (dBuV/m)= received value (dBuV)+ Correction Factor (Antenna factor (dBuV/m)+ Cable loss (dB)- Preamp gain (dB))

Model	CSTR16CBDM
Operation Mode (worst case)	Mode 1 @2480 MHz
Test voltage	3.3 Vdc

Results Horizontal

Spectrum									
Ref Level 9 Att TDF	90.00 dBµV 0 dB		● RB' ms ● VB'	WI1MHz WI3MHz Ny	lode Auto	Sweep			
●1Pk Max●2	Av Max					0[0]			10.00.40
					IVI	2[2]			48.00 dBµ' 08610 GH
80 dBµV					M	1[1]			51.86 dBµ
fcc-pk _{3µV}					-	1	1	17.4	75920 GH
60 dBµV									M1
fcc-av _{3µV}									
40 dBµV	and and distant		a ana ang tang tang tang tang tang tang	deniniran <mark>d</mark> Mananaraa					
BOURD - WAYNY				, 111 (111) (111) (111) (111) (111) (111) (111)	de contre				
20 dBµV									
10 dBµV									
0 dBµV									
Start 1.0 GH	Ηz			3200	0 pts			Stop	18.0 GHz
Marker	1			V	1		- 10,100		
Type Ref M1	Trc 1	X-value 17.4759		<u>Y-value</u> 51.86 dBµ	Func	tion	Fur	nction Result	
M2	2	17.7086		48.00 dBp					


Remarks:

1) Due to the spectrum display limitation, the unit dBuV in test figure is dBuV/m actually.

2) Y-Value (dBuV/m)= received value (dBuV)+ Correction Factor (Antenna factor (dBuV/m)+ Cable loss (dB)- Preamp gain (dB))

Vertical

Remarks:

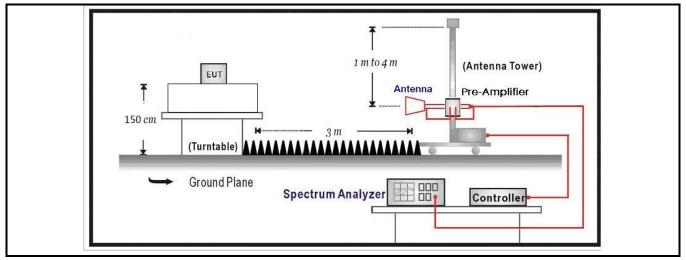
1) Due to the spectrum display limitation, the unit dBuV in test figure is dBuV/m actually.

2) Y-Value (dBuV/m)= received value (dBuV)+ Correction Factor (Antenna factor (dBuV/m)+ Cable loss (dB)- Preamp gain (dB))

4.3 Emissions in restricted frequency bands VER

VERDICT: PASS

Restricted Bands of oper	ation of FCC		
Frequency	Frequency	Frequency	Frequency
(MHz)			(GHz)
0.090 – 0.110	16.42 – 16.423	399.9 – 410	4.5 – 5.15
0.495 - 0.505	16.69475 –16.69525	608 - 614	5.35 – 5.46
2.1735 – 2.1905	16.80425 – 16.80475	960 - 1240	7.25 – 7.75
4.125 – 4.128	25.5 – 25.67	1300 – 1427	8.025 – 8.5
4.17725 – 4.17775	37.5 – 38.25	1435 – 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 – 74.6	1645.5 – 1646.5	9.3 – 9.5
6.215 – 6.218	74.8 – 75.2	1660 – 1710	10.6 – 12.7
6.26775 – 6.26825	108 – 121.94	1718.8 – 1722.2	13.25 – 13.4
6.31175 – 6.31225	123 – 138	2200 – 2300	14.47 – 14.5
8.291 – 8.294	149.9 – 150.05	2310 – 2390	15.35 – 16.2
8.362 - 8.366	156.52475 – 156.52525	2483.5 - 2500	17.7 – 21.4
8.37625 - 8.38675	156.7 – 156.9	2690 - 2900	22.01 – 23.12
8.81425 – 8.81475	162.0125 – 167.17	3260 - 3267	23.6 - 24.0
12.29 – 12.293	167.72 – 173.2	3332 - 3339	31.2 – 31.8
12.51975-12.52025	240 – 285	3345.8 - 3358	36.43 – 36.5
12.57675-12.57725	322 – 335.4	3600 - 4400	
13.36 - 13.41			
Restricted Bands of oper	ation for IC		
0.090 - 0.110	13.36 - 13.41	960 - 1427	9.0 - 9.2
0.495 - 0.505	16.42 - 16.423	1435 - 1626.5	9.3 - 9.5
2.1735 - 2.1905	16.69475 - 16.69525	1645.5 - 1646.5	10.6 - 12.7
3.020 - 3.026	16.80425 - 16.80475	1660 - 1710	13.25 - 13.4
4.125 - 4.128	25.5 - 25.67	1718.8 - 1722.2	14.47 - 14.5
4.17725 - 4.17775	37.5 - 38.25	2200 - 2300	15.35 - 16.2
4.20725 - 4.20775	73 - 74.6	2310 - 2390	17.7 - 21.4
5.677 - 5.683	74.8 - 75.2	2483.5 - 2500	22.01 - 23.12
6.215 - 6.218	108 - 138	2655 - 2900	23.6 - 24.0
6.26775 - 6.26825	149.9 - 150.05	3260 - 3267	31.2 - 31.8
6.31175 - 6.31225	156.52475 - 156.52525	3332 - 3339	36.43 - 36.5
8.291 - 8.294	156.7 - 156.9	3345.8 - 3358	Above 38.6
8.362 - 8.366	162.0125 - 167.17	3500 - 4400	
8.37625 - 8.38675	167.72 - 173.2	4500 - 5150	
8.41425 - 8.41475	240 - 285	5350 - 5460	
12.29 - 12.293	322 - 335.4	7250 - 7750	
12.51975 - 12.52025	399.9 - 410	8025 - 8500	
12.57675 - 12.57725	608 - 614		



