

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Outdoor Smart Plug

MODEL NUMBER: CPLGOD2BLG1

FCC ID: PUU-CPLGOD2BLG1 IC: 10798A-CPLGOD2BLG1

REPORT NUMBER: 4789516666-1

ISSUE DATE: June 22, 2020

Prepared for

Consumer Lighting (U.S.) LLC dba GE Lighting, a Savant Company(FCC) 1975 Noble Road Cleveland, Ohio 44112 United States

Consumer Lighting Canada Company, dba GE Lighting, a Savant Company(ISED) 1975 Noble Road Cleveland OH 44112 United States Of America Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone, Dongguan, People's Republic of China Tel: +86 769-22038881 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	06/22/2020	Initial Issue	

Summary of Test Results			
Clause	Test Items	FCC/ISED Rules	Test Results
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (d)	Pass
3	Power Spectral Density	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass
6	Conducted Emission Test For AC Power Port	FCC Part 15.207 RSS-GEN Clause 8.8	Pass
7	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 6.8	Pass
Note:			

1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >< ISED RSS-247 > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	1. ATTESTATION OF TEST RESULTS				
2.	2. TEST METHODOLOGY 8				
3.	FAG	CILITIES AND ACCREDITATION	8		
4.	CA	LIBRATION AND UNCERTAINTY	9		
4	[!] .1.	MEASURING INSTRUMENT CALIBRATION	. 9		
4	[!] .2.	MEASUREMENT UNCERTAINTY	9		
5.	EQ	UIPMENT UNDER TEST	10		
5	5.1.	DESCRIPTION OF EUT	10		
5	5.2.	MAXIMUM OUTPUT POWER	10		
5	5.3.	CHANNEL LIST	10		
5	5.4.	TEST CHANNEL CONFIGURATION	11		
5	5.5.	THE WORSE CASE POWER SETTING PARAMETER	11		
5	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11		
5	5.7.	WORST-CASE CONFIGURATIONS	11		
5	5.8.	TEST ENVIRONMENT	11		
5	5. <i>9.</i>	DESCRIPTION OF TEST SETUP	12		
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED	13		
7.	AN	TENNA PORT TEST RESULTS	15		
7	.1.	ON TIME AND DUTY CYCLE	15		
7	.2.	6 dB DTS BANDWIDTH AND 99% BANDWIDTH	17		
7	.3.	PEAK CONDUCTED OUTPUT POWER	19		
7	.4.	POWER SPECTRAL DENSITY	21		
7	.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	23		
8.	RA	DIATED TEST RESULTS	25		
8					
	8.1.	RESTRICTED BANDEDGE	31		
8	8.1. 8.2.	RESTRICTED BANDEDGE			
-	8.2.		35		
8	8.2.	SPURIOUS EMISSIONS (1~3GHz)	35 41		
8 8	8.2. 8.3.SI	SPURIOUS EMISSIONS (1~3GHz) PURIOUS EMISSIONS (3~18GHz)	35 41 47		
8 8 8	8.2. 8.3.SI 8.4.	SPURIOUS EMISSIONS (1~3GHz) PURIOUS EMISSIONS (3~18GHz) SPURIOUS EMISSIONS 18G ~ 26GHz	35 41 47 49		
8 8 8	8.2. 8.3.SI 8.4. 8.5. 8.6.	SPURIOUS EMISSIONS (1~3GHz) PURIOUS EMISSIONS (3~18GHz) SPURIOUS EMISSIONS 18G ~ 26GHz SPURIOUS EMISSIONS 30M ~ 1 GHz	35 41 47 49 51		
8 8 8 8	8.2. 8.3.SI 8.4. 8.5. 8.6. AC	SPURIOUS EMISSIONS (1~3GHz) PURIOUS EMISSIONS (3~18GHz) SPURIOUS EMISSIONS 18G ~ 26GHz SPURIOUS EMISSIONS 30M ~ 1 GHz SPURIOUS EMISSIONS BELOW 30M	35 41 47 49 51 54		

—	1 aye 5 01 / 4
10.1. Appendix A: DTS Bandwidth	
10.1.1. Test Result	
10.1.2. Test Graphs	59
10.2. Appendix B: Occupied Channel Bandwidth	61
10.2.1. Test Result	61
10.2.2. Test Graphs	62
10.3. Appendix C: Maximum Peak conducted output power	64
10.3.1. Test Result	
10.4. Appendix D: Maximum power spectral density	65
10.4.1. Test Result	
10.4.2. Test Graphs	66
10.5. Appendix E: Band edge measurements	
10.5.1. Test Result	
10.5.2. Test Graphs	
10.6. Appendix F: Conducted Spurious Emission	70
10.6.1. Test Result	
10.6.2. Test Graphs	
1 -	

1. ATTESTATION OF TEST RESULTS

FCC	

Applicant Information

Company	Name:
Address:	

Consumer Lighting (U.S.) LLC dba GE Lighting, a Savant Company 1975 Noble Road Cleveland, Ohio 44112 United States

FCC

Manufacturer Information Company Name: Address:	Consumer Lighting (U.S.) LLC dba GE Lighting, a Savant Company 1975 Noble Road Cleveland, Ohio 44112 United States
ISED	
Applicant Information Company Name:	Consumer Lighting Canada Company, dba GE Lighting, a Savant
Address:	Company 1975 Noble Road Cleveland OH 44112 United States Of America

ISED Manufacturer Information Company Name: Consumer Lighting Canada Company, dba GE Lighting, a Savant Company Address: 1975 Noble Road Cleveland OH 44112 United States Of America

EUT Information

EUT Name:	Outdoor Smart Plug
Model:	CPLGOD2BLG1
Sample Status:	Normal
Sample ID:	3102161
Sample Received Date:	June 11, 2020
Date of Tested:	June 12~19, 2020

APPLICABLE STANDARDS		
STANDARD	TEST RESULTS	
CFR 47 FCC PART 15 SUBPART C	PASS	
ISED RSS-247 Issue 2	PASS	
ISED RSS-GEN Issue 5	PASS	

Prepared By:

Kebo. zhang.

Kebo Zhang Project Engineer

Approved By:

Aephentrio

Stephen Guo Laboratory Manager Checked By:

Sherny les

Shawn Wen Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B , the VCCI registration No. is C-20012 and T-20011
------------------------------	---

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62dB	
Radiation Emission test(include Fundamental emission) (9kHz-30MHz)	2.2dB	
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB	
Radiation Emission test	5.78dB (1GHz-18GHz)	
(1GHz to 26GHz)(include Fundamental emission)	5.23dB (18GHz-26GHz)	
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.		

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Outdoor Smart Plug	
Model CPLGOD2BLG1		
	Operation Frequency	2402 MHz ~ 2480 MHz
Product Description	Modulation Type	Data Rate
	GFSK	1Mbps
Rated Input AC120V,60Hz		

5.2. MAXIMUM OUTPUT POWER

Bluetooth Mode	Frequency (MHz)	Channel Number	Max Output Power (dBm)	EIRP (dBm)
BLE	2402-2480	0-39[40]	7.87	9.52

5.3. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	11	2424	22	2446	33	2468
1	2404	12	2426	23	2448	34	2470
2	2406	13	2428	24	2450	35	2472
3	2408	14	2430	25	2452	36	2474
4	2410	15	2432	26	2454	37	2476
5	2412	16	2434	27	2456	38	2478
6	2414	17	2436	28	2458	39	2480
7	2416	18	2438	29	2460	/	/
8	2418	19	2440	30	2462	/	/
9	2420	20	2442	31	2464	/	/
10	2422	21	2444	32	2468	/	/

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK(1Mbps)	CH0, CH19, CH39 Low, Middle, High	2402MHz, 2440MHz, 2480MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Software UartAssist					
Modulation Type	Transmit Antenna	Test Software setting value			
	Number	CH 0	CH 19	CH 39	
GFSK(1Mbps)	1	5.65	6.14	5.65	

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	integral antenna	1.65

Test Mode	Transmit and Receive Mode	Description
GFSK	1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.

5.7. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BLE	DTS	GFSK	1Mbit/s

5.8. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests			
Relative Humidity	45 ~ 70%			
Atmospheric Pressure:	1025Pa			
Temperature	TN 22 ~ 28°C			
	VL	N/A		
Voltage :	VN	AC 120V_60Hz		
	VH	N/A		

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

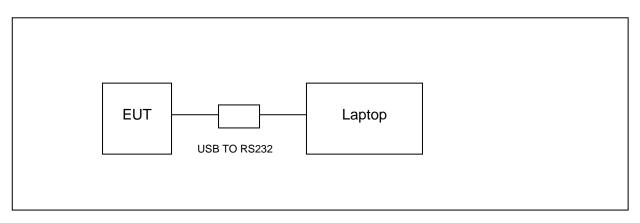
5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	ThinkPad	X230i	/
2	USB TO UART	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	/ /		/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TEST

6. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions								
			Instru	umen	t			
Used	Equipment	Manufacturer	Мос	del No	Э.	Serial No	b. Last Cal.	Next Cal.
V	EMI Test Receiver	R&S	E	SR3		101961	Dec.05,2019	Dec.05,2020
V	Two-Line V- Network	R&S	EN	IV216	5	101983	Dec.05,2019	Dec.05,2020
V	Artificial Mains Networks	Schwarzbeck	NSL	K 812	26	812646	5 Dec.05,2019	Dec.05,2020
			Soft	ware				
Used	Des	cription		Μ	lanı	lfacturer	Name	Version
\checkmark	Test Software for C	Conducted distu	rbance	e	F	arad	EZ-EMC	Ver. UL-3A1
		Rad	iated	Emis	sio	ns		
			Instru	umen	t			
Used	Equipment	Manufacturer	Мос	del No	Э.	Serial No	b. Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	N9	038A	١	MY5640 036	⁰ Dec.06,2019	Dec.06,2020
V	Hybrid Log Periodic Antenna	TDK	HLP	-3003	3C	130960		Sep.17, 2021
V	Preamplifier	HP	8447D			2944A09 99	0 Dec.05,2019	Dec.05,2020
V	EMI Measurement Receiver	R&S	ES	SR26		101377	Dec.05,2019	Dec.05,2020
\checkmark	Horn Antenna	TDK	HRN	V-011	8	130939	Sep.17, 2018	Sep.17, 2021
V	High Gain Horn Antenna	Schwarzbeck	BBH	A-917	70	691	Aug.11, 2018	Aug.11, 2021
V	Preamplifier	TDK	PA-0	2-01	18	TRS-305 00066	Dec.05,2019	Dec.05,2020
V	Preamplifier	TDK	PA	-02-2	2	TRS-307 00003	Dec.05,2019	Dec.05,2020
\checkmark	Loop antenna	Schwarzbeck		519B		00008	Jan.07, 2019	Jan.07, 2022
Ø	Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS		4	Dec.05,2019	Dec.05,2020	
V	High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS		0-	23	Dec.05,2019	Dec.05,2020
			Soft	ware		r		
Used	Descr	iption	Ν	Manut	fact	urer	Name	Version
\checkmark	Test Software for Ra	adiated disturba	ance	Fa	arad		EZ-EMC	Ver. UL-3A1
		Ot	her ins	strum	ents	S		
Used	Equipment	Manufacturer	Mode	l No.	S	erial No.	Last Cal.	Next Cal.

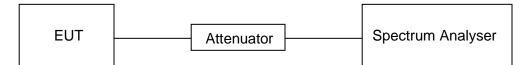
REPORT No.: 4789516666-1

Page 14 of 74

_							
	\checkmark	Spectrum Analyzer	Keysight	N9030A	MY55410512	Dec.06,2019	Dec.06,2020
	\checkmark	Power Meter	Keysight	N1911A	MY55416024	Dec.06,2019	Dec.06,2020
	\checkmark	Power Sensor	Keysight	U2021XA	MY5100022	Dec.06,2019	Dec.06,2020

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	25.5°C	Relative Humidity	62%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V_60Hz

RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
BLE	100	100	1.0	100	0	0.01	0.02

Note:

Duty Cycle Correction Factor= $10\log(1/x)$.

Where: x is Duty Cycle(Linear)

Where: T is On Time (transmit duration)

If that calculated VBW is not available on the analyzer then the next higher value should be used.

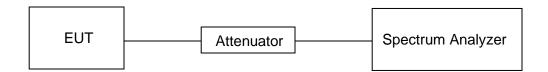
ON TIME AND DUTY CYCLE MID CH

	ight Spe			- Swept SA										
Cent	er Fr	RI eq		0 Ω DC 200000 NFE) GHz PNO: Fas	• • • •	1	Run	#Avg	ALIGN AU Type: RMS		28 PM Jun 17, 202 TRACE 1 2 3 4 5 TYPE WWWWW	6 W	Frequency
10 dB	Idiv			t 9.79 dB 6 dBm	IFGain:Lo		#Atten: 20				ΔMkr3	100.1 m	5	Auto Tune
9.76 -0.24 -10.2		×									3/	<u>\4</u>	2.	Center Freq 442000000 GHz
-20.2 - -30.2 - -40.2 -													2.	Start Freq 442000000 GHz
-50.2 - -60.2 - -70.2 -													2.	Stop Freq 442000000 GHz
Cent Res I	3W 8	MH	z	0 GHz ×	#\	/BW	8.0 MHz		UNCTION	Sweep		Span 0 H is (1001 pts		CF Step 8.000000 MHz 2 Mar
1 / 2 3 /	12 1 F 1 14 1 F 1	t t t	(Δ) (Δ)		100.1 ms 8.580 ms 100.1 ms 8.580 ms	(Δ)	0.00 c 10.42 dB 0.00 c 10.42 dB	m IB						Freq Offset 0 Hz
7 8 9 10													Log	Scale Type
11							m					•	-	
MSG										ST	ATUS			

7.2. 6 dB DTS BANDWIDTH AND 99% BANDWIDTH

<u>LIMITS</u>

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2							
Section	Test Item	Limit	Frequency Range (MHz)				
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6dB Bandwidth	>= 500KHz	2400-2483.5				
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5				


TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
IBBW/	For 6 dB Bandwidth :100kHz For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth
IVBW	For 6dB Bandwidth : ≥3 × RBW For 99% Occupied Bandwidth : ≥3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB/99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

Temperature	25.5°C	Relative Humidity	62%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V_60Hz

RESULTS

Please refer to appendix A and B.

7.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2						
Section	Test Item	Limit	Frequency Range (MHz)			
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Output Power	1 watt or 30dBm	2400-2483.5			


TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power each channel.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.5°C	Relative Humidity	62%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V_60Hz

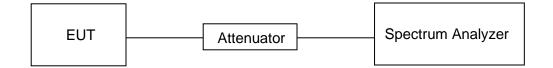
Please refer to appendix C.

7.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2							
Section	Limit	Frequency Range (MHz)					
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5				

TEST PROCEDURE


Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Connect the UUT to the spectrum analyser and use the following settings:

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.5°C	Relative Humidity	62%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V_60Hz

RESULTS

Please refer to appendix D.

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2		
Section Test Item Limit		
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:


Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
Span	≥1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Use the peak marker function to determine the maximum PSD level.

1.30AU	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple

Use the peak marker function to determine the maximum amplitude level.

TEST ENVIRONMENT

Temperature	25.5°C	Relative Humidity	62%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V_60Hz

RESULTS

Please refer to appendix E and F.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10

Radiation Disturbance Test Limit for FCC (Class B)(9kHz-1GHz)

Emissions radiated outside of the specified frequency bands above 30MHz			
Frequency Range	Field Strength Limit	Field Strength Limit	
(MHz)	0	(dBuV/m) at 3 m	
(Quasi-Peak	
30 - 88	100	40	
88 - 216	150	43.	5
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
	550	74	54

FCC Emissions radiated outside of the specified frequency bands below 30MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz		
Frequency	Magnetic field strength (H-Field) (μA/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

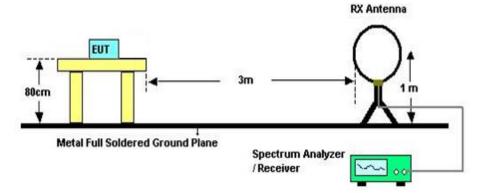
ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

z	MHz	GHz
90 - 0.110	149.9 - 150.05	9.0 - 9.2
95 - 0.505	156.52475 - 156.52525	9.3 - 9.5
735 - 2.1905	156.7 - 156.9	10.6 - 12.7
20 - 3.026	162.0125 - 167.17	13.25 - 13.4
25 - 4.128	187.72 - 173.2	14.47 - 14.5
7725 - 4.17775	240 - 285	15.35 - 16.2
0725 - 4.20775	322 - 335.4	17.7 - 21.4
77 - 5.683	399.9 - 410	22.01 - 23.12
15 - 6.218	608 - 614	23.8 - 24.0
8775 - 6.26825	960 - 1427	31.2 - 31.8
1175 - 6.31225	1435 - 1626.5	36.43 - 36.5
91 - 8.294	1645.5 - 1646.5	Above 38.6
82 - 8.366	1660 - 1710	
7625 - 8.38675	1718.8 - 1722.2	
1425 - 8.41475	2200 - 2300	
29 - 12.293	2310 - 2390	
51975 - 12.52025	2483.5 - 2500	
57675 - 12.57725	2655 - 2900	
36 - 13.41	3260 - 3267	
42 - 16.423	3332 - 3339	
89475 - 18.69525	3345.8 - 3358	
80425 - 16.80475	3500 - 4400	
5 - 25.67	4500 - 5150	
5 - 38.25	5350 - 5480	
74.6	7250 - 7750	
8 - 75.2	8025 - 8500	

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-6 1 4	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			


Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
Sweep	Auto
Trace	Max hold

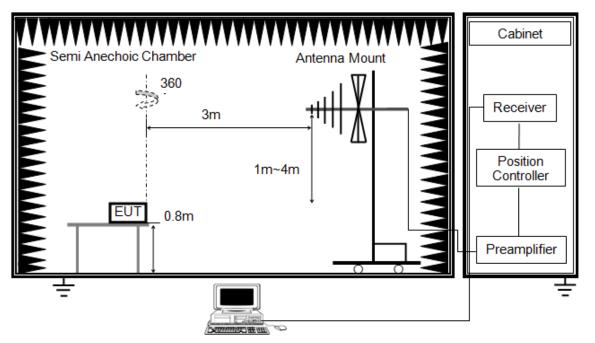
1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of 1 meter height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.


