TEST REPORT On behalf of

Savant Technologies LLC, dba GE Lighting, a Savant company

Product Name: 240 Vac 60 A Wiser Control Relay

Model No.: QO260PWX240

FCC ID: PUU-QO260PWX

Prepared For: Savant Technologies LLC, dba GE Lighting, a Savant company 1975 Noble Road, Cleveland, OH 44112

Prepared By: Audix Technology (Shanghai) Co., Ltd. 3F, Building 34, No. 680 Guiping Rd., Caohejing, Hi-Tech Park, Shanghai 200233, China

Tel: +86-21-64955500

File No.:C1D2307048Report No.:ACI-F23158Date of Test:2023.07.20-24Date of Report:2023.08.18

The statement is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

TABLE OF CONTENTS

Page

1	SUI	MMARY OF STANDARDS AND RESULTS	. 5
	1.1	Description of Standards and Results	. 5
2		NERAL INFORMATION	
-		Description of Equipment Under Test	
	2.2	EUT Specifications Assessed in Current Report	
	2.3	Test Information	
	2.4	Duty Cycle Check	
	2.5	Sample Description	
	2.6	Supported equipment	
	2.7	Description of Test Facility	
3		NDUCTED EMISSION TEST	
0	3.1	Test Equipment	
	3.2	Block Diagram of Test Setup	
	3.3	Conducted Emission Limits (§15.207)	
	3.4	Test Configuration	
	3.5	Operating Condition of EUT	
	3.6	Test Procedures	
	3.7	Test Results	
4		DIATED EMISSION TEST	
-	4.1	Test Equipment	
	4.2	Block Diagram of Test Setup	
	4.3	Radiated Emission Limit (§15.209)	
	4.4	Test Configuration	
	4.5	Operating Condition of EUT	
	4.6	Test Procedures	
	4.7	Test Results	
5		B BANDWIDTH MEASUREMENT	
-	5.1	Test Equipment	
	5.2	Block Diagram of Test Setup	
	5.3	Specification Limits (§15.247(a)(2))	
		Operating Condition of EUT.	
	5.5	Test Procedure	
	5.6	Test Results	32
6	MA	XIMUM PEAK OUTPUT POWER MEASUREMENT	34
-	6.1	Test Equipment	
	6.2	Block Diagram of Test Setup	
	6.3	Specification Limits ((§15.247(b)(3))	
	6.4	Operating Condition of EUT	34
	6.5	Test Procedure	
	6.6	Test Results	
7	EM	ISSION LIMITATIONS MEASUREMENT	
	7.1	Test Equipment	
	7.2	Block Diagram of Test Setup	

	7.3	Specification Limits (§15.247(d))	
	7.4	Operating Condition of EUT	
	7.5	Test Procedure	
	7.6		
8	PO	WER SPECTRAL DENSITY MEASUREMENT	
	8.1	Test Equipment	
	8.2	Block Diagram of Test Setup	
	8.3	Specification Limits (§15.247(e))	
	8.4	Operating Condition of EUT	
	8.5	Test Procedure	
	8.6	Test Results	
9	AN	TENNA REQUIREMENT	
		Specification Limits (§15.203)	
	9.2	Result	
1) DE	VIATION TO TEST SPECIFICATIONS	
1	l ME	ASUREMENT UNCERTAINTY LIST	
А	PPEN	NDIX I PHOTOGRAPHS OF TEST	
А	PPEN	NDIX II PHOTOGRAPHS OF EUT	

TEST REPORT

Applicant	:	Savant Technologies LLC, dba GE Lighting, a Savant company			
EUT Description		240 Vac 60 A Wiser Control Relay			
		(A) Model No.	:	Refer to Sec.2.1	
		(B) Power Supply	:	120V AC 60Hz	
		(C) Test Voltage	:	120V/60Hz	

Test Procedure Used:

FCC RULES AND REGULATIONS PART 15 SUBPART C AND ANSI C63.10-2013

The device described above is tested by Audix Technology (Shanghai) Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits.

The test results are contained in this test report and Audix Technology (Shanghai) Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. This report also shows that the EUT (M/N: Refer to Sec2.1), which was tested is technically compliance with the FCC limits.

This report applies to above tested Sample only. This report shall not be reproduced in part without written approval of Audix Technology (Shanghai) Co., Ltd.

Date of Test :	2023.07.20-24	Date of Report :	2023.08.18
Producer :	Mandy Wang MINDY WANG / Assistant		
Review : For and Audix Technology (Shang Signatory : Authorized Signature(s)	Byron WU/ Deputy Assistant Ma I on behalf of thail Co., Ltd. KAMP CHEN / Manager	nager	

1 SUMMARY OF STANDARDS AND RESULTS

1.1 Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

Description / Test Item	Test Standard	Results	Meets Limit	
	EMISSION			
	FCC RULES AND REGULATIONS PART 15			
Conducted Emission	SUBPART C	Pass	15.207	
	AND ANSI C63.10:2013			
	FCC RULES AND REGULATIONS PART 15		15.209(a)	
Radiated Emission	SUBPART C	Pass	. ,	
	AND ANSI C63.10:2013		15.205(a)(c)	
6 dB Bandwidth	FCC RULES AND REGULATIONS PART 15			
Measurement	SUBPART C	Pass	15.247(a)(2)	
Measurement	AND ANSI C63.10:2013			
Maximum Dools Output	FCC RULES AND REGULATIONS PART 15			
Maximum Peak Output Power Measurement	SUBPART C	Pass	15.247(b)(3)	
Power Measurement	AND ANSI C63.10:2013			
Emission Limitations	FCC RULES AND REGULATIONS PART 15			
Measurement	SUBPART C		15.247(d)	
Wieasurement	AND ANSI C63.10:2013			
Band Edge	FCC RULES AND REGULATIONS PART 15			
Measurement	SUBPART C	Pass	15.247(d)	
Measurement	AND ANSI C63.10:2013			
Power Spectral Density	FCC RULES AND REGULATIONS PART 15			
Measurement	SUBPART C	Pass	15.247(e)	
Measurement	AND ANSI C63.10:2013			
	FCC RULES AND REGULATIONS PART 15			
Antenna Requirement	SUBPART C	Pass	15.203	
	AND ANSI C63.10:2013			
N/A is an abbreviation for Not Applicable.				