estricted Band Emission	s Limit		
Frequency (MHz)	Field strength (µV/m)	Field strength (dBµV/m)	Measurement distance (m)
0.009 - 0.49	2400/F(kHz)	48.5 – 13.8	300(Note 1)
0.49 - 1.705	24000/F(kHz)	33.8 - 23	30 _(Note 1)
1.705 - 30	30	29.5	30 (Note 1)
30 - 88	100	40	3 (Note 2)
88 - 216	150	43.5	3 (Note 2)
216 - 960	200	46	3 (Note 2)
Above 960	500	54	3 (Note 2)

Note 1: At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade).

Note 2: At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

Test Configuration

Performed measurements

Port under test	Enclo	Enclosure port			
Test method applied		Conducted measurement			
		Radiated measurement			
Test setup	Refe	to the Annex 3 for test setup photo(s).			
Operating mode(s) used	Mode	9.1			
Remark					

Model	CSTR16CBDM
Operation Mode (worst case)	Mode 1 @2402 MHz
Test voltage	3.3 Vdc

Results Horizontal

Spectrum						
Ref Level 1	.16.00 dBp	IV 💿	RBW 1 MHz			
Att	25 0	18 🛛 SWT 32 ms 👄	VBW 3 MHz Mc	ode Auto Sweep)	
TDF						
●1Pk Max●2.	Av Max					
110 dBµV				M5[2]		41.79 dBµ\
						M1 2.37884330 GH:
100 dBuV				M1[1]		101.48 dBµ\
				6	i i	2.40197130 GH
90 dBµV——						
80 dBµV						
FCC RB 2310 F	РК					
	10122					
FCC RB 2310 A	W.					
50 dBµV——				M4	Lange Hard	
					Maulullin	and the state of t
	na haydaraa aa daagda		त्रा ¹ ्रत्य समिति सम्बद्ध स्वयं प्रतिहरण्डा स्वयं स्व	and the second second second		
30 dBµV						
20 dBµV——						
Start 2.31 G	Hz	1	32000 p	its		Stop 2.422 GHz
Marker						·
Type Ref	Trc	X-value	Y-value	Function	l Fund	ction Result
M1	1	2.4019713 GHz	101.48 dBµV			
M2	1	2.3900245 GHz	40.67 dBµV			
MЗ	2	2.39 GHz	38.85 dBµV			
M4	1	2.3788433 GHz	45.27 dBµV			
M5	2	2.3788433 GHz	41.79 dBµV			

Remarks:

1) Due to the spectrum display limitation, the unit dBuV in test figure is dBuV/m actually.

2) Y-Value (dBuV/m)= received value (dBuV)+ Correction Factor (Antenna factor (dBuV/m)+ Cable loss (dB)- Preamp gain (dB))

Vertical

Spectrun	n								
Ref Level Att TDF		dBµV 25 dB SWT		RBW 1 MHz VBW 3 MHz	Mode Aut	o Sweep	l,		
😑 1Pk Maxe	2Av Ma	×							
110 dBµV—						42[1]		2.390	87.38 dBµV 02450 GHz
100 dBµV—					<u>ب</u>	41[1] I	ï		92.43 dBµV 97130 GHz
90 dBµV—								Λ	
80 dBµV—								11	
FCC RB 2310) PK								
60 dBuV FCC RB 2310) AV								
50 dBµV—									
40.dBuV		tan da biran dan salah da sida na salamat da			ng ng ang ang ang ang ang ang ang ang an		Ma		
30 dBµV—									
20 dBµV—									
Start 2.31	GHz		•	3200	0 pts	•		Stop 2	2.422 GHz
Marker									
Type Re		X-valu	1000	Y-value		ction	Func	tion Result	
M1	1	28-208, BURNARDA CA	713 GHz	92.43 dBµ					
M2 M3	1		245 GHz .39 GHz	37.38 dBµ 35.89 dBµ					