6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

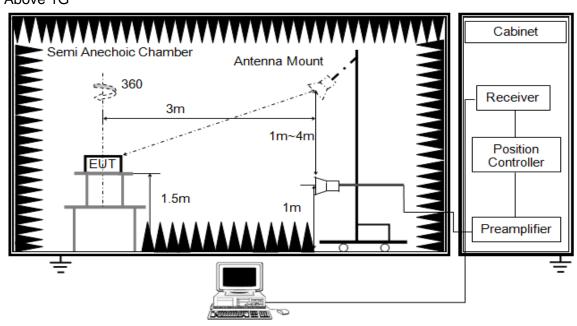
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Below 1G and above 30MHz

The setting of the spectrum analyser

RBW	120kHz
VBW	300kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

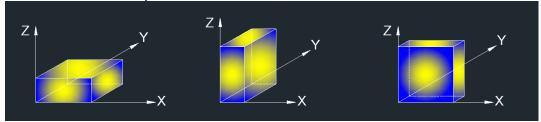
The setting of the spectrum analyser

RBW	1MHz
IV BW	PEAK: 3MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.

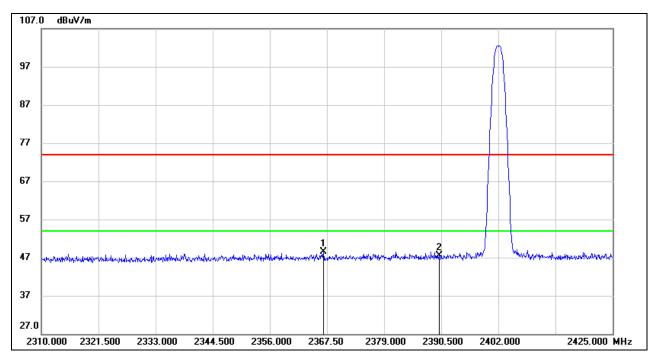

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.


TEST ENVIRONMENT

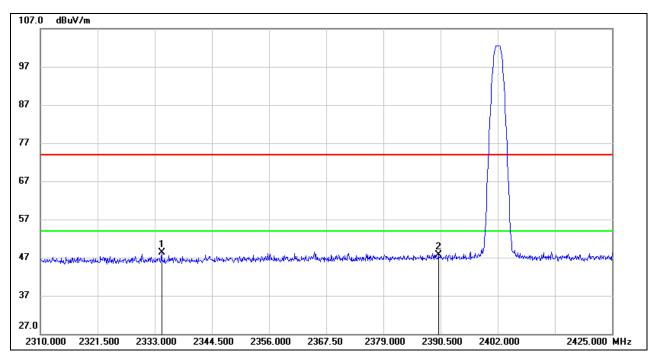
Temperature	23.2°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V_60Hz

RESULTS

8.1. RESTRICTED BANDEDGE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2366.810	15.69	32.87	48.56	74.00	-25.44	peak
2	2390.000	14.56	32.94	47.50	74.00	-26.50	peak

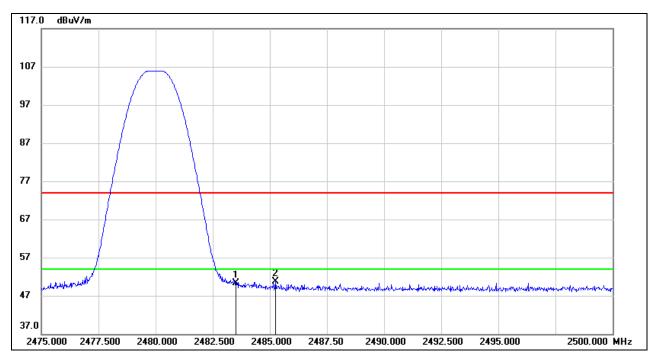

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

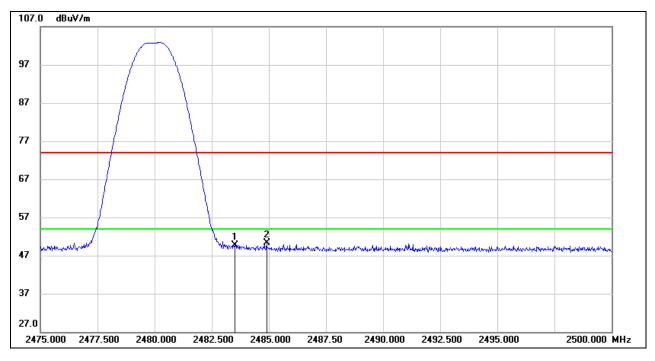
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2334.380	15.54	32.75	48.29	74.00	-25.71	peak
2	2390.000	14.73	32.94	47.67	74.00	-26.33	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

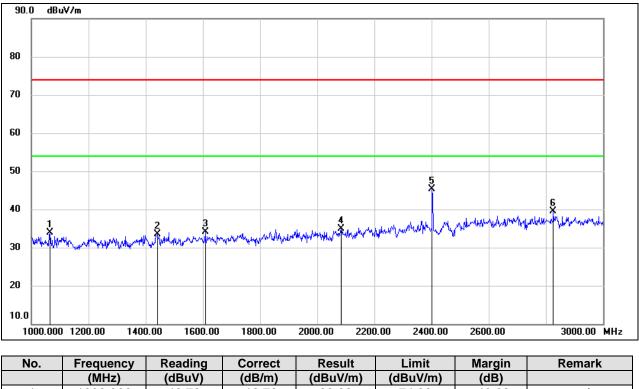
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	16.72	33.58	50.30	74.00	-23.70	peak
2	2485.250	17.11	33.59	50.70	74.00	-23.30	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	16.05	33.58	49.63	74.00	-24.37	peak
2	2484.900	16.67	33.59	50.26	74.00	-23.74	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

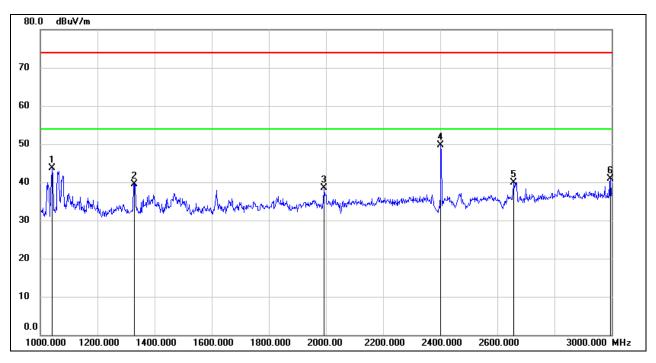
8.2. SPURIOUS EMISSIONS (1~3GHz)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1066.000	46.76	-12.78	33.98	74.00	-40.02	peak
2	1440.000	45.24	-11.79	33.45	74.00	-40.55	peak
3	1608.000	44.70	-10.62	34.08	74.00	-39.92	peak
4	2084.000	43.52	-8.55	34.97	74.00	-39.03	peak
5	2402.000	52.33	-7.10	45.23	/	/	fundamental
6	2826.000	44.65	-5.19	39.46	74.00	-34.54	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

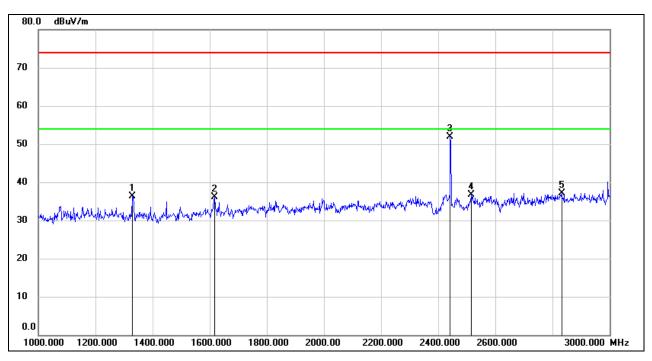

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1042.000	57.23	-13.56	43.67	74.00	-30.33	peak
2	1330.000	51.86	-12.36	39.50	74.00	-34.50	peak
3	1994.000	48.31	-9.83	38.48	74.00	-35.52	peak
4	2402.000	57.62	-7.85	49.77	/	/	fundamental
5	2658.000	47.32	-7.37	39.95	74.00	-34.05	peak
6	2996.000	46.16	-5.30	40.86	74.00	-33.14	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

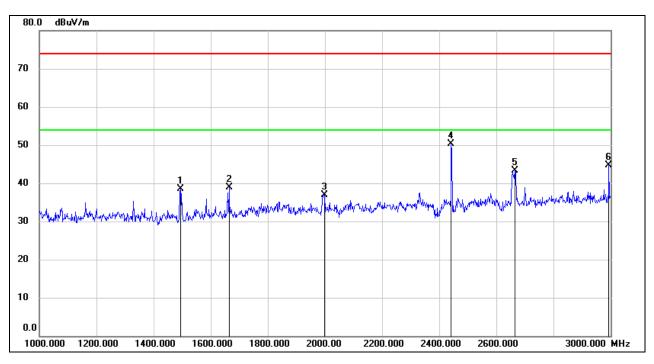
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1328.000	48.63	-12.36	36.27	74.00	-37.73	peak
2	1616.000	47.42	-11.32	36.10	74.00	-37.90	peak
3	2441.000	59.42	-7.57	51.85	/	/	fundamental
4	2516.000	43.88	-7.25	36.63	74.00	-37.37	peak
5	2832.000	43.08	-5.89	37.19	74.00	-36.81	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

