

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Motion Sensor

MODEL NUMBER: CWLMSONNWW1

FCC ID: PUU-CWLMSONNWW1 IC: 10798A-CWLMSONNWW1

REPORT NUMBER: 4789132867.1-1

ISSUE DATE: August 21, 2019

Prepared for

GE Lighting 1975 Noble Road Cleveland, Ohio 44112 United States

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone, Dongguan, People's Republic of China Tel: +86 769-22038881 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	08/21/2019	Initial Issue	

Summary of Test Results					
Clause	Test Items	FCC/IC Rules	Test Results		
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass		
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (d)	Pass		
3	Power Spectral Density	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass		
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass		
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass		
6	Conducted Emission Test For AC Power Port	FCC Part 15.207 RSS-GEN Clause 8.8	Not support		
7	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 6.8	Pass		
This test report is only published to and used by the applicant, and it is not for evidence purpose in China.					

TABLE OF CONTENTS

1. A	ITESTATION OF TEST RESULTS	6
2. TE	EST METHODOLOGY	7
3. F/	ACILITIES AND ACCREDITATION	7
4. C/	ALIBRATION AND UNCERTAINTY	
4.1.	MEASURING INSTRUMENT CALIBRATION	
4.2.	MEASUREMENT UNCERTAINTY	
5. EC	QUIPMENT UNDER TEST	9
5.1.	DESCRIPTION OF EUT	9
5.2.	MAXIMUM OUTPUT POWER	9
5.3.	CHANNEL LIST	10
5.4.	TEST CHANNEL CONFIGURATION	10
5.5.	THE WORSE CASE POWER SETTING PARAMETER	
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	
5.7.	WORST-CASE CONFIGURATIONS	11
5.8.	TEST ENVIRONMENT	11
5.9.	DESCRIPTION OF TEST SETUP	
5.10	MEASURING INSTRUMENT AND SOFTWARE USED	
6. M	EASUREMENT METHODS	14
7. Al	NTENNA PORT TEST RESULTS	15
7.1.	ON TIME AND DUTY CYCLE	15
7.2.	6 dB DTS BANDWIDTH AND 99% BANDWIDTH	17
7.3.	PEAK CONDUCTED OUTPUT POWER	19
7.4.	POWER SPECTRAL DENSITY	20
7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	22
8. R/	ADIATED TEST RESULTS	24
8.1.	RESTRICTED BANDEDGE	29
8.2.	SPURIOUS EMISSIONS (1~3GHz)	
8.3.	SPURIOUS EMISSIONS (3~18GHz)	
8.4.	SPURIOUS EMISSIONS 18G ~ 26GHz	45
8.5.	SPURIOUS EMISSIONS 30M ~ 1 GHz	47
8.6.	SPURIOUS EMISSIONS BELOW 30M	49

9.

10.

Appendix C): Maximum Conducted Output Power	57
Appendix D): Band-edge for RF Conducted Emissions	59
Appendix E): RF Conducted Spurious Emissions	
Appendix F): Maximum Power Spectral Density	
· · · · · · · · · · · · · · · · · · ·	

1. ATTESTATION OF TEST RESULTS

Applicant InformationCompany Name:GE LightingAddress:1975 Noble Road Cleveland, Ohio 44112 United States

Manufacturer Information

Company Name:	GE Lighting
Address:	1975 Noble Road Cleveland, Ohio 44112 United States

EUT Information

EUT Name:	Motion Sensor
Model:	CWLMSONNWW1
Sample Status	Normal
Sample Received Date:	August 12, 2019
Date of Tested:	August 12~19, 2019

APPLICABLE STANDARDS				
STANDARD TEST RESUL				
CFR 47 FCC PART 15 SUBPART C	PASS			
ISED RSS-247 Issue 2	PASS			
ISED RSS-GEN Issue 5	PASS			

Prepared By:

Kebo. zhun

Checked By:

Shawn Wen

Laboratory Leader

Sherry des

Kebo Zhang Engineer Project Associate

Approved By:

Aephenbuo

Stephen Guo Laboratory Manager

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62dB		
Radiation Emission test(include Fundamental emission) (9kHz-30MHz)	2.2dB		
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB		
Radiation Emission test	5.78dB (1GHz-18Gz)		
(1GHz to 26GHz)(include Fundamental emission)	5.23dB (18GHz-26Gz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Motion Sensor		
Model	CWLMSONNWW1		
	Operation Frequency	2402 MHz ~ 2480 MHz	
Product Description	Modulation Type Data Rate		
	GFSK 1Mbps		
Bluetooth Version	Bluetooth 4.2 BLE Bluetooth Version		
Supply Voltage	DC 3.0V		

5.2. MAXIMUM OUTPUT POWER

Bluetooth Mode	Frequency (MHz)	Channel Number	Max Output Power (dBm)	EIRP (dBm)	
BLE	2402-2480	0-39[40]	3.665	5.865	

5.3. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	11	2424	22	2446	33	2468
1	2404	12	2426	23	2448	34	2470
2	2406	13	2428	24	2450	35	2472
3	2408	14	2430	25	2452	36	2474
4	2410	15	2432	26	2454	37	2476
5	2412	16	2434	27	2456	38	2478
6	2414	17	2436	28	2458	39	2480
7	2416	18	2438	29	2460	/	/
8	2418	19	2440	30	2462	/	/
9	2420	20	2442	31	2464	/	/
10	2422	21	2444	32	2468	/	/

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	LOW, MID, HIGH	2402MHz, 2440MHz, 2480MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Software EMI_TEST_V1.4						
Modulation Type	Transmit Antenna	Test Software Setting Value				
	Number	CH 0	CH 19	CH 39		
GFSK	1	3 3 3				

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	Wire antenna	2.2

Test Mode	Transmit and Receive Mode	Description
GFSK	1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.7. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BLE	DTS	GFSK	1Mbit/s

5.8. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests				
Relative Humidity	45 ~ 70%				
Atmospheric Pressure:	1025Pa				
Temperature	TN	22 ~ 28°C			
	VL	N/A			
Voltage :	VN	DC 3.0V			
	VH	N/A			

Note: VL= Lower Extreme Test Voltage VN= Nominal Voltage VH= Upper Extreme Test Voltage TN= Normal Temperature

5.9. DESCRIPTION OF TEST SETUP

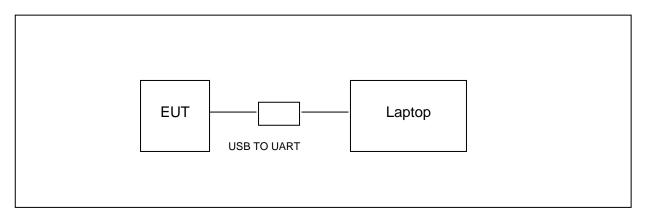
SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	PC	Dell	Vostro 3902	8KNDDB2
2	USB TO UART	Semiconductor	ELINK	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1	/

Note: The UART cable is for debugging only.


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	N/A	N/A	N/A	N/A

TEST SETUP

The EUT can work in an engineer mode with a software through a Laptop.

SETUP DIAGRAM FOR TEST

5.10. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions								
			Instru	ument				
Used	Equipment	Manufacturer	Мос	del No.	Seri	al No.	Last Cal.	Next Cal.
V	EMI Test Receiver	R&S	E	SR3	10	1961	Dec.10,2018	Dec.10,2019
V	Two-Line V- Network	R&S	EN	V216	10	1983	Dec.10,2018	Dec.10,2019
V	Artificial Mains Networks	Schwarzbeck	NSL	.K 8126	812	26465	Dec.10,2018	Dec.10,2019
Software								
Used	Des	cription		Mar	nufacti	urer	Name	Version
\checkmark	Test Software for C	Conducted distu	rbance	е	Farad		EZ-EMC	Ver. UL-3A1
		Rad	iated	Emissi	ons			
			Instru	ument				
Used	Equipment	Manufacturer	Мос	del No.	Seri	al No.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	N9	9038A		56400)36	Dec.10,2018	Dec.10,2019
V	Hybrid Log Periodic Antenna	TDK	HLP	-3003C	13	0960	Sep.17, 2018	Sep.17, 2021
\checkmark	Preamplifier	HP	84	447D		4A090 99	Dec.10,2018	Dec.10,2019
V	EMI Measurement Receiver	R&S	E	SR26	10	1377	Dec.10,2018	Dec.10,2019
\checkmark	Horn Antenna	TDK	HRI	N-0118	13	0939	Sep.17, 2018	Sep.17, 2021
V	High Gain Horn Antenna	Schwarzbeck	BBH	IA-9170	6	691	Aug.11, 2018	Aug.11, 2021
V	Preamplifier	TDK	PA-0	02-0118	00	8-305-)066	Dec.10,2018	Dec.10,2019
\checkmark	Preamplifier	TDK	PA	-02-2		S-307-)003	Dec.10,2018	Dec.10,2019
\checkmark	Loop antenna	Schwarzbeck	15	519B	00	8000	Jan.07, 2019	Jan.07, 2022
V	Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS		6	4	Dec.10,2018	Dec.10,2019
	High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS			23	Dec.10,2018	Dec.10,2019
			Soft	tware				
Used	Descr	iption	ſ	Manufa	cturer		Name	Version
\checkmark	Test Software for R	adiated disturba	ince	Fara	d		EZ-EMC	Ver. UL-3A1