Remarks:

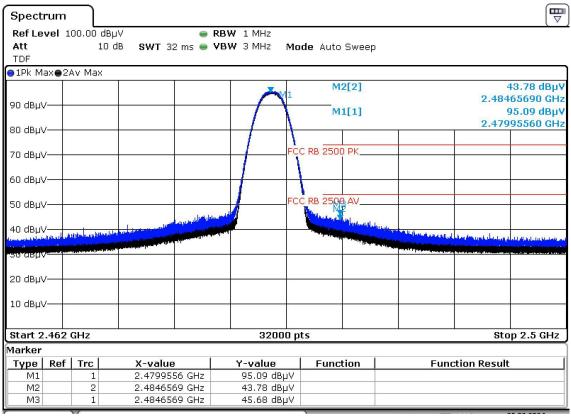
1) Due to the spectrum display limitation, the unit dBuV in test figure is dBuV/m actually.

2) Y-Value (dBuV/m)= received value (dBuV)+ Correction Factor (Antenna factor (dBuV/m)+ Cable loss (dB)- Preamp gain (dB))

Model	CSTR16CBDM
Operation Mode (worst case)	Mode 1 @2480 MHz
Test voltage	3.3 Vdc

Results Horizontal

Specti	um										
Ref Lev	vel 1	16.00 di	- 24	- F	RBW 1 MHz						
Att		25	5 dB SWT 32	? ms 😑 🍾	BW 3 MHz	Mode Auto) Sweep				
TDF											
⊖1Pk Ma	3X⊜24	AV Max									
110 dBµ	v—					IMI	1[1]				01.25 dBµV 079410 GHz
					M1	M	2[2]				47.93 dBµV
100 dBµ	v—						e[e]				50000 GHz
						0	1	Ĩ			ĺ
90 dBµV											÷
80 dBµV											
ου μομν											
70 dBµV						FCC RB 250	0 PK				
60 dBµV						_	-				
					1	FCC RB 250	U AV				
50 dBµV			The second s	locometral delegat			- Aller - Area				
and the statement of the	and a plate	أحصالهم المنتمام		A COMPANY OF THE OWNER OF		and the second		e minedalation	al blades deeped	de Marthand and a be	
									and the second secon		
30 dBµV											
20 dBµV	<u> </u>										
Start 2	.462 (GHz	1		3200	D pts		I		Sto	p 2.5 GHz
Marker											
Туре	Ref	Trc	X-value		Y-value	Func	tion		Fund	tion Result	t I
M1		1	2.479794	CONTRACTOR AND A DECIMAL OF	101.25 dBµ						
M2		2		35 GHz	47.93 dBµ						
M3		1	2.483	85 GHz	50.55 dBµ	IV					


Remarks:

1) Due to the spectrum display limitation, the unit dBuV in test figure is dBuV/m actually.

2) Y-Value (dBuV/m)= received value (dBuV)+ Correction Factor (Antenna factor (dBuV/m)+ Cable loss (dB)- Preamp gain (dB))

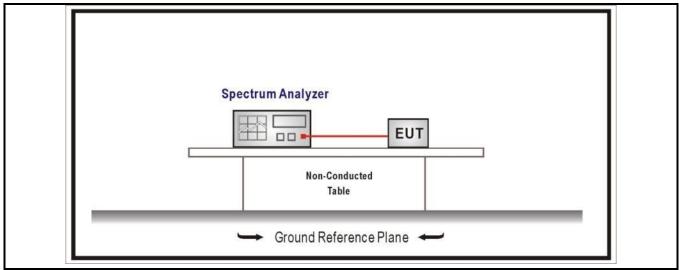
Vertical

Remarks:

1) Due to the spectrum display limitation, the unit dBuV in test figure is dBuV/m actually.