2 GENERAL INFORMATION

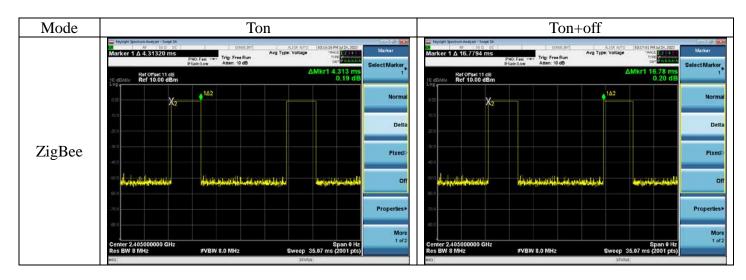
2.1 Description of Equipment Under Test

Description	:	240 Vac 60 A Wiser Control Relay			
Type of EUT	:	\square Production \square Pre-product \square Pro-type			
Model Number	:	QO260PWX240			
Radio Tech	:	ZigBee;			
Channel Freq.	:	ZigBee: 2405MHz-2480MHz;			
Modulation :		ZigBee: OQPSK;			
Antenna Info. :		Antenna Type: PCB Antenna Antenna Gain: 1.49 dBi			
Applicant	:	Savant Technologies LLC, dba GE Lighting, a Savant company 1975 Noble Road, Cleveland, OH 44112			
Manufacturer	:	same as Applicant			
Factory	:	LEEDARSON LIGHTING CO., LTD Xingtai Industrial Zone, Economic Development Zone, Changtai County Zhangzhou			

2.2 EUT Specifications Assessed in Current Report

Mode	Modulation	Data Rate(kbps)
ZigBee	OQPSK	250

Channel List				
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
11	2405	19	2445	
12	2410	20	2450	
13	2415	21	2455	
14	2420	22	2460	
15	2425	23	2465	
16	2430	24	2470	
17	2435	25	2475	
18	2440	26	2480	


2.3 Test Information

The test software "sscom5.13.1.exe" was used to control EUT work in TX mode, Power Setting and select test channel.

Mode	data rate (kbps)	Power Setting	Test C	hannel	Frequency (MHz)
	250	0	Low:	11	2405
ZigBee		0	Middle:	19	2445
		0	High:	26	2480

2.4 Duty Cycle Check

Mode	Transmission Duration (ms)	Transmission Period (ms)	Duty Cycle (%)
ZigBee	4.313	16.78	25.7

2.5 Sample Description

Test Item	Model Number	Sample Number	Date of receipted
Conducted Emission	QO260PWX240	E2307560a-01/03	2023.07.07
Radiated Emission	QO260PWX240	E2307560a-02/03	2023.07.07
Conducted RF Test	QO260PWX240	E2307560a-03/03	2023.07.07

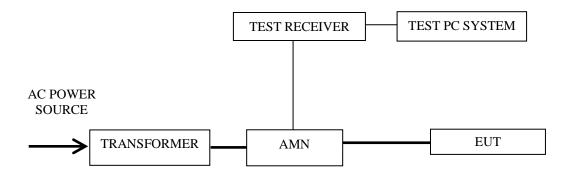
2.6 Supported equipment

Brand Product Name: Model Name Model Number	: : :	Acer Notebook PC TravelMate P238 series N15W8
Product Name	:	Test Fixture
Mode Number	:	J-OB V2
Product Function	:	USB to TTL

2.7 Description of Test Facility

Name of Firm	: Audix Technology (Shanghai) Co., Ltd.
Site Location	: 3F, Building 34, No. 680 Guiping Rd., Caohejing, Hi-Tech Park, Shanghai 200233, China
Accredited by NVLAP, Lab Code	: 200371-0
FCC Designation Number	: CN5027
Test Firm Registration Number	: 954668

3 CONDUCTED EMISSION TEST


3.1 Test Equipment

The following test equipments are used during the conducted emission test in a shielded room:

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Test Receiver	R&S	ESCI	101302	2023.02.22	1 Year
2.	Artificial Mains Network (AMN)	R&S	ESH2-Z5	843890/011	2023.02.22	1 Year
3.	Fixed Attenuator	SHYL	TTS-1	001	2023.02.22	1 Year
4.	50Ω Coaxial Switch	ANRITSU	MP59B	6200655086	2023.02.22	1 Year
5.	Coaxial Cable	HANWEI	RG223/U	KJ09052	2023.02.22	1 Year
6.	Software	Audix	e3	210616		

3.2 Block Diagram of Test Setup

3.2.1 Conducted Disturbance Test Setup

— : Signal Line— : Power Line

Frequency Range	Limits dB(µV)						
(MHz)	Quasi-peak	Average					
0.15 ~ 0.5	66~56	56~46					
0.5 ~ 5	56	46					
5 ~ 30	60	50					
NOTE 1 – The lower limit shall apply at the transition frequencies.NOTE 2 – The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz~0.50 MHz							

3.3 Conducted Emission Limits (§15.207)

3.4 Test Configuration

The EUT (listed in Sec.2.1) was installed as shown on Sec.3.2 to meet FCC requirement and operating in a manner which tends to maximize its emission level in a normal application.

3.5 Operating Condition of EUT

3.5.1 Setup the EUT as shown in Sec. 3.2.

- 3.5.2 Turn on the power of all equipment.
- 3.5.3 Turn the EUT on the test mode, and then test.

3.6 Test Procedures

The EUT was placed upon a non-metallic table, which is 0.8 m above the horizontal conducting ground plane and 0.4 m from a vertical reference plane. The EUT was connected to the power mains through an Artificial Mains Network (AMN) to provide a 50 Ω coupling impedance for the measuring equipment. Both sides of AC line (Line & Neutral) were checked to find out the maximum conducted emission according to FCC Part 15 Subpart C and ANSI C63.10: 2013 requirements during conducted disturbance test.

The I.F. bandwidth of Test Receiver ESCI was set at 9 kHz.

The frequency range from 150 kHz to 30 MHz was checked.

Test with a dummy load in lieu of the antenna to determine compliance with Section 15.207 limits within the transmitter's fundamental emission band. (According to KDB 174176 D01 Line Conducted FAQ)

The test modes were done on conducted disturbance test and all the test results are listed in Sec. 3.7

3.7 Test Results

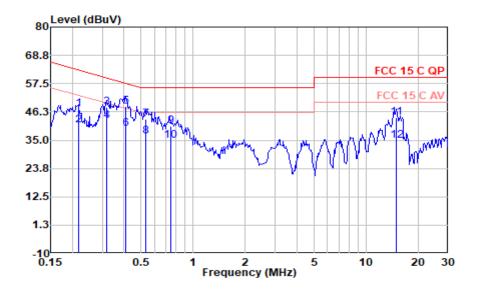
< PASS >

The frequency and amplitude of the highest conducted emission relative the limit is reported. All the emissions not reported below are too low against the FCC limit.

Worst case emission:

No.	Operation	Mode	Channel	Frequency (MHz)	Data Page
1.	Transmitting	ZigBee	11	2405	P12-13

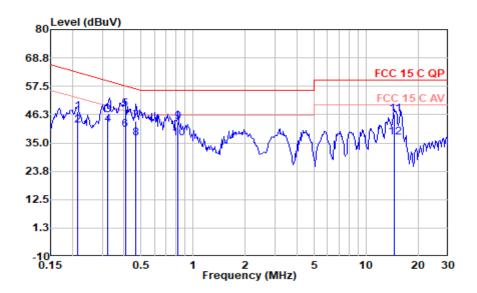
NOTE 1 – Emission Level = Read Level + AMN Factor + Aux Factor + Cable Loss Margin = Limits - Emission Level


NOTE 2 – "QP" means "Quasi-Peak" values

NOTE 3 – The emission levels which not reported are too low against the official limit.