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

	Other instruments						
Used	Jsed Equipment Manufacturer Model No. Serial No. Last Cal. Next Cal.						
\checkmark	Spectrum Analyzer	Keysight	N9030A	MY55410512	Dec.10,2018	Dec.10,2019	

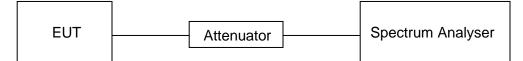
6. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6 dB Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Peak Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.1.3
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4
4	Out-of-band emissions in non-restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2
8	99% Bandwidth	ANSI C63.10-2013	6.9.3

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


<u>LIMITS</u>

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	24.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.0V

RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
BLE	128.1	128.1	1.000	100	0	0.01	0.01

Note:

Duty Cycle Correction Factor= $10\log(1/x)$.

Where: x is Duty Cycle(Linear)

Where: T is On Time (transmit duration)

If that calculated VBW is not available on the analyzer then the next higher value should be used.

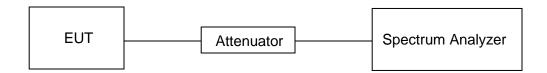
ON TIME AND DUTY CYCLE MID CH

	oectrum Analyzer										- 0 ×
Center F	req 2.440	0 Ω DC 0000000 NFE	GHz PNO: Wide			Avg Type: F	IGN AUTO RMS	TRAC	Aug 13, 2019 E 1 2 3 4 5 6 E WWWWWW	Fr	equency
10 dB/div	Ref Offse Ref 20.0	t 9.29 dB	IFGain:Low	#Atten: 30			Δ	Mkr1 12	2 <mark>8.1 ms</mark> 0.11 dB		Auto Tune
10.0 0.00	- X.2							\$ ¹	∆2		Center Freq
-20.0										2.44	Start Free
-50.0 -60.0 -70.0										2.44	Stop Free
Center 2 Res BW		0 GHz ×	#VE	3W 1.0 MHz*	FUNCTIO		veep 1	S 60.0 ms (* EUNGIN		1 <u>Auto</u>	CF Ster .000000 MH Ma
1 Δ2 2 F 3 4 5 6	1 t (Δ) 1 t		128.1 ms(/ 12.70 ms	Δ) -0.11 d 3.21 dBi					E		Freq Offse 0 H
8 9 10										Log	Scale Type
11				m						9	<u></u>
MSG							STATUS				

7.2. 6 dB DTS BANDWIDTH AND 99% BANDWIDTH

<u>LIMITS</u>

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2						
Section Test Item Limit Frequency Range (MHz)						
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6dB Bandwidth	>= 500kHz	2400-2483.5			
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5			


TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
IBBW/	For 6 dB Bandwidth :100K For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth
IV BW	For 6dB Bandwidth : ≥3 × RBW For 99% Occupied Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB/99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

Temperature	24.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.0V

RESULTS

Please refer to appendix A and B.

7.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2						
Section	Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Output Power	1 watt or 30dBm	2400-2483.5			

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	≥DTS bandwidth(e.g. 1 MHz for BLE)
VBW	≥3 × RBW
Span	≥3 x RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use peak marker function to determine the peak amplitude level.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.0V

<u>RESULTS</u>

Please refer to appendix C.

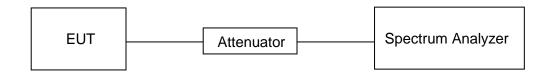
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

7.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2						
Section	Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5			

TEST PROCEDURE


Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	$3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.0V

RESULTS

Please refer to appendix F.

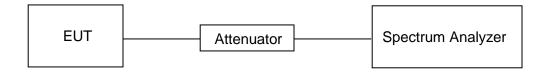
7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2						
Section Test Item Limit						
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power				

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:


Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
Span	≥ 1.5 times the DTS bandwidth.
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST ENVIRONMENT

Temperature	24.2°C	Relative Humidity	59%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.0V

RESULTS

Please refer to appendix D and E.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

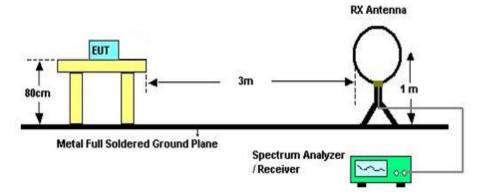
Radiation Disturbance Test Limit for FCC (Class B)(9kHz-1GHz)

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Frequency (MHz)	dB(uV/m) (at 3 meters)		
	Peak	Average	
Above 1000	74	54	

Radiation Disturbance Test Limit for FCC (Above 1G)


About Restricted bands of operation please refer to RSS-Gen section 8.10 and FCC §15.205 (a)

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

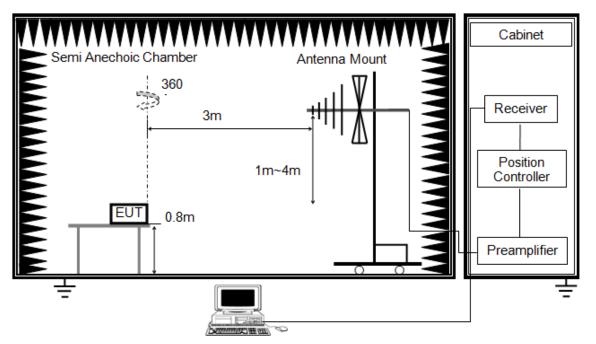
1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.


6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

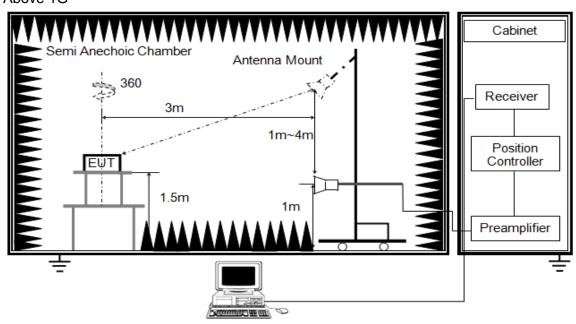
Below 1G and above 30MHz

The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

The setting of the spectrum analyser

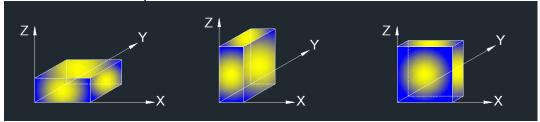
RBW	1M
IV BWV	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.


5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

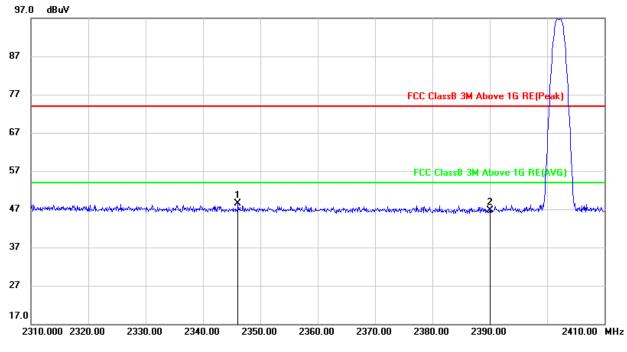
6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle and Correction Factor please refer to clause 7.1.ON TIME AND DUTY CYCLE.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

X axis, Y axis, Z axis positions:

Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT


Temperature	23.5°C	Relative Humidity	68%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.0V

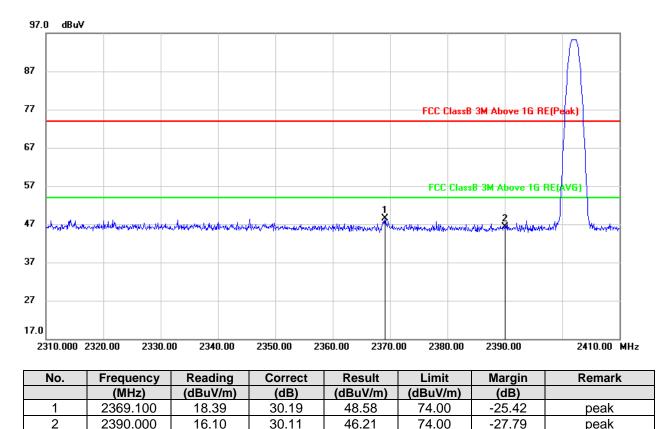
RESULTS

8.1. RESTRICTED BANDEDGE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2346.100	18.25	30.28	48.53	74.00	-25.47	peak
2	2390.000	16.65	30.11	46.76	74.00	-27.24	peak

Note: 1. Measurement = Reading Level + Correct Factor.

