# Radioframe Networks, Inc.

## MC-series, Mid-power, Outdoor Pole-mount

August 07, 2007

Report No. RAFN0075

Report Prepared By



www.nwemc.com 1-888-EMI-CERT

© 2007Northwest EMC, Inc



#### Certificate of Test Issue Date: August 07, 2007 Radioframe Networks, Inc. Model: MC-series, Mid-power, Outdoor Pole-mount

| Emissions                                                        |                         |                         |           |  |
|------------------------------------------------------------------|-------------------------|-------------------------|-----------|--|
| Test Description                                                 | Specification           | Test Method             | Pass/Fail |  |
| Output Power                                                     | FCC 901:2006            | ANSI/TIA/EIA-603-B-2002 | Pass      |  |
| Emission mask                                                    | FCC 901:2006            | ANSI/TIA/EIA-603-B-2002 | Pass      |  |
| Spurious Radiated Emissions                                      | FCC 901:2006            | ANSI/TIA/EIA-603-B-2002 | Pass      |  |
| Radiated Emissions as a digital device / receiver (Verification) | FCC 15.109:2006 Class A | ANSI C63.4:2003         | Pass      |  |
| Spurious Conducted Emissions -<br>Transmit Mode                  | FCC 901:2006            | ANSI/TIA/EIA-603-B-2002 | Pass      |  |
| Spurious Conducted Emissions -<br>Receive Mode                   | FCC 15.111:2006         | ANSI/TIA/EIA-603-B-2002 | Pass      |  |
| Frequency Stability                                              | FCC 90.213:2005         | ANSI/TIA/EIA-603:2002   | Pass      |  |

Modifications made to the product See the Modifications section of this report

| Approved By:    |                       |  |
|-----------------|-----------------------|--|
| The             |                       |  |
| Ethan Schoonove | r, Sultan Lab Manager |  |



NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.



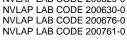
| Revision<br>Number | Description | Date | Page Number |
|--------------------|-------------|------|-------------|
|                    |             |      |             |
| 00                 | None        |      |             |



**FCC:** Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

**NVLAP:** Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

**Industry Canada:** Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.


**CAB:** Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

**TÜV Product Service:** Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

**TÜV Rheinland:** Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.















**NEMKO:** Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

**Australia/New Zealand:** The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

**VCCI:** Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294*).

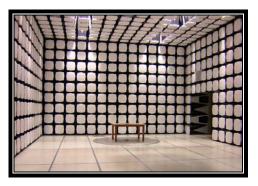
**BSMI:** Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

**GOST:** Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/scope.asp</u>






BSMI



NEMKO

Revision 03/18/05





California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826





Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826





Washington – Sultan Facility Labs SU01 – SU07

14128 339<sup>th</sup> Ave. SE Sultan, WA 98294 (888) 364-2378



Rev 11/17/06

#### Party Requesting the Test

| Company Name:            | Radioframe Networks, Inc.                |
|--------------------------|------------------------------------------|
| Address:                 | 9461 Willows Road NE, Suite 100          |
| City, State, Zip:        | Redmond, WA 98052                        |
| Test Requested By:       | Nha Tran                                 |
| Model:                   | MC-series, Mid-power, Outdoor Pole-mount |
| First Date of Test:      | March 21, 2006                           |
| Last Date of Test:       | July 2, 2007                             |
| Receipt Date of Samples: | June 27, 2007                            |
| Equipment Design Stage:  | Production                               |
| Equipment Condition:     | No Damage                                |

#### Information Provided by the Party Requesting the Test

#### Functional Description of the EUT (Equipment Under Test):

Dual band operation: 851-854 MHz and 854-859 MHz. Cellular base station. Output power can be adjusted by user over a range. Digital modulation: TDMA(iDEN).

#### **Testing Objective:**

Demonstrate compliance with FCC 90I requirements for a cellular basestation.

#### **CONFIGURATION 1 RAFN0075**

| EUT                             |                     |                   |               |
|---------------------------------|---------------------|-------------------|---------------|
| Description                     | Manufacturer        | Model/Part Number | Serial Number |
| OPM (Outdoor Pole Mount System) | Radioframe Networks | MC Series         | Unknown       |

| Peripherals in test setup boundary |              |                   |               |
|------------------------------------|--------------|-------------------|---------------|
| Description                        | Manufacturer | Model/Part Number | Serial Number |
| ISC (Integrated Site Controller)   | Motorola     | ISC3 X516         | CAF0207XD1    |

| Remote Equipment Outside of Test Setup Boundary |              |                   |               |  |
|-------------------------------------------------|--------------|-------------------|---------------|--|
| Description                                     | Manufacturer | Model/Part Number | Serial Number |  |
| Remote PC                                       | Dell         | Latitude X300     | Unknown       |  |

| Cables           |                |                      |                |                           |               |
|------------------|----------------|----------------------|----------------|---------------------------|---------------|
| Cable Type       | Shield         | Length (m)           | Ferrite        | Connection 1              | Connection 2  |
| DC Power -48V    | No             | 3m                   | No             | EUT                       | DC Supply     |
| Coaxial          | Yes            | 5m                   | No             | EUT                       | ISC           |
| Serial           | Yes            | 5m                   | No             | EUT                       | Remote PC     |
| Ethernet         | No             | 5m                   | No             | EUT                       | Remote PC     |
| PA = Cable is pe | rmanently atta | ached to the device. | Shielding and/ | or presence of ferrite ma | y be unknown. |



## Modifications

|      | Equipment modifications |                                                          |                                            |                                                                           |                                                         |
|------|-------------------------|----------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|
| Item | Date                    | Test                                                     | Modification                               | Note                                                                      | Disposition of EUT                                      |
| 1    | 6/27/2007               | Emission<br>Mask                                         | Tested as<br>delivered to<br>Test Station. | No EMI suppression devices were added or modified during this test.       | EUT remained at<br>Northwest EMC<br>following the test. |
| 2    | 6/27/2007               | Spurious<br>Conducted<br>Emissions -<br>Transmit<br>Mode | Tested as<br>delivered to<br>Test Station. | No EMI suppression devices were added or modified during this test.       | EUT remained at<br>Northwest EMC<br>following the test. |
| 3    | 6/28/2007               | Spurious<br>Conducted<br>Emissions -<br>Receive<br>Mode  | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 4    | 6/28/2007               | Output<br>Power                                          | Tested as<br>delivered to<br>Test Station. | No EMI suppression devices were added or modified during this test.       | EUT remained at<br>Northwest EMC<br>following the test. |
| 5    | 7/2/2007                | Spurious<br>Radiated<br>Emissions                        | Tested as delivered to Test Station.       | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 6    | 7/2/2007                | Radiated<br>Emissions                                    | Tested as<br>delivered to<br>Test Station. | No EMI suppression devices were added or modified during this test.       | Scheduled testing was completed.                        |

## **RADIATED EMISSIONS**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### MODES OF OPERATION

Transmitting typical sector config: Single Sector, 3 channels at full power.

#### MODE USED FOR FINAL DATA

Transmitting typical sector config: Single Sector, 3 channels at full power.