Worst case emission

Test Date:	2023.07.20	Temp./Hum.:	22°C/51%RH	Test By:	Jarey


Mode: Zigbee CH2405MHz

Polarization at Line

Frequency (MHz)	Meter Reading dB (µV)	AMN Factor (dB)	Aux Factor (dB)	Cable Loss (dB)	Emission Level dB (µV)	Limits dB (µV)	Margin (dB)	Remark
0.217	37.75	0.10	9.49	0.00	47.34	62.95	15.60	QP
0.217	31.19	0.10	9.49	0.00	40.78	52.95	12.17	Average
0.317	38.50	0.10	9.49	0.00	48.09	59.79	11.70	QP
0.317	33.00	0.10	9.49	0.00	42.59	49.79	7.20	Average
0.411	38.76	0.11	9.49	0.00	48.36	57.63	9.27	QP
0.411	30.00	0.11	9.49	0.00	39.60	47.63	8.03	Average
0.530	33.46	0.20	9.49	0.01	43.15	56.00	12.85	QP
0.530	26.88	0.20	9.49	0.01	36.58	46.00	9.42	Average
0.740	30.94	0.20	9.49	0.06	40.68	56.00	15.32	QP
0.740	25.10	0.20	9.49	0.06	34.85	46.00	11.15	Average
14.960	33.71	0.60	9.50	0.20	44.01	60.00	15.99	QP
14.960	24.59	0.60	9.50	0.20	34.88	50.00	15.12	Average

Mode: Zigbee CH2405MHz

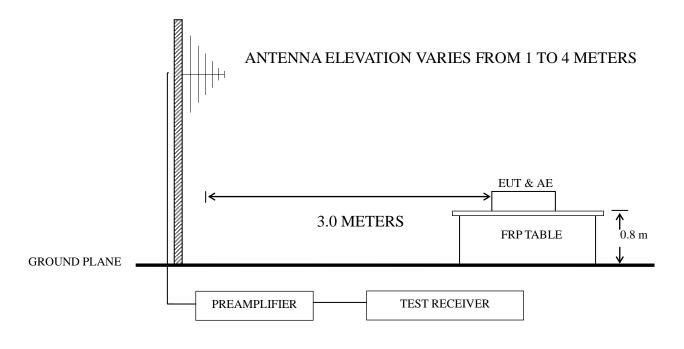
Polarization at Neutral

Frequency (MHz)	Meter Reading dB (µV)	AMN Factor (dB)	Aux Factor (dB)	Cable Loss (dB)	Emission Level dB (µV)	Limits dB (µV)	Margin (dB)	Remark
0.215	37.86	0.10	9.49	0.00	47.45	63.03	15.57	QP
0.215	32.51	0.10	9.49	0.00	42.10	53.03	10.93	Average
0.320	36.48	0.10	9.49	0.00	46.07	59.71	13.64	QP
0.320	32.76	0.10	9.49	0.00	42.35	49.71	7.36	Average
0.406	38.82	0.10	9.49	0.00	48.41	57.74	9.33	QP
0.406	30.58	0.10	9.49	0.00	40.17	47.74	7.57	Average
0.466	34.01	0.10	9.49	0.00	43.60	56.59	12.99	QP
0.466	27.38	0.10	9.49	0.00	36.97	46.59	9.62	Average
0.822	33.56	0.10	9.49	0.07	43.22	56.00	12.78	QP
0.822	27.23	0.10	9.49	0.07	36.89	46.00	9.11	Average
14.665	36.33	0.39	9.50	0.20	46.43	60.00	13.57	QP
14.665	27.27	0.39	9.50	0.20	37.36	50.00	12.64	Average

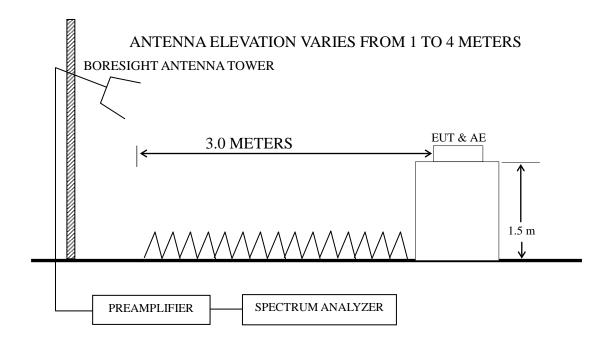
4 RADIATED EMISSION TEST

4.1 Test Equipment

The following test equipment are used during the radiated emission test in a semi-anechoic chamber:


Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Preamplifier	Agilent	8447D	2944A10548	2023.02.22	1 Year
2.	Preamplifier	HP	8449B	3008A00864	2023.02.22	1 Year
3.	Spectrum Analyzer	Agilent	N9010A	MY52221182	2022.09.15	1 Year
4.	Test Receiver	R&S	ESCI	101303	2023.02.22	1 Year
5.	Bilog Antenna+6dB Attenuator	Schwarz beck	VULB 9168+EMCI-N-6-06	708+AT-N0638	2023.02.07	1 Year
6.	Horn Antenna	EMCO	3115	00062593	2022.09.23	1 Year
7.	Horn Antenna	EMCO	3116	00062643	2023.01.30	2 Year
8.	Cavity Band Rejection Filter	Microwave	WT-A3882-R10	WT200312-1-1	2023.02.22	1 Year
9.	Coaxial Switch	Anritsu	MP59B	6200655086	2023.02.22	1 Year
10.	Coaxial Cable	SCHAFFNER	RG 212U-MIL C 17 +N1K50-EW0630- N1K50-15m-1	RE-10m-001/ RE-15m-002	2023.02.22	1 Year
11.	Software	Audix	e3	210616		

4.2 Block Diagram of Test Setup


4.2.1 EUT & Peripherals

4.2.2 Below 1GHz

4.2.3 Above 1GHz

4.3 Radiated Emission Limit (§15.209)

Frequency	Distance	Field strength limits ($\mu V/m$)					
(MHz)	(m)	(µV/m)	dB(µV/m)				
30 ~ 88	3	100	40.0				
88 ~ 216	3	150	43.5				
216 ~ 960	3	200	46.0				
Above 960	3	500	54.0				
 NOTE 1 - Emission Level dB (μV/m) = 20 log Emission Level (μV/m) NOTE 2 - The tighter limit applies at the band edges. NOTE 3 - Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system. 							
NOTE 4 - The limits shown are based on Quasi-peak value detector below or							
 equal to 1GHz and Average value detector above 1GHz. NOTE 5 - Above 1 GHz, the limit on peak emission is 20 dB above the maximum permitted average emission limit applicable to the EUT 							

4.4 Test Configuration

The EUT (listed in Sec.2.1) and the simulators (listed in Sec.2.2) were installed as shown on Sec.4.2 to meet FCC requirements and operating in a manner that tends to maximize its emission level in a normal application.

4.5 Operating Condition of EUT

4.5.1 Setup the EUT as shown in Sec. 4.2.

- 4.5.2 Turn the EUT on.
- 4.5.3 Connect the EUT and the TTL terminal of Test Fixture through three HCI cables of EUT, as follows (TX to RXD, RX to TXD, GND to GND). Plug the USB terminal of Test Fixture to the USB port of Notebook PC.
- 4.5.4 Use the software as section 2.3 to select the test mode, then disconnect the Test Fixture from EUT, remove the Test Fixture and Notebook PC, then test.
- 4.5.5 Repeat step 4.5.3 and 4.5.4, until the test of all modes finished.

