Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/8/2006	13
Attenuator	Pasternack	PE7005-20	AUN	2/6/2007	13
Power Meter	Gigatronics	8651A	SPM	9/19/2006	12
Power Sensor	Gigatronics	80701A	SPL	9/19/2006	12
Signal Generator	Hewlett-Packard	8648D	TGC	12/7/2006	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The 99% bandwidth was measured utilizing the analyzer's peak detector and measuring the carrier's 26 dB occupied bandwidth based on the peak output power level measured. A plot was taken to show the occupied bandwidth is contained within the allowable transmit band.

A direct connection was made between the EUT and a spectrum analyzer. At 3 kHz the spectrum analyzer's resolution bandwidth was sufficiently narrow to plot the actual bandwidth of the signal and not the filter response curve of the spectrum analyzer. The resolution bandwidth was approximately equal to 1% of the 20dB bandwidth and the video bandwidth was greater than or equal to the resolution bandwidth.

The occupied bandwidth was measured with the EUT configured in the modes called out in the data sheets.

NORTHWEST			OCCUPIED E	BANDWIDTH			XMit 2006.11.13
EUT	: S-BTS GSN	Base Station	l			Work Order: RAFN0069	
Customer	: Radioframe	Networks, In	с.			Temperature: 21°C	
Attendees	: Bob Melshe	eimer				Humidity: 32%	
Project Tested by	: None Rod Pelogu	in		Power: 120VAC/60Hz	Barc	ometric Pres.: 30.18	
TEST SPECIFICAT	IONS			Test Method			
FCC 22H:2005				ANSI/TIA/EIA-603-B-20	002		
COMMENTS							
DEVIATIONS FROM	MIESISIA	NDARD					
Configuration #		1	Rochin Les	Relina			
Configuration #		•	Signature	03			
					Value	Limit	Poculte
GSM Modulation	_				value	Linit	Results
	High Power	Low Channel					
		Low onumer	Reference Level Plot	2	0.1 dBm	N/A	N/A
			Occupied Bandwidth Band Edge	2	65.1 kHz 28.9 dBm	N/A ≤ -13 dBm	N/A Pass
		Mid Channel	Duna 2030	-	0.0 0.5.11	L To dom	1 400
			Reference Level Plot Occupied Bandwidth	2	0.1 dBm 61.1 kHz	N/A N/A	N/A N/A
		High Channe		-			
			Reterence Level Plot Occupied Bandwidth	19	9.99 dBM 62.1 kHz	N/A N/A	N/A N/A
			Band Edge	-2	25.6 dBm	≤ -13 dBm	Pass
	Mid Power	Low Channel					
			Reference Level Plot	14	4.07 dBm	N/A	N/A
			Band Edge	-3	67.6 KHZ 35.4 dBm	N/A ≤ -13 dBm	N/A Pass
		Mid Channel	Defense a local Dist			N1/A	N1/A
			Occupied Bandwidth	2	63.1 kHz	N/A N/A	N/A N/A
		High Channe	Peference Level Diet		1.00 dDm	N1/A	N1/A
			Occupied Bandwidth	2	4.23 dBm 62.6 kHz	N/A N/A	N/A
	Low Dowor		Band Edge		31.1 dBm	N/A	Pass
	LOW FOWER	Low Channel					
			Reference Level Plot	8	.35 dBm	N/A	N/A
			Band Edge	-4	0.86 dBm	≤ -13 dBm	Pass
		Mid Channel	Reference Level Plot	8	11 dBm	N/A	N/A
			Occupied Bandwidth	2	62.6 kHz	N/A	N/A
		High Channe	l Reference I evel Plot	8	67 dBM	N/A	N/A
			Occupied Bandwidth	2	62.6 kHz	N/A	N/A
GPRS Modulation			Band Edge	-3	6.23 dBm	≤ -13 dBm	Pass
	High Power	Low Channel					
		LOW Channel	Reference Level Plot	20	0.05 dBm	N/A	N/A
			Occupied Bandwidth	2	61.6 kHz	N/A	N/A Pass
		Mid Channel			-20.32	2 - 15 UDII	F 855
			Reference Level Plot	20	0.02 dBm	N/A N/A	N/A
		High Channe		2		D/A	19/75
			Reference Level Plot Occupied Bandwidth	19	9.85 dBm 62.6 kHz	N/A N/A	N/A N/A
			Band Edge	-2	25.6 dBm	≤ -13 dBm	Pass
	Mid Power	Low Channel					
			Reference Level Plot	1	4.2 dBm	N/A	N/A
			Band Edge	-3	61.1 kHz 31.8 dBm	N/A ≤ -13 dBm	N/A Pass
		Mid Channel	Deference Level Dist			N1/A	N1/A
			Occupied Bandwidth	2	63.1 kHz	N/A N/a	N/A N/A
		High Channe	Reference Level Dict		1 20 dPM	Ν/Λ	NI/A
			Occupied Bandwidth	2	62.6 kHz	N/A	N/A
	Low Power		Band Edge	-3	1.26 dBm	≤ -13 dBM	Pass
	Low - owel	Low Channel					
			Reference Level Plot Occupied Bandwidth	8	.39 dBm 62.6 kH 7	N/A N/A	N/A N/A
			Band Edge	-3	7.45 dBm	≤ -13 dBm	Pass
		Mid Channel	Reference Level Plot	<u>م</u>	17 dBm	N/A	N/A
			Occupied Bandwidth	2	63.6 kHz	N/A	N/A
		High Channe	Reference Level Plot	A	.73 dBm	N/A	N/A
			Occupied Bandwidth	2	61.6 kHz	N/A	N/A
			Raud Fade	-3	6.12 dBm	≤ -13 dBm	Pass

		GSM Modulation, High F	, 0%	ver, Low Cha	innel, Reference L	evel Plot		
Result:	N/A	Value	:	20.1 dBm	L	_imit:	N/A	

🔆 🗮 Aç	gilent 1	0:46:09	22 Mar 20	107				RT		
Ref 20).1 dBm		#At	ten 10 di	В					
Peak Log										
10 dB/										
Offst 21.6										
dВ										
V1 S2 S3 FC										
Center #Res B	∙869.2 M 3W 1 MHz	Hz			₩VBW 3 M	Hz	S	weep 19.	Spa 99 ms (20	n 3 MHz 100 pts)

	GSM Modulation, High Power, Low Channel,	Occupied Bandwidth	
Result: N/A	Value: 265.1 kHz	Limit:	N/A

	GSM Modulation, High Power, Low Channel	l, Band Edge		
Result: Pass	Value: -28.9 dBm	Limit:	≤ -13 dBm	

		GSM Modulation, High Pov	wer, Mid Channel, Reference	e Level Plo	t
Result:	N/A	Value:	20.1 dBm	Limit:	N/A

🔆 🔆 Aç	jilent 14	4:03:31 2	22 Mar 20	107			1	RТ		
Ref 20).11 dBm		#Ati	ten 10 df	3					
Peak Log										
10 dB/										
0ffst 21.6										
dΒ										
V1 S2 S3 FC										
Center #Res B	* 881.2 M 3W 1 MHz	Hz			⊭VBW 3 MI	Hz	SI	weep 19.	Spa 99 ms (20	n 2 MHz 100 pts)

	GSM Modulation, High Power, Mid Chanr	nel, Occupied Bandwidth	
Result: N/A	Value: 261.1 kHz	Limit: N/	A

		GSM Modulation, High P	ower, High Cha	annel, Reference Level Plo	ot	
Result:	N/A	Value	: 19.99 dBM	Limit:	N/A	

🔆 🔆 Ag	jilent 15	5:16:07 (22 Mar 20	107				RT		
Ref 19	.99 dBm		#Ati	ten 10 dE	3					
Peak Log										
10 dB/										
Offst 21.6										
dB										
V1 S2 S3 FC										
Center #Res B	893.8 M W 1 MHz	Hz		4	ŧVBW 3 MI	Hz	SI	weep 19.9	Spa 99 ms (20	n 2 MHz 100 pts)

Result:

	GSM Modulation, High Power, High Chan	nei, Occupied Bandwidth	
Result: N/A	Value: 262.1 kHz	Limit: N/A	

	GSIVI IVIOUUIALION, FIGH	Power, flight Channel, band	i Euge	
Pass	Value:	-25.6 dBm	Limit:	≤ -13 dBm

GSM Modulation, Mid Power, Low Channel, Reference Level Plot								
Result:	N/A	Value	: 14.07	dBm	Limit:	N/A		

🔆 🔆 Ag	jilent 13	2:58:50	22 Mar 20	107				RT		
Ref 14	.07 dBm		#Ati	ten 10 dl	В					
Peak Log										
10 dB/										
Offst 21.6										
dB										
V1 S2 S3 EC										
Center #Res B	869.2 M W 1 MHz	Hz			₩VBW 3 M	Hz	s	weep 19.	Spa 99 ms (20	an 2 MHz)00 pts)

 GSM Modulation, Mid Power, Low Channel, Occupied Bandwidth

 Result:
 N/A
 Value:
 267.6 kHz
 Limit:
 N/A

🔆 🔆 🕂	jilent 13	3:02:23 2	22 Mar 20	107				R	Т			
Ref 14	.07 dBm		#Ĥt	ten 10 d	В					Mkr1 ∆	267.6 0.286	kHz i dB
Peak Log 10					Mann	www.wh						
dB/ Offst 21.6 dB				1.8 ⁴								
DI -11.9 dBm			مريد				- A	ለ				
V1 S2 S3 E0			A MAN						I'm way	M		
5510	atter Area and a star and a star and a	Wolander									Ne lande	.∼\ _₩
C												
Center #Res E	869.2 Mi 3W 3 kHz	Hz		,	ŧVBW 10 k	кНz	S	wee	p 11	5) 4.4 ms (oan ⊥ 2000 p	MHZ pts)

GSM Modulation, Mid Power, Low Channel, Band Edge							
Result: Pass	Value: -35.4 dBm	Limit: ≤ -13 dBm					

	GSM Modulation, Mid Power, Mid Channel, Re	eference Level Plot	
Result: N/A	Value: 13.85 dBm	Limit:	N/A

🔆 🔆 Aç	gilent 14	4:29:01	22 Mar 20	107	RT						
Ref 13	.85 dBm		#Ati	ten 10 df	3						
Peak Log											
10 dB/											
Offst 21.6											
dΒ											
V1 S2 S3 FC											
Center #Res B	· 881.2 M 3W 1 MHz	Hz			⊭VBW 3 MI	Hz	SI	weep 19.	Spa 99 ms (20	ın 2 MHz)00 pts)	

GSM Modulation, Mid Power, Mid Channel, Occupied Bandwidth								
Result: N	N/A	Value:	263.1 kHz	Limit:	N/A			

		GSM Modulation, Mid F	ower,	High Chan	inel, Reference I	_evel Plot		
Result:	N/A	Value): 14	1.23 dBm		Limit:	N/A	

🔆 🔆 Aç	jilent 15	5:43:01 (22 Mar 20	107			I	RT			
Ref 14	.23 dBm		#Ati	ten 10 df	3						
Peak Log											
10 dB/											
0ffst 21.6 JP											
ар											
V1 S2 S3 FC											
_											
Center #Res B	893.8 M W 1 MHz	HZ			ŧVBW 3 MI	Hz	Si	weep 19.9	Spa 99 ms (20	n 2 MHz 100 pts)	

GSM Modulation, Mid Power, High Channel, Occupied Bandwidth								
Result: N/A Value: 262.6 kHz	Limit:	N/A						

Result: Pass

Value: -31.1 dBm

N/A

Limit:

		GSM Modulation, Low P	ower, Low Cha	annel, Reference Level Plo	t	
Result:	N/A	Value:	8.35 dBm	Limit:	N/A	

i∰ Ag	jilent 1	3:34:26	22 Mar 20	107				RT		
Ref 8.3	35 dBm		#At	ten 10 dl	В					
Peak Log										
10 dB/										
Offst 21.6										
dB										
V1 S2 S3 EC										
Center #Res B	869.2 M W 1 MHz	1Hz			#VBW 3 M	Hz	S	weep 19.	Spa 99 ms (20	ın 2 MHz 100 pts)

 GSM Modulation, Low Power, Low Channel, Occupied Bandwidth

 Result:
 N/A
 Value:
 262.6 kHz
 Limit:
 N/A

	GSM Modulation, Low Power, Low Chann	el, Band Edge	
Result: Pass	Value: -40.86 dBm	Limit:	≤ -13 dBm

	GSM Modulation, Low Power, Mid Channel, Re	eference Level Plot	
Result: N/A	Value: 8.11 dBm	Limit: N/A	

🔆 🔆 🔆	ዡ Agilent 14:52:38 22 Mar 2007 R T									
Ref 8.1	11 dBm		#Ati	ten 10 df	3					
Peak Log										
10 dB/										
0††st 21.6 dB										
αD										
14 00										
V1 52 S3 FC										
Contor										n 2 MHz
#Res B	3W 1 MHz				¥VBW 3 MI	Hz	SI	weep 19.9	99 ms (20	100 pts)

EMC

GSM Modulation, Low Power, Mid Channel, Occupied Bandwidth									
Result: N/A	Value: 262.6 kH	z Limit:	N/A						

	GSM Modulation, Low Power, High Channel, Re	eference Level Plo	t
Result: N/A	Value: 8.67 dBM	Limit:	N/A

🔆 🔆 Ag	jilent 16	6:02:57	22 Mar 20	107			l	RT		
Ref 8.0	67 dBm		#At	ten 10 df	3	>			98 Mkr1)3.805 MHz 3.722 dBm
Peak Log 10										
⊥0 dB/ ∩ffst										
21.6 dB										
V1 S2 S3 EC										
Center #Res B	893.8 M W 1 MHz	Hz			₩VBW 3 MI	Hz	S	wеер 19.	S .99 ms (pan 2 MHz 2000 pts)

Result:

OCCUPIED BANDWIDTH

GSM Modulation, Low Power, High Channel, Occupied Bandwidth									
Result: N/A	Value: 262.6 kHz	Limit: N/A							

	GSIVI IVIOUUIALION, LOW	Fower, Flight Cr	iannei, banu Euge		
Pass	Value:	-36.23 dBm	Limit:	≤ -13 dBm	

	GPRS Modulation, High Powe	er, Low Channel, Reference	Level Plc	t
Result: N/A	Value: 2	20.05 dBm	Limit:	N/A

	GPRS Modulation, High Power, Low Channel, C	Occupied Bandwidth
Result: N/A	Value: 261.6 kHz	Limit: N/A

		GPRS Modulation, Hig	h Power, L	₋ow Channel, Band Edge		
Result:	Pass	Value:	-26.32	Limit:	≤ -13 dBm	

GPRS Modulation, High Power, Mid Channel, Reference Level Plot								
Result: N/A	Value: 20.02 dBm	Limit: N/A						