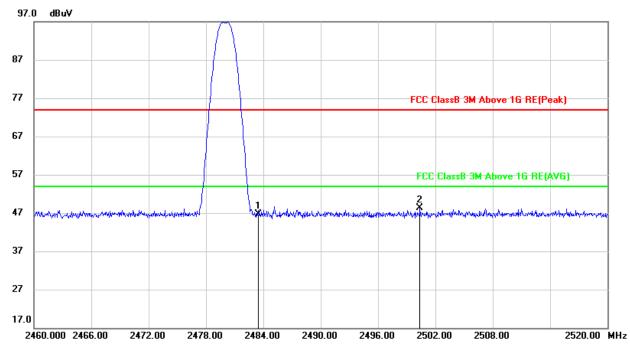

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst case emission will be recorder, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

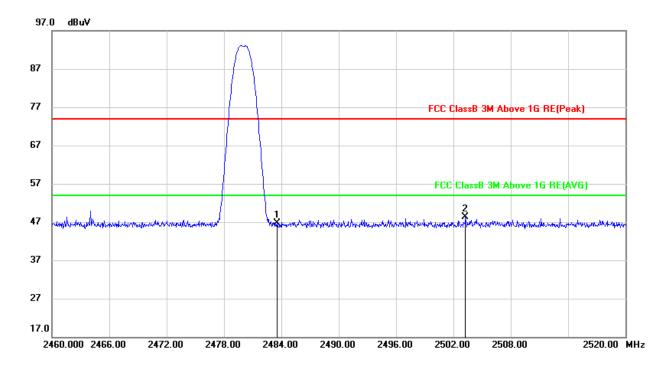
3. Peak: Peak detector.

4. Only the worst case emission will be recorder, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	16.91	29.80	46.71	74.00	-27.29	peak
2	2500.380	18.58	29.75	48.33	74.00	-25.67	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

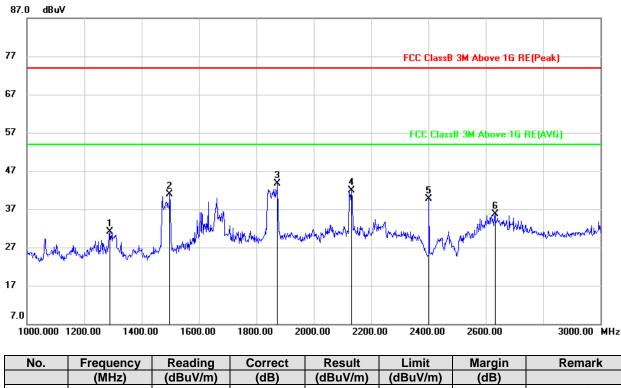
3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	16.84	29.80	46.64	74.00	-27.36	peak
2	2503.260	18.46	29.77	48.23	74.00	-25.77	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

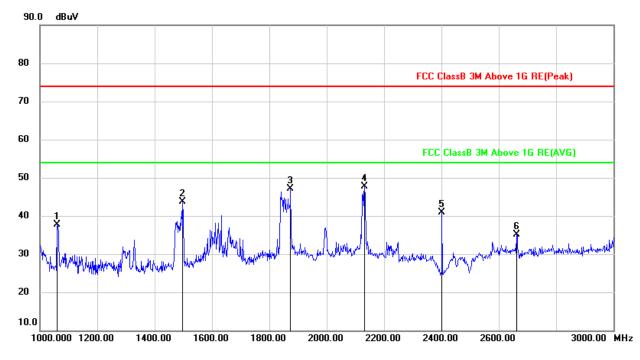
8.2. SPURIOUS EMISSIONS (1~3GHz)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1290.000	46.32	-15.13	31.19	74.00	-42.81	peak
2	1498.000	55.12	-14.25	40.87	74.00	-33.13	peak
3	1874.000	55.10	-11.35	43.75	74.00	-30.25	peak
4	2132.000	52.73	-10.80	41.93	74.00	-32.07	peak
5*	2402.000	51.60	-11.84	39.76	/	/	/
6	2632.000	46.81	-11.04	35.77	74.00	-38.23	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

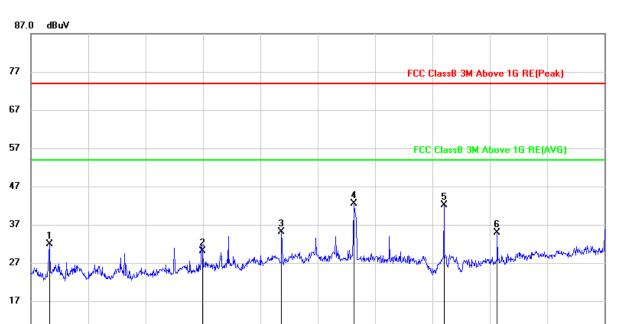
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1060.000	53.59	-15.94	37.65	74.00	-36.35	peak
2	1498.000	57.94	-14.25	43.69	74.00	-30.31	peak
3	1874.000	58.41	-11.35	47.06	74.00	-26.94	peak
4	2132.000	58.56	-10.80	47.76	74.00	-26.24	peak
5*	2402.000	52.71	-11.84	40.87	/	/	/
6	2662.000	45.82	-10.76	35.06	74.00	-38.94	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

7.0

1000.000 1200.00

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1064.000	47.76	-15.94	31.82	74.00	-42.18	peak
2	1598.000	43.54	-13.42	30.12	74.00	-43.88	peak
3	1874.000	46.37	-11.35	35.02	74.00	-38.98	peak
4	2126.000	53.24	-10.79	42.45	74.00	-31.55	peak
5*	2440.000	54.05	-11.97	42.08	/	/	/
6	2626.000	45.91	-11.08	34.83	74.00	-39.17	peak

2000.00

2200.00

2400.00

2600.00

3000.00 MHz

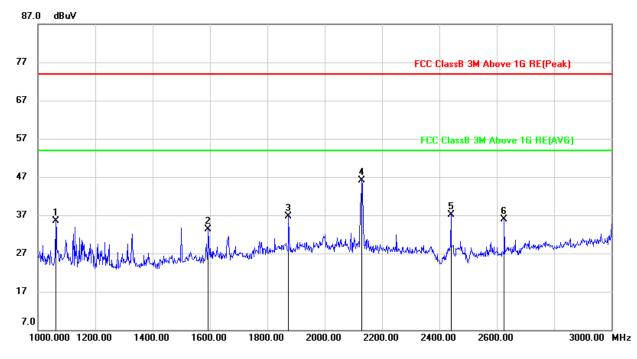
Note: 1. Peak Result = Reading Level + Correct Factor.

1600.00

1800.00

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


1400.00

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1062.000	51.40	-15.94	35.46	74.00	-38.54	peak
2	1594.000	46.79	-13.46	33.33	74.00	-40.67	peak
3	1874.000	48.12	-11.35	36.77	74.00	-37.23	peak
4	2130.000	56.82	-10.81	46.01	74.00	-27.99	peak
5*	2440.000	49.02	-11.97	37.05	/	/	/
6	2626.000	47.03	-11.08	35.95	74.00	-38.05	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

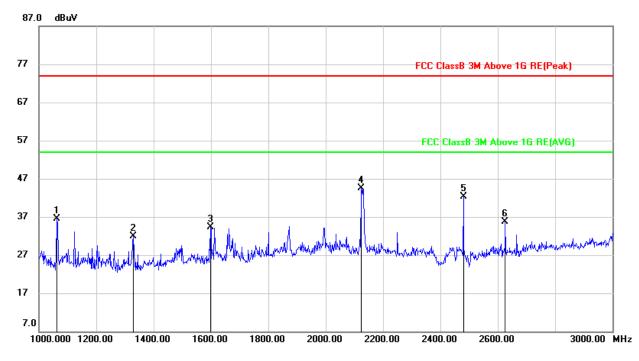
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1312.000	46.28	-15.03	31.25	74.00	-42.75	peak
2	1500.000	45.38	-14.25	31.13	74.00	-42.87	peak
3	1874.000	47.46	-11.35	36.11	74.00	-37.89	peak
4	2132.000	49.47	-10.80	38.67	74.00	-35.33	peak
5*	2480.000	59.93	-12.10	47.83	/	/	/
6	2626.000	51.91	-11.08	40.83	74.00	-33.17	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

6.* - indicates frequency as frequency of fundamental.