4.6 Test Procedures

Radiated emission test applies to harmonics/spurs that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209. A pre-amp is necessary for this measurement. For measurement above 1 GHz, set RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation.

The EUT was placed on a turntable. Below 1 GHz, the table height is 80 cm above the reference ground plane. Above 1 GHz, the table height is 1.5 m. The turntable rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna, which was mounted on an antenna tower. The antenna moved up and down

between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (Calibrated Bilog Antenna) or Horn antenna was used as receiving antenna. Both horizontal and vertical polarizations of the antenna were set on measurement. In order to find the maximum emission, all of the interference cables were manipulated according to ANSI C63.10: 2013 requirements during radiated emission test.

The bandwidth of Test Receiver R&S ESCI was set at 120 kHz from 30MHz to 1000MHz.

The bandwidth of Agilent N9010A was set at 1MHz for above 1GHz.

The frequency range from 30 MHz to 25 GHz (Up to 10th harmonics from fundamental frequency) was checked.

All the test results are listed in Sec.4.7.

4.7 Test Results

<PASS>

The frequency and amplitude of the highest radiated emission relative the limit is reported. All the emissions not reported below are too low against the FCC limit.

Frequency range: below 1GHz (Worst case emiss	ion)
---	------

No.	Operation	Mode	Channel	Frequency	Data Page
1.	Transmitting	ZigBee	11	2405 MHz	P19-20

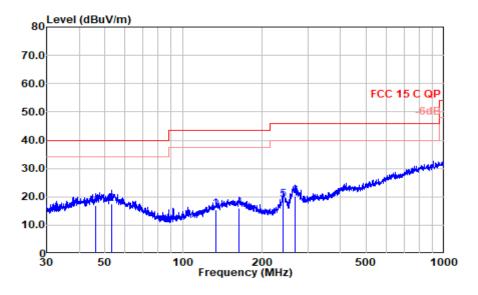
Frequency range: above 1GHz

No.	Operation	Mode	Channel	Frequency	Data Page
1.			11	2405 MHz	P21-22
2.	Transmitting	Transmitting ZigBee	19	2445 MHz	P23-24
3.			26	2480 MHz	P25-26

Band-Edge and Restricted bands:

No.	Operation	Mode	Channel	Frequency	Data Page
1.	1. 1. 2. Transmitting	ZigBee	11	2405 MHz	P27-28
2.		Zigbee	26	2480 MHz	P29-30

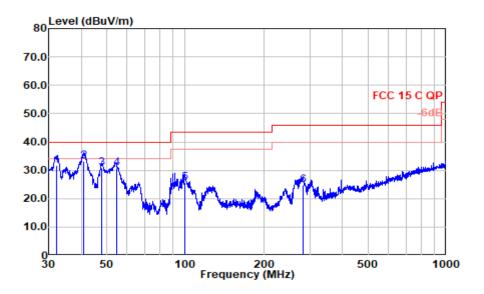
- NOTE 1 Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin = Limits - Emission Level.
- NOTE 2 "QP" means "Quasi-Peak" values.
- NOTE $3 0^{\circ}$ was the table front facing the antenna. Degree is calculated from 0° clockwise facing the antenna.
- NOTE 4 The emission levels which not reported are too low against the official limit.
- NOTE 5 The emission levels recorded below is data of EUT configured in Side direction, for this direction was the maximum emission direction during the test. The data of Standing & Lying direction are too low against the official limit to be reported.
- NOTE 6 All reading are Quasi-Peak values below or equal to 1GHz, Peak and Average values above 1GHz.


For above 1GHz test, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.

NOTE 7 – The frequency range 2310-2390MHz & 2483.5-2500MHz were tested for Restricted bands.

Radiated emission < 1GHz

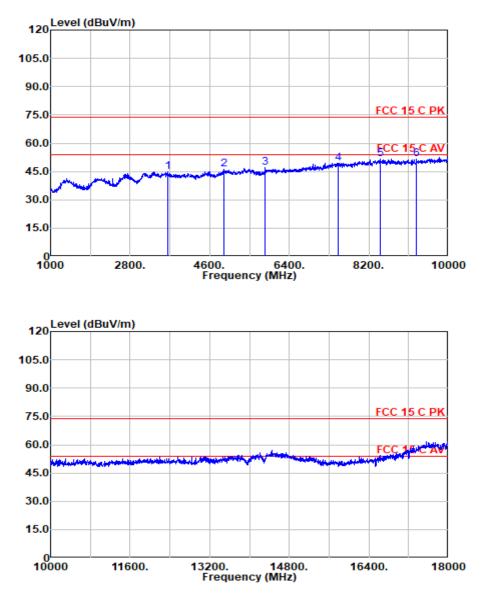
Test Date: 2023.07.20	Temp./Hum.:	22°C/51%RH	Test By:	Jarey
-----------------------	-------------	------------	----------	-------


Mode: ZigBee CH2405MHz

Polarization at Horizontal

Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
46.422	26.11	20.04	0.74	29.90	17.00	40.00	23.00	QP
53.038	26.86	19.70	0.79	29.89	17.46	40.00	22.54	QP
133.385	25.71	17.98	1.27	29.51	15.46	43.50	28.04	QP
164.042	24.84	19.09	1.42	29.35	16.00	43.50	27.50	QP
241.253	29.16	17.45	1.71	29.19	19.13	46.00	26.87	QP
267.546	29.23	18.10	1.80	28.98	20.15	46.00	25.85	QP

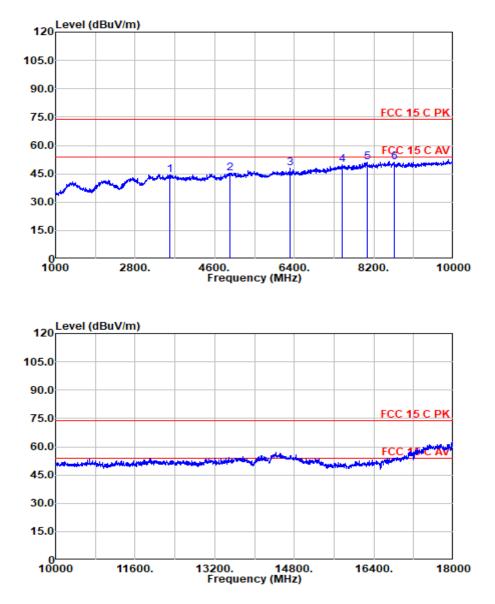
Mode: ZigBee CH2405MHz


Polarization at Vertical

Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
32.179	42.89	18.24	0.61	29.90	31.84	40.00	8.16	QP
40.988	42.76	19.60	0.70	29.90	33.16	40.00	6.84	QP
47.742	40.01	19.88	0.75	29.90	30.74	40.00	9.26	QP
54.547	40.07	19.65	0.81	29.88	30.65	40.00	9.35	QP
99.878	39.36	14.88	1.17	29.70	25.70	43.50	17.80	QP
282.489	32.86	18.85	1.89	28.79	24.81	46.00	21.19	QP