🔆 🔆 🔆	€ Agilent 14:17:07 22 Mar 2007 R T									
Ref 20	.02 dBm		#Ati	ten 10 dE	3					
Peak Log										
10 dB/										
0ffst 21.6 JP										
аD										
V1 S2 S3 FC										
_										
Lenter 881.2 MHz #Res BW 1 MHz					ŧVBW 3 MI	Hz	S	weep 19.9	Spa 99 ms (20	n 2 MHz 100 pts)

	GPRS Modulation, High Power, Mid Channel, Occupied Bandwidth							
Result: N/A	Value: 261.1 kHz	Limit: N/A						

GPRS Modulation, High Power, High Channel, Reference Level Plot									
Result: N/A	Value: 19.85 dBm	Limit:	N/A						

Ref 19.85 dBm *Atten 10 dB Peak	🔆 🔆 Ag	Agilent 15:27:21 22 Mar 2007 R T									
Peak Log 10 dB/ 0ffst 21.6 dB V1 \$2 \$3 FC Center 893.8 MHz Span 2 MHz Span 2 MHz	Ref 19	.85 dBm		#Ati	ten 10 dE	3					
10 dB/ 0ffst 21.6 dB V1 S2 S3 FC Center 893.8 MHz Span 2 MHz Span 2 MHz	Peak Log										
Uf fst 21.6 dB V1 S2 S3 FC Center 893.8 MHz Span 2 MHz	10 dB/										
V1 S2 S3 FC Center 893.8 MHz Span 2 MHz	0†fst 21.6 dB										
V1 S2 S3 FC	αD										
V1 S2 S3 FC											
VI 52 \$3 FC Center 893.8 MHz Span 2 MHz	111 00										
Center 893.8 MHz Span 2 MHz	VI 52 S3 FC										
Center 893.8 MHz Span 2 MHz											
Center 893.8 MHz Span 2 MHz											
	Center	893.8 M									in 2 MHz
#Res BW 1 MHz #VBW 3 MHz Sweep 19.99 ms (2000 pts)	#Res BW 1 MHz ===================================						100 pts)				

Result: N/A Value: 262.6 kHz Limit: N/A			GPRS Modulation, High F	GPRS Modulation, High Power, High Channel, Occupied Bandwidth							
	Result:	N/A	Value:	262.6 kHz	Limit:	N/A					

		gh Power, high Channel, banc	⊏uge	
Result: Pas	Value:	-25.6 dBm	Limit:	≤ -13 dBm

		GPRS Modulation, Mid F	ower, Low Ch	annel, Reference Level Plo	ot	
Result:	N/A	Value	: 14.2 dBm	Limit:	N/A	

🔆 Ag	ilent 1	3:13:58	22 Mar 20	107				RT		
Ref 14.	.2 dBm		#At	ten 10 di	В					
Peak Log										
10 dB/										
Offst 21.6										
dB										
V1 S2 S3 EC										
00 T C I										
Center 869.2 MHz #Res BW 1 MHz				#VBW 3 MHz			s	Span 2 MHz Sweep 19.99 ms (2000 pts)		

 GPRS Modulation, Mid Power, Low Channel, Occupied Bandwidth

 Result:
 N/A
 Value:
 261.1 kHz
 Limit:
 N/A

	GPRS Modulation, Mid Power, Low Channel, Band Edge								
Result: Pass	Value: -31	.8 dBm Limit:	≤ -13 dBm						

	GPRS Modulation, Mid Power, Mid Channel, Re	eference Level Plot	
Result: N/A	Value: 13.98 dBm	Limit: N/A	

🔆 🔆 🔆	€ Agilent 14:40:01 22 Mar 2007 R T									
Ref 13	.98 dBm		#Ati	ten 10 df	3					
Peak Log										
10 dB/										
Offst 21.6 JP										
ар										
V1 S2 S3 FC										
C	001 0 M									
#Res BW 1 MHz #VBW 3 MHz Sweep 19.99 ms (2000					m z mHz 100 pts)					

GPRS Modulation, Mid Power, Mid Channel, Occupied Bandwidth							
Result: N/A	Value: 263.1 kHz	Limit:	N/a				

		GPRS Modulation, Mid Pov	wer, High Char	nnel, Reference Level Plo	ot	
Result:	N/A	Value:	14.29 dBM	Limit:	N/A	

🔆 🔆 Ag	jilent 15	5:52:38	22 Mar 20	107	[/] RT					
Ref 14	.29 dBm		#Ati	ten 10 dE	3					
Peak Log										
10 dB/										
Offst 21.6										
аБ										
V1 S2 S3 FC										
Center #Res B	893.8 M W 1 MHz	Hz			ŧVBW 3 MI	Ηz	SI	weep 19.9	Spa 99 ms (20	n 2 MHz 100 pts)

GPRS Modulation, Mid Power, High Channel, Occupied Bandwidth							
Result: N/A	Value: 262.6 kHz	Limit: N/A					

		GPRS Modulation, Min	u Power, nigh Channel, ban	u ⊏uye	
Result:	Pass	Value:	-31.26 dBm	Limit:	≤ -13 dBM

		GPRS Modulation, Low F	Power, Low Ch	nannel, Reference Level Pl	ot	
Result:	N/A	Value	: 8.39 dBm	Limit:	N/A	

🔆 Agi	ilent 13	3:47:50	22 Mar 20	107				RT		
Ref 8.3	9 dBm		#At	ten 10 dl	В					
Peak [Log										
10 dB/										
Offst 21.6										
dB										
V1 S2 S3 EC										
Center #Res Bl	869.2 M W 1 MHz	Hz			#VBW 3_M	Hz	S	weep 1 <u>9</u> .	Spa 99 ms (20	an 2 MHz)00 pts)

 GPRS Modulation, Low Power, Low Channel, Occupied Bandwidth

 Result:
 N/A
 Value:
 262.6 kHz
 Limit:
 N/A

GPRS Modulation, Low Power, Low Channel, Band Edge							
Result: Pa	ss Value:	-37.45 dBm	Limit:	≤ -13 dBm			

GPRS Modulation, Low Power, Mid Channel, Reference Level Plot							
Result: N/A	Value: 8.17 dBm	Limit: N/A					

🔆 🔆 🔆	jilent 15	5:03:18	22 Mar 20	107 R					Т		
Ref 8.1	17 dBm		#Ati	ten 10 di	3						
Peak											
10 dB/											
Offst 21.6											
dB											
V1 S2 S3 FC											
Center #Res B	·881.2 M 3W 1 MHz	Hz			#VBW 3 MI	Hz	SI	weep 19.	Spa 99 ms (20	n 2 MHz 100 pts)	

GPRS Modulation, Low Power, Mid Channel, Occupied Bandwidth							
Result: N/A	Value: 263.6 kHz	Limit: N/A					

GPRS Modulation, Low Power, High Channel, Reference Level Plot							
Result:	N/A	Value	8.73 dBm	Limit:	N/A		

🔆 🔆 Aç	jilent 16	6:12:06	22 Mar 20	107			1	RТ		
Ref 8.	73 dBm		#Ati	ten 10 df	3					
Peak Log										
10 dB/										
0ffst 21.6										
dΒ										
V1 S2 S3 FC										
Center #Res B	· 893.8 M 3W 1 MHz	Hz			¥VBW 3 MI	Hz	SI	weep 19.	Spa 99 ms (20	n 2 MHz 100 pts)

GPRS Modulation, Low Power, High Channel, Occupied Bandwidth								
Result: N/A	Value:	261.6 kHz	Limit:	N/A				

	GPRS Modulation, Low Power, Figh Channel, Band Edge					
Result: Pass	Value: -36.12 dBm	Limit: ≤ -13 dBm				

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/8/2006	13
Attenuator	Pasternack	PE7005-20	AUN	2/6/2007	13
Power Meter	Gigatronics	8651A	SPM	9/19/2006	12
Power Sensor	Gigatronics	80701A	SPL	9/19/2006	12
Signal Generator	Hewlett-Packard	8648D	TGC	12/7/2006	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The 99% bandwidth was measured utilizing the analyzer's peak detector and measuring the carrier's 26 dB occupied bandwidth based on the peak output power level measured. A plot was taken to show the occupied bandwidth is contained within the allowable transmit band.

A direct connection was made between the EUT and a spectrum analyzer. At 3 kHz the spectrum analyzer's resolution bandwidth was sufficiently narrow to plot the actual bandwidth of the signal and not the filter response curve of the spectrum analyzer. The resolution bandwidth was approximately equal to 1% of the 20dB bandwidth and the video bandwidth was greater than or equal to the resolution bandwidth.

The occupied bandwidth was measured with the EUT configured in the modes called out in the data sheets.

NORTHWEST			OCCUPIED E	BANDWIDTH			XMit 2006.11.13
EUT	: S-BTS GSN	Base Station	1			Work Order: RAFN0069	
Customer	: Radioframe	e Networks, In	с.			Temperature: 21°C	
Attendees	: Bob Melshe	eimer				Humidity: 32%	
Project Tested by	: None : Rod Pelogi	iin		Power: 120VAC/60Hz	Bar	ometric Pres.: 30.18	
TEST SPECIFICAT	IONS			Test Method			
FCC 24E:2005				ANSI/TIA/EIA-603-B-2	002		
COMMENTS							
DEVIATIONS FRO	M TEST STA	NDARD					
			0.01	Pl			
Configuration #		1	Porting to	Keling			
			Signature	V			
OOM Made la face					Value	Limit	Results
GSM Modulation	High Power						
		Low Channe	Poference Lovel Plet	2	2.94 dDm	NI/A	NI/A
			Occupied Bandwidth	2	265.1 kHz	N/A	N/A
		Mid Channel	Band Edge	-	24.5 dBm	≤ -13 dBm	Pass
		Jing Onarmer	Reference Level Plot	2	2.93 dBm	N/A	N/A
		High Channe	Occupied Bandwidth		266.1 kHz	N/A	N/A
		. ng Shanne	Reference Level Plot	2	1.54 dBm	N/A	N/A
			Occupied Bandwidth Band Edge	2	266.6 kHz 22.9 dBm	N/A ≤ -13 dBm	N/A Pass
	Mid Power		Bana Eage		EE.0 GBIII	2 10 0011	1 455
		Low Channe	Reference Level Plot	1	6.79 dBm	N/A	N/A
			Occupied Bandwidth	2	266.6 kHz	N/A	N/A
		Mid Channel	Band Edge	-	31.6 dBm	≤ -13 dBm	Pass
			Reference Level Plot	1	7.47 dBm	N/A	N/A
		High Channe	Occupied Bandwidth	2	272.1 kHz	N/A	N/A
			Reference Level Plot	1	7.76 dBm	N/A	N/A
			Band Edge	2	-26.83	N/A N/A	N/A Pass
	Low Power						
		Low Channe	Reference Level Plot	1	0.89 dBm	N/A	N/A
			Occupied Bandwidth	2	266.1 kHz	N/A	N/A
		Mid Channel	Band Edge	-	37.1 dBm	≤ -13 dBm	Pass
			Reference Level Plot	1	1.95 dBm	N/A	N/A
		High Channe	al Occupied Bandwidth	2	265.6 KHZ	N/A	N/A
		0	Reference Level Plot	1	2.76 dBm	N/A	N/A
			Band Edge	-	269.6 KHZ 32.0 dBm	N/A ≤ -13 dBm	N/A Pass
GPRS Modulation	High Power						
	TigitFower	Low Channe	I				
			Reference Level Plot	2	2.81 dBm	N/A	N/A
			Band Edge	-2	23.32 dBm	≤ -13 dBm	Pass
		Mid Channel	Reference Level Plot	2 2 2	2.94 dBm	N/A	N/A
			Occupied Bandwidth	2	262.6 kHz	N/A	N/A
		High Channe	Reference Level Plot	2	1.53 dBm	N/A	N/A
			Occupied Bandwidth	2	262.6 kHz	N/A	N/A
	Mid Power		Band Edge	-2	23.12 dBm	≤ -13 dBm	Pass
		Low Channe					
			Reference Level Plot Occupied Bandwidth	1	6.79 dBm 264.6 kHz	N/A N/A	N/A N/A
			Band Edge	-2	28.39 dBm	≤ -13 dBm	Pass
		Mid Channel	Reference Level Plot	1	7.52 dBm	N/A	N/A
			Occupied Bandwidth	2	262.1 kHz	N/a	N/A
		High Channe	Reference Level Plot	1	7.76 dBm	N/A	N/A
			Occupied Bandwidth	2	262.1 kHz	N/A	N/A
	Low Power			-2	49 aBM	≤ -13 aBM	Pass
		Low Channe	Peference Level Dict		0.99 dD	N1/A	N1/A
			Occupied Bandwidth	1	0.88 uBM 262.6 kHz	N/A N/A	N/A N/A
		Mid Character	Band Edge		34.57 dBm	≤ -13 dBm	Pass
		wild Channel	Reference Level Plot	1	1.94 dBm	N/A	N/A
		High Ob	Occupied Bandwidth	2	262.1 kHz	N/A	N/A
		riigh Channe	Reference Level Plot	1	2.75 dBm	N/A	N/A
			Occupied Bandwidth	2	262.1 kHz	N/A	N/A
			Dand Euge	-3	01.00 GBM	≤ -13 aBm	Pass

		GSM Modulation, High F	ower, Low Cha	nnel, Reference Level Plo	t	
Result:	N/A	Value	: 22.84 dBm	Limit:	N/A	

🔆 🗮 Ag	gilent (18:05:49	23 Mar 20	107				RT		
Ref 22	.84 dBm		#At	ten 20 dl	В					
Peak Log										
10 dB/										
0ffst 21.6										
dB										
V1 S2 S3 EC										
00 10										
Center #Res B	1.93 GH 3W 1 MHz	łz			₩VBW 3 M	Hz	s	weep 19.	Spa 99 ms (20	n 2 MHz)00 pts)

GSM Modulation, High Power, Low Channel, Occupied Bandwidth								
Result: N/A	Value: 265.1 kHz	Limit:	N/A					

	GSM Modulation, High Power, Low Channel, Band Edge								
Result: Pas	S Value:	-24.5 dBm	Limit:	≤ -13 dBm					

		GSM Modulation, High I	Power, M	lid Channe	I, Reference Level Plot		
Result:	N/A	Value	: 22.93	3 dBm	Limit:	N/A	

🔆 🔆 Ag	Agilent 09:31:44 23 Mar 2007 R T									
Ref 22	.93 dBm		#Ati	ten 20 dE	3					
Peak Log										
10 dB/										
Offst 21.6										
aв										
V1 S2 S3 FC										
Center #Res B	1.96 GH: 3W 1 MHz	Z			≢VBW 3 MI	Hz	SI	weep 19.9	Spa 99 ms (20	n 2 MHz 100 pts)

GSM Modulation, High Power, Mid Channel, Occupied Bandwidth							
Result: N/A	Value: 266.1 kHz	Limit: N/A					

		GSM Modulation, High P	ower, High Cha	nnel, Reference Level Ple	ot	
Result:	N/A	Value	: 21.54 dBm	Limit:	N/A	