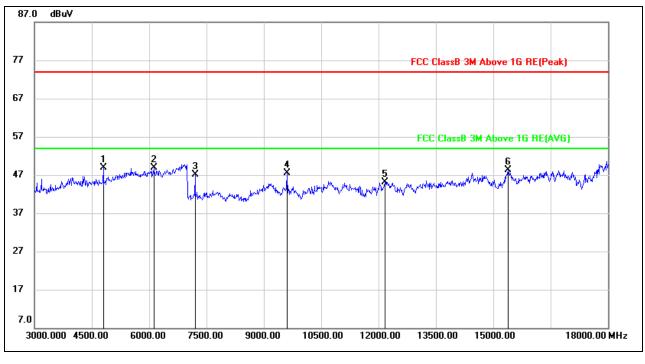
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1062.000	52.39	-15.94	36.45	74.00	-37.55	peak
2	1328.000	46.84	-14.98	31.86	74.00	-42.14	peak
3	1598.000	47.65	-13.42	34.23	74.00	-39.77	peak
4	2124.000	55.21	-10.78	44.43	74.00	-29.57	peak
5*	2480.000	54.49	-12.10	42.39	/	/	/
6	2626.000	46.77	-11.08	35.69	74.00	-38.31	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.


5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

6.* - indicates frequency as frequency of fundamental.

8.3. SPURIOUS EMISSIONS (3~18GHz)

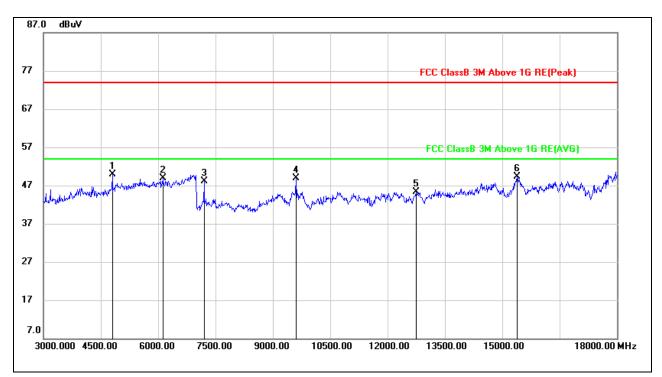
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	51.29	-2.34	48.95	74.00	-25.05	peak
2	6120.000	46.51	2.31	48.82	74.00	-25.18	peak
3	7200.000	41.01	6.17	47.18	74.00	-26.82	peak
4	9600.000	38.73	8.69	47.42	74.00	-26.58	peak
5	12165.000	30.71	14.42	45.13	74.00	-28.87	peak
6	15390.000	32.77	15.50	48.27	74.00	-25.73	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

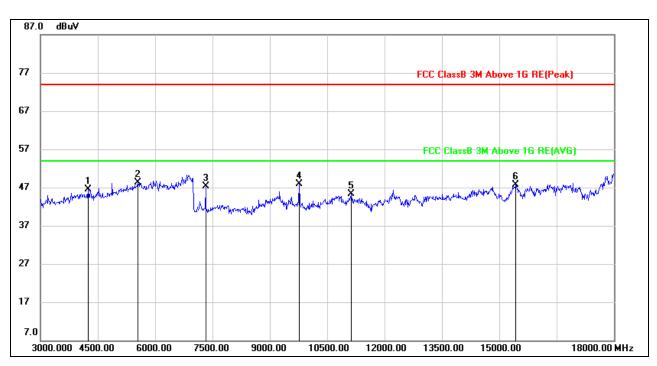
3. Peak: Peak detector.


4. Proper operation of the transmitter prior to adding the filter to the measurement chain.

5. High pass filter was only considered in then spurious frequency bands and the

authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	52.29	-2.34	49.95	74.00	-24.05	peak
2	6120.000	46.51	2.31	48.82	74.00	-25.18	peak
3	7200.000	42.01	6.17	48.18	74.00	-25.82	peak
4	9600.000	40.23	8.69	48.92	74.00	-25.08	peak
5	12750.000	32.79	12.47	45.26	74.00	-28.74	peak
6	15390.000	33.77	15.50	49.27	74.00	-24.73	peak


Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

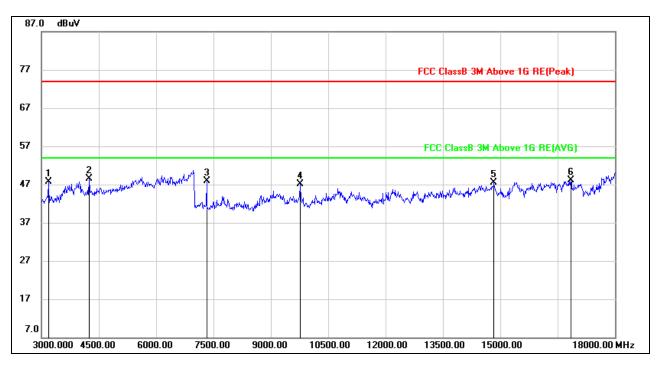
3. Peak: Peak detector.

4. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	4245.000	49.70	-3.20	46.50	74.00	-27.50	peak
2	5550.000	47.78	0.47	48.25	74.00	-25.75	peak
3	7320.000	41.03	6.26	47.29	74.00	-26.71	peak
4	9765.000	40.11	7.88	47.99	74.00	-26.01	peak
5	11130.000	34.82	10.49	45.31	74.00	-28.69	peak
6	15435.000	32.27	15.43	47.70	74.00	-26.30	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

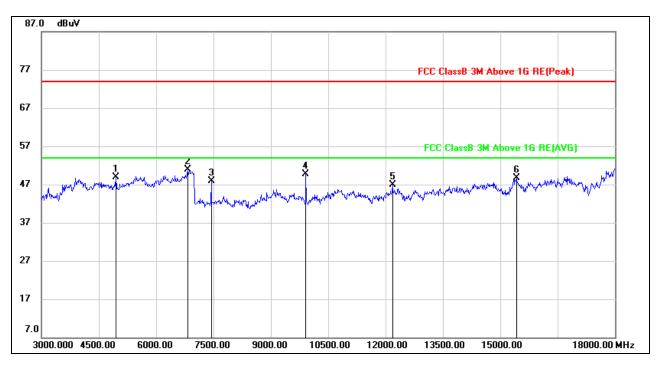

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Proper operation of the transmitter prior to adding the filter to the measurement chain.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	3180.000	54.36	-6.60	47.76	74.00	-26.24	peak
2	4245.000	51.75	-3.20	48.55	74.00	-25.45	peak
3	7320.000	41.74	6.26	48.00	74.00	-26.00	peak
4	9765.000	39.15	7.88	47.03	74.00	-26.97	peak
5	14835.000	34.10	13.31	47.41	74.00	-26.59	peak
6	16845.000	30.12	18.01	48.13	74.00	-25.87	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

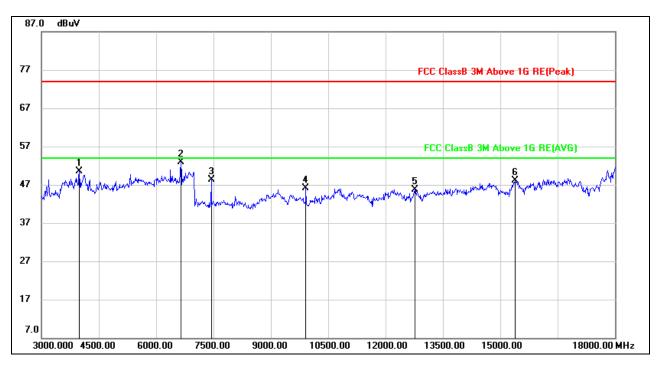
3. Peak: Peak detector.

4. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	50.82	-1.96	48.86	74.00	-25.14	peak
2	6825.000	46.21	4.77	50.98	74.00	-23.02	peak
3	7440.000	41.32	6.52	47.84	74.00	-26.16	peak
4	9915.000	42.54	7.17	49.71	74.00	-24.29	peak
5	12180.000	32.48	14.49	46.97	74.00	-27.03	peak
6	15420.000	33.20	15.51	48.71	74.00	-25.29	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

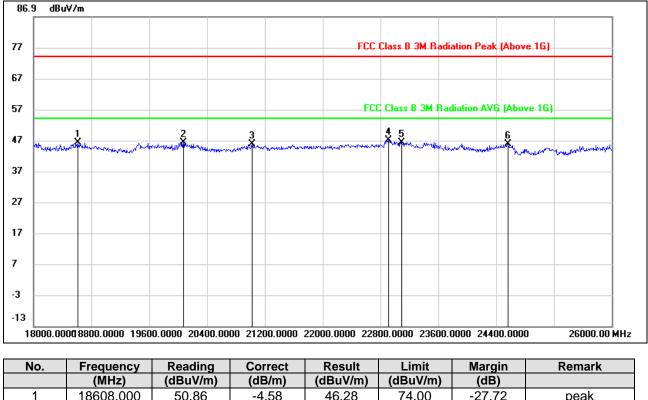

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Proper operation of the transmitter prior to adding the filter to the measurement chain.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	54.23	-3.67	50.56	74.00	-23.44	peak
2	6645.000	49.25	3.58	52.83	74.00	-21.17	peak
3	7440.000	41.74	6.52	48.26	74.00	-25.74	peak
4	9915.000	38.93	7.17	46.10	74.00	-27.90	peak
5	12765.000	33.15	12.52	45.67	74.00	-28.33	peak
6	15390.000	32.63	15.50	48.13	74.00	-25.87	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