2) Y-Value (dBuV/m)= received value (dBuV)+ Correction Factor (Antenna factor (dBuV/m)+ Cable loss (dB)- Preamp gain (dB))

4.4 Band Edge

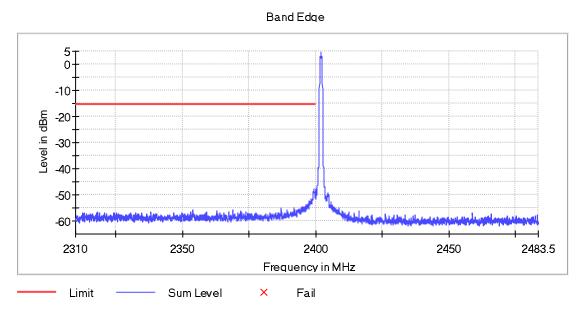

VERDICT: PASS

Standard FCC Part 15 Subpart C Paragraph 15.247(d)			
er (Detection methods)	Limit(dB)		
ver(Average detector)	30dBc(Note1)		
power(PK detector)	20dBc(Note2)		
•	FCC Part 15 Subpart C Paragr er (Detection methods) ver(Average detector) power(PK detector)		

then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at by LEast 30 dB relative to the maximum in-band peak PSD by LEvel in 100 kHz (i.e., 30 dBc).

Note 2: If the maximum peak conducted output power procedure was used, then the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at by least 20 dB relative to the maximum in-band peak PSD by level in 100 kHz (i.e., 20 dBc).

Test Configuration

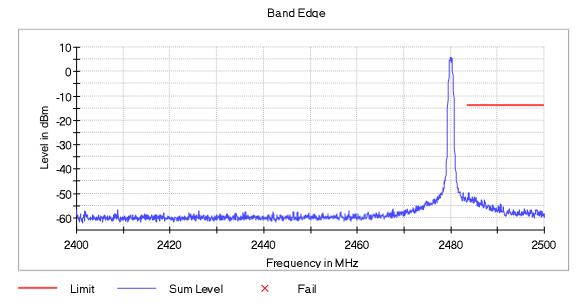


Performed measurements

Port under test	Anter	nna port		
Test method applied		Conducted measurement		
		Radiated measurement		
Test setup	Refer	Refer to the Annex 3 for test setup photo(s).		
Operating mode(s) used	Mode	1		
Remark				

Result @2402 MHz

Inband Peak


Frequency	Level
(MHz)	(dBm)
2402.0000	-3.871

Measurements

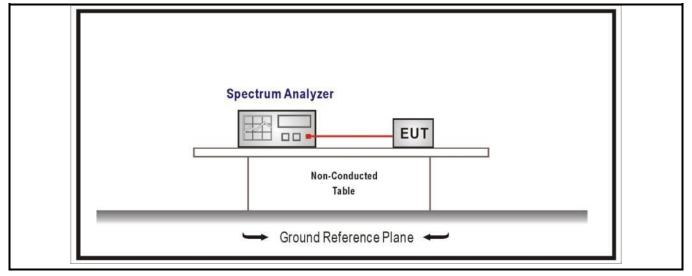
Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
2399.475000	-47.8	32.3	-15.4	PASS
2399.975000	-47.8	32.4	-15.4	PASS
2399.225000	-48.4	33.0	-15.4	PASS
2399.425000	-48.5	33.1	-15.4	PASS
2399.175000	-48.8	33.4	-15.4	PASS
2399.375000	-48.8	33.4	-15.4	PASS
2399.525000	-49.0	33.5	-15.4	PASS
2399.275000	-49.1	33.7	-15.4	PASS
2399.325000	-49.2	33.8	-15.4	PASS
2399.575000	-49.3	33.9	-15.4	PASS
2399.625000	-49.5	34.1	-15.4	PASS
2398.925000	-49.5	34.1	-15.4	PASS
2399.925000	-49.7	34.3	-15.4	PASS
2399.725000	-49.8	34.4	-15.4	PASS
2399.775000	-50.1	34.7	-15.4	PASS

Result @2480 MHz

Inband Peak

Frequency	Level
(MHz)	(dBm)
2480.0000	-2.088

Measurements


Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
2483.825000	-49.6	35.6	-14.0	PASS
2483.875000	-49.7	35.7	-14.0	PASS
2484.625000	-51.2	37.2	-14.0	PASS
2485.075000	-51.4	37.4	-14.0	PASS
2484.675000	-51.4	37.4	-14.0	PASS
2485.025000	-51.6	37.6	-14.0	PASS
2485.375000	-51.7	37.7	-14.0	PASS
2483.525000	-51.7	37.7	-14.0	PASS
2485.325000	-51.8	37.8	-14.0	PASS
2483.775000	-51.8	37.8	-14.0	PASS
2484.575000	-51.9	37.9	-14.0	PASS
2483.975000	-52.0	38.0	-14.0	PASS
2483.675000	-52.0	38.0	-14.0	PASS
2483.575000	-52.0	38.0	-14.0	PASS
2483.925000	-52.0	38.1	-14.0	PASS