#### POWER SETTINGS INVESTIGATED

48 VDC

#### POWER SETTINGS USED FOR FINAL DATA 48 VDC

| FREQUENCY RANGE IN | VESTIGATED |                |         |
|--------------------|------------|----------------|---------|
| Start Frequency    | 30MHz      | Stop Frequency | 1000MHz |

#### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

| TEST EQUIPMENT     |              |         |     |            |          |
|--------------------|--------------|---------|-----|------------|----------|
| Description        | Manufacturer | Model   | ID  | Last Cal.  | Interval |
| EV11 cables a,b,c  |              |         | EVL | 5/1/2007   | 13       |
| Antenna, Biconilog | EMCO         | 3142    | AXB | 12/28/2006 | 24       |
| Pre-Amplifier      | Miteq        | AM-1551 | AOY | 5/1/2007   | 13       |
| Spectrum Analyzer  | Agilent      | E4443A  | AAS | 12/7/2006  | 13       |

#### MEASUREMENT BANDWIDTHS

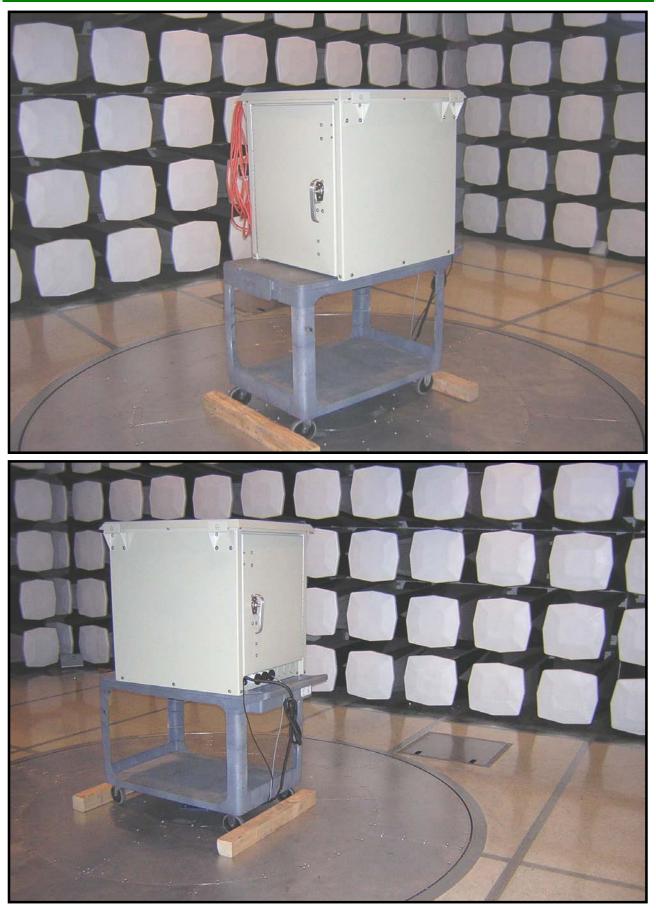
| Frequency Range | Peak Data | Quasi-Peak Data | Average Data |
|-----------------|-----------|-----------------|--------------|
| (MHz)           | (kHz)     | (kHz)           | (kHz)        |
| 0.01 - 0.15     | 1.0       | 0.2             | 0.2          |
| 0.15 - 30.0     | 10.0      | 9.0             | 9.0          |
| 30.0 - 1000     | 100.0     | 120.0           | 120.0        |
| Above 1000      | 1000.0    | N/A             | 1000.0       |

#### MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

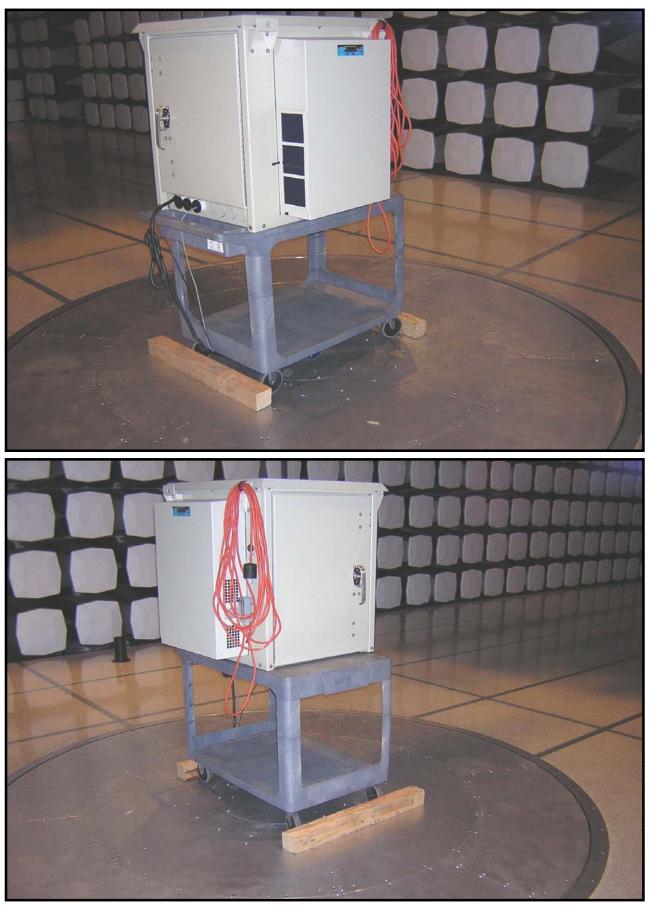
#### **TEST DESCRIPTION**

Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.


Tests were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 3 meters or 10 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.