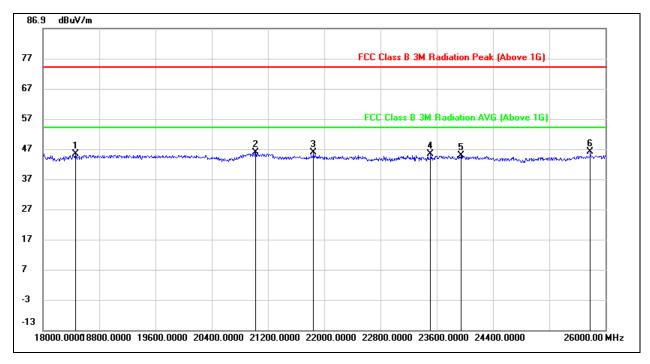
3. Peak: Peak detector.

4. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8.4. SPURIOUS EMISSIONS 18G ~ 26GHz

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18608.000	50.86	-4.58	46.28	74.00	-27.72	peak
2	20072.000	50.84	-4.51	46.33	74.00	-27.67	peak
3	21024.000	51.12	-5.30	45.82	74.00	-28.18	peak
4	22912.000	52.74	-5.66	47.08	74.00	-26.92	peak
5	23096.000	51.80	-5.47	46.33	74.00	-27.67	peak
6	24568.000	48.21	-2.42	45.79	74.00	-28.21	peak

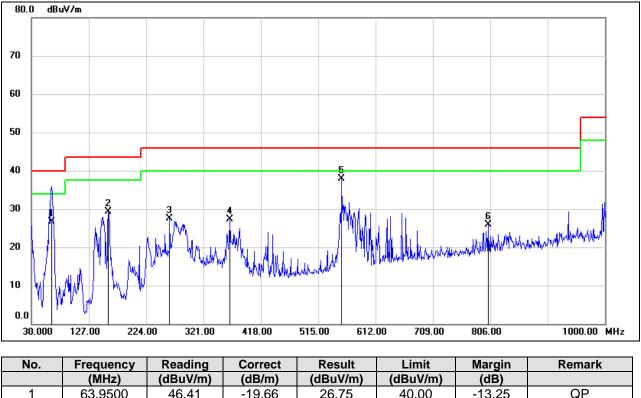

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18464.000	49.70	-4.39	45.31	74.00	-28.69	peak
2	21024.000	51.14	-5.30	45.84	74.00	-28.16	peak
3	21848.000	51.76	-5.95	45.81	74.00	-28.19	peak
4	23512.000	50.01	-4.76	45.25	74.00	-28.75	peak
5	23944.000	48.95	-4.14	44.81	74.00	-29.19	peak
6	25784.000	47.58	-1.49	46.09	74.00	-27.91	peak


Note: 1. Peak Result = Reading Level + Correct Factor.

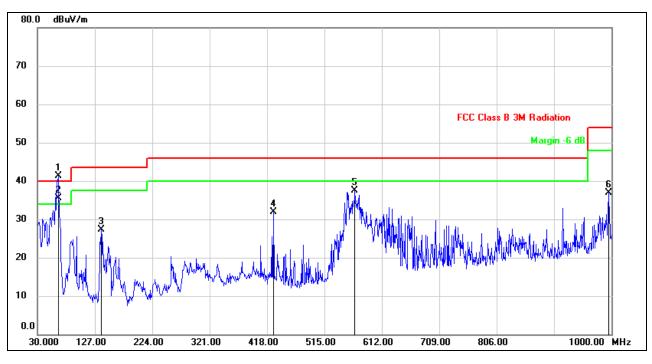
If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

Note: All test mode has been tested, only the worst data record in the report.

8.5. SPURIOUS EMISSIONS 30M ~ 1 GHz

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	63.9500	46.41	-19.66	26.75	40.00	-13.25	QP
2	159.9800	47.03	-17.77	29.26	43.50	-14.24	QP
3	263.7700	42.99	-15.54	27.45	46.00	-18.55	QP
4	365.6200	40.25	-12.91	27.34	46.00	-18.66	QP
5	554.7700	47.19	-9.37	37.82	46.00	-8.18	QP
6	802.1200	31.16	-5.24	25.92	46.00	-20.08	QP


Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

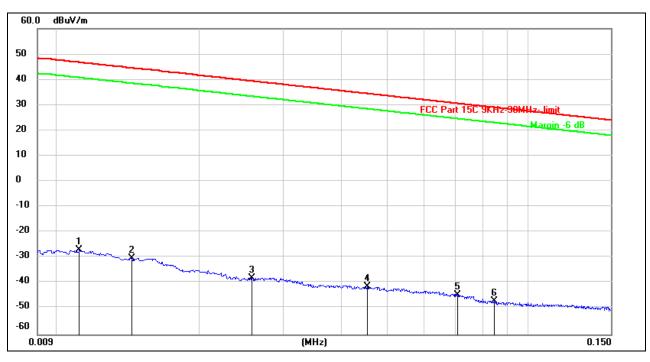
3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	64.9200	60.96	-19.71	41.25	40.00	1.25	peak
2	64.9200	55.28	-19.71	35.57	40.00	-4.43	QP
3	137.6700	46.72	-19.33	27.39	43.50	-16.11	QP
4	428.6700	43.59	-11.77	31.82	46.00	-14.18	QP
5	566.4100	46.57	-9.10	37.47	46.00	-8.53	QP
6	995.1500	39.92	-2.95	36.97	54.00	-17.03	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

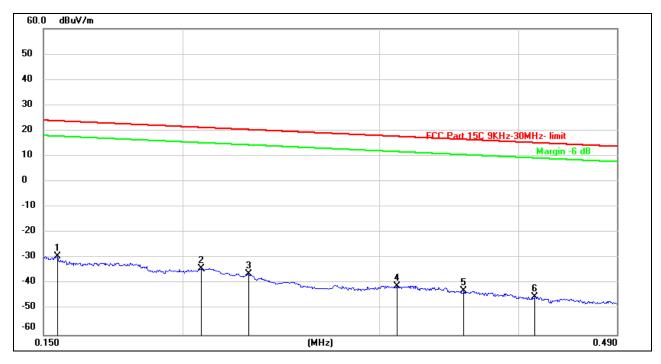

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All test mode has been tested, only the worst data record in the report.

8.6. SPURIOUS EMISSIONS BELOW 30M

SPURIOUS EMISSIONS (MID CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

9kHz~ 150kHz


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0111	74.45	-101.39	-26.94	46.69	-73.63	peak
2	0.0143	71.37	-101.38	-30.01	44.49	-74.50	peak
3	0.0258	63.46	-101.37	-37.91	39.37	-77.28	peak
4	0.0454	60.06	-101.46	-41.40	34.46	-75.86	peak
5	0.0709	56.91	-101.57	-44.66	30.59	-75.25	peak
6	0.0844	54.71	-101.67	-46.96	29.08	-76.04	peak

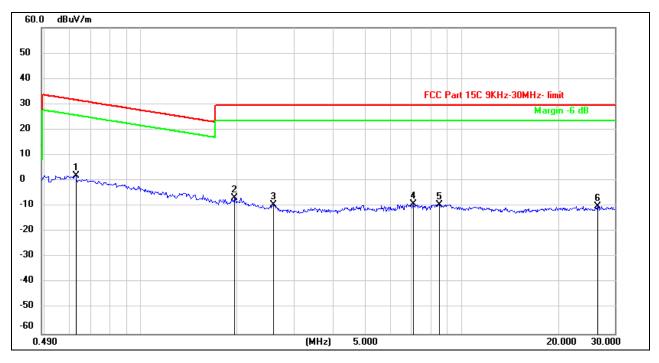
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150kHz ~ 490kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1544	72.29	-101.65	-29.36	23.83	-53.19	peak
2	0.2078	67.74	-101.73	-33.99	21.25	-55.24	peak
3	0.2290	65.49	-101.77	-36.28	20.40	-56.68	peak
4	0.3109	61.05	-101.86	-40.81	17.75	-58.56	peak
5	0.3573	59.08	-101.91	-42.83	16.54	-59.37	peak
6	0.4138	56.83	-101.98	-45.15	15.27	-60.42	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490kHz ~ 30MHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.6270	64.15	-62.09	2.06	31.66	-29.60	peak
2	1.9520	55.11	-61.84	-6.73	29.54	-36.27	peak
3	2.5935	52.11	-61.68	-9.57	29.54	-39.11	peak
4	7.0707	51.97	-61.21	-9.24	29.54	-38.78	peak
5	8.5462	51.69	-61.00	-9.31	29.54	-38.85	peak
6	26.5472	50.23	-60.31	-10.08	29.54	-39.62	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All test mode has been tested, only the worst data record in the report.