🔆 🔆 Aç	ዡ Agilent 11:31:06 23 Mar 2007 R T									
Ref 21	.54 dBm		#Ati	ten 20 df	3					
Peak Log										
10 dB/										
Offst 21.6										
dB										
V1 S2 S3 FC										
Center #Res B	1.99 GH: 3W 1 MHz	Z			⊭VBW 3 MI	Hz	S	weep 19.	Spa 99 ms (20	n 2 MHz)00 pts)

Result:

	GSM Modulation, High Power, High Channel, Occupied Bandwidth								
Result: N/A	Value: 266.6 kHz	Limit: N/A							

	Gow would ton, right	FOWER, HIGH C	nannei, banu Luye		
Pass	Value:	-22.9 dBm	Limit:	≤ -13 dBm	

		GSM Modulation, Mid Pe	ower,	Low Chan	nel, Reference Lev	el Plot	
Result:	N/A	Value	16	6.79 dBm	Liı	mit:	N/A

🔆 🗮 Ag	jilent 08	3:29:40	23 Mar 20	107				RT		
Ref 16	.79 dBm		#At	ten 20 dl	В					
Peak Log										
10 dB/										
0ffst 21.6										
dB										
V1 S2 S3 EC										
Center #Res B	1.93 GH W 1 MHz	Z			₩VBW 3 M	Hz	S	weep 19.	Spa 99 ms (20	an 2 MHz)00 pts)

 GSM Modulation, Mid Power, Low Channel, Occupied Bandwidth

 Result:
 N/A
 Value:
 266.6 kHz
 Limit:
 N/A

GSM Modulation, Mid Power, Low Channel, Band Edge								
Result: Pass	Value: -31.6 dBm	Limit: ≤ -13 dB	m					

	GSM Modulation, Mid Power, Mid Channel, Re	eference Level Plot	
Result: N/A	Value: 17.47 dBm	Limit: N/A	

🔆 🔆 Ag	ዡ Agilent 09:59:14 23 Mar 2007 R T									
Ref 17	.47 dBm		#Ati	ten 20 df	3					
Peak Log										
10 dB/										
0ffst 21.6 JP										
uD										
V1 S2 S3 FC										
<u> </u>										
uenter #Res B	1.96 GH: SW 1 MHz	Ζ			¥VBW 3 MI	Hz	Si	weep 19.9	5pa 99 ms (20	in Z MHZ 100 pts)
GSM Modulation, Mid Power, Mid Channel, Occupied Bandwidth										
--	------------------	------------	--	--	--	--	--	--	--	
Result: N/A	Value: 272.1 kHz	Limit: N/A								

	GSM Modulation, Mid Power, High Channel, Reference Level Plot								
Result:	N/A	Value):	17.76 dBm	l	_imit:	N/A		

🔆 👫 Ag	jilent 11	:59:44 2	23 Mar 20	107			I	RT		
Ref 17	.76 dBm		#Ati	ten 20 dE	3					
Peak Log										
10 dB/										
Offst 21.6 ⊿R										
аD										
V1 S2 S3 FC										
_										
∪enter #Res B	1.99 GH: SW 1 MHz	Z			₩VBW 3 MI	Hz	Si	weep 19.9	5pa 99 ms (20	n 2 MHz 100 pts)

	GSM Modulation, Mid Power, High Channel, Occupied Bandwidth								
Result: N/A	Value: 268.6 kHz	Limit:	N/A						

 GSM Modulation, Mid Power, High Channel, Band Edge

 Result:
 Pass
 Value:
 -26.83
 Limit:
 N/A

GSM Modulation, Low Power, Low Channel, Reference Level Plot								
Result:	N/A	Value:	10.89 dBm	Limit:	N/A			

🔆 Ag	gilent 0	8:59:30	23 Mar 20	107				RT		
Ref 10	.89 dBm		#At	ten 20 di	В					
Peak Log			+							
10 dB/										
0ffst 21.6										
dB										
V1 S2 S3 EC										
00 10										
Center #Res B	1.93 GH WW 1 MHz	lz		#VBW 3 MHz			s	Span 2 MHz Sweep 19.99 ms (2000 pts)		

 GSM Modulation, Low Power, Low Channel, Occupied Bandwidth

 Result:
 N/A
 Value:
 266.1 kHz
 Limit:
 N/A

GSM Modulation, Low Power, Low Channel, Band Edge								
Result: Pass	Value: -37.1 dBm	Limit:	≤ -13 dBm					

	GSM Modulation, Low Power, Mid Channel, Reference Level Plot									
Result:	N/A	Value:	11.95 dBm	Limit:	N/A					

🔆 🔆 Ag	jilent 10	0:26:14	23 Mar 20	07			1	RТ		
Ref 11	.95 dBm		#Ati	ten 20 dE	3					
Peak Log										
10 dB/										
Offst 21.6										
ав										
V1 S2 S3 FC										
Center #Res B	1.96 GH: W 1 MHz	Z		4	¥VBW 3 MI	Ηz	SI	weep 19.9	Spa 99 ms (20	n 2 MHz 100 pts)

GSM Modulation, Low Power, Mid Channel, Occupied Bandwidth									
Result: N/A	Value: 265.6 kHz	Limit: N/A							

GSM Modulation, Low Power, High Channel, Reference Level Plot									
Result: N/A	Value	: 12.76 dBm	Limit:	N/A					

🔆 🔆 Ag	jilent 12	2:32:23	23 Mar 20	107			- I	RT		
Ref 12	.76 dBm		#Ati	ten 20 dE	3					
Peak Log										
10 dB/										
Offst 21.6										
dB										
V1 S2 S3 FC										
Center #Res B	1.99 GH: W 1 MHz	Z			ŧVBW 3 MI	Ηz	SI	weep 19.9	Spa 99 ms (20	n 2 MHz 100 pts)

Result:

GSM Modulation, Low Power, High Channel, Occupied Bandwidth						
Result: N/A	Value:	269.6 kHz	Limit:	N/A		

	GSIVI IVIOUUIALION, LOW	Fower, Fight	Channel, banu Euge		
Pass	Value:	-32.0 dBm	Limit:	≤ -13 dBm	

		GPRS Modulation, High I	Power, Low Cha	nnel, Reference Level Plo	ot	
Result:	N/A	Value	: 22.81 dBm	Limit:	N/A	

🔆 🗮 Ag	gilent (08:14:49	23 Mar 20	107				RT		
Ref 22	.81 dBm		#Ati	ten 20 di	В					
Peak Log			+							
10 dB/										
0ffst 21.6										
dB										
V1 S2 S3 EC										
00.0										
Center #Res B	1.93 GI 3W 1 MHz	Hz 2			₩VBW 3 M	Hz	s	weep 19.	Spa 99 ms (20	an 2 MHz)00 pts)

 GPRS Modulation, High Power, Low Channel, Occupied Bandwidth

 Result:
 N/A
 Value:
 262.6 kHz
 Limit:
 N/A

	GPRS Modulation, High Power, Low Chan	nel, Band Edge		
Result: Pass	Value: -23.32 dBm	Limit:	≤ -13 dBm	

		GPRS Modulation, High Power, M	lid Channel, Reference Level P	lot
Result:	N/A	Value: 22.94	dBm Limit:	N/A

🔆 🔆 Aç	jilent 09	9:48:40	23 Mar 20	107			I	RТ		
Ref 22	.94 dBm		#Ati	ten 20 df	3					
Peak Log										
10 dB/										
Offst 21.6 JP										
ав										
V1 S2 S3 FC										
_										
Lenter #Res B	1.96 GH: SW 1 MHz	Z			₩VBW 3 MI	Hz	S	weep 19.	Spa 99 ms (20	in 2 MHz 100 pts)

	GPRS Modulation, High Power, Mid Channel,	Occupied Bandwidth	
Result: N/A	Value: 262.6 kHz	Limit: N/A	

GPRS Modulation, High Power, High Channel, Reference Level Plot					
Result: N/A	Value: 21.53 dBm	Limit:	N/A		

🔆 🔆 🔆	jilent 11	:42:50	23 Mar 20	107			I	RT		
Ref 21	.53 dBm		#Ati	ten 20 dE	3					
Peak Log										
10 dB/										
0††st 21.6 dB										
αD										
V1 S2 S3 FC										
_										
Lenter ≢Res B	1.99 GH: SW 1 MHz	Z			ŧVBW 3 M	Hz	S	weep 19.	Spa 99 ms (20	in 2 MHz 100 pts)

GP	RS Modulation, High Power, High Channel,	Occupied Bandwidth	1
Result: N/A	Value: 262.6 kHz	Limit:	N/A

	GERS MOUUIALION, FIIGH FOWER, FIIGH CHAIN	nei, danu Euge
Result: Pass	Value: -23.12 dBm	Limit: ≤ -13 dBm

		GPRS Modulation, Mid F	ower, Low Cha	nnel, Reference Level Plo	ot	
Result:	N/A	Value	: 16.79 dBm	Limit:	N/A	

🔆 Agilent	08:45:53	23 Mar 20	07				RT		
Ref 16.79 dE	⊰m	#Ati	:en 20 di	В					
Peak Log		+							
10 dB/									
0ffst 21.6									
dB									
V1 S2 S3 FC									
Center 1.93 #Res BW 1 M	GHz Hz			#VBW 3 M	Hz	S	weep 19.	Spa 99 ms (20	an 2 MHz)00 pts)

 GPRS Modulation, Mid Power, Low Channel, Occupied Bandwidth

 Result:
 N/A
 Value:
 264.6 kHz
 Limit:
 N/A

🔆 Ag	ilent 08	8:49:58	23 Mar 20	107				R	Т				
Ref 16.	.79 dBm		#Ati	ten 20 df	3					Mkr1 ∆	2	64.6 0.59	kHz dB
Peak Log 10 dB/ Offst 21.6 dB				1R Qui	Mana	nowly							
UI -9.2 dBm			North Contract				- ^V V	1~	لىر. بر				
\$3 FC.	www.	and the second	/								*	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	``
Center #Res Bl	1.93 GH W 3 kHz	z		#	VBW 10 k	:Hz	S	weet	o 11	4.4 ms	Spa (20	n 1 M 100 p	¶Hz ts)

		, Band Edge	d Power, Low Chan	GPRS Modulation, Mi		
Result: Pass Value: -28.39 dBm Limit: S -13 dBm	≤ -13 dBm	Limit:	-28.39 dBm	Value:	Pass	Result:

	GPRS Modulation, Mid Power, M	id Channel, Reference Level Plot	
Result: N/A	Value: 17.52	2 dBm Limit: N/A	

🔆 🔆 Ag	jilent 10	0:11:59	23 Mar 20	107			I	RT		
Ref 17	.52 dBm		#Ati	ten 20 dE	3					
Peak Log										
10 dB/										
Offst 21.6 JP										
ав										
V1 S2 S3 FC										
Center #Res B	1.96 GH: 3W 1 MHz	Z			¥VBW 3 MI	Hz	S	weep 19.9	Spa 99 ms (20	n 2 MHz 100 pts)

	GPRS Modulation, Mid Power, Mid Channel,	Occupied Bandwidth	
Result: N/A	Value: 262.1 kHz	Limit:	N/a

		GPRS Modulation, Mid Powe	r, High Channel,	Reference Level Plo	ot
Result:	N/A	Value: 1	17.76 dBm	Limit:	N/A

🔆 👫 Ag	jilent 12	2:13:00	23 Mar 20	107			I	RТ		
Ref 17	.76 dBm		#Ati	ten 20 df	3					
Peak Log										
10 dB/										
Uffst 21.6 dB										
V1 S2										
\$3 FC										
Center	1.99 GH	z							Spa	in 2 MHz
#Res B	W 1 MHz			ł	¥VBW 3 MI	Hz	SI	weep 19.	99 ms (20	100 pts)

	, , , .		
Result: N/A	Value: 262.1 kHz	Limit: N/A	

Result: Pass

Value: -27.49 dBm

Limit:

≤ -13 dBM

		GPRS Modulation, Low P	ower, Low Cha	nnel, Reference Level Plo	t	
Result:	N/A	Value:	10.88 dBm	Limit:	N/A	

i∰ Ag	gilent	09:13:41	23 Mar 20	107				RT		
Ref 10	1.88 dBr	n	#At	ten 20 di	В					
Peak Log										
10 dB/										
Offst 21.6										
dB										
V1 S2										
55 FC										
Center #Res B	1.93 G 3W 1 MH	iHz z			#VBW 3 M	Hz	s	weep 19.	Spa 99 ms (20	an 2 MHz 000 pts)

 GPRS Modulation, Low Power, Low Channel, Occupied Bandwidth

 Result:
 N/A
 Value:
 262.6 kHz
 Limit:
 N/A

	GPRS Modulation, Lo	ow Power, Low Channel, Band	Edge	
Result: Pass	Value:	-34.57 dBm	Limit:	≤ -13 dBm

		GPRS Modulation, Low Po	ower, Mid Chan	nel, Reference Level Plo	ot	
Result:	N/A	Value:	11.94 dBm	Limit:	N/A	

🔆 🔆 Ag	jilent 10	0:36:17	23 Mar 20	07			- I	RТ		
Ref 11	.94 dBm		#Ati	ten 20 dE	3					
Peak Log										
10 dB/										
Offst 21.6										
аБ										
V1 S2 S3 FC										
Center #Res B	1.96 GH: W 1 MHz	Z		4	ŧVBW 3 MI	Ηz	SI	weep 19.9	Spa 99 ms (20	n 2 MHz 100 pts)

	GPRS Modulation, Low Power, Mid Channel, G	Occupied Bandwidth	
Result: N/A	Value: 262.1 kHz	Limit: N/A	

		GPRS Modulation, Low F	Power, High Ch	annel, Reference Level Pl	ot	
Result:	N/A	Value	: 12.75 dBm	Limit:	N/A	

🔆 🔆 🔆	jilent 12	2:49:37	23 Mar 20	107			I	RT		
Ref 12	.75 dBm		#Ati	ten 20 df	3					
Peak Log										
10 dB/										
0ffst 21.6 JP										
аD										
V1 S2 S3 FC										
_										
Center #Res B	1.99 GH: WW 1 MHz	Z			#VBW 3 MI	Hz	S	weep 19.9	Spa 99 ms (20	n 2 MHz 100 pts)

	r to modulation, Eow r ower, r ligh onaline		
Result: N/A	Value: 262.1 kHz	Limit: N/A	

		GPRS MOUUIALION, LOV
Result:	Pass	Value:

Value: -31.88 dBm

Limit:

≤ -13 dBm

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator	Pasternack	PE7005-20	AUN	2/6/2007	13
Spectrum Analyzer	Agilent	E4407B	AAU	12/8/2006	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The antenna port spurious emissions were measured at the RF output terminal of the EUT with 20dB of external attenuation on the RF input of the spectrum analyzer. Analyzer plots utilizing a 100 kHz resolution bandwidth and no video filtering were made for each modulation type from 0 to 10 GHz. The peak conducted power of spurious emissions, up to the 10^{th} harmonic of the transmit frequency, were investigated to ensure they were less than or equal to -13 dBm.