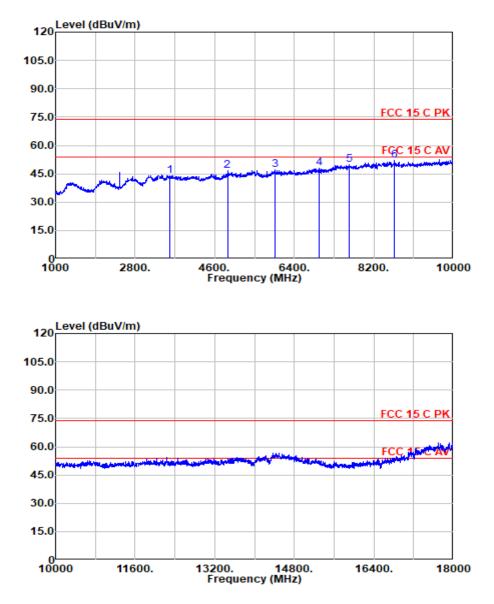
Radiated Emission > 1GHz

Test Date: 2023.07.20	Temp./Hum.:	22°C/51%RH	Test By:	Jarey
-----------------------	-------------	------------	----------	-------


Mode: ZigBee CH2405MHz

Polarization at Horizontal

Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
3646.000	41.79	31.78	6.47	35.13	44.91	74.00	29.09	Peak
4928.500	39.73	33.26	7.74	34.63	46.11	74.00	27.89	Peak
5860.000	39.33	33.82	8.34	34.60	46.90	74.00	27.10	Peak
7511.500	37.41	37.00	9.81	34.76	49.46	74.00	24.54	Peak
8452.000	37.58	38.32	10.46	34.81	51.56	74.00	22.44	Peak
9280.000	37.50	38.12	10.87	34.67	51.82	74.00	22.18	Peak


Mode: ZigBee CH2405MHz

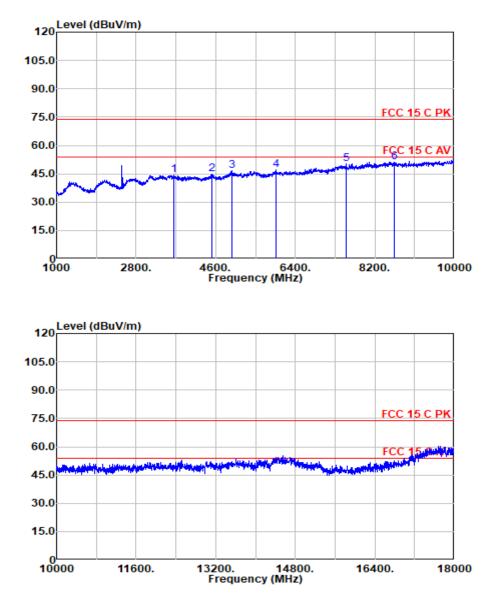
Polarization at Vertical

Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
3592.000	41.42	31.56	6.42	35.15	44.26	74.00	29.74	Peak
4946.500	39.07	33.30	7.76	34.62	45.51	74.00	28.49	Peak
6296.500	39.11	34.60	8.68	34.60	47.79	74.00	26.21	Peak
7493.500	37.65	37.00	9.79	34.75	49.68	74.00	24.32	Peak
8042.500	38.13	37.62	10.32	34.89	51.19	74.00	22.81	Peak
8654.500	36.86	38.47	10.52	34.77	51.08	74.00	22.92	Peak

Mode: ZigBee CH2445MHz

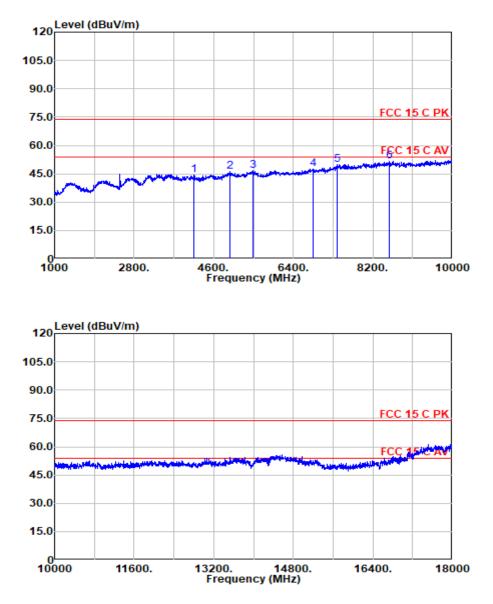
Polarization at Horizontal

Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
3583.000	41.25	31.51	6.41	35.15	44.02	74.00	29.98	Peak
4888.000	40.35	33.15	7.70	34.64	46.56	74.00	27.44	Peak
5954.500	39.30	34.10	8.39	34.60	47.20	74.00	26.80	Peak
6971.500	37.99	35.40	9.23	34.60	48.02	74.00	25.98	Peak
7651.000	37.49	37.10	9.96	34.80	49.75	74.00	24.25	Peak
8659.000	37.71	38.46	10.53	34.77	51.92	74.00	22.08	Peak


Mode: ZigBee CH2445MHz

Polarization at Vertical

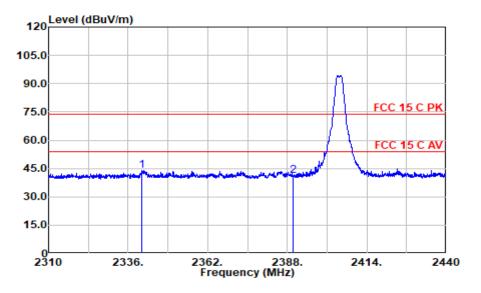
Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
3587.500	41.74	31.54	6.42	35.15	44.55	74.00	29.45	Peak
4541.500	40.26	32.60	7.35	34.77	45.44	74.00	28.56	Peak
4888.000	39.47	33.15	7.70	34.64	45.68	74.00	28.32	Peak
5878.000	39.05	33.86	8.35	34.60	46.66	74.00	27.34	Peak
7565.500	38.43	37.00	9.87	34.77	50.52	74.00	23.48	Peak
8560.000	37.45	38.40	10.49	34.79	51.56	74.00	22.44	Peak


Mode: ZigBee CH2480MHz

Polarization at Horizontal

Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
3646.000	41.40	31.78	6.47	35.13	44.52	74.00	29.48	Peak
4505.500	39.66	32.60	7.32	34.79	44.79	74.00	29.21	Peak
4960.000	40.08	33.33	7.77	34.61	46.57	74.00	27.43	Peak
5959.000	39.01	34.10	8.40	34.60	46.91	74.00	27.09	Peak
7556.500	38.24	37.00	9.86	34.77	50.32	74.00	23.68	Peak
8645.500	36.97	38.49	10.52	34.77	51.21	74.00	22.79	Peak

Mode: ZigBee CH2480MHz


Polarization at Vertical

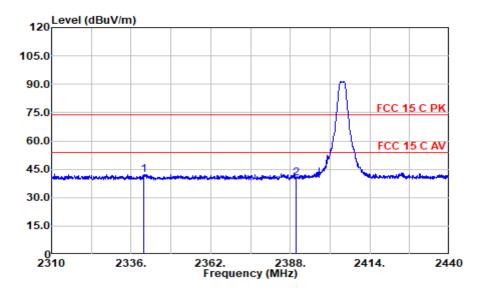
Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
4145.500	40.10	32.50	6.92	34.94	44.58	74.00	29.42	Peak
4960.000	39.53	33.33	7.77	34.61	46.01	74.00	27.99	Peak
5482.000	38.75	34.21	8.12	34.60	46.48	74.00	27.52	Peak
6854.500	37.56	35.60	9.14	34.60	47.69	74.00	26.31	Peak
7399.000	37.84	37.00	9.69	34.72	49.81	74.00	24.19	Peak
8564.500	37.56	38.40	10.50	34.78	51.67	74.00	22.33	Peak