|                 | RTHWEST          |                       | R/             |                | ED E       | MISS                                         | ONS                     | DATA               | SHE       | ET                     |                           |              | SA 2007.05.07<br>MI 2006.12.20 |
|-----------------|------------------|-----------------------|----------------|----------------|------------|----------------------------------------------|-------------------------|--------------------|-----------|------------------------|---------------------------|--------------|--------------------------------|
|                 |                  | : MC-series,          | Mid-powe       | r, Outdoor     | Pole-mour  | nt                                           |                         |                    |           | W                      | ork Order                 | RAFN0075     | 5                              |
| Ser             | ial Number       |                       | inia poire     | i, outdoor     |            |                                              |                         |                    |           |                        |                           | 07/02/07     | ,                              |
|                 |                  | : Radiofram           |                | s, Inc.        |            |                                              |                         |                    |           | Ter                    | nperature:                |              |                                |
|                 |                  | : Dean Busc<br>: None | :h             |                |            |                                              |                         |                    |           | Baromo                 | Humidity:<br>etric Pres.: |              |                                |
|                 |                  | : David Dive          | raiaelis       |                |            |                                              | Power:                  | 48 VDC             |           | Daronne                | Job Site:                 |              |                                |
| TEST S          | PECIFICAT        |                       |                |                |            |                                              |                         | Test Metho         | od        |                        |                           |              |                                |
| FCC 15          | .109(g) (CI      | SPR 22:1997           | ):2006 Cla     | ss A           |            |                                              |                         | ANSI C63.          | 4:2003    |                        |                           |              |                                |
|                 |                  |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 | ARAMETE          |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
| Antenn<br>COMMI | a Height(s)      | ) (m)                 | 1 - 4          |                |            |                                              | Test Dista              | nce (m)            | 10        |                        |                           |              |                                |
|                 | a ports ter      | minated               |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
| Antenn          |                  | innatea.              |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 |                  |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 | PERATING         | MODES<br>al sector co | nfia: Sina     | o Soctor 2     | channels   | at full now                                  | or                      |                    |           |                        |                           |              |                                |
|                 |                  | M TEST STA            |                | e Sector, s    | channels   | at run powe                                  | <i>t</i> .              |                    |           |                        |                           |              |                                |
| No dev          |                  |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
| Run #           |                  | 1                     |                |                |            |                                              |                         |                    |           |                        | 0                         | 1 -          |                                |
| Configu         | uration #        | 1                     |                |                |            |                                              |                         |                    |           | to n                   | · ps/                     | 2 E:         | -                              |
| Results         | \$               | Pa                    | SS             |                |            |                                              |                         |                    | Signature |                        | * 0                       |              |                                |
| I               |                  |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 | 80.0             |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 |                  |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 | 70.0             |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 | /0.0             |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 |                  |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 | 60.0             |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 |                  |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 |                  |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 | 50.0             |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
| ٦               |                  |                       |                |                |            |                                              |                         |                    |           |                        |                           | •            |                                |
| dBuV/m          | 40.0             |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
| ۳,              | 40.0             |                       |                |                | •          |                                              |                         |                    |           |                        | •                         |              |                                |
| 뜅               |                  |                       |                |                |            |                                              |                         |                    |           | •                      | <b>±</b>                  |              |                                |
|                 | 30.0             |                       |                |                |            | •                                            |                         |                    |           | •                      | •                         |              |                                |
|                 |                  |                       |                |                |            | •                                            |                         | •                  |           | •                      |                           |              |                                |
|                 |                  |                       |                |                |            |                                              |                         | • •                | Ĭ         |                        | •                         |              |                                |
|                 | 20.0             |                       |                |                |            |                                              |                         |                    |           |                        |                           |              | _                              |
|                 |                  |                       |                |                |            |                                              | •                       | •                  | •         |                        |                           |              |                                |
|                 | 10.0             |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 | 10.0             |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 |                  |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 | 0.0              |                       |                |                |            |                                              |                         |                    |           |                        |                           |              |                                |
|                 | 10.000           | )                     |                |                |            |                                              | 100.000                 |                    |           |                        |                           | 10           | 00.000                         |
|                 | 10.000           |                       |                |                |            |                                              |                         |                    |           |                        |                           | 10           | 00.000                         |
|                 |                  |                       |                |                |            |                                              | MHz                     |                    |           |                        |                           |              |                                |
|                 |                  |                       |                |                | . <u> </u> | <u>.                                    </u> |                         |                    |           |                        |                           |              |                                |
|                 | Freq             | Amplitude             | Factor         | Azimuth        | Height     | Distance                                     | External<br>Attenuation | Polarity           | Detector  | Distance<br>Adjustment | Adjusted                  | Spec. Limit  | Compared to<br>Spec.           |
|                 | MHz)             | (dBuV)                | (dB)           | (degrees)      | (meters)   | (meters)                                     | (dB)                    | Folanty            | Delector  | (dB)                   | dBuV/m                    | dBuV/m       | (dB)                           |
|                 | 3.325            | 64.1                  | -25.1          | 288.0          | 1.5        | 10.0                                         | 0.0                     | V-Bilog            | QP        | 0.0                    | 39.0                      | 40.0         | -1.0                           |
|                 | 2.900            | 63.9                  | -25.0          | 276.0          | 2.0        | 10.0                                         | 0.0                     | V-Bilog            | QP        | 0.0                    | 38.9                      | 40.0         | -1.1                           |
|                 | 69.994           | 53.8                  | -9.3           | 167.0          | 2.0        | 10.0                                         | 0.0                     | V-Bilog            | QP        | 0.0                    | 44.5                      | 47.0         | -2.5                           |
|                 | 2.506<br>99.999  | 59.1<br>52.5          | -26.8<br>-14.5 | 115.0<br>130.0 | 3.5<br>1.5 | 10.0<br>10.0                                 | 0.0<br>0.0              | H-Bilog<br>H-Bilog | QP<br>QP  | 0.0<br>0.0             | 32.3<br>38.0              | 40.0<br>47.0 | -7.7<br>-9.0                   |
|                 | 00.002           | 51.4                  | -14.5          | 197.0          | 3.5        | 10.0                                         | 0.0                     | V-Bilog            | QP        | 0.0                    | 36.9                      | 47.0         | -10.1                          |
|                 | 3.146            | 54.6                  | -25.1          | 157.0          | 3.5        | 10.0                                         | 0.0                     | H-Bilog            | QP        | 0.0                    | 29.5                      | 40.0         | -10.5                          |
|                 | 60.009           | 53.9                  | -24.7          | 273.0          | 1.5        | 10.0                                         | 0.0                     | V-Bilog            | QP        | 0.0                    | 29.2                      | 40.0         | -10.8                          |
|                 | 51.019           | 45.6                  | -9.8           | 303.0          | 2.4        | 10.0                                         | 0.0                     | V-Bilog            | QP        | 0.0                    | 35.8                      | 47.0         | -11.2                          |
|                 | 69.996<br>2.459  | 44.2<br>54.5          | -9.3<br>-26.8  | 15.0<br>8.0    | 3.5<br>3.8 | 10.0<br>10.0                                 | 0.0<br>0.0              | H-Bilog<br>H-Bilog | QP<br>QP  | 0.0<br>0.0             | 34.9<br>27.7              | 47.0<br>40.0 | -12.1<br>-12.3                 |
|                 | 25.006           | 54.5                  | -20.8          | 254.0          | 3.8<br>1.0 | 10.0                                         | 0.0                     | V-Bilog            | QP        | 0.0                    | 27.7                      | 40.0         | -12.3                          |
|                 | 75.000           | 51.3                  | -16.8          | 106.0          | 1.0        | 10.0                                         | 0.0                     | V-Bilog            | QP        | 0.0                    | 34.5                      | 47.0         | -12.5                          |
|                 | 50.001           | 50.1                  | -15.6          | 0.0            | 2.4        | 10.0                                         | 0.0                     | H-Bilog            | QP        | 0.0                    | 34.5                      | 47.0         | -12.5                          |
|                 | 30.004           | 53.9<br>49.1          | -26.8          | 260.0          | 1.0<br>1.0 | 10.0                                         | 0.0<br>0.0              | V-Bilog            | QP        | 0.0                    | 27.1                      | 40.0         | -12.9                          |
|                 | 50.004<br>00.006 | 49.1<br>49.7          | -15.6<br>-23.3 | 319.0<br>352.0 | 1.0<br>1.0 | 10.0<br>10.0                                 | 0.0<br>0.0              | V-Bilog<br>V-Bilog | QP<br>QP  | 0.0<br>0.0             | 33.5<br>26.4              | 47.0<br>40.0 | -13.5<br>-13.6                 |
|                 | 99.987           | 43.6                  | -10.5          | 59.0           | 1.5        | 10.0                                         | 0.0                     | H-Bilog            | QP        | 0.0                    | 33.1                      | 47.0         | -13.9                          |
|                 | 00.003           | 49.3                  | -23.3          | 19.0           | 3.4        | 10.0                                         | 0.0                     | H-Bilog            | QP        | 0.0                    | 26.0                      | 40.0         | -14.0                          |
|                 | 75.001           | 49.8                  | -16.8          | 114.0          | 1.5        | 10.0                                         | 0.0                     | H-Bilog            | QP        | 0.0                    | 33.0                      | 47.0         | -14.0                          |
| g               | 8.418            | 52.5                  | -26.9          | 174.0          | 2.8        | 10.0                                         | 0.0                     | V-Bilog            | QP        | 0.0                    | 25.6                      | 40.0         | -14.4                          |