NORTHWEST			XMit 2006.11.13
EMC	Spurious Co	onducted Emissions	
EUT	S-BTS GSM Base Station		Work Order: RAFN0069
Serial Numbe	r: Engineering Unit		Date: 03/26/07
Custome	r: Radioframe Networks, Inc.		Temperature: 22°C
Attendees	S: Bob Melsheimer		Humidity: 33%
Projec Tostod by	Crog Kiemel	Bower: 120\/AC/60Hz	Barometric Pres.: 29.91
TEST SPECIFICA	TIONS	Test Method	Job Site. Evoo
FCC 22H:2005		ANSI/TIA/EIA-603-B-2002	
COMMENTS	Dewer		
	Power		
DEVIATIONS FRO	OM TEST STANDARD		
Configuration #	1 A	HU.K.P	
	Signature	Velue	Limit Desults
GSM		Value	
	Low Channel		
	In Band	≤ -30 dE	3m ≤ -13 dBm Pass
		≤ -30 dE	Sm ≤ 13 dBm Pass
	2 795 - 4 5 GHz	≤ -30 dE ≤ -30 dE	Sm ≤-13 dBm Pass
	4.495 - 6 GHz	⊆ -30 dE ≤ -30 dE	3m ≤ -13 dBm Pass
	5.995 - 7.5 GHz	≤ -30 dE	Sm ≤ -13 dBm Pass
	7.495 - 9 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	Mid Channel		
	In Band	≤ -30 dE	3m ≤ -13 dBm Pass
	0 - 1 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	995 MHz - 2.8 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	2.795 - 4.5 GHZ	≤ -30 dE	Sm ≤ -13 dBm Pass
	4.495 - 0 GHZ 5 995 - 7 5 GHz	≤ -30 dE < -30 dE	Sili ≥-13 dBili Pass Sm <_13 dBm Pass
	7 495 - 9 GHz	≤ -30 dE ≤ -30 dE	Sm ≤-13 dBm Pass
	High Channel	_ 00 41	
	In Band	≤ -30 dE	3m ≤ -13 dBm Pass
	0 - 1 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	995 MHz - 2.8 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	2.795 - 4.5 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	4.495 - 6 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	5.995 - 7.5 GHz	≤ -30 dE	Sm ≤ -13 dBm Pass
GPRS	7.495 - 9 GHZ	≤ -30 de	Sin S-15 UBIN Pass
GING	Low Channel		
	In Band	≤ -30 dE	3m ≤ -13 dBm Pass
	0 - 1 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	995 MHz - 2.8 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	2.795 - 4.5 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	4.495 - 6 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	5.995 - 7.5 GHz	≤ -30 dE	Bm ≤ -13 dBm Pass
	7.495 - 9 GHZ Mid Channel	S -30 de	Sm ≤-13 dBm Pass
	In Band	< -30 dE	Sm <_13 dBm Pass
	0 - 1 GHz	⊆ -30 dE ≤ -30 dE	3m ≤-13 dBm Pass
	995 MHz - 2.8 GHz	≤ -30 dE	Bm ≤ -13 dBm Pass
	2.795 - 4.5 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	4.495 - 6 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	5.995 - 7.5 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	7.495 - 9 GHz	≤ -30 dE	3m ≤ -13 dBm Pass
	High Channel		
		≤ -30 dE	sm ≤ -13 dBm Pass
		≤ -30 dE	onii ≤-13 aBm Pass
	990 MITZ - 2.0 GHZ 2 795 - 4 5 GHz	≤ -30 0E < >0 dE	Sm ≤_13 dBm Pass
	2.735 - 4.3 GHZ 4.495 - 6 GHz	> 0 00 ≤ 20 00	Sm = 10 dDill Pass Sm < 13 dBm Pass
	5.995 - 7.5 GHz	≤ -30 dE < -30 dF	Sm ≤-13 dBm Pass
	7.495 - 9 GHz	≤ -30 dE ≤ -30 dE	Bm ≤-13 dBm Pass

Popult: Pass Value: $\leq 20 dPm$ Limit: $\leq 12 dPm$			GSM, Lo	ow Channel, In Band		
	Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

		GSM, Lo	w Channel, 0 - 1 GHz		
Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

🔆 🔆 Ag	jilent 0	8:14:37	26 Mar 20	07				RT		
Ref 30	∣dBm		#At	ten 20 df	3					
Peak Log										
10 dB/										
Offst 21.6										
ав										
V1 S2		المراجع المراجع		ماريد وارد ارو	al da ^{bl} assana (ja ji)			ay la Maldhèarda		a la giorna factoria da se
SS FC AA			· · · · · · · · · · · · · · · · · · ·	a	del Barlindia del a da barra d		a di la di			مطع الطبين من الما
Start € #Res B	0 Hz W 100 k	Hz		#!	VBW 300 I	kHz	S	weep 103	Sto 3.6 ms (81	op 1 GHz 192 pts)
C:\SC	C:\SCREN001.GIF file saved									

Result:

	GSM, Low Channel, 995 MHz - 2.8	3 GHz	
Result: Pass	Value: ≤ -30 dBm	Limit: ≤ -13 dBm	

PassValue: \leq -30 dBmLimit: \leq -13 dBm	

莱	Agilent 08:49:21 26 Mar 2007 R T										
Ref	30	dBm		#At	ten 20 di	В					
Pea Log	k										
10 dB/											
0ffs 21.6 dB	it ò										
V1 53	S2 EC	alaha sadi tarahati	Adden antonation	in the statistic state	in a state and the state of the	a natat ka data	delately unstande		and the second state		atest hop to start
	AA										
Stan #Re	rt 2 s B	2.795 GHz W 100 kH	z		#	VBW 300	kHz	S	weep 176	Stop 5.6 ms (81	4.5 GHz .92 pts)

	GSM, Low Channel,	4.495 - 6 GHz	
Result: Pass	Value: ≤ -30 dE	Im Limit:	≤ -13 dBm

		GSM, Low (Channel, 5.995 - 7.5 GHz		
Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

莱	★ Agilent 08:55:09 26 Mar 2007 R T										
Ref	30	dBm		#At	ten 20 df	3					
Pea Log	k										
10 dB7	,										
0ffs 21.0	st }										
dB											
V1	\$2 50	en ann bil main a th	المراد المراجع المراجع	واسريا فالفر مركزتهما	hat doob we not the	ومراجع والمتحافظ والمحاد	والمعالمة والمعالمة والمعالمة	معبدالعارية إريان	use-distributed be	len-enside ester	den selenitere
55	AA			Line and third, but you				(d.) and bard dependence	<u></u>		
Stai #Re	rt 5 s B	5.995 GHz W 100 <u>k</u> H	z		#	VBW 30 <u>0</u>	kHz	# S	weep 1 <u>55</u>	Stop 5.9 ms (81	7.5 GHz .92 pts)

	GSM, Low	Channel, 7.495 - 9 GHz		
Result: Pas	s Value:	≤ -30 dBm	Limit:	≤ -13 dBm

		GSM, M	id Channel, In Band		
Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

🔆 🔆 Ag	jilent	08	3:33:33	26 Mar 20	07				RT		
Ref 30	dBn	ń		#At	ten 20 df	3					
Peak Log											
10 dB/	Í										
Offst 21.6											
dB											
V1 S2 S3 EC		L.	haddillia tau filigta	the photology of the second states	anna an tha tha ann an tha	and a literation of the state of t	(n. 1660) al marca	all the second designs.	antiples in the second	udanus kostali, ks. B	-
ÂĂ						uliu ing nabu a dan und	and the second			n a fini e de ji a cata e estante e	
Start & #Res B	868 W 10	MHz)0 k <u>H</u>	z		#	VBW 30 <u>0 </u>	kHz	S	weep <u>81</u>	Stop 91 ms <u>(81</u>	895 MHz 192 pts <u>)</u>

Result: Pass

Spurious Conducted Emissions

≤ -13 dBm

Result: Pass Value: ≤ -30 dBm Limit: ≤ -13 dBm	

GSM, Mid Ch	annel, 995 MHz - 2.8 GHz	
Value:	≤ -30 dBm	Limit:

🔆 👫 Ag	jilent 0:	9:02:18 2	26 Mar 20	107			l	RT		
Ref 30	dBm		#At	ten 20 di	3					
Peak Log										
10 dB/										
Offst 21.6										
ав										
V1 S2 S3 FC	ter hertike ji	a beta biri inte		n an that an		n a stallen blet blev	teatha diadan			
AA										
Stort (2 8 CH-
#Res B	SW 100 kH	lz		#	VBW 300 I	kHz	#	Sweep 1	87 ms (81	.92 pts)

		GSM, Mid	Channel, 2.795 - 4.5 GHz		
Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

	GSM, Mid Channel, 4.495 - 6 GH:	Ζ
Result: Pass	Value: ≤ -30 dBm	Limit: ≤ -13 dBm

莱	Ag	jilent 0:	9:05:50	26 Mar 20	107			I	RT		
Ref	30	dBm		#At	ten 20 dB						
Pea Loa	k										
10											
dB/ Off≲	:t										
21.0	6										
uD											
V1	<u>\$2</u>										
S3	FC AA					en her til tek te		a della se della se della			
Stan #Re	rt∠ s B	4.495 GH: ₩ 100 kH	 Z 7		#!	/BW 300	kHz	#S	ween 155	Sto 5.9 ms (81	ip 6 GHz 92 nts)
	- L	11 200 M							100p 100		0E p(3)

		GSM, Mid C	Channel, 5.995 - 7.5 GHz		
Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

		GSM, Mid	Channel, 7.495 - 9 GHz		
Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

🔆 🔆 Ag	jilent 09	9:08:30	26 Mar 20	07				RT		
Ref 30	∣dBm		#At	ten 20 df	3					
Peak Log										
10 dB/										
0ffst 21.6										
dВ										
V1 S2 S3 EC	Avelabilities	والمعربة والمراد		the desident of the sta	entres groces fest stiften.	a birana an tagi taga tig		latio, et duible	Hill Harden and D	an an tanka ka ka
ÂA										
Start 7 #Res B	7.495 GHz WW 100 kH	z		#	VBW 300 I	kHz	# S	weep 155	Stc 5.9 ms (81	p 9 GHz 92 pts)

Result:

GSI	M, High Channel, In Band		
Result: Pass Valu	ue: ≤ -30 dBm	Limit:	≤ -13 dBm

	GSM, Hig	gh Channel, 0 - 1 GHz		
Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

₩ A	gilent 0:	9:14:48	26 Mar 20	07				RT		
Ref 30	∂dBm		#At	ten 20 df	3					
Peak										
10 10 dB/										
Offst 21.6 dB										
V1 S2 S3 EC	Harvet kiel bilderen	In the other model in the	. In contraction of		dir en débit travil : e	denskie entrekt	ihehilen ette L	a na da tan ati		et di di sen la setti
ÂF	i propiosi se da la del									
Start #Res[0 Hz 3W 100 kH	Iz		#!	VBW 300 I	kНz	# S	weep 103	Sto 8.6 ms (81	op 1 GHz 192 pts)

Result: Pass

Spurious Conducted Emissions

		GSM, High (Channel, 995 MHz - 2.8 GH:	Z	
Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

ef 30 dl	3m		#Ĥt	ten 20 di	B					
еак										
0 B/										
ffst 1.6										
1 32 3 FC	i ab bibl _{ent} i	In Husen a first standing	la han ta tala ha an	and state with the	h and the	durie de stilletet	dan din satu diti	a han han at	i di kata	
ĂĂ										
tart 995	MHz							.^ 1	Stop	2.8 GI

GSM, High Channel, 2.795 - 4.5 GHz **Value:** ≤ -30 dBm

Limit:	≤ -13 dBm	

* A	gilent 0	9:18:12	26 Mar 20	107				RT		
Ref 30) dBm		#At	ten 20 df	3					
Peak Log										
10 dB/										
0ffst 21.6										
dB										
V1 S2 S3 FC	atala pertakan kati		an ta baha dina ba				un di shaha a lata	Handhat balan da baba	Na se di Unitedat	al na da na da sà
AA										
Start : #Res E	2.795 GH: 3W 100 kH	z Iz		#	VBW 300 I	kHz	S	weep 176	Stop 6.6 ms (81	4.5 GHz .92 pts)

	GSM, High	Channel, 4.495 - 6 GHz		
Result: Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

		GSM, High (Channel, 5.995 - 7.5 GHz		
Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

🔆 👫 Ag	jilent 09	9:21:24 2	26 Mar 20	07				RT		
Ref 30	∣dBm		#At	ten 20 df	3					
Peak										
10 dB/										
0ffst 21.6										
aв										
V1 S2 S3 EC	المرينا وقروق والعطور	and dynamical d	- Des Des des sestiges	i poli estili e politike e	undun digeda	n kontri kan kontrina		. In the star of the	u selde herdd	ik forstaak tooriak o
ÂĂ	An Anda Interior					iler, october Mulfer				
Start 5 #Res B	5.995 GHz WW 100 kH	z		#	VBW 300	kHz	# S	weep 155	Stop 5.9 ms (81	7.5 GHz .92 pts)

	GSM, High	Channel, 7.495 - 9 GHz		
Result: Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

	GPRS, Low Channel, In Band	
Result: Pass	Value: ≤ -30 dBm	Limit: ≤ -13 dBm

🔆 🔆 Ag	jilen	t 0:	9:48:55	26 Mar 20	07				RT		
Ref 30	l dB	m		#At	ten 20 df	3					
Peak Log											
10 dB/		N									
Offst 21.6											
dB											
V1 S2 S3 FC	./		the states	d in the second second	tudionskihle off. og	kilenti dentinen attata	alu ka dha tana	h Tulom tiki biot	i an an air an airtean an airtean an a	tak, its interaction	peter peter belog i sobier
ÂÂ							است حکار و ایمامان کار			for a second	
Start & #Res B	368 3W 1	MHz 00 kH	Iz		#	VBW 300	kНz	#S	weep 81.	Stop 91 ms (81	895 MHz .92 pts)
	_										

Result: Pass Value: ≤ -30 dBm Limit: ≤ -13 dBm	

	GPRS, Low Channel, 995 MHz - 2.8 (GHz	
Result: Pass	Value: ≤ -30 dBm	Limit:	≤ -13 dBm

🔆 🔆 Ag	jilent (09:56:02	26 Mar 20	07				RT		
Ref 30	dBm		#At	ten 20 di	В					
Peak Ling										
10 dB/										
Offst 21.6 dB										
uD										
V1 S2				day Marcallan and	and an Unit of the State	and the second second	descent the fall and the	t sine di tale tan habitat	a alatana dina tari	فالأصادية فردا الانتقاد
S3 FC AA			<u> </u>							
Start S #Res B	995 MHz W 100 k	:Hz		#	VBW 300	kHz	+	≠Sweep_1	Stop 87 ms (81	2.8 GHz .92 pts)