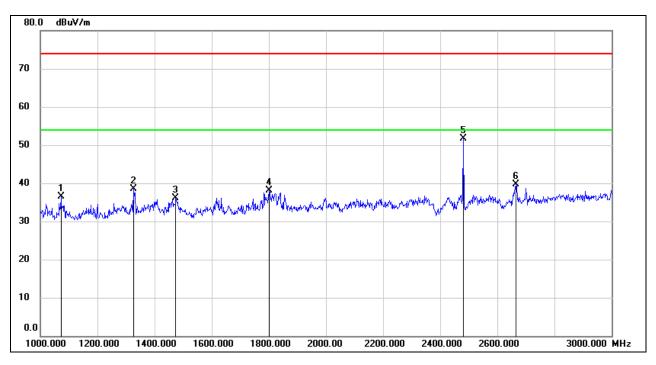

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1494.000	50.80	-12.22	38.58	74.00	-35.42	peak
2	1664.000	50.09	-11.09	39.00	74.00	-35.00	peak
3	1998.000	46.64	-9.83	36.81	74.00	-37.19	peak
4	2441.000	57.87	-7.57	50.30	/	/	fundamental
5	2666.000	50.69	-7.32	43.37	74.00	-30.63	peak
6	2994.000	50.02	-5.31	44.71	74.00	-29.29	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

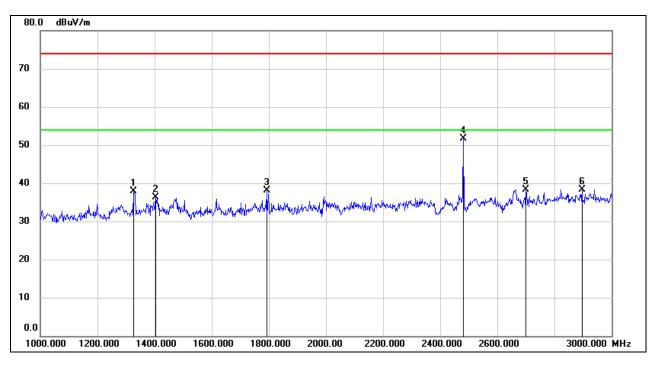

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1072.000	49.95	-13.53	36.42	74.00	-37.58	peak
2	1326.000	50.78	-12.35	38.43	74.00	-35.57	peak
3	1474.000	48.39	-12.26	36.13	74.00	-37.87	peak
4	1800.000	48.08	-9.91	38.17	74.00	-35.83	peak
5	2480.000	58.99	-7.31	51.68	/	/	fundamental
6	2666.000	47.04	-7.32	39.72	74.00	-34.28	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

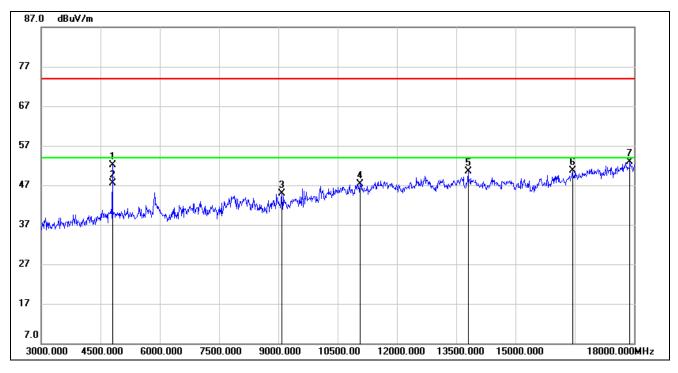

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1326.000	50.20	-12.35	37.85	74.00	-36.15	peak
2	1404.000	48.72	-12.37	36.35	74.00	-37.65	peak
3	1792.000	48.07	-9.99	38.08	74.00	-35.92	peak
4	2480.000	58.96	-7.31	51.65	/	/	fundamental
5	2700.000	45.52	-7.13	38.39	74.00	-35.61	peak
6	2896.000	43.94	-5.54	38.40	74.00	-35.60	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

8.3.SPURIOUS EMISSIONS (3~18GHz)

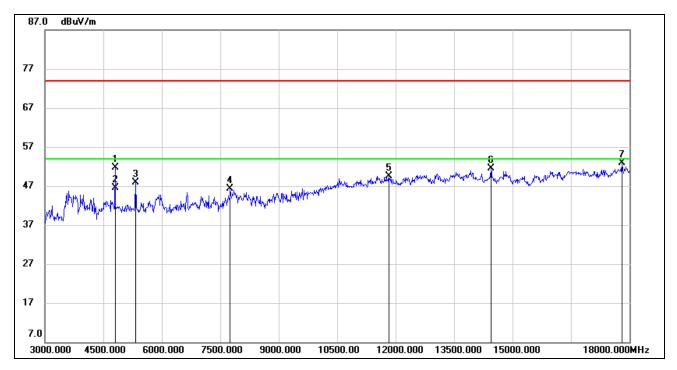
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4803.976	51.57	0.48	52.05	74.00	-21.95	peak
2	4803.976	47.00	0.48	47.48	54.00	-6.52	AVG
3	9090.000	35.60	9.28	44.88	74.00	-29.12	peak
4	11070.000	34.76	12.58	47.34	74.00	-26.66	peak
5	13800.000	33.44	17.10	50.54	74.00	-23.46	peak
6	16440.000	31.67	18.94	50.61	74.00	-23.39	peak
7	17895.000	29.64	23.34	52.98	74.00	-21.02	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

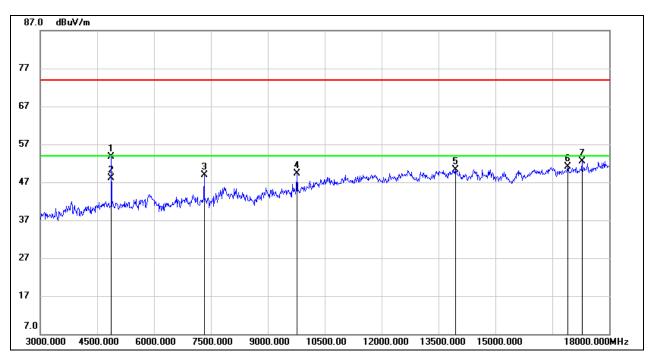
5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4803.996	51.23	0.48	51.71	74.00	-22.29	peak
2	4803.996	46.07	0.48	46.55	54.00	-7.45	AVG
3	5325.000	45.91	1.99	47.90	74.00	-26.10	peak
4	7755.000	38.95	7.29	46.24	74.00	-27.76	peak
5	11820.000	36.40	13.19	49.59	74.00	-24.41	peak
6	14445.000	35.06	16.36	51.42	74.00	-22.58	peak
7	17805.000	29.61	23.31	52.92	74.00	-21.08	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

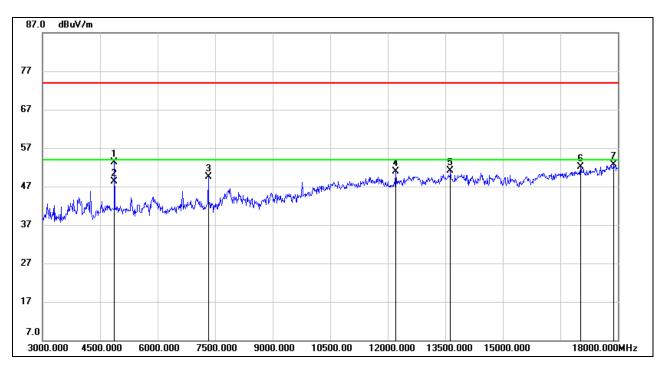
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4883.972	52.93	0.79	53.72	74.00	-20.28	peak
2	4883.972	47.35	0.79	48.14	54.00	-5.86	AVG
3	7320.000	42.74	6.14	48.88	74.00	-25.12	peak
4	9765.000	39.70	9.69	49.39	74.00	-24.61	peak
5	13950.000	34.28	16.11	50.39	74.00	-23.61	peak
6	16905.000	31.09	19.99	51.08	74.00	-22.92	peak
7	17280.000	30.92	21.59	52.51	74.00	-21.49	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

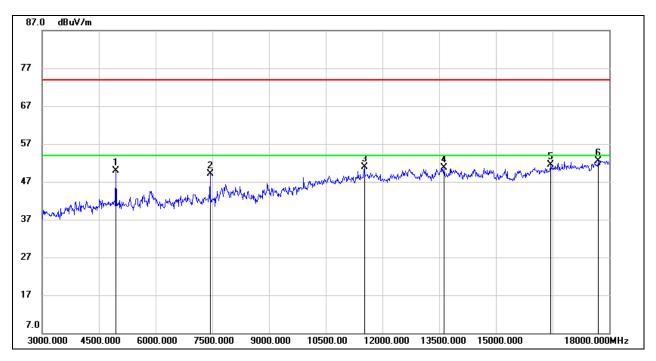
5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4883.971	52.51	0.79	53.30	74.00	-20.70	peak
2	4883.971	47.42	0.79	48.21	54.00	-5.79	AVG
3	7320.000	43.45	6.14	49.59	74.00	-24.41	peak
4	12210.000	37.11	13.75	50.86	74.00	-23.14	peak
5	13635.000	35.14	15.97	51.11	74.00	-22.89	peak
6	17025.000	31.59	20.46	52.05	74.00	-21.95	peak
7	17880.000	29.30	23.34	52.64	74.00	-21.36	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