|         |           |        |           |          |          | External    |          |          | Distance   |          |             | Compared to |
|---------|-----------|--------|-----------|----------|----------|-------------|----------|----------|------------|----------|-------------|-------------|
| Freq    | Amplitude | Factor | Azimuth   | Height   | Distance | Attenuation | Polarity | Detector | Adjustment | Adjusted | Spec. Limit | Spec.       |
| (MHz)   | (dBuV)    | (dB)   | (degrees) | (meters) | (meters) | (dB)        |          |          | (dB)       | dBuV/m   | dBuV/m      | (dB)        |
| 130.000 | 51.5      | -26.8  | 16.0      | 3.6      | 10.0     | 0.0         | H-Bilog  | QP       | 0.0        | 24.7     | 40.0        | -15.3       |
| 159.998 | 49.0      | -24.7  | 119.0     | 3.3      | 10.0     | 0.0         | H-Bilog  | QP       | 0.0        | 24.3     | 40.0        | -15.7       |
| 800.011 | 39.7      | -10.5  | 297.0     | 2.0      | 10.0     | 0.0         | V-Bilog  | QP       | 0.0        | 29.2     | 47.0        | -17.8       |
| 874.996 | 36.9      | -9.2   | 287.0     | 1.5      | 10.0     | 0.0         | H-Bilog  | QP       | 0.0        | 27.7     | 47.0        | -19.3       |
| 400.002 | 43.3      | -16.8  | 360.0     | 2.1      | 10.0     | 0.0         | H-Bilog  | PK       | 0.0        | 26.5     | 47.0        | -20.5       |
| 851.020 | 35.6      | -9.8   | 126.0     | 3.2      | 10.0     | 0.0         | H-Bilog  | QP       | 0.0        | 25.8     | 47.0        | -21.2       |
| 550.972 | 36.9      | -13.6  | 91.0      | 1.5      | 10.0     | 0.0         | H-Bilog  | PK       | 0.0        | 23.3     | 47.0        | -23.7       |
| 124.982 | 43.0      | -26.8  | 21.0      | 1.0      | 10.0     | 0.0         | H-Bilog  | PK       | 0.0        | 16.2     | 40.0        | -23.8       |
| 248.989 | 37.1      | -20.9  | 342.0     | 1.0      | 10.0     | 0.0         | H-Bilog  | PK       | 0.0        | 16.2     | 47.0        | -30.8       |




## Radiated Emissions





## Radiated Emissions



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| TEST EQUIPMENT    |                 |        |     |           |          |
|-------------------|-----------------|--------|-----|-----------|----------|
| Description       | Manufacturer    | Model  | ID  | Last Cal. | Interval |
| Spectrum Analyzer | Agilent         | E4446A | AAT | 12/7/2006 | 13       |
| Signal Generator  | Hewlett-Packard | 8648D  | TGC | 12/7/2006 | 13       |
|                   |                 | -      | •   |           |          |

#### MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

NORTHWEST EMC

## **EMISSION MASK**

**Configuration:** The peak measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The occupied bandwidth / emission mask was measured with the EUT set to low; medium, and high transmit frequencies. At each channel, measurements were made at the highest output settings

#### FCC Interpretation Regarding Emission Mask and 90.691

----Original Message----From: Andrew Leimer [mailto:ALEIMER@fcc.gov] Sent: Wednesday, May 14, 2003 12:21 PM To: rwacs@att.net Subject: Re: Part 90 rules

Hello Dean,

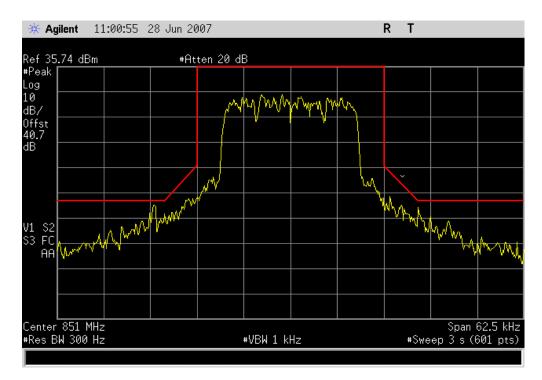
How are you doing? I have not heard from you in a while! The following explanation is from the archives. The basic question was if emissions mask g would ever be used. I hope it answers your question:

I found that footnote 3 was added to Section 90.210 as a result of the First R&O, Eighth R&O and 2nd FNPRM in PR Docket 93-144 (FCC 95-501), adopted 12/15/95. Footnote 3 initially said "Equipment in this band licensed to EA systems shall comply with the emission mask provisions of Section 90.691." Note here that this R&O dealt principally with the upper 200 MHz SMR channels which were auctioned in contiguous segments/blocks. Consequently, providing more flexibility in the emission mask that required protection of the "outer"channels in those blocks and to any interior channels in those blocks used byincumbents made sense.

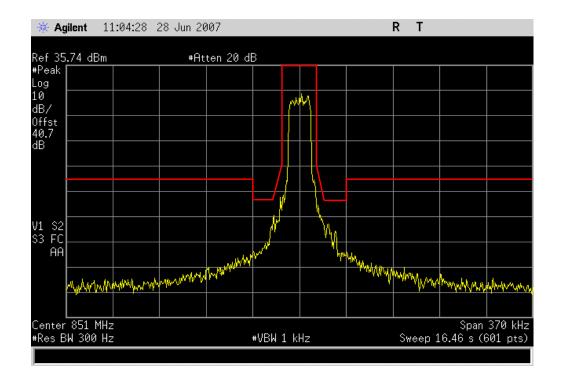
When the Commission subsequently dealt with auctioning the lower 80 channels (non-contiguous channels in each block) and the General Category channels (contiguously allocated channels by block for auction purposes but originally allocated on a single channel basis for site-specific licensing purposes), the consideration of emission mask caused footnote 3 to be modified as it exists today. Specifically, the Second R&O in PR Docket 93-144 (FCC 97-223), adopted 6/23/97 @ para 80 reasons that applying the same emission mask standards to the lower 230 channels (lower 80 channels and 150 General Category channels) as to the upper 200 channels facilitates the use of common equipment and the combining of all such It further states that Section 90.691 (the emission mask) would apply to "outer" channels channels. used by a licensee "that create out-of-band emissions that affect another licensee". The MO&O on reconsideration of the 800 MHz 1st R&O (FCC 97-224, adopted 6/23/97) at para 76 agreed with Erricson's recommendation to expand the emission mask provision of Section 90.691 to "non-EA 800 MHz Part 90 CMRS systems". The decision was based ostensibly on extending the flexibility of the 90.691 emission mask to incumbent licensees (non-EA licensees or non-auction winners) and to those non-SMR channels used by CMRS operators. The paragraph closes by stating that neither Ericsson or Motorola believe that such relaxation will increase the amount of interference to adjacent channel licensees.

You'll note that there is some similarity between emission mask G (applicable to equipment without audio low pass filters) under Section 90.210 and the emission mask required by Section 90.691. It is my interpretation that footnote 3 under Section 90.210 (the applicability of the emission mask under Section 90.691) was intended principally for Part 90 CMRS systems in the 800 MHz band to provide flexbility and consistency to those operators. As Section 90.210 is written, however, I don't see how we could legally prevent any 800 MHz licensee from using the more flexibile emission mask under Section 90.691.

Bottom line: As the rule is written, it is possible that the "G" mask would never be used by 800 MHz licensees.

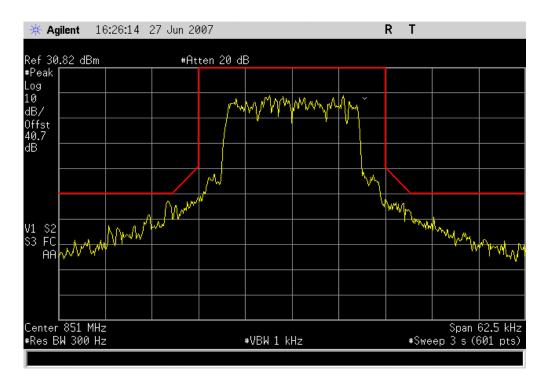

>>> Dean Busch 05/14/03 01:22PM >>> Andy;

| NORTHWEST<br>EMC  |                       | EMIS               | SION MA | SK              |                   | XMit 2006.03.0 |
|-------------------|-----------------------|--------------------|---------|-----------------|-------------------|----------------|
| EUT: N            | IC-series, Mid-power, | Outdoor Pole-mount |         |                 | Work Order:       | RAFN0075       |
| Serial Number: V  | arious                |                    |         |                 | Date:             | 06/27/07       |
| Customer: R       | adioframe Networks, I | nc.                |         |                 | Temperature:      | 21°C           |
| Attendees: D      | ean Busch             |                    |         |                 | Humidity:         | 34%            |
| Project: N        |                       |                    |         |                 | Barometric Pres.: |                |
|                   | than Schoonover       |                    | Power:  | -48Vdc          | Job Site:         | Offsite        |
| TEST SPECIFICATIO | NS                    |                    |         | Test Method     |                   |                |
| FCC 90I:2006      |                       |                    |         | ANSI/TIA/EIA-60 | 3-B:2002          |                |
|                   |                       |                    |         |                 |                   |                |
| COMMENTS          |                       |                    |         |                 |                   |                |
| 800MHz Band       |                       |                    |         |                 |                   |                |
| DEVIATIONS FROM 1 | TEST STANDARD         |                    |         |                 |                   |                |
| Configuration #   | 1                     | Signature          | The IL  |                 |                   |                |
|                   |                       |                    |         |                 |                   |                |