Result: Pass Value: ≤ -30 dBm Limit: ≤ -13 dBm			GPRS, Low	Channel, 2.795 - 4.5 GHz		
	Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

		GPRS, Low	[,] Channel, 4.495 - 6 GHz		
Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

米	₩ Agilent 09:57:36 26 Mar 2007 R T										
Ref 30 dBm #Atten 20 dB											
Peak											
10 10 dB/											
0ffst 21.6	t										
uD											
V1 (33 E	32 50	. La capatra Mogelia ca		والالتراجي والتروي	و و المراجع الم	and the distance in the second	والمتعارفة	والمحادية أطعر لمظلم	و منابعة منابع م	فعروبه والمعرفة	م الم المُ
F	ìΑ	, <u>1997</u> , 19977, 1997, 1997, 1997, 1997, 1997, 19977, 1997, 1997, 1997, 1997, 1997, 1997, 19977, 1997, 19977					an a				allan bina mining bina p
Star #Res	t4 B	.495 GHz W 100 kH	z		#!	VBW 300	kHz	# S	weep 155	Stc 5.9 ms (81	p 6 GHz .92 pts)

Result: Pass Value: ≤ -30 dBm Limit: ≤ -13 dBm			GPRS, Low	Channel, 5.995 - 7.5 GHz		
	Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

		GPRS, Low	Channel, 7.495 - 9 GHz		
Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

🔆 🔆 Aç	₩ Agilent 10:02:36 26 Mar 2007 R T									
Ref 30	∣dBm		#At	itten 20 dB						
Peak Log										
10 dB/										
Offst 21.6										
ав										
V1 S2 S3 FC		ulu, put te te			n da da ser da	d terre di ca bal	h de set en stellen.	a kala ya kaka k		u sa ka sa asiran
AA										
Start 7 #Res B	7.495 GHz 3W 100 k⊦	z Iz		#	VBW 300 I	кНz	# \$	weep 155	Stc i.9 ms (81	p 9 GHz .92 pts)
			GPRS, M	lid Channel, In Band						
--	---------	------	---------	----------------------	--------	-----------				
Result: Pass Value: ≤ -30 dBm Limit: ≤ -13 dBm	Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm				

		GPRS, M	id Channel, 0 - 1 GHz		
Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

🔆 🔆 Ag	★ Agilent 10:13:49 26 Mar 2007 R T										
Ref 30	dBm		#At	ten 20 df	3						
Peak											
10 10 dB/											
Offst 21.6 ⊿B											
uD											
V1 S2 S3 EC	the spin by a second state	is a distance of a state of the				, sastanta sa adadi				ala, na mbatan ala	
ÂA	a da ang pangangkan Balan										
Start 0 #Res B	∂ Hz W 100 k⊦	łz		#	VBW 300 I	kHz	#S	weep 103	Sti 3.6 ms (8	op 1 GHz 192 pts)	

Spurious Conducted Emissions

	GPRS, Mid Channel, 995 MHz - 2.8 G	Hz		
Result: Pass	Value: ≤ -30 dBm	Limit:	≤ -13 dBm	

GPRS, Mid Channel, 2.795 - 4.5 GHz Value: ≤ -30 dBm

Limit:	≤ -13 dBm	

∰ A g	☀ Agilent 10:16:38 26 Mar 2007 R T										
Ref 30) dBm		#At	ten 20 df	3						
Peak Ina											
10 dB/											
Offst 21.6											
dВ											
V1 S2 S3 EC	late cost in the	talat kesta atalata	d having the state of the second			digest and and ge	deline della se	ul	natik, dila dara kunapat	and a constant block block	
ÂA									وحجه أطلقه حط لطو وح		
Start 2 #Res E	2.795 GH: 3W 100 kH	z Iz		#	VBW 300	kНz	S	weep 176	Stop 6.6 ms (81	4.5 GHz .92 pts)	

	GPRS, Mid	Channel, 4.495 - 6 GHz		
Result: Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

		GPRS, Mid Channel, 5.995 - 7.5 GHz			
Result:	Pass	Value: ≤ -30 dBm	Limit:	≤ -13 dBm	

🔆 🔆 🗛	★ Agilent 10:18:35 26 Mar 2007 R T										
Ref 30	dBm		#At	ten 20 df	3						
Peak											
10 10 dB/											
Offst 21.6 JP											
uD											
V1 S2 S3 FC	a sila ti ta isala di ta	and all a second second	deleten son ber	National sciences and a	(k) et al a sub- a sub-	a de caral a ste a al c	a a glasa sa ang kitan	e iki kashiri d	d dimensione sub	lited to be stepted	
ÂÂ	an a			ي من مان ماندين الريانيين. ا	and and shaked a party	a lan sa dhain na na na ha shiri					
Start 5 #Res E	5.995 GHz 3W 100 kH	z		#	VBW 300 I	kHz	# S	weep 155	Stop 5.9 ms (81	7.5 GHz .92 pts)	

	GPRS, Mid Ch	annel, 7.495 - 9 GHz		
Result: Pass	Value: ≤	-30 dBm	Limit:	≤ -13 dBm

	GPRS, High Channel, In Band	
Result: Pass	Value: ≤ -30 dBm	Limit: ≤ -13 dBm

🔆 Ag	jilent 10	0:21:15 2	26 Mar 20	107				RT			
Ref 30	dBm		#At	ten 20 di	В						
Peak Log											
10 dB/											
Offst 21.6											
dВ											
V1 S2 S3 FC		adata da yikildan y	an an trailen	lese kannationse	t en transformation	a stand (chapter) an	and a fill and the late	a second to a fee			
AA											
Start 8 #Res B	368 MHz 3W 100 kH	łz		#	VBW 300	kHz	#S	weep 81.	Stop 91 ms (81	895 92 p	MHz ots)

	GPRS, High	Channel, 0 - 1 GHz	
Result: Pass	Value: ≤	-30 dBm Limit:	≤ -13 dBm

	GPRS, High Channel, 995 MHz - 2.8 GF	Ηz	
Result: Pass	Value: ≤ -30 dBm	Limit:	≤ -13 dBm

🔆 🔆 Ag	jilent 1	0:23:37	26 Mar 20	007				RT		
Ref 30	∣dBm		#At	ten 20 df	3					
Peak										
LUg 10										
dB/										
Offst 21 6										
dB										
V1 S2 S3 EC		asia hausila sula	a phone in a start		un de la continue	at de la cuitine a	ten heten auffre	Heat Street Street	a da da da se da da	
ÂA	(advertise of the second	and the select designed	al hus sufficients							
Start S #Res B	095 MHz W 100 k⊦	lz		#	VBW 300	kHz	+	⊧Sweep 1	Stop 87 ms (81	2.8 GHz .92 pts)

	GPRS, High Channel, 2.795 - 4.5 G	Hz		
Result: Pass	Value: ≤ -30 dBm	Limit:	≤ -13 dBm	

Peak										
.og a										
в/ I										
ffst 1.6										
В										
1 \$2	فعلله وسرأوس وروا	h ha hill a har an hill and	an Marida and Participants	a tida ta data dina anda ata a	na fan searchara	-	aluquitik a. sula	والمحير أورا ألأأ أرتب	L all that to taken to	a at an he alter
3 FC AA				int the set of the part of		1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	<u> </u>			
) Start 2	.795 GHz	<u></u>							Stop	4.5 G

		GPRS, High	n Channel, 4.495 - 6 GHz		
Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

** A	Agilent 10:26:12 26 Mar 2007 R T									
Ref 30) dBm		#At	ten 20 df	3					
Peak										
10 10 dB/										
Offst 21.6 dB										
4D										
V1 S2 S3 EC	administration of the	u.bkendbale.	elettere i sti di luce de	ling have been blief and second as	وروالي والمراجع	المراجع بالمراجع الم	مغادية ومحاط	المرواد والمراجع الم	te at the lateral states were	
ÂA			ان میں ایم و میں کا کا ان اور	Plateis läs som dit de t		inter stands og s	and the set of the second set of	in server, in dealer and the		de da minada antendaria.
Start #Res E	Start 4.495 GHz									

Result: Pass Value: ≤ -30 dBm Limit: ≤ -13 dBm			GPRS, High	Channel, 5.995 - 7.5 GHz		
	Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

		GPRS, High	h Channel, 7.495 - 9 GHz		
Result:	Pass	Value:	≤ -30 dBm	Limit:	≤ -13 dBm

🔆 👫 Aç	₭ Agilent 10:28:22 26 Mar 2007 R T									
Ref 30	dBm		#At	ten 20 df	3					
Peak Log										
10 dB/										
Offst 21.6										
dB										
V1 S2 S3 FC		desta de setembre		i te dite de la tel de la	a dita data a data	, stá a típ á nu s kin	an a fille stale of	i ta da antina	in statistica and a second	u teri e sti la de t
ÂÂ										
Start 7 #Res B	Start 7.495 GHz									

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

Manufacturer	Model	ID	Last Cal.	Interval
Pasternack	PE7005-20	AUN	2/6/2007	13
Agilent	E4407B	AAU	12/8/2006	13
	Manufacturer Pasternack Agilent	ManufacturerModelPasternackPE7005-20AgilentE4407B	ManufacturerModelIDPasternackPE7005-20AUNAgilentE4407BAAU	ManufacturerModelIDLast Cal.PasternackPE7005-20AUN2/6/2007AgilentE4407BAAU12/8/2006

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The antenna port spurious emissions were measured at the RF output terminal of the EUT with 20dB of external attenuation on the RF input of the spectrum analyzer. Analyzer plots utilizing a 1MHz resolution bandwidth and no video filtering were made for each modulation type from 0 to 20 GHz. The peak conducted power of spurious emissions, up to the 10th harmonic of the transmit frequency, were investigated to ensure they were less than or equal to –13 dBm.