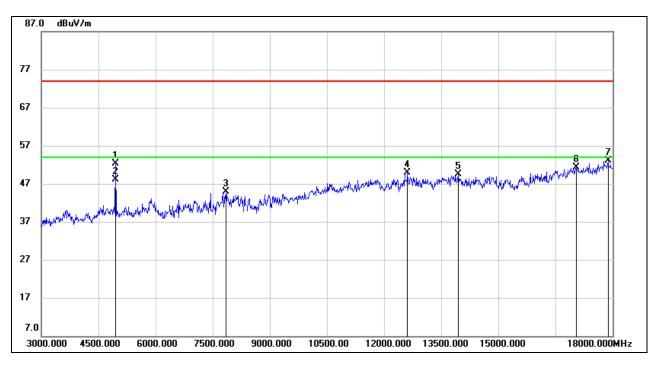
5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	48.86	1.13	49.99	74.00	-24.01	peak
2	7440.000	42.72	6.32	49.04	74.00	-24.96	peak
3	11520.000	37.51	13.38	50.89	74.00	-23.11	peak
4	13620.000	34.75	15.99	50.74	74.00	-23.26	peak
5	16455.000	32.50	19.00	51.50	74.00	-22.50	peak
6	17715.000	30.03	22.56	52.59	74.00	-21.41	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4959.970	51.13	1.18	52.31	74.00	-21.69	peak
2	4959.970	46.83	1.18	48.01	54.00	-5.99	AVG
3	7845.000	37.25	7.62	44.87	74.00	-29.13	peak
4	12615.000	35.79	14.03	49.82	74.00	-24.18	peak
5	13950.000	33.38	16.11	49.49	74.00	-24.51	peak
6	17040.000	30.80	20.49	51.29	74.00	-22.71	peak
7	17880.000	29.76	23.34	53.10	74.00	-20.90	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

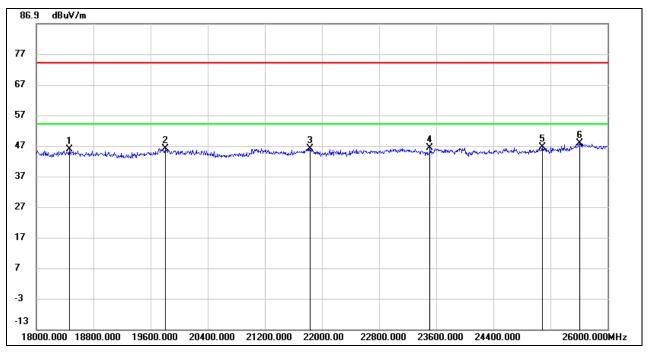
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

N	lo.	F	requei (MHz			adin BuV)			rect 3/m)		Res	sult V/m)		_imit BuV/			rgin B)		Rema	ark	
		00 18	300.000	1960	0.000	2040)0.000	212	00.000	2200)0.00	228	00.000	236	00.000	244()0.000		26000.		4Hz
-13																					
3																					
7																					
17																					
27																					
37																					
47	atrace	×	*****	and the second	1997-199-1997	W-HIWH	munun	production of	hander	and the second second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.www.	Served and the form	***** [*]	- Andrews	manho	i Der manthy	and a start way	,		
		1				2	2				3			4			5		{	ì	
57																					
67																					
77																					
																				- 1	

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit Margin		Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18368.000	49.51	-4.38	45.13	74.00	-28.87	peak
2	20400.000	51.46	-4.93	46.53	74.00	-27.47	peak
3	22256.000	52.45	-6.06	46.39	74.00	-27.61	peak
4	23512.000	51.64	-4.76	46.88	74.00	-27.12	peak
5	24464.000	49.28	-2.74	46.54	74.00	-27.46	peak
6	25784.000	49.73	-1.49	48.24	74.00	-25.76	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

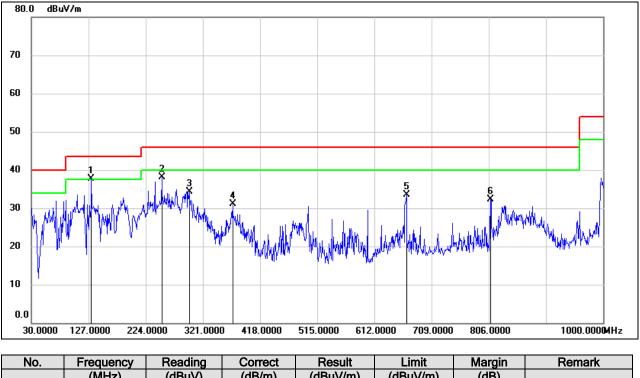
4. The preamplifier only effect to the above 18GHz signal and no filter added to the measurement chain.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18464.000	50.20	-4.39	45.81	74.00	-28.19	peak
2	19808.000	50.33	-4.34	45.99	74.00	-28.01	peak
3	21832.000	52.03	-5.92	46.11	74.00	-27.89	peak
4	23512.000	51.01	-4.76	46.25	74.00	-27.75	peak
5	25088.000	47.63	-1.12	46.51	74.00	-27.49	peak
6	25608.000	49.36	-1.60	47.76	74.00	-26.24	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

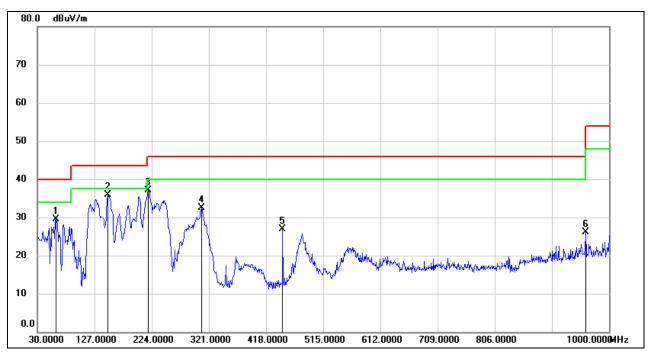
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. The preamplifier only effect to the above 18GHz signal and no filter added to the measurement chain.

Note: All the test modes have been tested, only the worst data record in the report.

8.5. SPURIOUS EMISSIONS 30M ~ 1 GHz

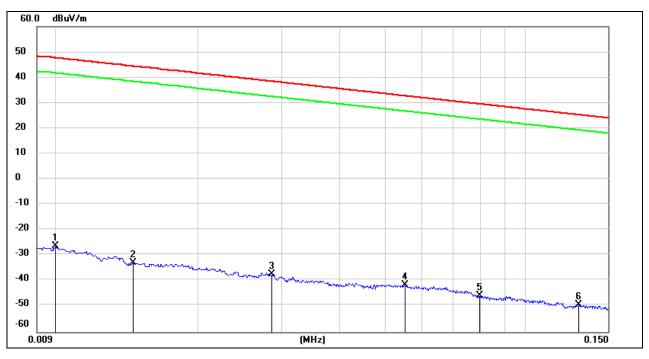

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	131.8500	57.26	-19.48	37.78	43.50	-5.72	peak
2	251.1600	57.34	-19.16	38.18	46.00	-7.82	peak
3	297.7200	50.10	-15.73	34.37	46.00	-11.63	peak
4	371.4400	45.19	-14.03	31.16	46.00	-14.84	peak
5	666.3200	42.62	-9.18	33.44	46.00	-12.56	peak
6	808.9099	39.92	-7.66	32.26	46.00	-13.74	peak

Note: 1. Result Level = Read Level + Correct Factor. 2. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	61.0400	50.17	-20.58	29.59	40.00	-10.41	QP
2	149.3100	54.40	-18.53	35.87	43.50	-7.63	QP
3	218.1800	55.35	-18.22	37.13	46.00	-8.87	QP
4	308.3900	48.01	-15.43	32.58	46.00	-13.42	QP
5	446.1300	39.41	-12.54	26.87	46.00	-19.13	QP
6	960.2300	31.05	-5.02	26.03	54.00	-27.97	QP


Note: 1. Result Level = Read Level + Correct Factor.

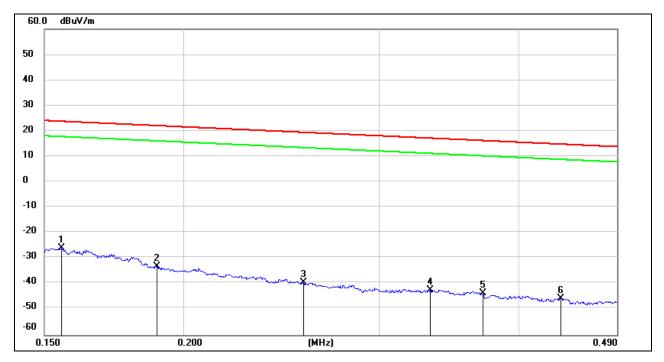
2. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Note: All the test modes have been tested, only the worst data record in the report

8.6. SPURIOUS EMISSIONS BELOW 30M

SPURIOUS EMISSIONS (MID CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>9kHz~ 150kHz</u>


No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	75.22	-101.40	-26.18	47.60	-77.68	-3.9	-73.78	peak
2	0.0145	68.55	-101.38	-32.83	44.37	-84.33	-7.13	-77.20	peak
3	0.0286	63.96	-101.38	-37.42	38.47	-88.92	-13.03	-75.89	peak
4	0.0551	59.95	-101.50	-41.55	32.78	-93.05	-18.72	-74.33	peak
5	0.0796	56.03	-101.63	-45.60	29.58	-97.1	-21.92	-75.18	peak
6	0.1300	52.43	-101.70	-49.27	25.33	-100.77	-26.17	-74.60	peak