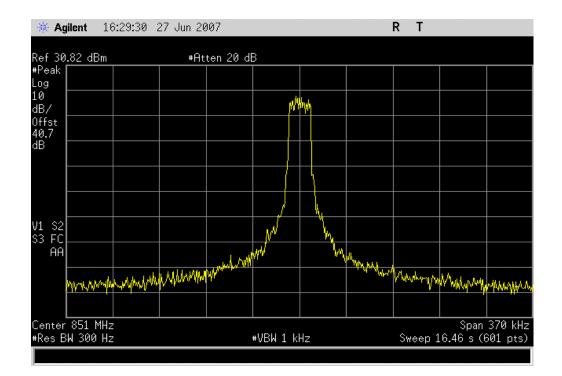

| Modes of Operation and Test Conditions  | Value | Limit     | Result |
|-----------------------------------------|-------|-----------|--------|
| Low Channel, High Power, < 37.5 kHz Fc  | N/A   | See Table | Pass   |
| Low Channel, High Power, > 37.5 kHz Fc  | N/A   | See Table | Pass   |
| Low Channel, Mid Power, < 37.5 kHz Fc   | N/A   | See Table | Pass   |
| Low Channel, Mid Power, > 37.5 kHz Fc   | N/A   | See Table | Pass   |
| Low Channel, Low Power, < 37.5 kHz Fc   | N/A   | See Table | Pass   |
| Low Channel, Low Power, > 37.5 kHz Fc   | N/A   | See Table | Pass   |
| Mid Channel, High Power, < 37.5 kHz Fc  | N/A   | See Table | Pass   |
| Mid Channel, High Power, > 37.5 kHz Fc  | N/A   | See Table | Pass   |
| Mid Channel, Mid Power, < 37.5 kHz Fc   | N/A   | See Table | Pass   |
| Mid Channel, Mid Power, > 37.5 kHz Fc   | N/A   | See Table | Pass   |
| Mid Channel, Low Power, < 37.5 kHz Fc   | N/A   | See Table | Pass   |
| Mid Channel, Low Power, > 37.5 kHz Fc   | N/A   | See Table | Pass   |
| High Channel, High Power, < 37.5 kHz Fc | N/A   | See Table | Pass   |
| High Channel, High Power, > 37.5 kHz Fc | N/A   | See Table | Pass   |
| High Channel, Mid Power, < 37.5 kHz Fc  | N/A   | See Table | Pass   |
| High Channel, Mid Power, > 37.5 kHz Fc  | N/A   | See Table | Pass   |
| High Channel, Low Power, < 37.5 kHz Fc  | N/A   | See Table | Pass   |
| High Channel, Low Power, > 37.5 kHz Fc  | N/A   | See Table | Pass   |



|              | Low Channel, High Power, < 3 | 7.5 kHz Fc       |  |
|--------------|------------------------------|------------------|--|
| Result: Pass | Value: N/A                   | Limit: See Table |  |

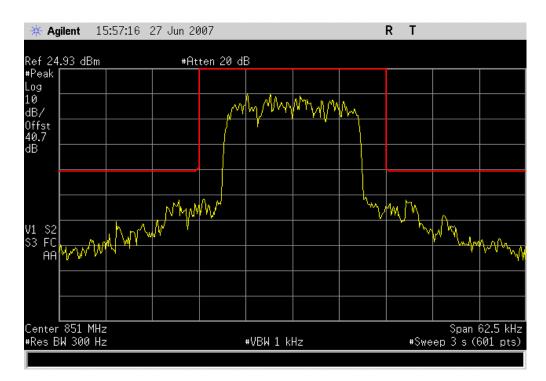



|              | Low Channel, High Power, > 37. | 5 kHz Fc         |
|--------------|--------------------------------|------------------|
| Result: Pass | Value: N/A                     | Limit: See Table |

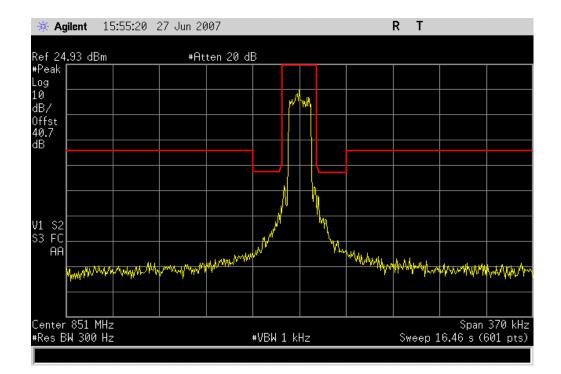





|              | Low Channel, Mid Power, < 37 | .5 kHz Fc        |  |
|--------------|------------------------------|------------------|--|
| Result: Pass | Value: N/A                   | Limit: See Table |  |

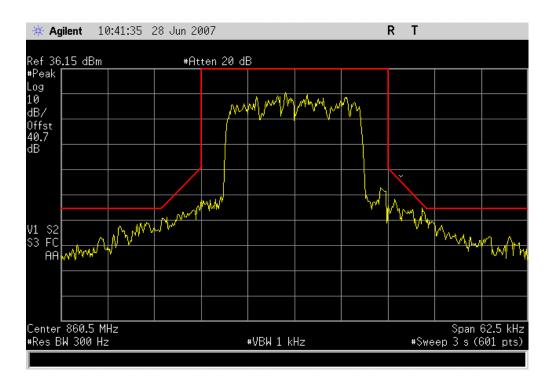



|              | Low Channel, Mid Power, > 37.5 | kHz Fc           |  |
|--------------|--------------------------------|------------------|--|
| Result: Pass | Value: N/A                     | Limit: See Table |  |

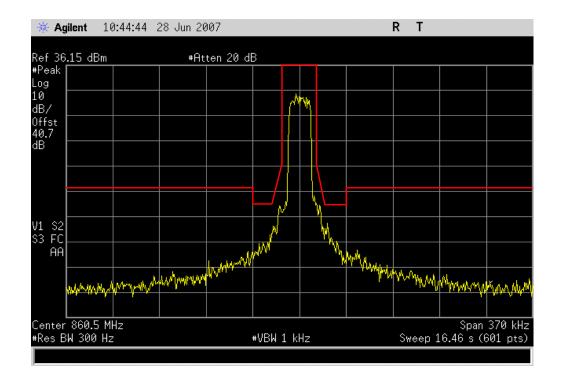





|              | Low Channel, Low Power, < 37 | .5 kHz Fc        |
|--------------|------------------------------|------------------|
| Result: Pass | Value: N/A                   | Limit: See Table |




| Low Channel, Low Power, > 37.5 kHz Fc |            |                  |  |  |  |  |
|---------------------------------------|------------|------------------|--|--|--|--|
| Result: Pass                          | Value: N/A | Limit: See Table |  |  |  |  |