Band-Edge and Restricted bands:

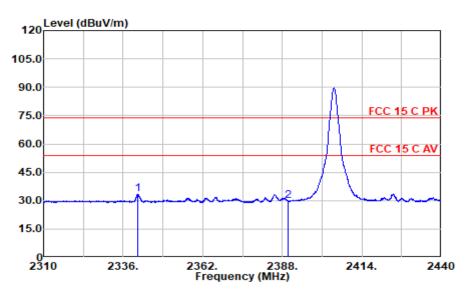
Test Date: 2023.07.20	Temp./Hum.:	22°C/51%RH	Test By:	Jarey
-----------------------	-------------	------------	----------	-------

Mode: ZigBee CH2405MHz

Polarization at Horizontal

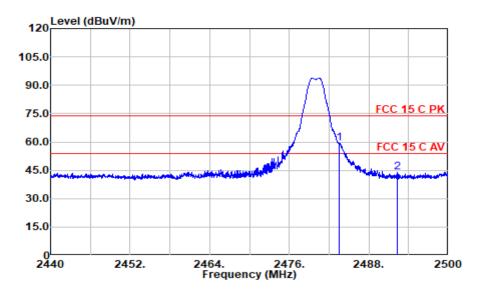

Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
2340.550	46.24	28.33	5.34	36.07	43.84	74.00	30.16	Peak
2390.000	43.52	28.40	5.39	36.02	41.29	74.00	32.71	Peak

Polarization at Horizontal

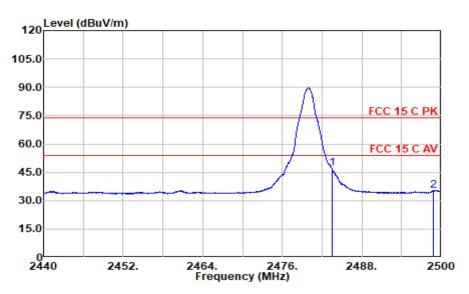

Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
2340.875	38.39	28.33	5.34	36.07	36.00	54.00	18.00	Average
2390.000	32.50	28.40	5.39	36.02	30.27	54.00	23.73	Average

Mode: ZigBee CH2405MHz

Polarization at Vertical

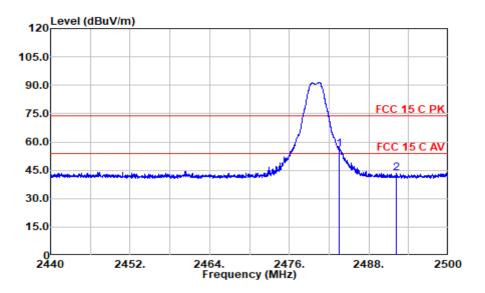

Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
2340.160	44.55	28.33	5.34	36.07	42.15	74.00	31.85	Peak
2390.000	42.60	28.40	5.39	36.02	40.37	74.00	33.63	Peak

Polarization at Vertical

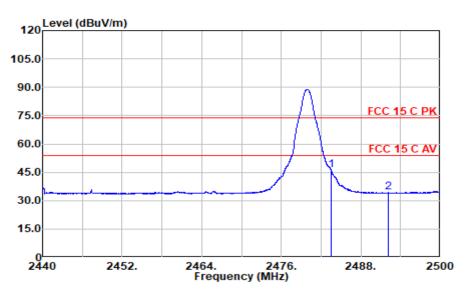

Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
2340.940	35.85	28.34	5.34	36.07	33.46	54.00	20.54	Average
2390.000	32.02	28.40	5.39	36.02	29.79	54.00	24.21	Average

Mode: ZigBee CH2480MHz

Polarization at Horizontal


Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
2483.500	61.22	28.43	5.47	35.91	59.21	74.00	14.79	Peak
2492.350	45.66	28.47	5.48	35.90	43.70	74.00	30.30	Peak

Polarization at Horizontal


Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
2483.500	49.06	28.43	5.47	35.91	47.05	54.00	6.95	Average
2498.740	37.30	28.50	5.48	35.90	35.38	54.00	18.62	Average

Mode: ZigBee CH2480MHz

Polarization at Vertical

Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
2483.500	58.27	28.43	5.47	35.91	56.26	74.00	17.74	Peak
2492.200	45.21	28.47	5.48	35.90	43.25	74.00	30.75	Peak

Polarization at Vertical

Frequency (MHz)	Meter Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
2483.500	48.23	28.43	5.47	35.91	46.22	54.00	7.78	Average
2492.110	36.41	28.47	5.48	35.90	34.45	54.00	19.55	Average

5 6 dB BANDWIDTH MEASUREMENT

5.1 Test Equipment

The following test equipment was used during the Emission Bandwidth measurement:

Ι	tem	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
	1.	Spectrum Analyzer	Agilent	N9010A	MY52221182	2022.09.15	1 Year
	2.	RF Cable	Mini-Circuits	FLC-3FT-SM SM+	22022838	2022.09.21	1 Year
	3.	10 dB Attenuator	Mini-Circuits	BW-S10W2+	001	2022.09.21	1 Year

5.2 Block Diagram of Test Setup

	Spectrum Analyzer		Attenuator		EUT		Test Fixture	Notebook PC
--	-------------------	--	------------	--	-----	--	--------------	-------------

5.3 Specification Limits (§15.247(a)(2))

The minimum 6 dB bandwidth shall be at least 500 kHz.

5.4 Operating Condition of EUT

The software as section 2.3 was used to enable the EUT to change the test mode one by one.

5.5 Test Procedure

The transmitter output was connected to the spectrum analyzer. The bandwidth of the fundamental frequency was measure by spectrum analyzer with settings: RBW = 100kHz, $VBW \ge 3 \times RBW$.

The 6 dB bandwidth is defined as the total spectrum the power of which is lower than peak power minus 6 dB .

The test procedure is defined in ANSI C63.10-2013 (the 11.8.2 Measurement Procedure "Option 2" was used).

5.6 Test Results

PASSED.

All the test results are attached in next pages.

(Test Date: 2023.07.24 Temperature: 23°C Humidity: 51 %)

Mode	Channel	Frequency (MHz)	6dB Bandwidth (kHz)	Limit
	11	2405	811.9	500 kHz
ZigBee	19	2445	807.7	500 kHz
	26	2480	811.1	500 kHz

6 MAXIMUM PEAK OUTPUT POWER MEASUREMENT

6.1 Test Equipment

The following test equipment was used during the maximum peak output power measurement:

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A	MY52221182	2022.09.15	1 Year
2.	RF Cable	Mini-Circuits	FLC-3FT-SM SM+	22022838	2022.09.21	1 Year
3.	10 dB Attenuator	Mini-Circuits	BW-S10W2+	001	2022.09.21	1 Year

6.2 Block Diagram of Test Setup

The Same as Section. 5.2.