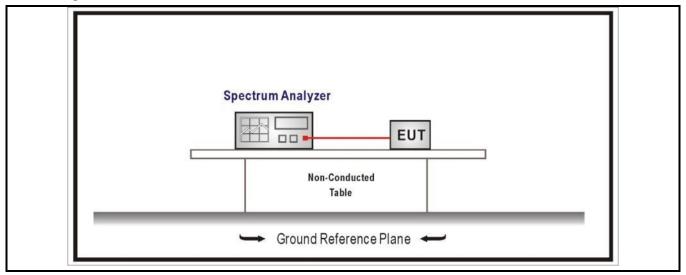
4.5 Duty cycle

VERDICT: PASS


Test Configuration

Performed measurements

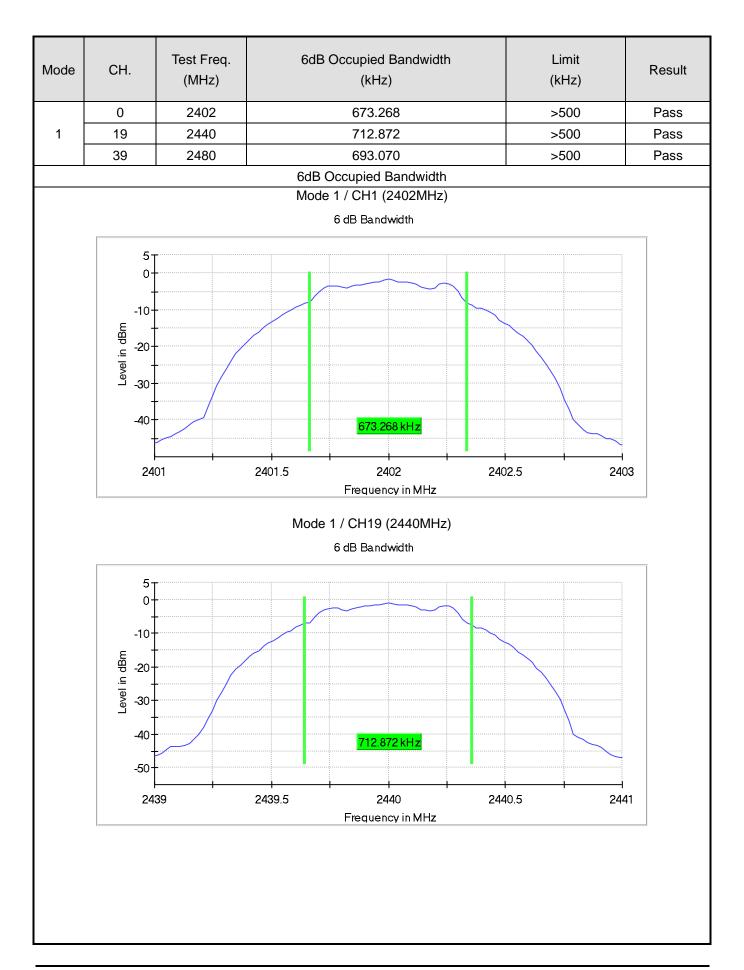
Port under test	Anter	Antenna port		
Test method applied	\square	Conducted measurement		
		Radiated measurement		
Test setup	Refer to the Annex 3 for test setup photo(s).			
Operating mode(s) used	Mode 1			
Remark				