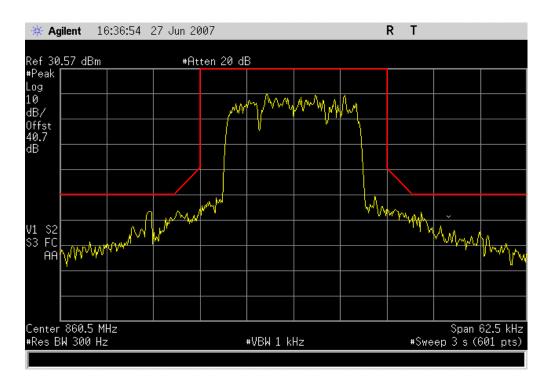




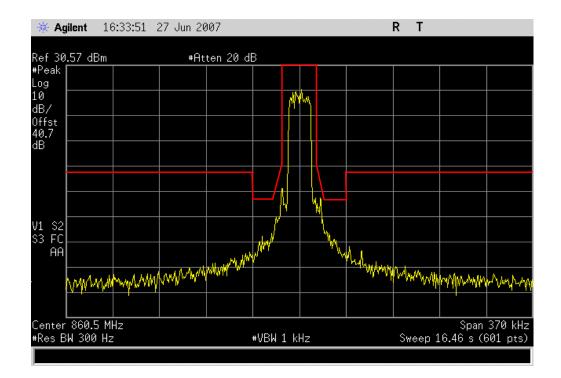

|              | Mid Channel, High Power, < 37 | 5 kHz Fc         |  |
|--------------|-------------------------------|------------------|--|
| Result: Pass | Value: N/A                    | Limit: See Table |  |



|              | Mid Channel, High Power, > 37.5 | 5 kHz Fc         |
|--------------|---------------------------------|------------------|
| Result: Pass | Value: N/A                      | Limit: See Table |





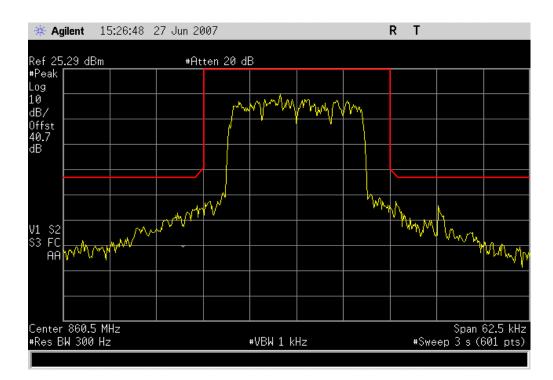


Result: Pass

## **EMISSION MASK**

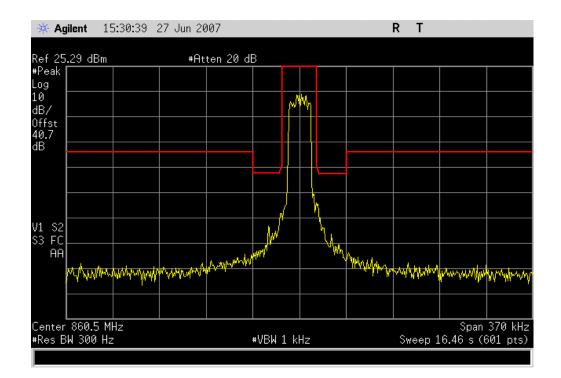
|              | Mid Channel, Mid Power, < 37 | .5 kHz Fc        |
|--------------|------------------------------|------------------|
| Result: Pass | Value: N/A                   | Limit: See Table |



Mid Channel, Mid Power, > 37.5 kHz Fc Value: N/A Limit: See Table

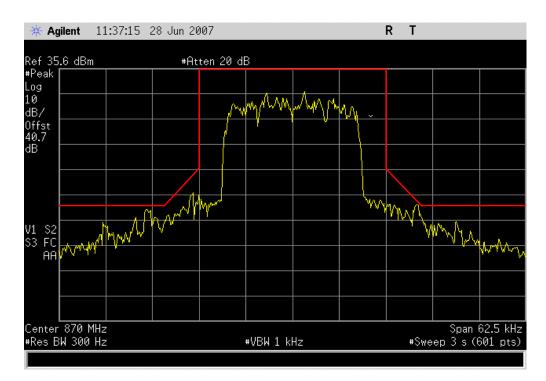




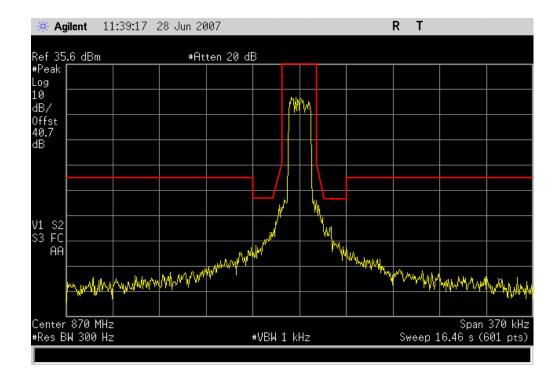


Result: Pass

## **EMISSION MASK**

|              | Mid Channel, Low Power, < 37.5 | kHz Fc           |
|--------------|--------------------------------|------------------|
| Result: Pass | Value: N/A                     | Limit: See Table |

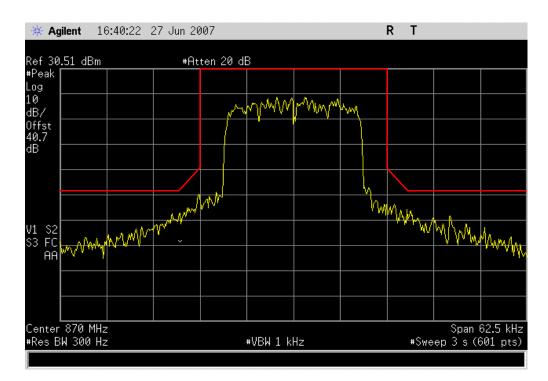



Mid Channel, Low Power, > 37.5 kHz Fc Value: N/A Limit: See Table

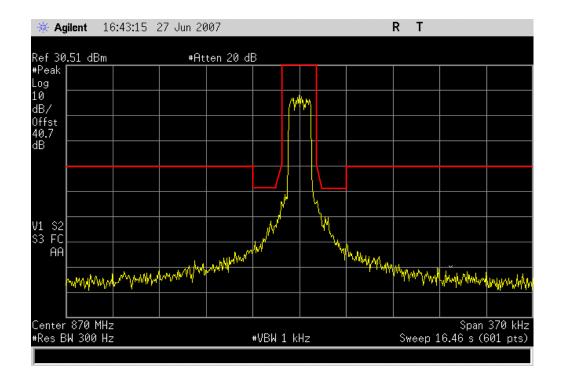





|              | High Channel, High Power, < 37 | .5 kHz Fc        |  |
|--------------|--------------------------------|------------------|--|
| Result: Pass | Value: N/A                     | Limit: See Table |  |

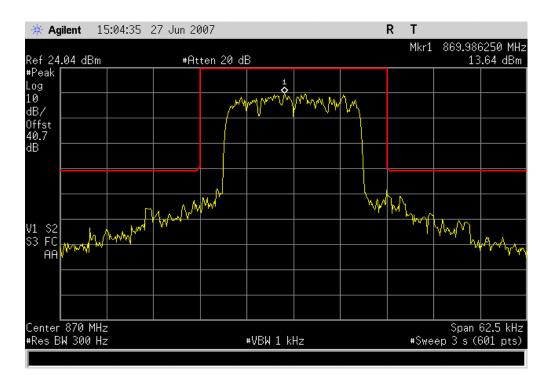



|              | High Channel, High Power, > 37. | 5 kHz Fc         |
|--------------|---------------------------------|------------------|
| Result: Pass | Value: N/A                      | Limit: See Table |