9. ANTENNA REQUIREMENTS

Applicable requirements

Please refer to FCC §15.203

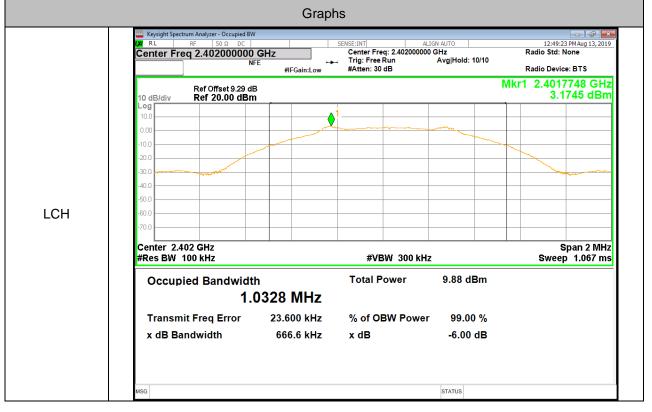
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

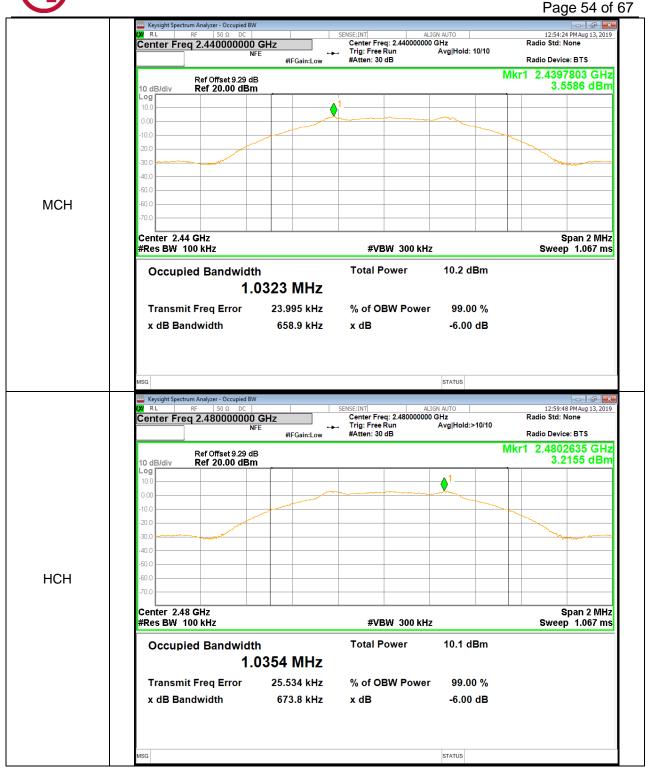
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies


10. APPENDIXES

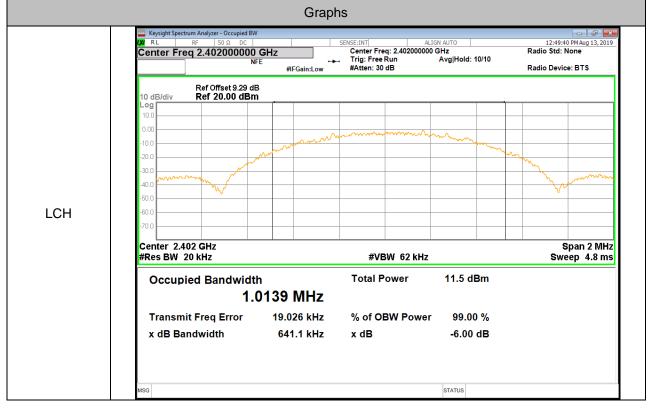
Appendix A): 6dB Bandwidth

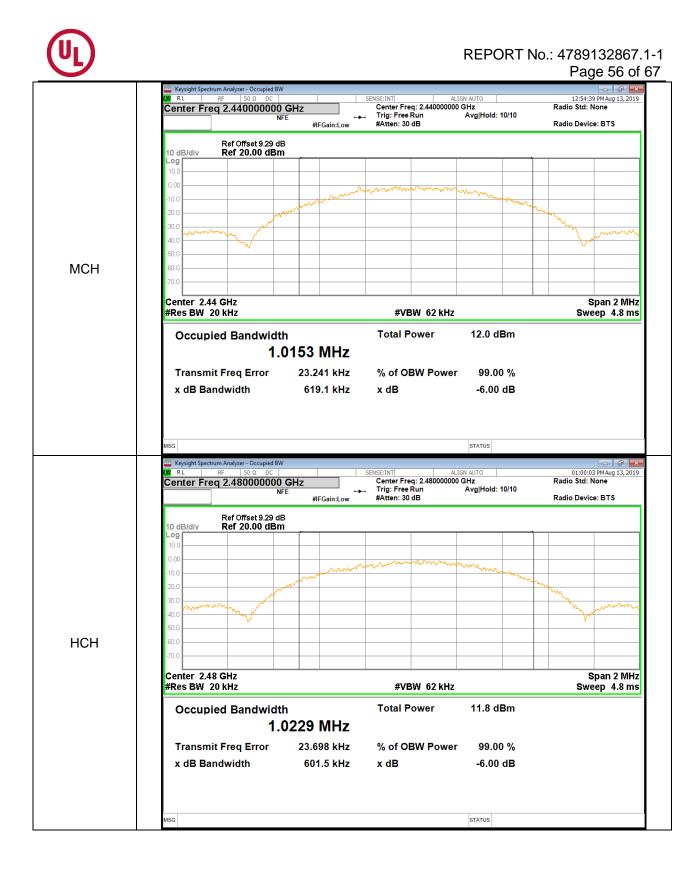

Test Result

Mode	Channel	6dB Bandwidth [MHz]	Verdict
BLE	LCH	0.6666	PASS
BLE	MCH	0.6589	PASS
BLE	HCH	0.6738	PASS

Test Graphs

REPORT No.: 4789132867.1-1

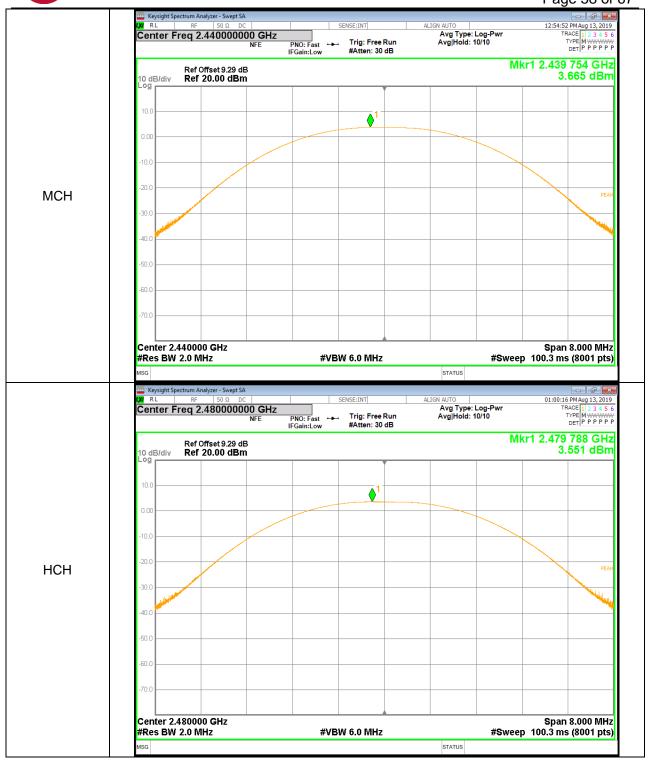



Appendix B): Occupied Bandwidth

Test Result

Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	1.0139	PASS
BLE	MCH	1.0153	PASS
BLE	НСН	1.0229	PASS