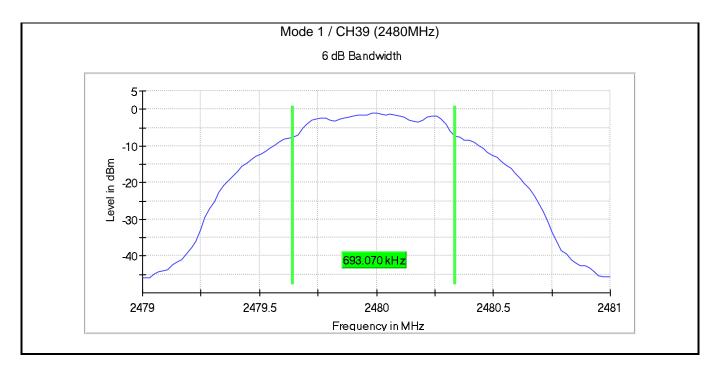

4.6 DTS Bandwidth

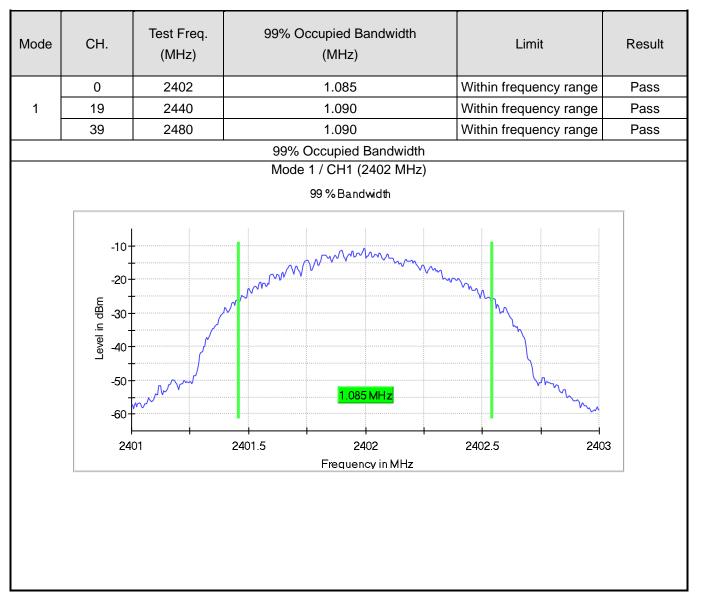
```
VERDICT: PASS
```

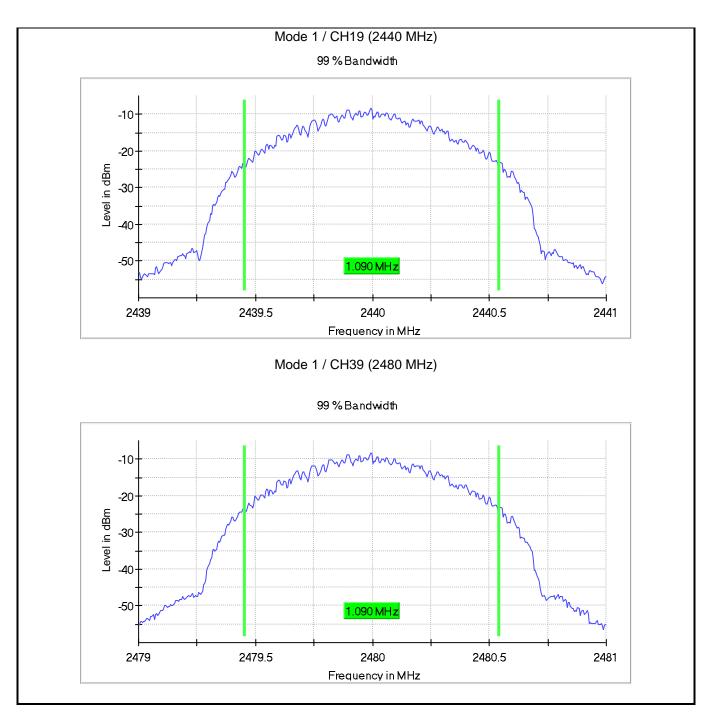
Standard	FCC Part 15 Subpart C Paragraph 15.247 (a)(2)
Systems using digital modulat	ion techniques operate in the 2400-2483.5 MHz .The minimum 6 dB bandwidth

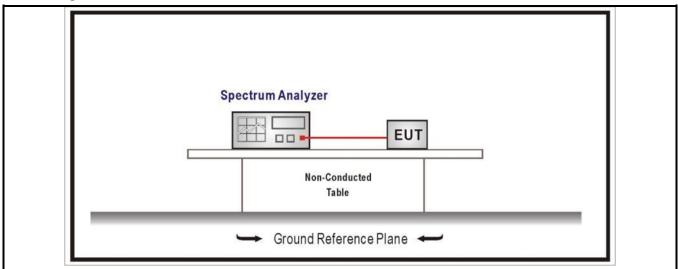
Test Configuration


shall be at by least 500 kHz


Performed measurements


Port under test	Antenna port			
Test method applied	Conducted measurement			
	Radiated measurement			
Test setup	Refer to the Annex 3 for test setup photo(s).			
Operating mode(s) used	Mode 1			
Remark				