Link Work Order: RAFN0003 Serie Munder: Inguineering Unit Interview 1000 Interview 10000 Interview 1000 Inte		Spur	ious Conducted Emissions		XMit 2006.11.13
Serial Number Engineering Unit Date Date <thdate< th=""> <thdate< th=""> <thdate< th=""> Dat</thdate<></thdate<></thdate<>		S BTS GSM Base Station		Work Order:	
Castomic Religionary Networks, Inc. Temperature 22*C Project: None Barometric Pres. 22.91 Tested by [Greg Kismel Power [120VAC/R0Hz Jos Site] EV06 EST SPECIFICATIONS Test Method CC 24E:2005 COMMENTS ANSVITAEIA-003.B-2002 ANSVITAEIA-003.B-2002 COMMENTS Signature ANSVITAEIA-003.B-2002 Configuration # 1 Signature Signature EVATIONS FROM TEST STANDARD Signature	Serial Number	Engineering Unit		Date:	03/26/07
Attondess Dev Metholmer Hundlity: 39:5 Project: None Barometric Press: 29:31 Tested by: Greg Kinnel Job Site; EV06 Stated by: Greg Kinnel Job Site; EV06 CC 24::2005 ANSUTIALEIA 4003-B-2002 Job Site; EV06 Statimum Output Power EVATIONS Test Method Results SSM Value Limit Results SSM I.ow Channel : 2.26 dBm : 1.3 dBm Pass in Band : 2.26 dBm : 1.3 dBm Pass : 1.3 dBm Pass 3.995 - 10 dHz : 2.26 dBm : 1.3 dBm Pass : 1.3 dBm Pass Mid Channel : 2.26 dBm : 1.3 dBm Pass : 2.26 dBm : 1.3 dBm Pass 0.2.8 dHz : 2.26 dBm : 1.3 dBm Pass : 2.26 dBm : 1.3 dBm Pass 0.2.8 dHz : 2.26 dBm : 1.3 dBm Pass : 2.26 dBm : 1.3 dBm Pass 0.2.8 dHz : 2.26 dBm </td <td>Customer</td> <td>Radioframe Networks, Inc.</td> <td></td> <td>Temperature:</td> <td>22°C</td>	Customer	Radioframe Networks, Inc.		Temperature:	22°C
Project None Baromstric Pres. 29.91 Tested by/Greg Kimel Power [120VAC/60H: Job Site [EV66 EST SPECIFICATIONS Fest Method CCC CC 24E:2005 ANS/ITA/EIA-603-8-2002 ANS/ITA/EIA-603-8-2002 Sommer Signature Value Limit Results Signature Value Limit Signature Value Limit Results SM Low Channel < 25 dBm	Attendees	Boh Melsheimer		Humidity:	33%
Tested by/Greg Kinnel Power (120/AC/60Hz Job Site; EV/6 C5 39ECIFCATONS Test Mehd Job Site; EV/6 CC 24E:2005 ANS/ITA/EIA-603-8-2002 ANS/ITA/EIA-603-8-2002 COMMENTS Job Site; EV/6 State Common Commo	Project	None		Barometric Pres.:	29.91
Low Channel Value Limit Results Sommun 1 Signature Value Limit Results Statistical 5.25 cdbm S-13 dbm Pass Signature Signature Statistical 5.25 cdbm S-13 dbm Pass Signature	Tested by	Greg Kiemel	Power: 120VAC/60Hz	Joh Site:	EV06
ANSITUREIA-803-B-2002 COMMENTS Issumum Output Power EVATIONS FROM TEST STANDARD Sonfiguration # 1 Signature Value Limit Results Sonfiguration # 1 Signature Value Limit Results Signature Value Limit Results Signature Signature Signature Value Limit Results Signature Signature Signature Signature Signature In Band Cold Signatititititititititititititititititititi	TEST SPECIFICAT	TIONS	Test Method		2100
Softweet Softweet Low Channel Low Channel Low Channel 1 Signature SSM Low Channel 1 Band 0 2.25 GBm 2.755 9 GHz 2.755 9 GHz <t< td=""><td>CC 24E:2005</td><td></td><td>ANSI/TIA/EIA-603-B-2002</td><td></td><td></td></t<>	CC 24E:2005		ANSI/TIA/EIA-603-B-2002		
COMMENTS					
Iteration # 1 Signature Value Limit Results Value Value Limit Results Value Side Low Channel Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Mid Channel S Mid Channel S In Band S Colspan= Colspan="2" In Band S Colspan= Colspan= Colspan="2" In Band S Colspan= Colspan= Colspan="2" In Band S Colspan= Colspa Colspan= Colspan= Colspa	COMMENTS	-			
Jointiguration # 1 Jump Figuration SSM Value Limit Results SSM -25 dBm <13 dBm	Maximum Output	Power			
Image: Signature North Signature Value Limit Results SSM < 25 dBm	DEVIATIONS FRO	M TEST STANDARD			
I Signature Value Linit Results SM -2.8 GHz -2.5 dBm 5-13 dBm Pass 0 - 2.8 GHz 5.25 dBm 5-13 dBm Pass 0 - 2.8 GHz 5.25 dBm 5-13 dBm Pass 2.755 - 9 GHz 5.25 dBm 5-13 dBm Pass 8.995 - 14 GHz 5.25 dBm 5-13 dBm Pass 9.995 - 14 GHz 5.25 dBm 5-13 dBm Pass 0 - 2.8 GHz 5.25 dBm 5-13 dBm Pass 0 - 2.8 GHz 5.25 dBm 5-13 dBm Pass 2.755 - 9 GHz 5.25 dBm 5-13 dBm Pass 2.755 - 9 GHz 5.25 dBm 5-13 dBm Pass 8.995 - 14 GHz 5.25 dBm 5-13 dBm Pass 13 995 - 20 GHz 5.25 dBm 5-13 dBm Pass High Channel -2.26 dBm 5.13 dBm Pass 0 - 2.8 GHz 5.25 dBm 5.13 dBm Pass 8.995 - 14 GHz 5.25 dBm 5.13 dBm Pass 9.99 CHz					
Value Limit Results ISM - 2.8 GHz - 2.5 GBm - 1.3 GBm Pass 0 2.8 GHz - 2.5 GBm - 1.3 GBm Pass 2.795 - 9 GHz - 2.5 GBm - 1.3 GBm Pass 8.995 - 14 GHz - 2.5 GBm - 1.3 GBm Pass 8.995 - 14 GHz - 2.5 GBm - 1.3 GBm Pass Mid Channel - 2.2 GBm - 1.3 GBm Pass 0 2.8 GHz - 2.5 GBm - 1.3 GBm Pass 2.795 - 9 GHz - 2.5 GBm - 1.3 GBm Pass 8.995 - 14 GHz - 2.5 GBm - 1.3 GBm Pass 8.995 - 14 GHz - 2.5 GBm - 1.3 GBm Pass 8.995 - 14 GHz - 2.5 GBm - 1.3 GBm Pass 13.995 - 20 GHz - 2.5 GBm - 1.3 GBm Pass 2.795 - 9 GHz - 2.5 GBm - 1.3 GBm Pass 3.995 - 1.4 GHz - 2.5 GBm - 1.3 GBm Pass 1.995 - 20 GHz - 2.5 GBm - 1.3 GBm Pass 1.995 - 20 GHz	Configuration #	1 Si	ignature		
Low Channel In Band 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 8.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 8.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 8.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 0 - 2.8 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 8.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz			Va	lue Li	mit Results
Low Channel U In Band 5 - 25 dBm 5 - 13 dBm Pass 0 - 2.8 GHz 5 - 25 dBm 5 - 13 dBm Pass 8 995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 13 3995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13 3995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 20 GHz	GSM				
In Band 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass Mid Channel 5 - 25 dBm 5 - 13 dBm Pass 0 - 2.8 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 8.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 9.925 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 9.925 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 9.925 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass </td <td></td> <td>Low Channel</td> <td></td> <td></td> <td></td>		Low Channel			
0 2.8 GHz 5.25 dBm 5.13 dBm Pass 2.795 - 9 GHz 5.25 dBm 5.13 dBm Pass 13.995 - 20 GHz 5.25 dBm 5.13 dBm Pass Mid Channel 5.25 dBm 5.13 dBm Pass Mid Channel 5.25 dBm 5.13 dBm Pass 2.795 - 9 GHz 5.25 dBm 5.13 dBm Pass 2.795 - 9 GHz 5.25 dBm 5.13 dBm Pass 3.995 - 10 GHz 5.25 dBm 5.13 dBm Pass 3.995 - 20 GHz 5.25 dBm 5.13 dBm Pass 3.995 - 20 GHz 5.25 dBm 5.13 dBm Pass 3.995 - 20 GHz 5.25 dBm 5.13 dBm Pass 3.995 - 14 GHz 5.25 dBm 5.13 dBm Pass 2.795 - 9 GHz 5.25 dBm 5.13 dBm Pass 3.995 - 14 GHz 5.25 dBm 5.13 dBm Pass 3.995 - 14 GHz 5.25 dBm 5.13 dBm Pass 3.995 - 14 GHz 5.25 dBm 5.13 dBm Pass 3.995 - 14 GHz 5.25 dBm 5.13 dBm Pass 3.995 - 14 GHz		In Band	≤ -25	idBm ≤-13	dBm Pass
2.795 - 9 GHz 5-26 dBm 5-13 dBm Pass 13.995 - 12 GHz 5-26 dBm 5-13 dBm Pass Mid Channel 5-26 dBm 5-13 dBm Pass 0 - 2.8 GHz 5-26 dBm 5-13 dBm Pass 0 - 2.8 GHz 5-26 dBm 5-13 dBm Pass 2.795 - 9 GHz 5-26 dBm 5-13 dBm Pass 8.995 - 14 GHz 5-26 dBm 5-13 dBm Pass 13.995 - 20 GHz 5-26 dBm 5-13 dBm Pass 13.995 - 20 GHz 5-26 dBm 5-13 dBm Pass 0 - 2.8 GHz 5-26 dBm 5-13 dBm Pass 2.795 - 9 GHz 5-26 dBm 5-13 dBm Pass 2.795 - 9 GHz 5-26 dBm 5-13 dBm Pass 3.995 - 20 GHz 5-26 dBm 5-13 dBm Pass 3.995 - 20 GHz 5-26 dBm 5-13 dBm Pass 3.995 - 20 GHz 5-26 dBm 5-13 dBm Pass 3.995 - 20 GHz 5-26 dBm 5-13 dBm Pass 3.995 - 20 GHz 5-26 dBm 5-13 dBm Pass 3.995 - 20 GHz 5-26 dBm<		0 - 2.8 GHz	≤ -25	idBm ≤-13	dBm Pass
8.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass Mid Channel 5 - 25 dBm 5 - 13 dBm Pass In Band 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 0 - 2.8 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm P		2.795 - 9 GHz	≤ -25	idBm ≤-13	dBm Pass
13.995 - 20 GHz 5 - 33 dBm Pass Mid Channel -		8.995 - 14 GHz	≤ -25	idBm ≤-13	dBm Pass
Mid Channel Served Se		13.995 - 20 GHz	≤ -25	idBm ≤-13	dBm Pass
In Band 5.25 dBm 5.13 dBm Pass 2.795 · 9 GHz 5.25 dBm 5.13 dBm Pass 8.995 · 14 GHz 5.25 dBm 5.13 dBm Pass 13.995 · 20 GHz 5.25 dBm 5.13 dBm Pass High Channel 5.25 dBm 5.13 dBm Pass 0.2.8 GHz 5.25 dBm 5.13 dBm Pass 0.2.8 GHz 5.25 dBm 5.13 dBm Pass 0.2.8 GHz 5.25 dBm 5.13 dBm Pass 0.72.8 GHz 5.25 dBm 5.13 dBm Pass 2.795 · 9 GHz 5.25 dBm 5.13 dBm Pass 1.995 · 20 GHz 5.25 dBm 5.13 dBm Pass 2.795 · 9 GHz 5.25 dBm 5.13 dBm Pass 2.795 · 9 GHz 5.25 dBm 5.13 dBm Pass 2.795 · 9 GHz 5.25 dBm 5.13 dBm Pass 2.795 · 9 GHz 5.25 dBm 5.13 dBm Pass 2.795 · 9 GHz 5.25 dBm 5.13 dBm Pass 2.795 · 9 GHz 5.25 dBm 5.13 dBm Pass 2.795 · 9 GHz 5.25 dBm 5.13 dBm		Mid Channel			
0 - 2.8 GHz \$ -25 dBm \$ -13 dBm Pass 2.795 - 9 GHz \$ -25 dBm \$ -13 dBm Pass 3.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 1.3995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 0 - 2.8 GHz \$ -25 dBm \$ -13 dBm Pass 0 - 2.8 GHz \$ -25 dBm \$ -13 dBm Pass 2.795 - 9 GHz \$ -25 dBm \$ -13 dBm Pass 8.995 - 14 GHz \$ -25 dBm \$ -13 dBm Pass 8.995 - 14 GHz \$ -25 dBm \$ -13 dBm Pass 9.995 - 30 GHz \$ -25 dBm \$ -13 dBm Pass 9.995 - 14 GHz \$ -25 dBm \$ -13 dBm Pass 9.995 - 14 GHz \$ -25 dBm \$ -13 dBm Pass 9.26 GHz \$ -25 dBm \$ -13 dBm Pass 9.26 GHz \$ -25 dBm \$ -13 dBm Pass 9.995 - 14 GHz \$ -25 dBm \$ -13 dBm Pass 9.995 - 14 GHz \$ -25 dBm \$ -13 dBm Pass 9.995 - 14 GHz \$ -25 dBm \$ -13 dBm Pass 9.995 - 14 GHz		In Band	≤ -25	idBm ≤-13	dBm Pass
2.795 - 9 GHz \$ -25 dBm \$ -13 dBm Pass 8.995 - 10 GHz \$ -25 dBm \$ -13 dBm Pass 13.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass In Band \$ -25 dBm \$ -13 dBm Pass 0 - 2.8 GHz \$ -25 dBm \$ -13 dBm Pass 2.795 - 9 GHz \$ -25 dBm \$ -13 dBm Pass 2.795 - 9 GHz \$ -25 dBm \$ -13 dBm Pass 3.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 3.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 3.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 0 - 2.8 GHz \$ -25 dBm \$ -13 dBm Pass 0 - 2.8 GHz \$ -25 dBm \$ -13 dBm Pass 3.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 3.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 3.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 3.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 3.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 3.995 - 20		0 - 2.8 GHz	≤ -25	idBm ≤-13	3 dBm Pass
8.995 - 14 GHz \$ -25 dBm \$ -13 dBm Pass 13.905 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 0 - 2.8 GHz \$ -25 dBm \$ -13 dBm Pass 0 - 2.8 GHz \$ -25 dBm \$ -13 dBm Pass 8.995 - 14 GHz \$ -25 dBm \$ -13 dBm Pass 2.795 - 9 GHz \$ -25 dBm \$ -13 dBm Pass 8.995 - 14 GHz \$ -25 dBm \$ -13 dBm Pass 8.995 - 14 GHz \$ -25 dBm \$ -13 dBm Pass 9.995 \$ -25 dBm \$ -13 dBm Pass 9.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 0 - 2.8 GHz \$ -25 dBm \$ -13 dBm Pass 13.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 13.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 13.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 13.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 0 - 2.8 GHz \$ -25 dBm \$ -13 dBm Pass 2.795 - 9 GHz \$ -25 dBm \$ -13 dBm Pass 9.995 - 14		2.795 - 9 GHz	≤ -25	idBm ≤-13	dBm Pass
13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass Hgh Channel 5 - 25 dBm 5 - 13 dBm Pass 0 - 2.8 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 8.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass		8.995 - 14 GHz	≤ -25	idBm ≤-13	dBm Pass
High Channel < 2.25 dBm		13.995 - 20 GHz	≤ -25	idBm ≤-13	dBm Pass
In Band ≤ -25 dBm ≤ -13 dBm Pass 0 2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.796 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 8.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass <t< td=""><td></td><td>High Channel</td><td></td><td></td><td></td></t<>		High Channel			
0 - 2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 8.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass PRS < -13 dBm		In Band	≤ -25	idBm ≤-13	dBm Pass
2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 8.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass SPRS In Band ≤ -25 dBm ≤ -13 dBm Pass 0.2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 0.2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 0.2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 0.2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 0.2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 0.		0 - 2.8 GHz	≤ -25	idBm ≤-13	dBm Pass
8.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass SPRS Low Channel In Band ≤ -25 dBm ≤ -13 dBm Pass 0 - 2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 0 - 2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 13 dBm 2 ≤ -25 dBm ≤ -13 dBm Pass <tr< td=""><td></td><td>2 795 - 9 GHz</td><td>< -2F</td><td>dBm ≤ -13</td><td>dBm Pass</td></tr<>		2 795 - 9 GHz	< -2F	dBm ≤ -13	dBm Pass
13.995 - 20 GHz 2 - 25 dBm 4 - 10 dBm Pass SPRS In Band 5 - 25 dBm 5 - 13 dBm Pass 0 - 2.8 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 8.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 0 - 2.8 GHz 5 - 25 dBm 5 - 13 dBm Pass 0 - 2.8 GHz 5 - 25 dBm 5 - 13 dBm Pass 0 - 2.8 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm		8 995 - 14 GHz	< -25 < -25	dBm ≤ -13	dBm Pass
Low Channel <th< th=""> <</th<>		13 995 - 20 GHz	< -25 < -25	dBm ≤ -13	dBm Pass
Low Channel In Band < 25 dBm	SPRS	10.000 20 0112			
In Band ≤ -25 dBm ≤ -13 dBm Pass 0 - 2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass Mid Channel ≤ -25 dBm ≤ -13 dBm Pass 0 - 2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 G		Low Channel			
0 - 2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 8.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass Mid Channel < -25 dBm		In Band	≤ -25	idBm ≤-13	dBm Pass
2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 8.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass Mid Channel 5 - 25 dBm 5 - 13 dBm Pass Diagonal 5 - 25 dBm 5 - 13 dBm Pass 0 - 2.8 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 8.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass High Channel In Band 5 - 25 dBm 5 - 13 dBm Pass 0 - 2.8 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 3.995 - 20 GHz 5 - 25 dBm <td></td> <td>0 - 2.8 GHz</td> <td>< -2F</td> <td>idBm ≤ -1?</td> <td>dBm Pass</td>		0 - 2.8 GHz	< -2F	idBm ≤ -1?	dBm Pass
Band 2-25 dBm 2-13 dBm Pass 13.995 - 20 GHz 2-25 dBm 2-13 dBm Pass Mid Channel -25 dBm 2-13 dBm Pass In Band 2-25 dBm 2-13 dBm Pass 0 - 2.8 GHz 2-25 dBm 2-13 dBm Pass 2.795 - 9 GHz 2-25 dBm 2-13 dBm Pass 2.795 - 9 GHz 2-25 dBm 2-13 dBm Pass 3.995 - 14 GHz 2-25 dBm 2-13 dBm Pass 13.995 - 20 GHz 2-25 dBm 2-13 dBm Pass 13.995 - 20 GHz 2-25 dBm 2-13 dBm Pass 2.795 - 9 GHz 2-25 dBm 2-13 dBm Pass 2.995 - 14 GHz 2-25 dBm 2-13 dBm Pass 0 - 2.8 GHz 2-25 dBm 2-13 dBm Pass 2.795 - 9 GHz 2-25 dBm 2-13 dBm Pass 2.795 - 9 GHz 2-25 dBm 2-13 dBm Pass 2.795 - 9 GHz 2-25 dBm 2-13 dBm Pass 3.995 - 14 GHz 2-25 dBm 2-13 dBm Pass 3.995 - 20 GHz 2-25 dBm 2-		2.795 - 9 GHz	⊆ 20 ≤ -25	dBm ≤-1?	dBm Pass
13.995 - 20 GHz 2 - 25 dBm 2 - 13 dBm Pass Mid Channel -25 dBm 2 - 13 dBm Pass 0 - 2.8 GHz 2 - 25 dBm 2 - 13 dBm Pass 2.795 - 9 GHz 2 - 25 dBm 2 - 13 dBm Pass 3.995 - 14 GHz 2 - 25 dBm 2 - 13 dBm Pass 13.995 - 20 GHz 2 - 25 dBm 2 - 13 dBm Pass 3.995 - 20 GHz 2 - 25 dBm 2 - 13 dBm Pass 13.995 - 20 GHz 2 - 25 dBm 2 - 13 dBm Pass 0 - 2.8 GHz 2 - 25 dBm 2 - 13 dBm Pass 0 - 2.8 GHz 2 - 25 dBm 2 - 13 dBm Pass 0 - 2.8 GHz 2 - 25 dBm 2 - 13 dBm Pass 2.795 - 9 GHz 2 - 25 dBm 2 - 13 dBm Pass 2.795 - 9 GHz 2 - 25 dBm 2 - 13 dBm Pass 2.795 - 9 GHz 2 - 25 dBm 2 - 13 dBm Pass 3.995 - 14 GHz 2 - 25 dBm 2 - 13 dBm Pass 3.995 - 20 GHz 2 - 25 dBm 2 - 13 dBm Pass 13.995 - 20 GHz 2 - 25 dBm 2 - 13 dBm <td< td=""><td></td><td>8 995 - 14 GHz</td><td><-25</td><td>dBm <-13</td><td>dBm Pass</td></td<>		8 995 - 14 GHz	<-25	dBm <-13	dBm Pass
Mid Channel 2 - 13 dBm Pass In Band ≤ -25 dBm ≤ -13 dBm Pass 0 - 2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 8.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 0 - 2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass		13 995 - 20 GHz	<-25	dBm <_13	dBm Pass
In Band ≤ -25 dBm ≤ -13 dBm Pass 0 - 2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 8.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass High Channel ≤ -25 dBm ≤ -13 dBm Pass 0 - 2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 8.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 8.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass		Mid Channel	- 20		
In Dand 2-25 dBm 2-13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 8.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 10 Dand ≤ -25 dBm ≤ -13 dBm Pass 10 Dand ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 3.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass		In Band	<_25	dBm <_13	dBm Pass
2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 10 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass High Channel In Band ≤ -25 dBm ≤ -13 dBm Pass 0 - 2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 8.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass		0 - 2 8 GHz	2 - 20	dBm < 19	dRm Pace
1/30/5 - 30 GHZ 5 -13 dBm Pass 8.995 - 14 GHz 5 -25 dBm 5 -13 dBm Pass 13.995 - 20 GHz 5 -25 dBm 5 -13 dBm Pass High Channel In Band 5 -25 dBm 5 -13 dBm Pass 0 - 2.8 GHz 5 -25 dBm 5 -13 dBm Pass 2.795 - 9 GHz 5 -25 dBm 5 -13 dBm Pass 8.995 - 14 GHz 5 -25 dBm 5 -13 dBm Pass 13.995 - 20 GHz 5 -25 dBm 5 -13 dBm Pass 13.995 - 20 GHz 5 -25 dBm 5 -13 dBm Pass		2 795 _ 0 CH+	- 20	dBm < 19	dBm Daea
13.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass High Channel \$ -25 dBm \$ -13 dBm Pass 0 - 2.8 GHz \$ -25 dBm \$ -13 dBm Pass 2.795 - 9 GHz \$ -25 dBm \$ -13 dBm Pass 8.995 - 14 GHz \$ -25 dBm \$ -13 dBm Pass 13.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass 13.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass		8 005 - 11 CU-	≥ -20 ∠ 05	dBm < 10	dBm Daea
High Channel S - 13 dBm S - 13 dBm Pass In Band ≤ -25 dBm ≤ -13 dBm Pass 0 - 2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 8.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass		13 005 20 CHz	≥ -20 ∠ 05	dBm < 10	dBm Door
In Band ≤ -25 dBm ≤ -13 dBm Pass 0 - 2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 8.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass		High Channel	S -20	S - 13	
0 -2.8 GHz ≤ -25 dBm ≤ -13 dBm Pass 2.795 - 9 GHz ≤ -25 dBm ≤ -13 dBm Pass 8.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass		In Rand		dBm < 40	dBm Door
0 - 2.0 GHZ 5 - 20 GBM 5 - 13 GBM Pass 2.795 - 9 GHz 5 - 25 dBm 5 - 13 dBm Pass 8.995 - 14 GHz 5 - 25 dBm 5 - 13 dBm Pass 13.995 - 20 GHz 5 - 25 dBm 5 - 13 dBm Pass			S -20		
2.795 - 9 GHz \$ -25 dBm \$ -13 dBm Pass 8.995 - 14 GHz \$ -25 dBm \$ -13 dBm Pass 13.995 - 20 GHz \$ -25 dBm \$ -13 dBm Pass		U - 2.8 GHZ	≤ -25	ouom ≤-13	Pass
8.995 - 14 GHz ≤ -25 dBm ≤ -13 dBm Pass 13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass		2.795 - 9 GHz	≤ -25	oasm ≤-13	abm Pass
13.995 - 20 GHz ≤ -25 dBm ≤ -13 dBm Pass		8.995 - 14 GHz	≤ -25	oasm ≤-13	abm Pass
		13.995 - 20 GHz	≤ -25	o aBM ≤ -13	abm Pass