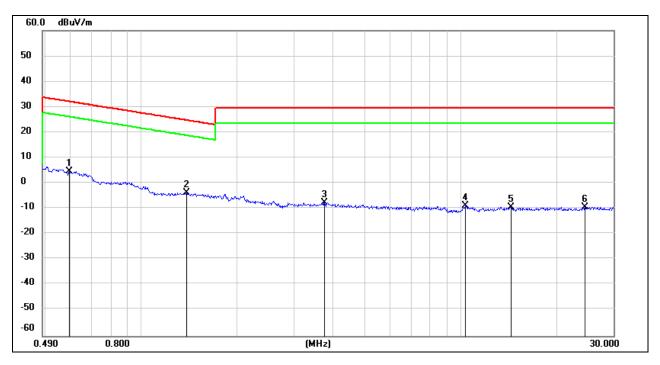
Note: 1. Measurement = Reading Level + Correct Factor ($dBuA/m = dBuV/m - 20Log10[120\pi] = dBuV/m - 51.5$).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150kHz ~ 490kHz</u>

No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1554	75.77	-101.65	-25.88	23.77	-77.38	-27.73	-49.65	peak
2	0.1894	68.64	-101.70	-33.06	22.06	-84.56	-29.44	-55.12	peak
3	0.2564	62.27	-101.80	-39.53	19.42	-91.03	-32.08	-58.95	peak
4	0.3331	59.46	-101.89	-42.43	17.15	-93.93	-34.35	-59.58	peak
5	0.3714	58.28	-101.93	-43.65	16.20	-95.15	-35.3	-59.85	peak
6	0.4364	56.36	-101.99	-45.63	14.80	-97.13	-36.7	-60.43	peak


Note: 1. Measurement = Reading Level + Correct Factor ($dBuA/m = dBuV/m - 20Log10[120\pi] = dBuV/m - 51.5$).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490kHz ~ 30MHz</u>

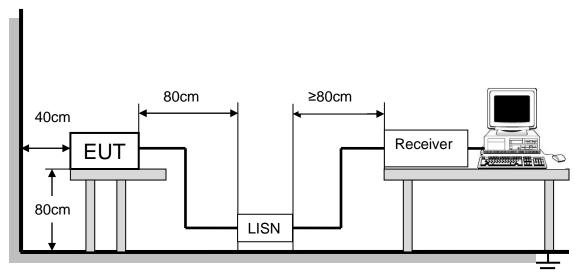
No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5945	66.62	-62.08	4.54	32.12	-46.96	-19.38	-27.58	peak
2	1.3810	58.47	-62.10	-3.63	24.80	-55.13	-26.7	-28.43	peak
3	3.7406	53.80	-61.40	-7.60	29.54	-59.1	-21.96	-37.14	peak
4	10.3168	51.98	-60.81	-8.83	29.54	-60.33	-21.96	-38.37	peak
5	14.4184	51.43	-60.99	-9.56	29.54	-61.06	-21.96	-39.10	peak
6	24.5106	51.08	-60.49	-9.41	29.54	-60.91	-21.96	-38.95	peak

Note: 1. Measurement = Reading Level + Correct Factor ($dBuA/m = dBuV/m - 20Log10[120\pi] = dBuV/m - 51.5$).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the test modes have been tested, only the worst data record in the report.

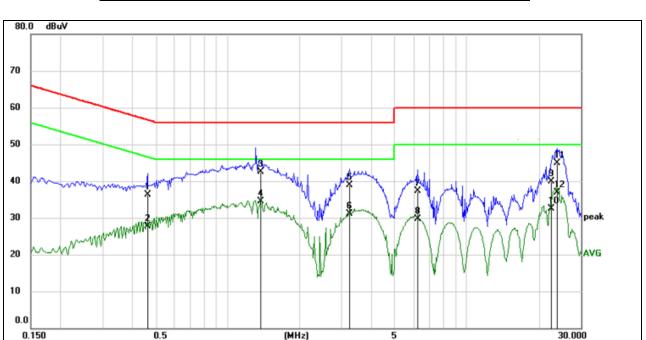

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

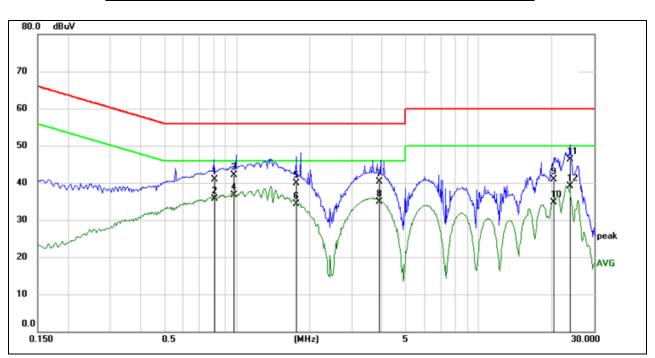
TEST SETUP AND PROCEDURE


The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST ENVIRONMENT

Temperature	24.4°C	Relative Humidity	72.7%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V_60Hz


LINE N RESULTS	MID CHANNEL.	WORST-CASE	CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.4645	26.62	9.60	36.22	56.61	-20.39	QP
2	0.4645	18.18	9.60	27.78	46.61	-18.83	AVG
3	1.3795	32.98	9.61	42.59	56.00	-13.41	QP
4	1.3795	24.86	9.61	34.47	46.00	-11.53	AVG
5	3.2456	29.19	9.65	38.84	56.00	-17.16	QP
6	3.2456	21.36	9.65	31.01	46.00	-14.99	AVG
7	6.2208	27.52	9.71	37.23	60.00	-22.77	QP
8	6.2208	19.95	9.71	29.66	50.00	-20.34	AVG
9	22.5693	29.82	10.15	39.97	60.00	-20.03	QP
10	22.5693	22.31	10.15	32.46	50.00	-17.54	AVG
11	23.8377	34.74	10.10	44.84	60.00	-15.16	QP
12	23.8377	26.79	10.10	36.89	50.00	-13.11	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

LINE L RESULTS (MID CHANNEL	WORST-CASE	CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.8086	31.33	9.61	40.94	56.00	-15.06	QP
2	0.8086	26.02	9.61	35.63	46.00	-10.37	AVG
3	0.9745	32.47	9.61	42.08	56.00	-13.92	QP
4	0.9745	27.12	9.61	36.73	46.00	-9.27	AVG
5	1.7570	30.22	9.62	39.84	56.00	-16.16	QP
6	1.7570	24.77	9.62	34.39	46.00	-11.61	AVG
7	3.8683	30.70	9.66	40.36	56.00	-15.64	QP
8	3.8683	25.34	9.66	35.00	46.00	-11.00	AVG
9	20.4679	30.87	10.10	40.97	60.00	-19.03	QP
10	20.4679	24.66	10.10	34.76	50.00	-15.24	AVG
11	23.8146	36.37	9.99	46.36	60.00	-13.64	QP
12	23.8146	29.02	9.99	39.01	50.00	-10.99	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All the test modes have been tested, only the worst data record in the report.

10. ANTENNA REQUIREMENTS

Applicable requirements

Please refer to FCC §15.203

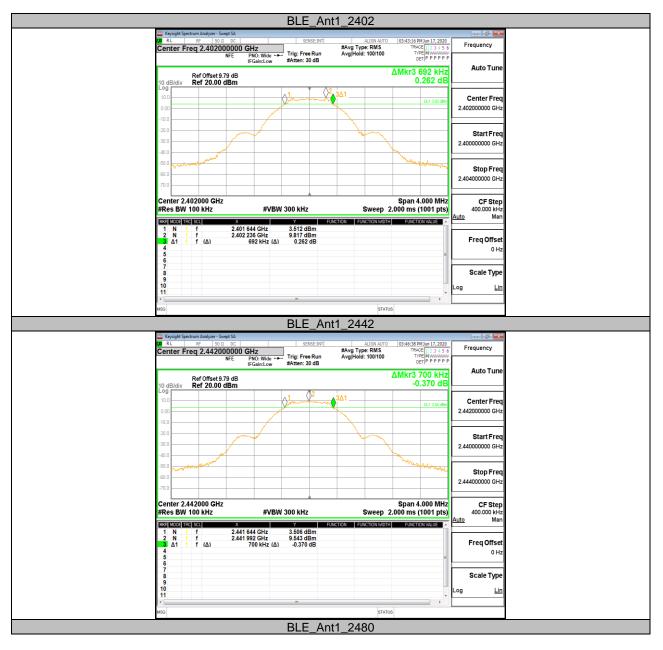
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