Test Graphs

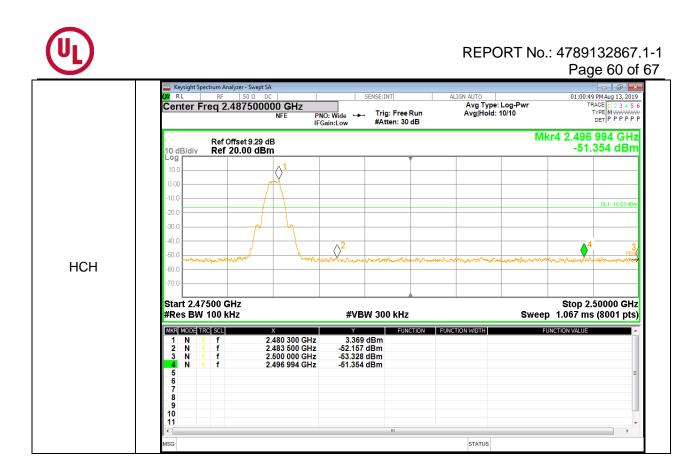

Appendix C): Maximum Conducted Output Power

Test Result				
Mode	Channel	Level [dBm]	EIRP [dBm]	Verdict
BLE	LCH	3.372	5.572	PASS
BLE	MCH	3.665	5.865	PASS
BLE	HCH	3.551	5.751	PASS
Test Graphs				

Graphs Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω DC Center Freq 2.402000000 GHz 12:49:53 PM Aug 13, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P P Avg Type: Log-Pwr Avg|Hold: 10/10 Trig: Free Run #Atten: 30 dB PNO: Fast IFGain:Low Mkr1 2.401 789 GHz Ref Offset 9.29 dB Ref 20.00 dBm 3.372 dBm 10 dB/div Log 10.0 0.00 20.0 LCH PEA 30.0 40.0 -50.0 60.1 70.1 Span 8.000 MHz #Sweep 100.3 ms (8001 pts) Center 2.402000 GHz #Res BW 2.0 MHz #VBW 6.0 MHz STATUS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT No.: 4789132867.1-1 Page 58 of 67



Appendix D): Band-edge for RF Conducted Emissions

	It Table								
Mode	Channel	Carrier Po	wer[dBm]	Max.S	purious Lev [dBm]	/el	Limit [d	Bm]	Verdict
BLE	LCH	2.4	61		-50.991		-17.5	4	PASS
BLE	HCH	3.3	69		-51.354		-16.6	3	PASS
Test (Graphs								
			C	Graphs					
	L XI F	eysight Spectrum Analyzer - Swe RL RF 50 Ω nter Freq 2.39500	DC 0000 GHz			I AUTO Avg Type: Log Avg Hold: 10/1	g-Pwr 0	12:50:26 PM TRACE	IAug 13, 2019 I 2 3 4 5 6 E M WWWW T P P P P P P
		Ref Offset 9.2 B/div Ref 20.00 c					Mkr4 2.	.396 427 -50.99	′5 GHz 91 dBm
	Log 10.0							∧1	
	0.00							X-n	
	-10.0						/		0L1 -17.54 dBm
	-20.0								PEAK
	-40.0				4				
	-50.0	have have my	man 3	And Marine and	mannen	man	~ 2 n/	\	mmm
LCH	-60.0								
		rt 2.38500 GHz es BW 100 kHz		#VBW 300 I	kHz		Sweep 1.	Stop 2.40 .067 ms (8	
	1 2 3 4 5	MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	X 2.401 792 5 GHz 2.400 000 0 GHz 2.390 000 0 GHz 2.396 427 5 GHz	Y 2.461 dBm -54.660 dBm -54.824 dBm -50.991 dBm	FUNCTION FUNCTION	NWDTH	FUNCTI	ON VALUE	
	6 7 8 9 10 11								
	MSG			m		STATUS			•

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Appendix E): RF Conducted Spurious Emissions

Result Tab				
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	2.965	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	3.416	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	2.755	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	3.416	<limit< td=""><td></td></limit<>	

Test Graphs

	BLE_LCH_Graphs	
	Keysight Spectrum Analyzer - Swept SA Constant of the second	
	Ref Offset 9:29 dB Mkr1 2.401 766 88 GHz 10 dB/div Ref 20.00 dBm 2.965 dBm	
Pref/BLE/LCH	-20.0	
	-30.0	
	-50.0	
	-60.0	
	Center 2.402000 GHz Span 2.000 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.333 ms (10000 pts)	
	MSG STATUS	<u> </u>

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

32867.1-1 e 62 of 67

Stop 26.000 GHz Sweep 51.99 ms (10000 pts)

STATUS

D					REPO	RT No.		13286 je 62 (
		50 Ω DC	SENS	SE:INT	ALIGN AUTO Avg Type: L	an Dum	12:50:51	E PM Aug 13, 2 RACE 1 2 3 4
	Center Freq 5.	.015000000 GHz NFE		Trig: Free Run #Atten: 20 dB	Avg Hold: 10	0/10		TYPE M WWW DET P P P P
		offset 9.29 dB 1 9.29 dBm					Mkr2 3.7 -56.	80 1 G 903 dE
	Log			Ť				
	9.29							
	-0.71	Y						
	-10.7							
	-20.7							DL1 -17.0
	-30.7							
	-40.7							
	-50.7					1	11 4	du .
	-60.7					hanna a tha childre ann a Anns ann an Children a tha t	an a	The state of the second se
	-70.7							
	Start 30 MHz						Stop 1	10.000 (
	#Res BW 100 k	Hz	#VBW 3	300 kHz	STATUS	Sweep	32.66 ms	(10000
BLE/LCH	Keysight Spectrum An							
	Center Freq 1	8.000000000 GHz		SE:INT	ALIGN AUTO Avg Type: L Avg Hold: 10	.og-Pwr 0/10	12:51:00 TF	PM Aug 13, RACE 1 2 3 TYPE M WW DET P P P
	Ref 0	Offset 9.29 dB	IFGain:Low #	#Atten: 20 dB		N	lkr1 25.8	22 4 G
	10 dB/div Ref	19.29 dBm					-53.	279 d
	9.29							
	-0.71							
	-10.7							
								DL1 -17.0
	-20.7							
	-30.7							
	-40.7							
	-50.7							
	-60.7					ula and Dian the		allennelsender Servicesen
	-70.7							


Start 10.000 GHz #Res BW 100 kHz

ISG

#VBW 300 kHz

REPORT No.: 4789132867.1-1 Page 63 of 67

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

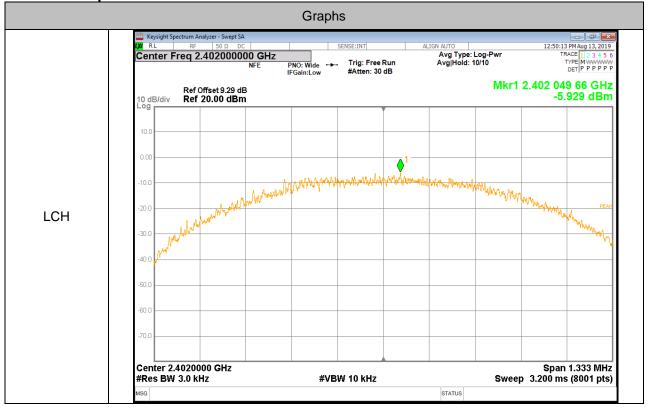
REPORT No.: 4789132867.1-1 Page 64 of 67

Cen	lei Fied 1	8.000000	NFE	PNO: Fast ↔ FGain:Low	. Trig: Free #Atten: 20	Avg Type: Avg Hold:	10/10		TYPE M WWW DET P P P P
10 dE		Offset 9.29 dE 19.29 dBm				 	N	lkr1 25.7 -53.	20 0 GH 415 dB
9.29									
-0.71									
-10.7									
-20.7									DL1 -16.58 df
-30.7									
-40.7									
-50.7									
-60.7	a hafar biftin filingan bi Janaya kining binangan ay	at the state of the second				ing a faile an an ann an Ann. Taraige an an Anna Anna Anna Anna Anna Anna An	jeny kalendy kalendy for Nevy Konstantin og som som	1.000 menadori en la tra menadori en la seconda de la tra	
-70.7									
	t 10.000 GI			#\/D	M 200 ku-		Swaan		26.000 GH (10000 pt
#Res	5 BW 100 k	Hz		#VB	W 300 kHz	STATUS	Sweep	51.99 ms	(10000 pt

BLE_HCH_Graphs

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT No.: 4789132867.1-1 Page 65 of 67