	GSM, Low Channel, In Band		
Result: Pass	Value: ≤ -25 dBm	Limit:	≤ -13 dBm

		GSM, Lov	v Channel, 0 - 2.8 GHz		
Result:	Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

🔆 🗮 🔆	jilent 1	0:51:41 2	26 Mar 20	107				RT		
Ref 30	∣dBm		#At	ten 20 df	3					
Peak Log										
10 dB/										
0ffst 21.6										
dΒ										
	والعامل كمع مروان		terlet, and ter	lations front has been	i de de falfallante	lati e di famila due		anatilat kan men		
V1 S2 S3 FC										
AA										
Start (#Res B	0 Hz 3W 1 MHz				₩VBW 3 M	Hz	#S	weep 81.	Stop 91 ms (81	2.8 GHz 92 pts)

	GSM, Low (Channel, 2.795 - 9 GHz		
Result: Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

ef_30_	dBm		#Ĥt	ten 20 d	В					
eak na										
) 37										
fst										
1	وبروا الأور وأوجرو	a a la fan di sa an an an	المرجعة والمراجعة	4 - 1 - m		and the second second		ورجالته وجانقاني	and a state of the	Labella and Date
. \$2 <mark>1</mark> 3 FC	, ell'en és es		a pure laboration and a state of	and the second second			And the second second	- Million and States of		
ÂĂ										
art 2. Res Bla	795 GH	lz			 #VBW 3 M	Hz	 #S	ween 81.3	Sto 91 ms (81	op 9 G 192 nt

	GSM, Low (Channel, 8.995 - 14 GHz		
Result: P	ass Value:	≤ -25 dBm	Limit:	≤ -13 dBm

業	Agilent	10	:53:57 2	26 Mar 20	107				RT		
Ref 3	80_dBm			#At	ten 20 di	3					
Peak Log											
10 dB/											
0ffst 21.6											
dB											
					and the design	in a fill tall to the state		a the public prior the state of the	and Minney Pre-	and ^{the} and a sec	
V1 S S3 F	2 C			a na an internet an				and a star star sector of the	ماري بي الشريق بي الشركية. الم		an ha da bha an tao tao a
Â	Â										
Start #Res	8.995 BW 1 №	GHz 1Hz				¥VBW 3 M	Hz	# S	weep 81.	Stop 91 ms (81	14 GHz 92 pts)

Result:

		GSM, Low C	hannel, 13.995 - 20 GHz		
Result:	Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

ef 30 c	dBm		#At	ten 20 di	3					
eak Da										
) 37 [
ffst [1.6 [
		ood Henri Analaan	landes to do about					مرابق العاري الم	alla a second second shakes as	a an baar
L S2 3 FC				ideau (Juliani	and the second	an aite line and a	te al la time, tracte de car			
AA										
tart 13 Res BW	.99 GHz 1 MHz	2			⊭VBW 3 M	Hz	# S	weep 81.	Stop 91 ms (81	o 20 Gl 192 pt:

	GSM, N	lid Channel, In Band		
Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

🔆 Ag	jilent 1	0:59:11	26 Mar 20	107				RT		
Ref 30	dBm		#At	ten 20 di	В					
Peak Log						A				
10 dB/										
0ffst 21.6										
dB										
				and a state state	and the second			14-15-14-14		dee whether
V1 S2 S3 FC										
ÂÂ										
Start 1 #Res B	.925 GH: W 1 MHz	2			#VBW 3 M	Hz	#S	weep 8	Stop 1. 1.91 ms (8	.995 GHz 192 pts)

Spurious Conducted Emissions

		GSM, Mic	l Channel, 0 - 2.8 GHz		
Result:	Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

🔆 👫 Ag	gilent	11:00:17	26 Mar 20	107				RT		
Ref 30	dBm		#At	ten 20 di	В					
Peak Log										
10 dB/										
Offst 21.6										
dB										
			فليعددون وطيلته	والمعالية والمعارية	L. Babat Mathematic		ana dalah barati	- Marcaldes Laurie	il , destadated a	
V1 S2						11		i <u>na distanti kang</u> a sang bat Ba		
SS FC AA										
Start 0 #Res B	∟ 0 Hz 3W 1 M⊦				#VBW 3 M	Hz	#\$	weep 81.	Stop 91 ms (81	2.8 GHz .92 pts)

GSM, Mid Channel, 2.795 - 9 GHz

Value: ≤ -25 dBm

Limit: ≤ -13 dBm

🔆 🔆 🕂	₩ Agilent 11:01:39 26 Mar 2007 R T									
Ret 30	dBm		#At	ten 20 dB						
Peak										
Log										
10										
dB/										
Offst										
21.6 JD										
ар										
	الراسة العالمي ورو	and the state of the		a				allenance das 1	الباري وماريح فتناف أنباده	i kina sa kina
V1 S2	is an interest of the	I Distanting and an	the last of the last of the last of	and the same show			in marking the second second second	adding on the second second	all and the same of	and the second
S3 FC										
ÂĂ										
Start 2	2 795 GH	7							Str	n 9 GHz
#Res_E	Res BM 1 MHz #VBW 3 MHz #Sween 81.91 ms (8192 nts)									
0.0.00	DEMOO	OTE file	a such							
Jen Val	SKENUU.	The	saveu							

Spurious Conducted Emissions

D esult: Deep $V_{abuse} < 05 dDm $ Limit: $< 10 dDm$		GSM, Mid (Channel, 8.995 - 14 GHz		
Result: Pass Value: 5-25 dBm Limit: 5-13 dBm	Result: Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

🔆 Ag	jilent 1	.1:02:41	26 Mar 20	107				RT		
Ref 30 dBm #Atten 20 dB										
Peak Log										
10 dB/										
Offst 21.6										
dB										
	والمتطلق ومراز الل	1	a parte des protections de la consta	in the state of the state of the		atte dan dis bits dara ta	Maria da Mandala da Ma	and the difference of the later	all and a state of the sector of the	
V1 S2 S3 FC	. Name (in other the other the	n , undebeilete ,us								u, and a second s
ÂÂ										
Start 8 #Res B	3.995 GH WW 1 MHz	lz :			₩VBW 3 M	Hz	# S	weep 81.	Stop 91 ms (81	14 GHz .92 pts)

GSM, Mid Channel, 13.995 - 20 GHz Value: ≤ -25 dBm

Limit:	≤ -13 dBm	

★ Agilent 11:03:39 26 Mar 2007 R T										
Ref 30	dBm		#At	ten 20 df	h 20 dB					
Peak Log										
10 dB7										
Offst 21.6										
dB										
	aasta ja saddadadda	a ya ya distana shad	alianian and postality	المعاداتين والالعا	وريار والمحاود		kananda, kati		مر المال - ا	والكرونة والمراجر
V1 S2 S3 EC	AND DESCRIPTION OF			a di kana kana kata kata kata kata kata kata	and and an an a state of the second s		Markey Javies			United and a state of the
ÂA										
Start 13.99 GHz #Res BW 1 MHz					₩VBW 3 M	Hz	# S	weep 81.	Stop 91 ms (81	20 GHz 92 pts)
C:\\$(C:\SCREN001.GIF file saved									

Result: Pass Value: ≤ -25 dBm Limit: ≤ -13 dBm			GSM, Hig	gh Channel, In Band		
	Result:	Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

		GSM, Hig	h Channel, 0 - 2.8 GHz		
Result:	Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

🔆 👫 Aç	jilent 13	L:06:18 2	26 Mar 20	07			F	RT		
Ref 30	dBm		#At	ten 20 df	3					
Peak Ina										
10 dB/										
0ffst 21.6										
aв										
	والمتعارفة والمتعارف والمتعارف		deter in a set of the	the describe			dina pakanakan di			d with the start of
V1 S2 S3 FC										
ÂÂ										
Start (#Res B) Hz W 1 MHz				⊭VBW 3 M	Hz	#Sy	veep 81.	Stop 91 ms (81	2.8 GHz 92 pts)

Popult: Pass Value: ≤ 25 dPm Limit: ≤ 13 dPm		inel, 2.795 - 9 GHz	GSM, High (
	Limit: ≤ -13 dBm	.5 dBm Limit:	Value:	Result: Pass

GSM, High	Channel, 8.995 - 14 GHz		
Value:	≤ -25 dBm	Limit:	≤ -13 dBm

🔆 Ag	₩ Agilent 11:08:26 26 Mar 2007 R T										
Ref 30	dBm		#At	ten 20 di	В						
Peak Log											
10 dB/											
Offst 21.6											
dВ											
	a para di kacamataka	ويروي الالتيانية.	a shi ba datka ba	- Specific protection	a an an an an an bha bha					(ashiri) dayaraan	dugan da da barr
V1 S2 S3 FC					الانكار كان من من الله الانتقالية						۵ ـ اها <u>و ۵ از مر</u> وا و <u>۱</u>
AA											
Start 8 #Res B	8.995 GH: W 1 MHz	2			₩VBW 3 M	Hz	# S	weep	o 81.	Stop 91 ms (81	14 GHz 92 pts)

Spurious Conducted Emissions

Result: Pass Value: <-25 dBm Limit: <-13 dBm			GSM, High	Channel, 13.995 - 20 GHz		
	Result:	Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

GPR Valu

GPRS, Low Channel, In Band Value: ≤ -25 dBm

Limit: ≤ -13 dBm

Spurious Conducted Emissions

	GPRS, Lo	w Channel, 0 - 2.8 GHz		
Result: P	ass Value:	≤ -25 dBm	Limit:	≤ -13 dBm