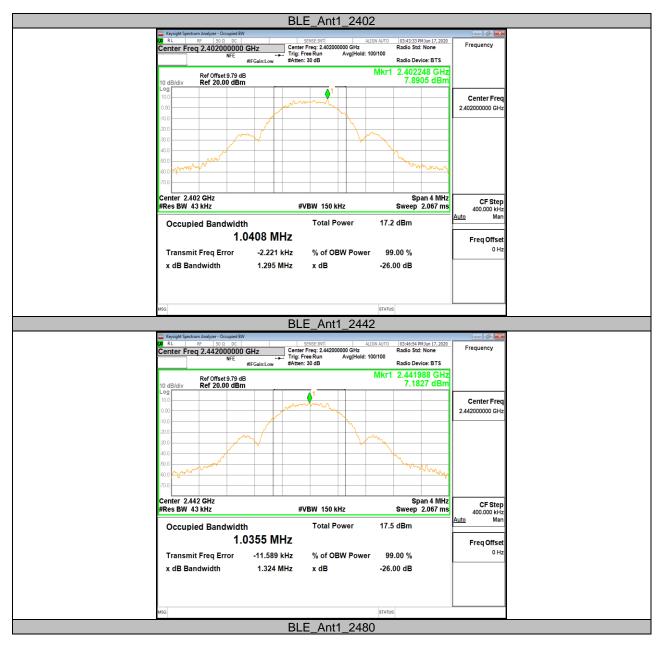
Complies



10.1. Appendix A: DTS Bandwidth 10.1.1. Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.692	2401.644	2402.336	0.5	PASS
BLE	Ant1	2442	0.700	2441.644	2442.344	0.5	PASS
		2480	0.652	2479.668	2480.320	0.5	PASS

10.1.2. Test Graphs

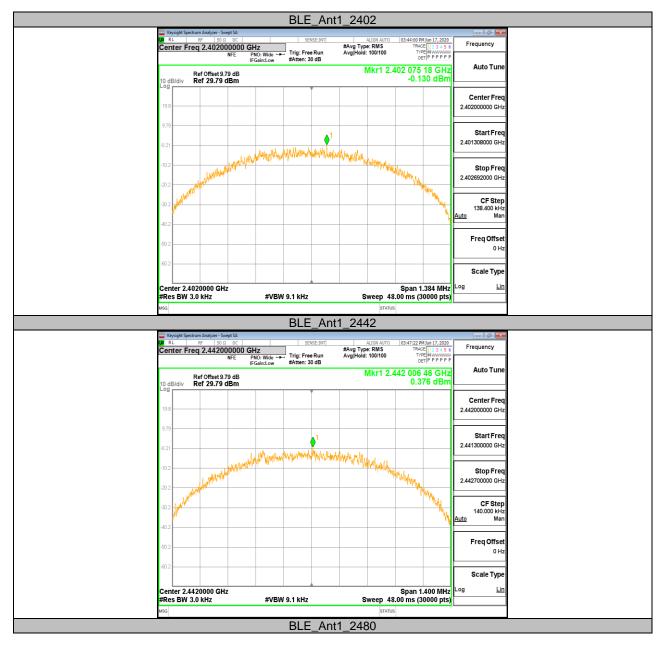


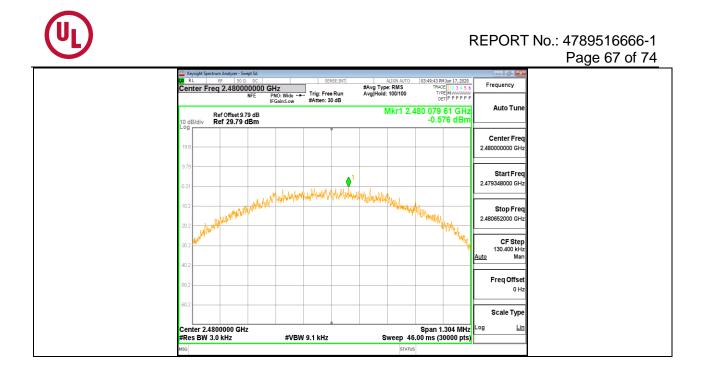

10.2. Appendix B: Occupied Channel Bandwidth 10.2.1. Test Result

Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.0408	2401.477	2402.518		PASS
BLE	Ant1	2442	1.0355	2441.471	2442.506		PASS
		2480	1.0203	2479.487	2480.507		PASS

10.2.2. Test Graphs

10.3. Appendix C: Maximum Peak conducted output power 10.3.1. Test Result


Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	7.50	<=30	PASS
BLE	Ant1	2442	7.87	<=30	PASS
		2480	7.33	<=30	PASS


10.4. Appendix D: Maximum power spectral density 10.4.1. Test Result

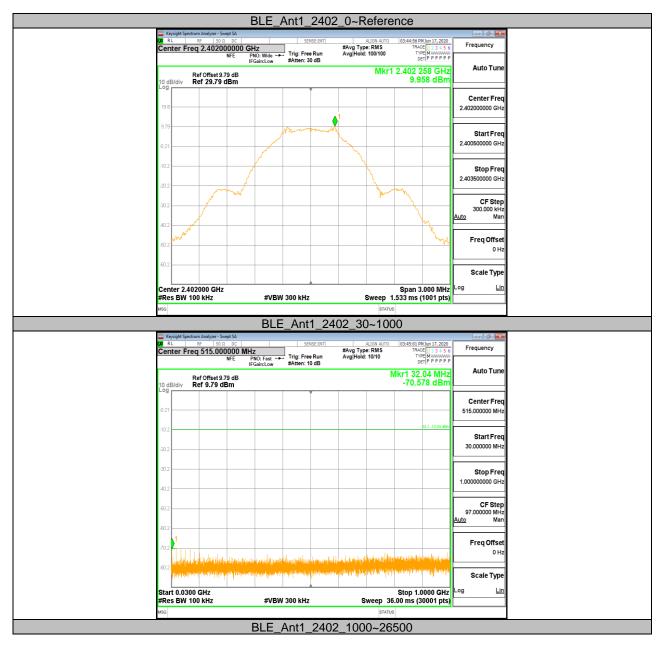
Test Mode	Antenna	Channel	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
		2402	-0.13	<=8	PASS
BLE	Ant1	2442	0.38	<=8	PASS
		2480	-0.58	<=8	PASS

10.4.2. Test Graphs

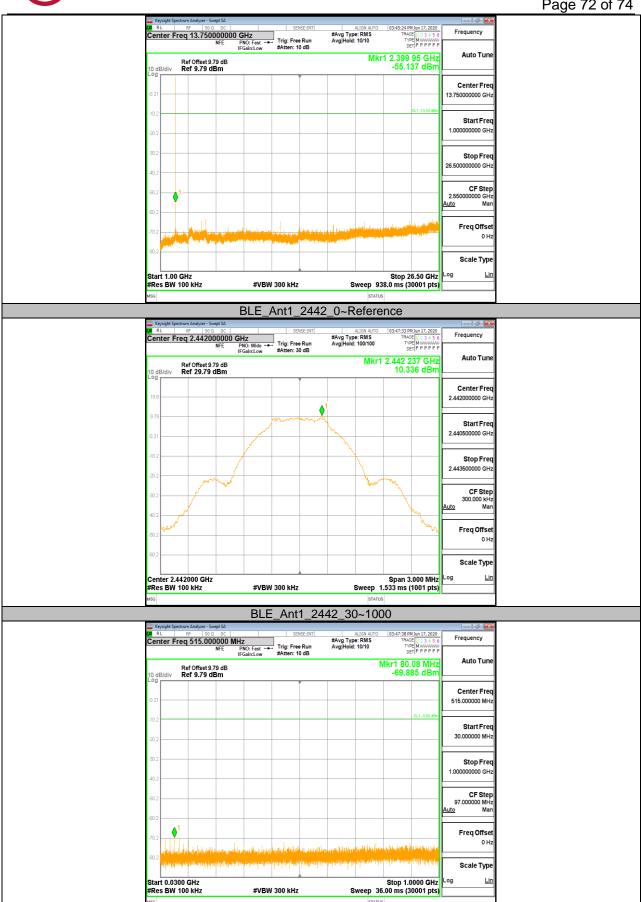
10.5. Appendix E: Band edge measurements 10.5.1. Test Result

Test Mode	Antenna	ChName	Channel	Verdict
	A nt1	Low	2402	PASS
BLE	Ant1	High	2480	PASS

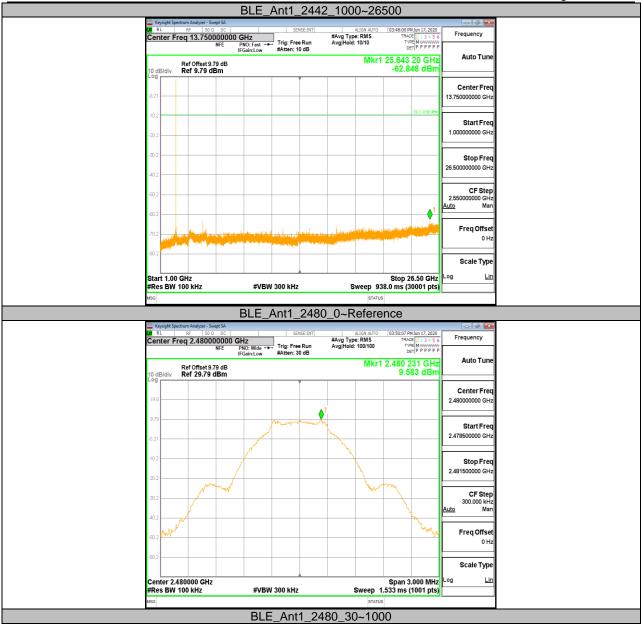
10.5.2. Test Graphs



10.6.	Appendix F	-: Conducted Spurious Emission
	10.6.1.	Test Result


Test Mode	Antenna	Channel	Verdict
			PASS
		2402	PASS
			PASS
			PASS
BLE	Ant1	2442	PASS
			PASS
			PASS
		2480	PASS
			PASS