6.3 Specification Limits ((§15.247(b)(3))

The Limits of maximum Peak Output Power for digital modulation in 2400-2483.5 MHz is: 1 Watt. (30 dBm)

6.4 Operating Condition of EUT

The software as section 2.3 was used to enable the EUT to change the test mode one by one.

6.5 Test Procedure

The transmitter output was connected to the spectrum analyzer.

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) $RBW \ge DTS$ Bandwidth.
- b) VBW \geq [3 × RBW].
- c) Span \geq [3 × RBW].
- d) Sweep time = auto.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

The test procedure is defined in ANSI C63.10-2013 (11.9.1.1 Measurement Procedure " RBW \geq DTS bandwidth" was used).

6.6 Test Results

PASSED.

All the test results are listed below.

(Test Date: 2023.07.24 Temperature: 23°C Humidity: 51 %)

Mode	Channel	Frequency (MHz)	Peak Output Power (dBm)	Limit
ZigBee	11	2405	-0.936	30 dBm
	19	2445	-1.189	30 dBm
	26	2480	-1.389	30 dBm

ZigBee					
CH2405	CH2445	CH2445			
IFGain:Low At	Strict_phri Augn Auto 0013000 Ph M 24, 2023 Avg Type: Log-Pwr TMACE ID 24.5 201500 Ph M 24, 2023 rig: Free Run AvglHold:>100100 TWR Ph M 24, 2023 tten: 10 dB Mitch 2, 2004 R 0, 20150 TWR Ph M 24, 2023	Peak Search Next Peak	500 DC SENSE DHT 56000000 GHZ PNO: Fast. Trig: Free Run IFGale:Low Atten: 10 dB	Augh Auto (021229 PR/0124, 222) Avg Type Log-Part AvgHolds-100100 Mkr1 2.444 466 0 GHz NextPeak	
10 dB(dlw Ref 10.00 dBm	Mkr1 2.404 466 0 GHz -0.936 dBm	Next Pk Right	et 11 dB 00 dBm	-1.189 dBm Next Pk Right	
-20.0		Next Pk Left		Next Pk Left	
-30.0		Marker Delta		Marker Delta	
800		Mkr→CF		Mkr→CF	
-70.0		MkrRefLvl		Mkr→RefLvl	
Center 2.405000 GHz #Res BW 1.0 MHz #VBW 3.0	Span 3.000 MHz D MHz Sweep 1.067 ms (2001 pts)	More 1 of 2 Center 2.445000 0 #Res BW 1.0 MHz	SHz #VBW 3.0 MHz	Span 3.000 MHz Sweep 1.067 ms (2001 pts)	
CH2480					
Marker 1 2.479482500000 GHz PNO: Fast Provide the formation of the formati	Stride_DMT Aug type: Log-Pwr Task: 0.02 Task: 0.02 rig: Free Run Avg type: Log-Pwr Task: 0.02 Task: 0.02 sten: 10 dB Mkr1 2.479 482 5 GHz -1.389 GHz	Peak Search NextPeak			
10 dB/dlv Ref 10.00 dBm		Next Pk Right			
-10.0		Next Pk Left			
-40.0		Marker Delta			
80.0		Mkr→CF			
-70.0		Mkr—RefLvl			
Center 2.480000 GHz #Res BW 1.0 MHz #VBW 3.0	Span 3.000 MHz 9 MHz Sweep 1.067 ms (2001 pts) (874708)	More 1 of 2			

7 EMISSION LIMITATIONS MEASUREMENT

7.1 Test Equipment

The following test equipment was used during the emission limitations test:

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A	MY52221182	2022.09.15	1 Year
2.	RF Cable	Mini-Circuits	FLC-3FT-SM SM+	22022838	2022.09.21	1 Year
3.	10 dB Attenuator	Mini-Circuits	BW-S10W2+	001	2022.09.21	1 Year

7.2 Block Diagram of Test Setup

The Same as Section. 5.2.

7.3 Specification Limits (§15.247(d))

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). (*X*This test result attaching to Section. 3.7)

7.4 Operating Condition of EUT

The software as section 2.3 was used to enable the EUT to change the test mode one by one.

7.5 Test Procedure

The transmitter output was connected to the spectrum analyzer.

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to ≥ 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq [3 × RBW].

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to

establish the reference level.

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

b) Set the RBW = 100 kHz.

c) Set the VBW \geq [3 × RBW].

d) Detector = peak.

e) Sweep time = auto couple.

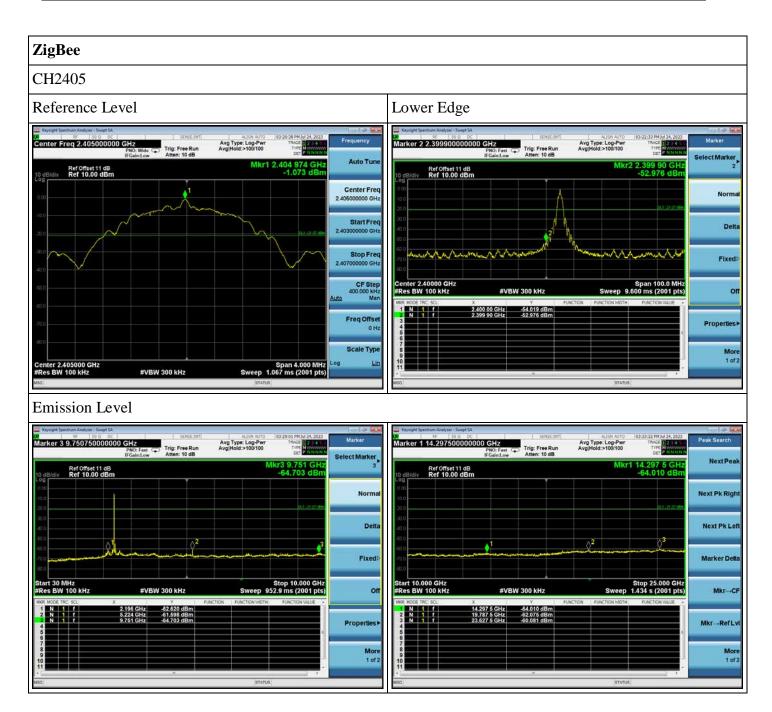
f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

Scan up through 10th harmonic.


The test procedure is defined in ANSI C63.10-2013 (11.11.2 Reference level measurement and 11.11.3 Emission level measurement was used).

7.6 Test Results **PASSED**.

The test data was attached in the next pages.