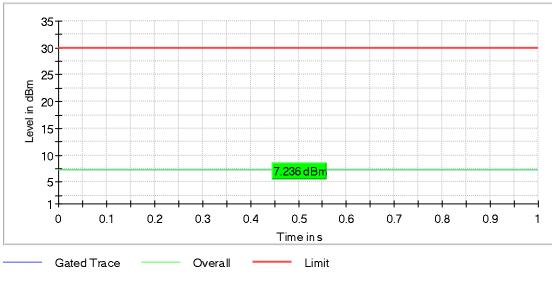


4.7 Fundamental emission output power VERDICT: PASS

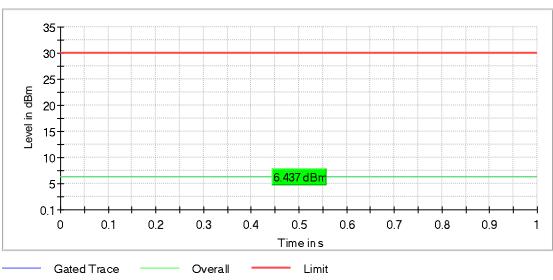
Stan	dard	F	CC Part 15 Subpart C Paragraph 15.247 (b)(3)			
\boxtimes	GTX ·	<6dBi	Pout≤30dBm			
	GTX 🕽	≥6dBi				
		Non-Fix point-point	Pout≤30-(GTX -6)			
		Fix point-point	Pout≤30-[(GTX-6)]/3			
		Point-to-multipoint	Pout≤30-(GTX-6)			
		Overlap Beams	Pout≤30-[(GTX-6)]/3			
		Aggregate power transmitted simultane on all beams	ously Pout≤30-[(GTX-6)]/3			
		singby LE directional beam	Pout≤30-[(GTX-6)]/3+8dB			
	Note 1 : GTX directional gain of transmitting antennas. Note 2 : Pout is maximum peak conducted output power .					
inole 2	2.P0	ut is maximum peak c	unducied output power.			

Test Configuration

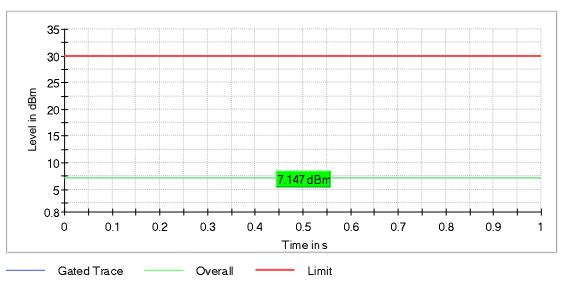
Performed measurements


Port under test	Antei	Antenna port		
Test method applied		Conducted measurement		
		Radiated measurement		
Test setup	Refer to the Annex 3 for test setup photo(s).			
Operating mode(s) used	Mode	Mode 1		
Remark				

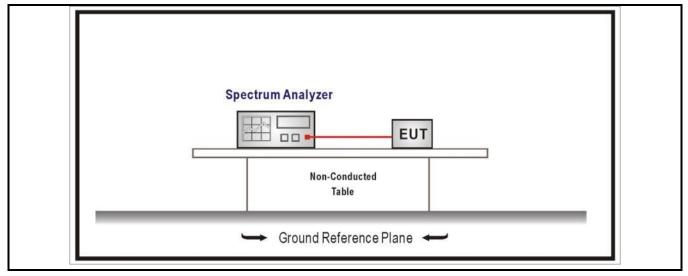
Results


Mode	Channel	Test Frequency (MHz)	Power Output (dBm)	Limit (dBm)	EIRP (dBm)	EIRP Limit (dBm)	Result
	1	2402	7,2	≤30	7,7	≤36	Pass
BLE	19	2440	6,4	≤30	6,9	≤36	Pass
	39	2480	7,1	≤30	7,6	≤36	Pass

2402 MHz



2480 MHz



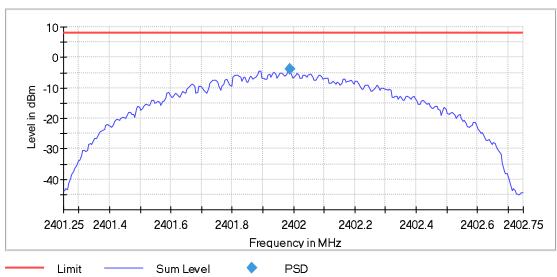
4.8 Power Density VERDICT: PASS

Standard	FCC Part 15 Subpart C Paragraph 15.247 (b)(3)
Power Spectral Density≤8dBm	/3kHz

Test Configuration

Performed measurements

Port under test	Anter	Antenna port			
Test method applied	\square	Conducted measurement			
		Radiated measurement			
Test setup	Refer to the Annex 3 for test setup photo(s).				
Operating mode(s) used	Mode 1				
Remark					


Results

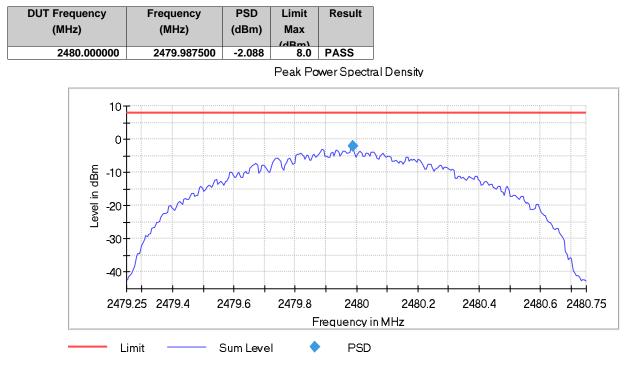
Mode	Channel	Test Frequency (MHz)	Power Output (dBm)	Limit (dBm/3kHz)	Result
	1	2402	-3,871	≤8	Pass
BLE	19	2440	-3,543	≤8	Pass
	39	2480	-2,088	≤8	Pass

Result

DUT Frequency	Frequency	PSD	Limit	Result
(MHz)	(MHz)	(dBm)	Max	
			(dBm)	
2402.000000	2401.987500	-3.871	8.0	PASS

Peak Power Spectral Density

Result


DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max	Result
			(dBm)	
2440.000000	2439.987500	-3.543	8.0	PASS

Peak Power Spectral Density

Result

5 **IDENTIFICATION OF THE EQUIPMENT UNDER TEST**

The photographs show the tested device.