10.6.2. Test Graphs



REPORT No.: 4789516666-1 Page 72 of 74

REPORT No.: 4789516666-1 Page 73 of 74

REPORT No.: 4789516666-1 Page 74 of 74

	_											
		ght Spectrun	n Analyzer - Sw	vept SA								- 8 ×
	RL		F 50 Ω		_	SE	NSE:INT	#Avg Typ	ALIGN AUTO	03:50:12 P	M Jun 17, 2020	Frequency
C	ente	er ⊧req	515.000	NFE N	Z PNO: Fast ↔	Trig: Fre	Run	#Avg Typ Avg Hold:	10/10	TY	E 1 2 3 4 5 6 E M P P P P P P P F P P P P P P	
					Gain:Low	#Atten: 1	0 dB					
		Pa	f Offset 9.	79 dB					N		.02 MHz	Auto Tune
10	dB/d	div Re	ef 9.79 d	Bm						-69.3	33 dBm	
Lo	βL											
												Center Freq
-0.	21											515.000000 MHz
											DL1 -10.42 dBm	
-11	3.2										001-10-92 dBM	Start Freq
												30.000000 MHz
-21	3.2											30.00000 Miriz
-3	0.2											Stop Freq
												1.00000000 GHz
-4	1.2											
												CF Step
-5	J.2											97.000000 MHz
												<u>Auto</u> Man
-6	1.2				-							
												Freq Offset
-71	3.2	Шİт										0 Hz
	1	n di du	All diale	day with the	hilpoold	lu biti di	white the	Nu ha ha pi d	hurraupold	lan teritori	nunhun	L
-8	J.2	in a share	difference	anthanan	annadio	a dimi di si sui	laka mina sa sita d	a la brand	ditrilioist, he	Baphishte	(NIMALA NA	Scale Type
		1.144.00	an air	I do do	and the second difference of the	and the set		1. 1. 1. P.				Scale Type
	ľ											log Lin
SI	tart (0.0300	GHz							Stop 1.	0000 GHz	Log <u>Lin</u>
S1 #F	art (Res I		GHz kHz		#VBV	V 300 kHz		S	weep 36	Stop 1. .00 ms (3	0000 GHz 0001 pts)	
SI #F	Res I	0.0300	GHz kHz		#VBV	V 300 kHz		S	weep 36	.00 ms (3	0000 GHz 0001 pts)	
#F	Res I	0.0300	GHz kHz						STATUS	.00 ms (3	0000 GHz 0001 pts)	
# F MS	Res I	0.0300 BW 100	kHz		#VBV				STATUS	.00 ms (3	0000 GHz 0001 pts)	
#F	Res E	0.0300 BW 100	h Analyzer - Sw	vept SA		Ant1_	2480)_100	status 0~26	.00 ms (3 500	0001 pts)	
#1 MS	Res I	0.0300 BW 100 ght Spectrum	h Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 000000 (BLE_	Ant1_	_ 2480)_100 #Avg Typ	STATUS 0~26	.00 ms (3 500	0001 pts)	
#1 MS	Res I	0.0300 BW 100 ght Spectrum	h Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE	BLE_	Ant1_	2480)_100	STATUS 0~26	.00 ms (3 500	0001 pts)	Frequency
#F	Res I	0.0300 BW 100 ght Spectrum Fer Freq	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE I I	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	.00 ms (3 500 03:50:35 P TR4 TY D	0001 pts)	
#F MS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Keysig RL ente	0.0300 BW 100 ght Spectrum For Freq Re	h Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	MJun 17, 2020	Frequency
#F	Keysig RL ente	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	MJun 17, 2020 П 2 3 4 5 6 П Р Р Р Р Р Р 80 GHz	Frequency Auto Tune
#F MS () () () () () () () () () () () () ()	Keysig RL ente	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	MJun 17, 2020 П 2 3 4 5 6 П Р Р Р Р Р Р 80 GHz	Frequency Auto Tune
## MS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Keysig RL ente	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	MJun 17, 2020 П 2 3 4 5 6 П Р Р Р Р Р Р 80 GHz	Frequency Auto Tune
## MS 20 10 10 10 -0	Keysig RL ente	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注目23456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010日 1010 1010 1010 1010 1010 1000	Frequency Auto Tune
#F	Keysig RL ente	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	MJun 17, 2020 П 2 3 4 5 6 П Р Р Р Р Р Р 80 GHz	Frequency Auto Tune Center Freq 13.76000000 GHz
## MS C 10 Lc -0. -11	Keysig RL ente	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注目23456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010日 1010 1010 1010 1010 1010 1000	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq
## MS 00 C 10 L c	Keysig RL ente	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注123456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1000	Frequency Auto Tune Center Freq 13.76000000 GHz
#H MS () () () () () () () () () () () () ()	Keysig RL ente	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注123456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1000	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq
## MAS C 10 Lc -0. -11	Keysig RL ente	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注123456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1000	Frequency Auto Tune Center Freq 13.76000000 GHz Start Freq 1.00000000 GHz
## us C 10 10 -0 -11 -2 -3	Keysig Keysig RL Bld ente 0.2 0.2 0.2	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注123456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1000	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 1.00000000 GHz
## uss @ @	Keysig Keysig RL Bld ente 0.2 0.2 0.2	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注123456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1000	Frequency Auto Tune Center Freq 13.76000000 GHz Start Freq 1.00000000 GHz
## us C 10 -0 -11 -2 -3 -4	Keysig R RL RL ente 0.2 0.2 - 0.2 -	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注123456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1000	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 26.50000000 GHz
## us C 10 -0 -11 -2 -3 -4	Keysig Keysig RL Bld ente 0.2 0.2 0.2	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注123456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1000	Center Frequency Auto Tune Center Freq 13.76000000 GHz Start Freq 1.00000000 GHz Stop Freq 26.50000000 GHz CF Step 2.550000000 GHz
## us C 10 10 10 10 11 11 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	Keysig R RL RL eente	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注123456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1000	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 26.50000000 GHz CF Step
## us C C C C C C C C C C C C C C C C C C	Keysig R RL RL eente	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注123456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1000	Center Frequency Auto Tune Center Freq 13.76000000 GHz Start Freq 1.00000000 GHz Stop Freq 26.50000000 GHz CF Step 2.550000000 GHz
## ws us C C C C C C C C C C C C C C C C C C	Ress Keysig RL RL ente 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注123456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1000	Center Frequency Auto Tune Center Freq 13.76000000 GHz Start Freq 1.00000000 GHz Stop Freq 26.50000000 GHz CF Step 2.550000000 GHz
## us C 10 10 10 10 10 10 10 10 10 10 10 10 10	Keysig R RL RL eente	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注123456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1000	Center Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 26.50000000 GHz 25.50000000 GHz 2.55000000 GHz
## # # # # # # # # # # # # # # # # # #	Keysig Keysig RL RL 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 -	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注123456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1000	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 26.50000000 GHz CF Step 2.55000000 GHz CF Step 2.55000000 GHz Treq Offset
## uss 10 10 11 22 3 3 4 4 4 4 5 5 5 6	Keysig Keysig RL RL 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 -	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注123456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1000	Icol Low Icol Frequency Auto Tune Center Freq 13.76000000 GHz Start Freq 1.00000000 GHz Stop Freq 26.50000000 GHz 2.550000000 GHz Man Freq Offset 0 Hz
## uss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Keysig Keysig RL RL 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 -	0.0300 BW 100 ght Spectrum For Freq Re	Analyzer - Sw F 50 Ω 13.7500	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	00 ms (3 500 03:50:35 P TRAI TY D 14.878	Mam 17, 2020 注123456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1000	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 26.50000000 GHz CF Step 2.55000000 GHz CF Step 2.55000000 GHz Treq Offset
### uss 	Keysig Image: Constraint of the second	0.0300 0.0590 100	* * * * * * * * * * * * * * * * * * *	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	2480)_100 #Avg Typ	STATUS 0~26 Align Auto e: RMS 10/10	0.00 ms (3 5500 (0396.35 P PR44 10 14.878 -59.7	8/3m 17, 2020 ==================================	
###	Keysig RL RL RL 1 dB/d RL 21	0.0300 BW 100 ght Spectrum For Freq Re	x Analyzer - Six F So 20 f 0 ffset 9: f 9.79 d	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1_	24800 KESINT ■ Run 0 dB 1 1	#Avg Typ Avg Hold	Intrust Intrus	0.00 ms (3 500) 0.350.35 P TRATE 14.878 -59.7	Mam 17, 2020 注目23456 短期のののでは、2020 に、123456 短期ののののでは、123456 2010日 1010 1000 1000	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 26.50000000 GHz 2.550000000 GHz 2.550000000 GHz CF Step 2.550000000 GHz CF Step 2.550000000 GHz 0 Hz Scale Type Log Lin
## uss C C C C C C C C C C C C C C C C C C	Reprint R RL RL enter 10 10 12 11 - 12 - 13 - 14 - 15 -	0.0300 0 BW 100 er Freg div Re	x Analyzer - Six F So 20 f 0 ffset 9: f 9.79 d	vept SA 2 DC 0000000 (NFE F II 79 dB	BLE	Ant1	24800 KESINT ■ Run 0 dB 1 1	#Avg Typ Avg Hold	Intrust Intrus	0.00 ms (3 5000	MJun 17, 2020 MJun 1	Frequency Auto Tune Center Freq 13.75000000 GHz Start Freq 26.50000000 GHz 2.550000000 GHz 2.550000000 GHz CF Step 2.550000000 GHz CF Step 2.550000000 GHz 0 Hz Scale Type Log Lin

END OF REPORT