LXI RL	F				SENSE:INT		ALIGN AUTO	Law Du	01.01	:13 PM Aug 13, 2
Cent	er Freq	5.0150000	000 GHz NFE	PNO: Fast ++ IFGain:Low	. Trig: Free R #Atten: 20 c	lun dB	Avg Type: Avg Hold:	Log-Pwr 10/10		TRACE 1 2 3 4 TYPE M WWW DET P P P F
10 dB/		f Offset 9.29 d ef 19.29 dB								.082 3 G 6.644 dE
9.29 —										
-0.71 —										
-10.7										
-20.7										DL1 -17.25
-30.7										
-40.7 —										
-50.7 —						2			alle a	
-60.7	has also find							a de la companya de La companya de la comp	ala antanà amin'ny fi	
-70.7		100								
									04	o 10.000 G
	30 MHz									
#Res	30 MHz BW 100	kHz		#VE	W 300 kHz			Sweep		
<mark>#Res</mark> мsg	BW 100		54	#VE	SW 300 kHz		STATUS	Sweep		s (10000 p
#Res MSG Keysi	BW 100	Analyzer - Swept S	DC		SENSE:INT		ALIGN AUTO	Log-Pwr	32.66 m	s (10000 p
#Res MSG Keysi	BW 100	Analyzer - Swept S F 50 Ω E	DC		SENSE:INT	Run	ALIGN AUTO	Log-Pwr 10/10	32.66 m	E (10000 p 222 PMAug 13,2 TRACE 1 2 3 4 TYPE M WWY DET P P P F
#Res MSG Keysi Keysi Centu 10 dB/	BW 100	Analyzer - Swept S F 50 Ω E	DOOO GHZ NFE	PNO: Fast	SENSE:INT	Run	ALIGN AUTO	Log-Pwr 10/10	01:01	s (10000 p :22 PMAug 13, 2 TRACE 1 2 3 4 TYPE M WW DET P P P F .561 6 G
#Res MSG Keysi Kersi Centr 10 dB/ Log	BW 100	Analyzer - Swept 9 F 50 Ω 0 18.000000 f Offset 9.29 c	DOOO GHZ NFE	PNO: Fast	SENSE:INT	Run	ALIGN AUTO	Log-Pwr 10/10	01:01	10,000 G (10000 p (120 PM Aug 13,2 TRACE [] 2,3 4 TRACE [] 2,3 4 TYPE MWWW DET P P P P 561 6 G (3,567 dE
#Res MSG Keysi Keysi Cento 10 dB/	BW 100	Analyzer - Swept 9 F 50 Ω 0 18.000000 f Offset 9.29 c	DOOO GHZ NFE	PNO: Fast	SENSE:INT	Run	ALIGN AUTO	Log-Pwr 10/10	01:01	S (10000 p :22 PMAug 13,2 TRACE 1 2 3 TYPE M WWW DET P P P F .561 6 G
#Res MSG W RL Centr	BW 100	Analyzer - Swept 9 F 50 Ω 0 18.000000 f Offset 9.29 c	DOOO GHZ NFE	PNO: Fast	SENSE:INT	Run	ALIGN AUTO	Log-Pwr 10/10	01:01	s (10000 p :22 PMAug 13, 2 TRACE 1 2 3 4 TYPE M WW DET P P P F .561 6 G
#Res MSG W RL Cento 10 dB/ Log	BW 100	Analyzer - Swept 9 F 50 Ω 0 18.000000 f Offset 9.29 c	DOOO GHZ NFE	PNO: Fast	SENSE:INT	Run	ALIGN AUTO	Log-Pwr 10/10	01:01	s (10000 p :22 PM Aug 13,2 TRACE 1234 TYPE MWWW DET P P P 561 6 Gi 3.567 dE
#Res MSG Keysi Keysi M RL Cento 9.29 – -0.71 –	BW 100	Analyzer - Swept 9 F 50 Ω 0 18.000000 f Offset 9.29 c	DOOO GHZ NFE	PNO: Fast	SENSE:INT	Run	ALIGN AUTO	Log-Pwr 10/10	01:01	s (10000 p :22 PMAug 13, 2 TRACE 1 2 3 4 TYPE M WWW DET P P P P .561 6 G
#Res MSG MSG 10 dB/ 10 dB/ 9.29 - -0.71 - -10.7 -	BW 100	Analyzer - Swept 9 F 50 Ω 0 18.000000 f Offset 9.29 c	DOOO GHZ NFE	PNO: Fast	SENSE:INT	Run	ALIGN AUTO	Log-Pwr 10/10	01:01	s (10000 p :22 PM Aug 13, 3 :7RACE] 2 3 :7FC M WWY DET P P P P 561 6 G 3.567 dE
#Res MSG (X) RL Centur 10 dB/ Centur 9.29 - -0.71 - -0.71 - -20.7 - -30.7 -	BW 100	Analyzer - Swept 9 F 50 Ω 0 18.000000 f Offset 9.29 c	DOOO GHZ NFE	PNO: Fast	SENSE:INT	Run	ALIGN AUTO	Log-Pwr 10/10	01:01	S (10000 F :22 PM Aug 13,2 TRACE 12.3 4 TYPE M 400 DET P P P P 561 6 G 3.567 dE
#Res MSG (X) RL Centur 10 dB/ Centur 9.29 - -0.71 - -0.71 - -20.7 -	BW 100	Analyzer - Swept 9 F 50 Ω 0 18.000000 f Offset 9.29 c	DOOO GHZ NFE	PNO: Fast	SENSE:INT	Run	ALIGN AUTO	Log-Pwr 10/10	01:01	s (10000 p :22 PM Aug 13, 3 :7RACE] 2 3 :7FC M WWY DET P P P P 561 6 G 3.567 dE
#Res MSG Keysi 10 dB/ 10 dB/ -0.71 -0.71 -0.71 -0.77 -0.	BW 100	Analyzer - Swept 9 F 50 Ω 0 18.000000 f Offset 9.29 c	DOOO GHZ NFE	PNO: Fast	SENSE:INT	2un 18	ALIGN AUTO AVG TYPE: Avg Type: Avg Hold:	Log-Pwr 10/10	01:01	s (10000) :22 PMAug 13, :7RACE 2 3 - TYPE MWM DET P P I 561 6 G 3.567 dE
#Res MSG () RL Centur 10 dB/ Centur 9.29 - -0.71 -	BW 100	Analyzer - Swept 9 F 50 Ω 0 18.000000 f Offset 9.29 c	DOOO GHZ NFE	PNO: Fast ++	SENSE:INT	Run	ALIGN AUTO AVG TYPE: Avg Type: Avg Hold:	Log-Pwr 10/10	01:01	s (10000 p :22 PMAug 13, 17RACE 2 3 4 DET P P P 561 6 G 3.567 dE
#Res MSG Centi 10 dB/ 0.20 - -0.71 - -20.7 - -30.7 - -40.7 - -50.7 -	BW 100	Analyzer - Swept 9 F 50 Ω 0 18.000000 f Offset 9.29 c	IB m	PNO: Fast ++	SENSE:INT	2un 18	ALIGN AUTO AVG TYPE: Avg Type: Avg Hold:	Log-Pwr 10/10	01:01	S (10000 F :22 PM Aug 13, 2 TRACE 1 2 3 4 TYPE M DET P P P F 561 6 G 3.567 dE
#Res Msg Centu Q RL Centu 10 dB/ 9.29 - -0.71 - -0.71 - -0.71 - -0.71 - -0.71 - -0.71 - -0.71 - -0.71 - -0.71 - -0.71 - -0.70.7 -	BW 100	Analyzer - Swept S F 50 Q 0 18.000000 f Offset 9.29 dB of 19.29 dB 	IB m	PNO: Fast ++	SENSE:INT	2un 18	ALIGN AUTO AVG TYPE: Avg Type: Avg Hold:	Log-Pwr 10/10	01:01	s (10000 p :22 PMAug 13, 17RACE 2 3 4 DET P P P 561 6 G 3.567 dE

Appendix F): Maximum Power Spectral Density

Result Table			
Mode	Channel	PSD (dBm/3kHz)	Verdict
BLE	LCH	-5.929	PASS
BLE	MCH	-5.863	PASS
BLE	HCH	-5.536	PASS

Test Graphs

Page 67 of 67 Keysight Spectrum Analyzer - Swept SA 12:55:11 PM Aug 13, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P P RL AVG Type: Log-Pwr Avg|Hold: 10/10 Center Freq 2.440000000 GHz PNO: Wide Trig: Free Run #Atten: 30 dB Mkr1 2.440 166 54 GHz Ref Offset 9.29 dB -5.863 dBm 10 dB/div Ref 20.00 dBm ٥ work and the second sec happy Mr. Muranharmy Mylin MCH 30.1 40.1 Span 1.318 MHz Sweep 3.200 ms (8001 pts) Center 2.4400000 GHz #Res BW 3.0 kHz #VBW 10 kHz STATUS SG Keysight Spectrum Analyzer - Swept SA 01:00:36 PM Aug 13, 2019 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P P P P P P RL SENSE:INT Avg Type: Log-Pwr Avg|Hold: 10/10 Center Freq 2.480000000 GHz Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low Mkr1 2.479 804 09 GHz -5.536 dBm Ref Offset 9.29 dB Ref 20.00 dBm 10 dB/div -Maha da MANANAM MMANN HCH Vinwhal 30.1 4N 60. Span 1.348 MHz Sweep 3.200 ms (8001 pts) Center 2.4800000 GHz #Res BW 3.0 kHz #VBW 10 kHz ISG STATUS

REPORT No.: 4789132867.1-1