🔆 Agilent	12:02:50	26 Mar 20	107				RT		
Ref 30_dBm		#At	ten 20 di	3					
Peak Ing									
10 dB/									
Offst 21.6									
dB									
		and the second sector in	Allow and a second second	ويعالم والعرب	and the second second	and and a finite of a	an alatta yan beler teks		ulpha lata da alki da
V1 S2		Child Long statistic	ales, sea debiline	has seen be visit if the left	and the first line of the				
ÂĂ									
Start 0 Hz #Res BW 1 MH				₩VBW 3 M	Hz	#S	weep 81.	Stop 91 ms (81	2.8 GHz 192 pts)

GPRS, Low Channel, 2.795 - 9 GHz Value: ≤ -25 dBm Limit: ≤ -13 dBm

🔆 🔆 Ag	j ilent 1	2:03:51	26 Mar 20	107				RT		
Ref 30	dBm		#At	ten 20 df	3					
Peak Log										
10 dB/										
0ffst 21.6										
dB										
		kikulta asilan ata a	المراجب مرجله	Acata and				وريانك وحماده		at door at the
V1 S2 S3 EC	A STREET, STRE		n an		n mara je zazvela Na osvela je zazvela	ality of the second second		a particular of the second	inter debit in a section	
ÂĂ										
Start 2́ ≢Res B	2.795 GH: W 1 MHz	Z			#VBW 3 MI	Hz	# S	weep 81.	Sto 91 ms (81	ip 9 GHz .92 pts)

	GPRS, Low Channel, 8.995 -	14 GHz
Result: Pass	Value: ≤ -25 dBm	Limit: ≤ -13 dBm

🔆 Agi	lent 12	2:04:51 2	26 Mar 20	107				RT		
Ref 30	dBm		#At	ten 20 df	3					
Peak [Log										
10 dB/										
0ffst 21.6										
dB										
	. the station of the section			real contractions of the state		And a first start of a second	يوني روي المريكين (المريكين الم	na ang ang ang ang ang ang ang ang ang a	a bableli partemen	st., Ali na shira ishad
V1 S2 S3 FCL	a de se fait de ferre	and the second	a a da balanta da ante da ante		and a state of the second s		an a	الأنم متلغ المريقية والأل		duran air is babai
ÂÂ										
Start 8. #Res Bl	.995 GHz √1 MHz				₩VBW 3 M	Hz	# S	weep 81.	Stop 91 ms (81) 14 GHz .92 pts)

	GPRS, Low Channel, 13.995 - 20 GHz	2	
Result: Pass	Value: ≤ -25 dBm	Limit:	≤ -13 dBm

∦¥ Ag	jilent 17	2:05:46 2	26 Mar 20	107				RT		
Ref 30) dBm		#At	ten 20 di	В					
Peak Log										
10 dB/										
0ffst 21.6										
dB										
	in distance of the second	ر الدر بده بالحار في في	- Halpsterketer	والمتار ومربقه المطر		und de la contra			والمراقل والمراقع	والعربية المربعة
V1 S2 S3 FC					and the second			No. of Contraction of Contraction		
ÂA										
Start 1 #Res B	Start 13.99 GHz Stop 20 GHz #Res BW 1 MHz #VBW 3 MHz #Sweep 81.91 ms (8192 pts)) 20 GHz .92 pts)	

	GPRS,	Mid Channel, In Band		
Result: Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

		GPRS, Mi	d Channel, 0 - 2.8 GHz		
Result:	Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

₩ A	gilent 1	2:08:29 /	26 Mar 20	107				★ Agilent 12:08:29 26 Mar 2007								
Ref 3	0 dBm		#At	ten 20 d	В											
Peak Log																
10 dB/																
Offst 21.6																
dB																
		أواليهم والطوحية والم	and the second state	alaha sa ki pasa atala s	ووالمسرو الملاوط ورودا		والمحالية المعريق									
V1 S2 S3 E0																
AA																
Start #Res I	0 Hz BW 1 MHz				#VBW 3 M	Hz	#S	weep 81.	Stop 91 ms (81	2.8 GHz .92 pts)						

Spurious Conducted Emissions

Result: Pass Value: ≤ -25 dBm Limit: ≤ -13 dBm		GPRS, Mid	Channel, 2.795 - 9 GHz		
	Result: Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

🔆 Agil	ent 12	:09:29 2	26 Mar 20	107				RT		
Ref 30 (dBm		#At	ten 20 df	3					
Peak Log										
10 dB/										
0ffst 21.6										
dB										
	والمحاطية والمالية	é alé salét, tao és						and the barry barry of	ibis fictors and a	. The traffic set use
V1 S2 S3 FCL			a a different a de la contra de la				فالمراجع والمراجع	and the second s		
AA										
Start 2.1 #Res BW	795 GHz 1 MHz				#VBW 3 MI	Hz	#S	weep 81.	Sto 91 ms (81	p 9 GHz .92 pts)

GPRS, Mid Channel, 8.995 - 14 GHz Limit:

Value: ≤ -25 dBm

≤ -13 dBm	

🔆 Aç	jilent 12	2:10:24 2	26 Mar 20	107				RT		
Ref 30	∣dBm		#At	ten 20 df	3					
Peak Log										
10 dB/										
Offst 21.6 JP										
аD										
	ويعونه والمرابع		and the second		<mark>lenallitan katharan</mark>	a chail a fan Log			an that the termine	- and the Provide
V1 S2 S3 EC	internet and the second se	a a statistica a st		والمغرفين والمتعادل	ومتر ومعلولا ومرد اما وقر					
ÂA										
Start 8 #Res B	8.995 GHz WW 1 MHz	2			≢VBW 3 M	Hz	# \$	weep 81.	Stop 91 ms (81	14 GHz 92 pts)

		GPRS, Mid C	Channel, 13.995 - 20 GHz		
Result:	Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

30_dBm		#At	ten 20 di	В					
ik									
,									
st 6									
a kire or a baker	ha an tha baile and a	an a		Differentiation in a line t		tople		and the second shifts	ll station of
\$2 FC					inde Little Barrando	hin birlin malaysia		hale have a combined of the	
AA									
rt 13.99 GH s BW 1 MHz	lz		. <u></u>	#VBW 3 M	н <u></u>	 #S	ween 81.	Stop 91 ms (81	20 0 92 n

	GPRS, High Channel, In Band	
Result: Pass	Value: ≤ -25 dBm	Limit: ≤ -13 dBm

🔆 🔆 Ag	jilent 17	2:18:50 (26 Mar 20	<u>107</u>				RT	٢			
Ref 30	dBm		#At	ten 20 di	в							
Peak Log												
10 dB/											\bigwedge	
0ffst 21.6											\square	
dB												
												\setminus
								4 - 14		Maralia		
V1 S2 S3 FC	and a the state of a											
ÂÂ												
Start 1 #Res B	.925 GHz W 1 MHz	2			₩VBW 3 M	Hz	#\$	weep	81.	Stop 1. 91 ms (81	995 G .92 pt	iHz ts)

Spurious Conducted Emissions

	0	PRS, Hig	h Channel, 0 - 2.8 GHz		
Result: F	Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

🔆 Agilent	12:19:51	26 Mar 20	107			I	RT		
Ref 30 dBm		#At	ten 20 di	3					
Peak Ing									
10 dB/									
Offst 21.6									
dB									
de se della de	an, ha bantakti ayaya		the state of the s			, and had defende	الفريقة والمقارفة	lin of the soldiers	a a dê de pira în de
V1 S2 S3 FC				and a second second					
AA									
Start ØHz #Res BW 1 MH	z			₩VBW 3 M	Hz	#S1	weep 81.	Stop 91 ms (81	2.8 GHz .92 pts)

GPRS, High Channel, 2.795 - 9 GHz Value: ≤ -25 dBm Limit: ≤ -13 dBm

莱	Ag	ilent 1	2:20:57	26 Mar 20	907				RT		
Ref	30	dBm		#At	ten 20 di	3					
Peak Log	<										
10 dB/											
0ffs 21.6	t										
dB											
			la hittin a	n f. it Busats	adi d i			1	a station said a la litera a s	11 and all all and a star	والمراجع المراجع الم
V1 : S3 E	S2 FC	and the second states									
ĥ	ΡĂ										
Star #Res	t2 sB	2.795 GH: W 1 MHz	Z			ŧVBW 3 M	Hz	#S	weep 81.	Sto 91 ms (81	ip 9 GHz .92 pts)

Result: Pass Value: ≤ -25 dBm Limit: ≤ -13 dBm			GPRS, High	Channel, 8.995 - 14 GHz		
	Result:	Pass	Value:	≤ -25 dBm	Limit:	≤ -13 dBm

🔆 Ag	jilent 1	2:21:54	26 Mar 20	107				RT		
Ref 30	dBm		#At	ten 20 di	3					
Peak Log										
10 dB/										
Offst 21.6										
dB										
V1 S2										
S3 FC AA										
 Start 8	9.995 <u>GH</u> :	 z							Stop	14 GHz
#Res B	W 1 MHz				₩VBW 3 M	Hz	# \$	weep 81.	91 ms (81	.92 pts)

GPRS, High Channel, 13.995 - 20 GHz				
Result: Pass	Value: ≤ -25 dBm	Limit:	≤ -13 dBm	

🔆 🔆 🔆										
Ref 30) dBm		#At	ten 20 df	В					
Peak Log										
10 dB/										
Offst 21.6 JP										
ab										
			dela meta tarba de pr	and a location of the			u <mark>fetette ette</mark> ette		telele transmission	
V1 S2 S3 FC							مر روب آرونی پیدار این اور ا			
AA										
A										
Start . #Res E	13.99 GHz 8W 1 MHz	2			₩VBW 3 M	Hz	# S	weep 81.9	Stop 91 ms (81	.92 pts)

NORTHWEST

XMit 2006.11.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Chamber, Temp./Humidity Chamber	Cincinnati Sub Zero (CSZ)	ZH-32-2-2-H/AC	TBA	7/31/2006	12
Spectrum Analyzer	Agilent	E4407B	AAU	12/8/2006	13
Multimeter	Tektronix	DMM912	MMH	12/7/2006	13
AC Power Source	Instek	APS-9050	TPK	NCR	0

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Variation of Supply Voltage

The primary supply voltage was varied from 85% to 115% of nominal. The EUT can only be operated from the public AC mains, so an AC lab supply was used to vary the supply voltage from 115% to 85% of 120 V, 60 Hz.

Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30° to +50° C) and at 10°C intervals.

Measurements were made mid channel in the operational band via a direct connection between the RF output and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

NORTHWEST EMC		FREQUENC	(STABILITY		XMit 2006.11.13
EUT:	S-BTS GSM Base Station			Work Order:	RAFN0069
Serial Number:	Engineering Unit			Date:	03/29/07
Customer:	Radioframe Networks, Inc.			Temperature:	20°C
Attendees:	Bob Melsheimer			Humidity:	32%
Project:	None			Barometric Pres.:	30.08
Tested by:	Greg Kiemel		Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATI	ONS		Test Method		
FCC 22H:2005			ANSI/TIA/EIA-603-B-20	02	
COMMENTS					
Maximum Output P	'ower.				
DEVIATIONS FROM	I TEST STANDARD				
Configuration #	1	Signature	LP		

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 120VAC, 60 Hz)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	881.20000	881.200129	0.15	1
40	881.20000	881.200103	0.12	1
30	881.20000	881.200098	0.11	1
20	881.20000	881.200093	0.11	1
10	881.20000	881.200093	0.11	1
0	881.20000	881.200102	0.12	1
-10	881.20000	881.200109	0.12	1
-20	881.20000	881.200137	0.16	1
-30	881,20000	881,200170	0.19	1

Frequency Stability with Variation of Primary Supply Voltage (Ambient Temperature = 20°C)

Voltage	Assigned Frequency	Measured Frequency	Tolerance	Specification
(VAC, 60 Hz)	(MHz)	(MHz)	(ppm)	(ppm)
138 (115%)	881.20000	881.200093	0.11	1
132 (110%)	881.20000	881.200093	0.11	1
126 (105%)	881.20000	881.200093	0.11	1
120 (100%)	881.20000	881.200093	0.11	1
114 (95%)	881.20000	881.200093	0.11	1
108 (90%)	881.20000	881.200093	0.11	1
102 (85%)	881.20000	881.200093	0.11	1

FREQUENCY STABILITY

NORTHWEST

XMit 2006.11.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Chamber, Temp./Humidity Chamber	Cincinnati Sub Zero (CSZ)	ZH-32-2-2-H/AC	TBA	7/31/2006	12
Spectrum Analyzer	Agilent	E4407B	AAU	12/8/2006	13
Multimeter	Tektronix	DMM912	MMH	12/7/2006	13
AC Power Source	Instek	APS-9050	TPK	NCR	0

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Variation of Supply Voltage

The primary supply voltage was varied from 85% to 115% of nominal. The EUT can only be operated from the public AC mains, so an AC lab supply was used to vary the supply voltage from 115% to 85% of 120 V, 60 Hz.

Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30° to +50° C) and at 10°C intervals.

Measurements were made mid channel in the operational band via a direct connection between the RF output and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

NORTHWEST EMC		FREQUENCY	STABILITY		XMit 2006.11.13
EUT:	S-BTS GSM Base Station			Work Order:	RAFN0069
Serial Number:	Engineering Unit			Date:	03/29/07
Customer:	Radioframe Networks, Inc.			Temperature:	20°C
Attendees:	Bob Melsheimer			Humidity:	32%
Project:	None			Barometric Pres.:	30.08
Tested by:	Greg Kiemel		Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATI	IONS		Test Method		
FCC 24E:2005			ANSI/TIA/EIA-603-B-20	02	
COMMENTS					
Maximum Output P	'ower.				
DEVIATIONS FROM	I TEST STANDARD				
Configuration #	1	Signature	L-P		

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 120VAC, 60 Hz)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	1960.00000	1960.000147	0.07	1
40	1960.00000	1960.000147	0.07	1
30	1960.00000	1960.000147	0.07	1
20	1960.00000	1960.000147	0.07	1
10	1960.00000	1960.000139	0.07	1
0	1960.00000	1960.000209	0.11	1
-10	1960.00000	1960.000292	0.15	1
-20	1960.00000	1960.000286	0.15	1
-30	1960.00000	1960.000338	0.17	1

Frequency Stability with Variation of Primary Supply Voltage (Ambient Temperature = 20°C)

Voltage	Assigned Frequency	Measured Frequency	Tolerance	Specification
(VAC, 60 Hz)	(MHz)	(MHz)	(ppm)	(ppm)
138 (115%)	1960.00000	1960.000147	0.07	1
132 (110%)	1960.00000	1960.000147	0.07	1
126 (105%)	1960.00000	1960.000147	0.07	1
120 (100%)	1960.00000	1960.000147	0.07	1
114 (95%)	1960.00000	1960.000147	0.07	1
108 (90%)	1960.00000	1960.000147	0.07	1
102 (85%)	1960.00000	1960.000147	0.07	1

FREQUENCY STABILITY