(Test Date: 2023.07.24 Temperature: 23°C Humidity: 51 %)

Mode	Channel	Frequency (MHz)	Data Page
	11	2405	P40
ZigBee	19	2445	P41
	26	2480	P42

ligBee						
CH2445						
eference Level						
Kepspel Kepstum Analyse: Sweet SA. SUBSE: INIT: ALIGN AUTO OS27: OF PW JM 34: A 2022 PT 199: 00C Arg Type: Log-Pwr Arg Type: Log-P	Frequency Auto Tune Center Freq 2.44500000 GHz Start Freq 2.44300000 GHz Stop Freq 2.44700000 GHz GF Step 400.000 KHz Auto Man Freq Offset OHz					
Inter 2.445000 GHz Span 4.000 MHz es BW 100 kHz #VBW 300 kHz Sweep 1.067 ms (2001 pts) stratus stratus		1 Topiget Spectrum Analysis - Sweet 14 50 - 50 - 50 - 50 1 13.65225000000	000 GHz PN0: Fax → Trig: Free Ru	Avg Type: Log-Pwr	TRACE 2 34 5	Peak Search
PRO: Fast Trig: Free Run Avg Hold>100100 Trie IFGainLow Attent: 10 dB Mkr3 8.076 GHz Ref Offset 11 dB Mkr3 8.076 GHz dB/div Ref 10.00 dBm -65.339 dBm	Select Marker	Ref Offset 11 dB 0 dB/div Ref 10.00 dBm	IFGain:Low Atten: 10 dB	240	r1 13.652 5 GHz -64.536 dBm	NextPe
	Normal	00 0.00				Next Pk Rig
	Deita	40.0			0.1 21 21 494 0 3	Next Pk L
			1 	and and a second se	and the second	Marker De
	Fixed	50.5				

8 POWER SPECTRAL DENSITY MEASUREMENT

8.1 Test Equipment

The following test equipment was used during the power spectral density measurement:

It	em	Type Manufacturer		Model No.	Serial No.	Cal. Date	Cal. Interval
	1.	Spectrum Analyzer	Agilent	N9010A	MY52221182	2022.09.15	1 Year
	2.	RF Cable	Mini-Circuits	FLC-3FT-SM SM+	22022838	2022.09.21	1 Year
	3.	10 dB Attenuator Mini-Circuits		BW-S10W2+	001	2022.09.21	1 Year

8.2 Block Diagram of Test Setup

The Same as section 5.2.

8.3 Specification Limits (§15.247(e))

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band.

8.4 Operating Condition of EUT

The software as section 2.3 was used to enable the EUT to change the test mode one by one.

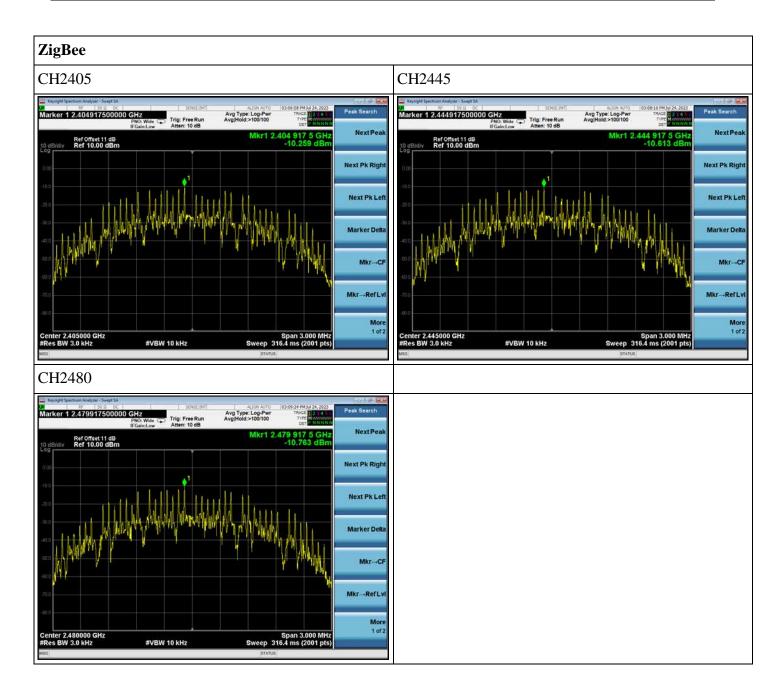
8.5 Test Procedure

The transmitter output was connected to the spectrum analyzer.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- d) Set the VBW \geq [3 × RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.


The test procedure is defined in ANSI C63.10-2013 (11.10.2 Measurement Procedure "Method PKPSD (peak PSD)" was used).

8.6 Test Results **PASSED**.

All the test results are attached in next pages.

(Test Date: 2023.07.24 Temperature: 23°C Humidity: 51 %)

Mode	Channel	Frequency (MHz)	Power Spectral Density (dBm)	Limit	
	11	2405	-10.259	8 dBm	
BLE	19	2445	-10.613	8 dBm	
	26	2480	-10.763	8 dBm	

9 ANTENNA REQUIREMENT

9.1 Specification Limits (§15.203)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 Result

According to KDB 353028 D1, the following describes the three ways that can
be used to demonstrate compliance to Section 15.203:
a) Antenna permanently attached.
b) Unique (non-standard) antenna connector.
c) Professional installation.
For this product, the antenna is:
Antenna permanently attached
Unique (non-standard) antenna connector
□ Professional installation
\Box not meet any of ways list above
that
☑ compliant
\Box not compliant
with the requirement of Section 15.203.

10 DEVIATION TO TEST SPECIFICATIONS

None.

11 MEASUREMENT UNCERTAINTY LIST

The measurement uncertainty was estimated for test on the EUT according to CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage of K=2. The uncertainties value is not used in determining the PASS/FAIL results.

Test Items/Facilities	Frequency/Equipment/Unit	Uncertainty	
	9kHz~150kHz(50Ω/50μH -AMN)	3.74 dB	
	150kHz~30MHz(50Ω/50μH -AMN)	3.34 dB	
	150kHz~30MHz(50Ω/50µH –AMN-CAT 3)	3.46 dB	
	150kHz~30MHz(50Ω/50µH –AMN-CAT 5)	3.48 dB	
Estimation of Uncertainty	150kHz~30MHz(50Ω/50µH –AMN-CAT 6)	3.60 dB	
for Conduction Emission	9kHz~30MHz(VP, considering the effect of	24.64 dB	
(Shielded Room-1)	mains impedance when compared with AMN)	24.04 UD	
	9kHz~30MHz(VP)	2.76 dB	
	9kHz~30MHz(CP, considering the effect of	24.64 dB	
	AE impedance when compared with AMN)	24.04 UD	
	9kHz~30MHz(CP)	2.82 dB	
Estimation of Uncertainty	9kHz~150kHz(50Ω/50µH -AMN)	3.74 dB	
for Conduction Emission	150kHz~30MHz(50Ω/50μH -AMN)	3.34 dB	
(Shielded Room-3)		5.51 01	
Estimation of Uncertainty for Power Clamp	30MHz~300MHz (Absorbing Clamp)	3.68 dB	
Estimation of Uncertainty	30MHz~300MHz (CDNE-M210)	3.68 dB	
for CDNE	30MHz~300MHz (CDNE-M310)	3.68 dB	
Estimation of Uncertainty for EMF	20kHz~10MHz	1.54 dB	
	30M~200MHz (Vertical)	4.56dB	
	30M~200MHz (Horizontal)	4.44dB	
Estimation of Uncertainty	200M~1000MHz (Vertical)	5.28dB	
Estimation of Uncertainty for Radiated Emission	200M~1000MHz (Horizontal)	3.88dB	
	1G~6GHz	4.34dB	
	6G~18G Hz	4.40dB	
	18G~40G Hz	4.04dB	