Refer to documents External photo and Internal photo.

ANNEX 1 – MEASUREMENT UNCERTAINTY

Test Item	Uncertainty
Radiated EM field emission (30 MHz– 1000 MHz)	±4,88 dB
Mains disturbance voltage (150 kHz – 30 MHz)	±2,82 dB
Occupied Channel Bandwidth	±0,7%
RF Output power, conducted	±0,6dB
Power Spectral Density, Conducted	±0,6dB
Unwanted Emissions, Conducted	±0.7dB
Spurious (30-1000MHz)	±4,4dB
Spurious (1-18GHz)	±4,4dB

ANNEX 2 - USED EQUIPMENT

For Conducted emission :

Instrumentation	Manufacturer	Model No.	Serial No.	DEKRA No.	Cal. Due date
Shielding Room	Changzhou Feite	/	/	G/L861	2024/05/31
EMI Receiver	R&S	ESCI	101206	G/L857	2024/07/02
LISN	R&S	ENV216	101337	G/L859	2024/07/02

For Radiated Emission (30MHz-1000MHz)

Instrumentation	Manufacturer	Model No.	Serial No.	DEKRA No.	Cal. Due date
3m Chamber	ETS	FACT3-2.0	CT000344-1100	G/L856	2024/06/04
EMI receiver	R&S	ESCI	101205	G/L858	2024/07/02
Antenna (30MHz-3GHz)	SCHWARZBECK	VULB9163	506	G/L864	2024/06/04
Test software	AUDIX	e3	Version 6.130520		

For Radiated Emission (1GHz-18GHz)

Instrumentation	Manufacturer	Model No.	Serial No.	DEKRA No.	Cal. Due date
3m Chamber	ETS	FACT3-2.0	CT000344-1100	G/L856	2024/06/04
Antenna (1GHz-18GHz)	R&S	HF907	102306	G/L1236	2024/04/10
Horn antenna preamplifier	Schwarzbeek	SCU-18	102234	G/L1236-1	2025/02/03
Spectrum analyzer	R&S	FSV	SN101012	G/L1235	2025/01/09

FOR RF

Instrumentation	Manufacturer	Model	Serial no.	DEKRA No.	Cal Due date
Spectrum analyzer	R&S	FSV	SN101012	G/L1235	2025/01/09
Chamber	ETS	/	/	G/L856	2024/06/04
Horn antenna (1GHz-18GHz)	R&S	HF907	102306	G/L1236	2024/04/10
Horn antenna preamplifier	Schwarzbeek	SCU-18	102234	G/L1236-1	2025/02/03
EMI receiver	R&S	ESCI	101205	G/L857	2024/07/02
Antenna	SCHWARZBE	VULB9163	506	G/L864	2024/06/04
(30MHz-3GHz)	СК				
OSP	R&S	OSP 150	101907	GZ1894	2025/02/01
Signal generator	R&S	SMB 100A	181317	GZ1895	2025/02/01
Vector signal	R&S	SMBV100A	263671	GZ1896	2025/02/01
generator					
Wireless connectivity	R&S	CMW 270	100990	GZ1893	2025/02/01
tester					

Manual step	Keysight	8494B	TH60074118	GZ2086	2024/07/07
attenuator					
(11dB)					
Manual step	Keysight	8495D	TH60074471	GZ2087	2024/07/07
attenuator					
(70dB)					
Band filter	HX Microwave	HXLBQ-	23110101-2	GZ2540	2024-11-26
		DZA118			
Band filter	HX Microwave	HXLBQ-	23110101-1	GZ2541	2024-11-26
		DZA104			
Band filter	HX Microwave	HXLBQ-	23080804-1	GZ2464	2024-08-29
		DZA219			
RMI artificial antenna	/	/	/	GZ1988	2024-05-14
Programmable	ASTUOD	TT-5166	52689	GZ2209	2024/05/08
Temperature &					
Humidity Chamber					
Test software	R&S	EMC32			Version
					11.30.00

ANNEX 3 - TEST PHOTOS

Refer to document Test setup.

--- END ---