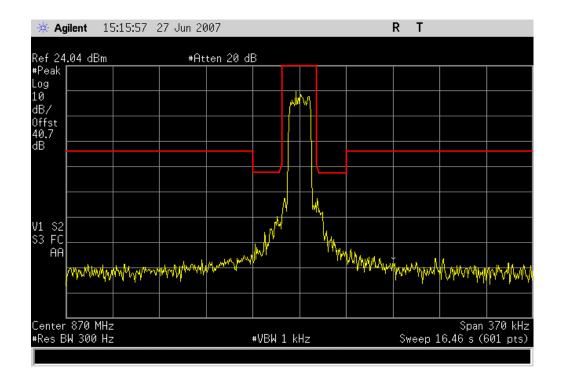





|              | High Channel, Mid Power, < 37 | 5 kHz Fc         |
|--------------|-------------------------------|------------------|
| Result: Pass | Value: N/A                    | Limit: See Table |




|              | High Channel, Mid Power, > 37.5 | kHz Fc     |         |
|--------------|---------------------------------|------------|---------|
| Result: Pass | Value: N/A                      | Limit: See | e Table |






|              | High Channel, Low Power, < 3 | 7.5 kHz Fc |           |
|--------------|------------------------------|------------|-----------|
| Result: Pass | Value: N/A                   | Limit:     | See Table |



|              | High Channel, Low Power, > 37.5 | kHz Fc |           |  |
|--------------|---------------------------------|--------|-----------|--|
| Result: Pass | Value: N/A                      | Limit: | See Table |  |



NORTHWEST

#### **EMISSION MASK**

#### Emission Mask Table

| Frequency | Output Power | Power (P) | Attenuation for the range 12.5 kHz to 37.5 kHz from fc<br>(dBc) |                         |                         |    | Attenuation >37.5 kHz<br>(dBc) | rom fc |
|-----------|--------------|-----------|-----------------------------------------------------------------|-------------------------|-------------------------|----|--------------------------------|--------|
| (MHz)     | (dBm)        | Watts     | 50 + (10*log P)                                                 | 116*log<br>f = 12.5 kHz | (f/6.1)<br>f = 37.5 kHz | 80 | 43 + (10*log P)                | 80     |
|           | 35.74        | 3.75E+00  | 55.7                                                            | 36.14                   | 91.49                   | 80 | 48.7                           | 80     |
| 851.0125  | 30.82        | 1.21E+00  | 50.8                                                            | 36.14                   | 91.49                   | 80 | 43.8                           | 80     |
|           | 24.93        | 3.11E-01  | 44.9                                                            | 36.14                   | 91.49                   | 80 | 37.9                           | 80     |
|           | 36.15        | 4.12E+00  | 56.2                                                            | 36.14                   | 91.49                   | 80 | 49.2                           | 80     |
| 860.5     | 30.57        | 1.14E+00  | 50.6                                                            | 36.14                   | 91.49                   | 80 | 43.6                           | 80     |
|           | 25.29        | 3.38E-01  | 45.3                                                            | 36.14                   | 91.49                   | 80 | 38.3                           | 80     |
|           | 35.60        | 3.63E+00  | 55.6                                                            | 36.14                   | 91.49                   | 80 | 48.6                           | 80     |
| 869.9875  | 30.51        | 1.12E+00  | 50.5                                                            | 36.14                   | 91.49                   | 80 | 43.5                           | 80     |
|           | 24.04        | 2.54E-01  | 44.0                                                            | 36.14                   | 91.49                   | 80 | 37.0                           | 80     |

XMit 2006.03.01

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| TEST EQUIPMENT    |                 |        |     |           |          |
|-------------------|-----------------|--------|-----|-----------|----------|
| Description       | Manufacturer    | Model  | ID  | Last Cal. | Interval |
| Spectrum Analyzer | Agilent         | E4446A | AAT | 12/7/2006 | 13       |
| Signal Generator  | Hewlett-Packard | 8648D  | TGC | 12/7/2006 | 13       |

#### MEASUREMENT UNCERTAINTY

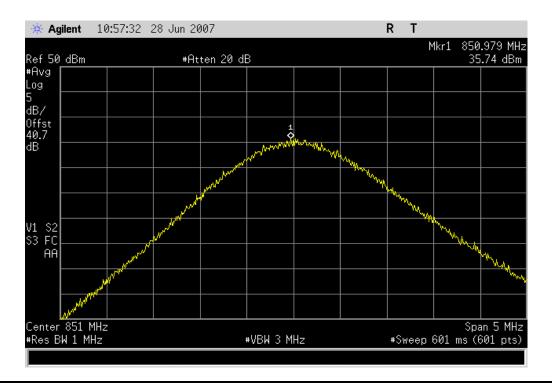
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

#### TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies within the allowable band, and at all three power levels. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer with an RMS average detector.

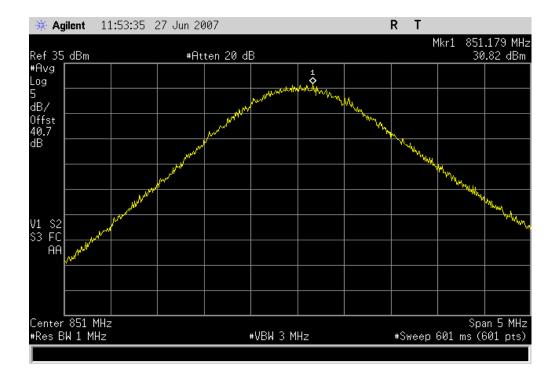
| NORTHWEST<br>EMC |                     | OUTF                 | PUT POW | /ER                |                   | XMit 2006.03.01 |
|------------------|---------------------|----------------------|---------|--------------------|-------------------|-----------------|
|                  |                     | , Outdoor Pole-mount |         |                    | Work Order:       |                 |
| Serial Number:   |                     |                      |         |                    | Date:             | 06/28/07        |
| Customer:        | Radioframe Networks | , Inc.               |         |                    | Temperature:      | 21°C            |
| Attendees:       | Dean Busch          |                      |         |                    | Humidity:         | 37%             |
| Project:         |                     |                      |         |                    | Barometric Pres.: | 29.99           |
|                  | Ethan Schoonover    |                      | Power:  | -48Vdc             | Job Site:         | Offsite         |
| TEST SPECIFICATI | ONS                 |                      |         | Test Method        |                   |                 |
| FCC 901:2006     |                     |                      |         | ANSI/TIA/EIA-603-E | B:2002            |                 |
|                  |                     |                      |         |                    |                   |                 |
| COMMENTS         |                     |                      |         |                    |                   |                 |
| 800MHz Band      |                     |                      |         |                    |                   |                 |
| DEVIATIONS FROM  | I TEST STANDARD     |                      |         |                    |                   |                 |
| Configuration #  | 1                   | Signature            | The Il  |                    |                   |                 |

| Modes of Operation and Test Conditions | Value     | Limit | Result |
|----------------------------------------|-----------|-------|--------|
| Low Channel, High Power                | 35.74 dBm |       | Pass   |
| Low Channel, Mid Power                 | 30.82 dBm |       | Pass   |
| Low Channel, Low Power                 | 24.93 dBm |       | Pass   |
| Mid Channel, High Power                | 36.15 dBm |       | Pass   |
| Mid Channel, Mid Power                 | 30.57 dBm |       | Pass   |
| Mid Channel, Low Power                 | 25.29 dBm |       | Pass   |
| High Channel, High Power               | 35.6 dBm  |       | Pass   |
| High Channel, Mid Power                | 30.51 dBm |       | Pass   |
| High Channel, Low Power                | 24.04 dBm |       | Pass   |




#### **OUTPUT POWER**

Limit:


Limit:

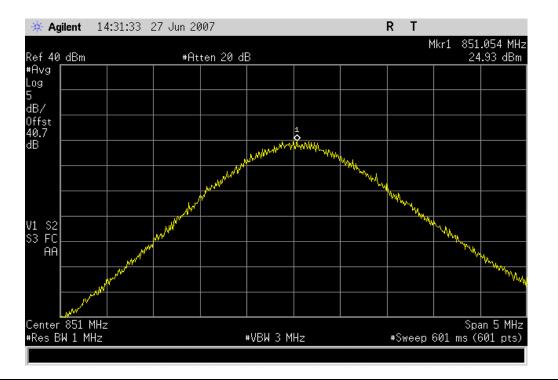
## Low Channel, High Power Result: Pass Value: 35.74 dBm





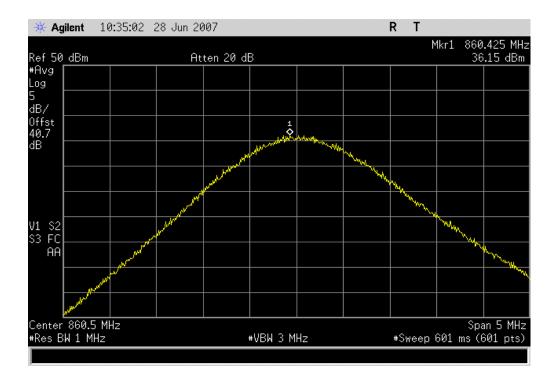
Low Channel, Mid Power Value: 30.82 dBm




## **OUTPUT POWER**

## Result: Pass Value: 24

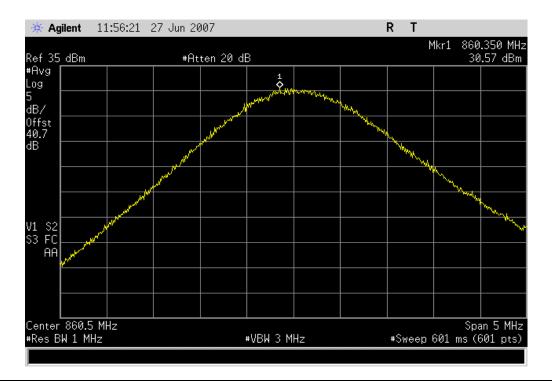
Low Channel, Low Power /alue: 24.93 dBm


Limit:

Limit:



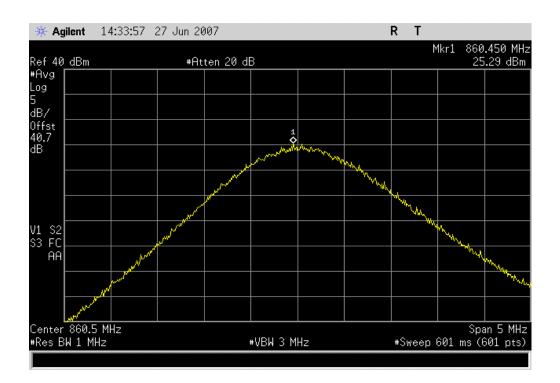
#### Result: Pass


Mid Channel, High Power Value: 36.15 dBm



## NORTHWEST

## **OUTPUT POWER**


|         | Mid Channel, Mid Power |        |           |        |  |  |
|---------|------------------------|--------|-----------|--------|--|--|
| Result: | Pass                   | Value: | 30.57 dBm | Limit: |  |  |

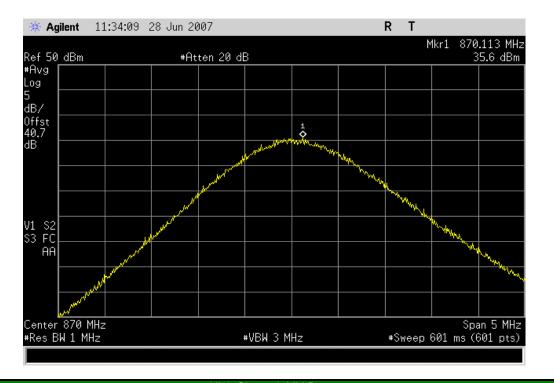


| Pass |
|------|
|      |

Mid Channel, Low Power Value: 25.29 dBm

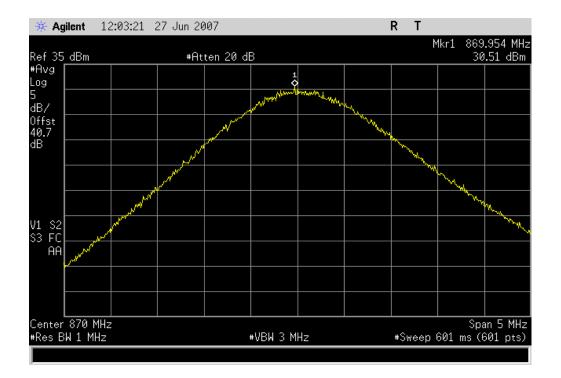
Limit:




## **OUTPUT POWER**

#### Result: Pass

High Channel, High Power Value: 35.6 dBm


Limit:

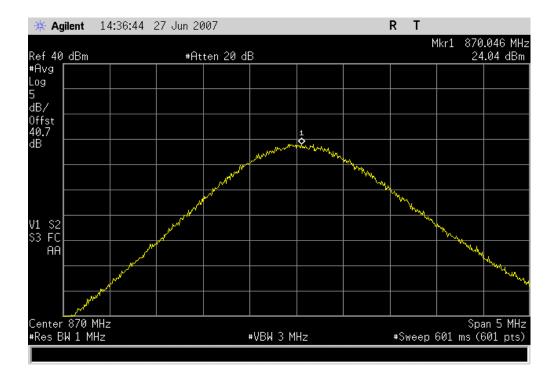
Limit:





High Channel, Mid Power Value: 30.51 dBm




## NORTHWEST

## **OUTPUT POWER**

#### Result: Pass

High Channel, Low Power Value: 24.04 dBm

Limit:



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| TEST EQUIPMENT    |                 |        |     |           |          |
|-------------------|-----------------|--------|-----|-----------|----------|
| Description       | Manufacturer    | Model  | ID  | Last Cal. | Interval |
| Spectrum Analyzer | Agilent         | E4446A | AAT | 12/7/2006 | 13       |
| Signal Generator  | Hewlett-Packard | 8648D  | TGC | 12/7/2006 | 13       |

#### MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

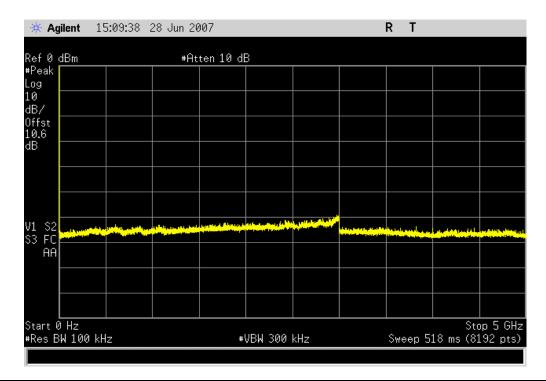
#### TEST DESCRIPTION

The antenna power conducted emissions were measured with the EUT set in receive mode. The measurements were made using a direct connection between each of the RF outputs of the EUT and the spectrum analyzer. The spectrum was scanned throughout the specified frequency range.

| NORTHWEST<br>EMC | SPURIC                       | OUS EMISSION         | IS AT AN |                 | MINALS            | XMit 2006.03.01 |
|------------------|------------------------------|----------------------|----------|-----------------|-------------------|-----------------|
| EUT:             | MC-series, Mid-power         | , Outdoor Pole-mount |          |                 | Work Order:       | RAFN0062        |
| Serial Number:   | : Various                    |                      |          | Date:           | 06/28/07          |                 |
| Customer:        | r: Radioframe Networks, Inc. |                      |          | Temperature:    |                   |                 |
| Attendees:       | es: Dean Busch               |                      |          | Humidity:       | 41%               |                 |
| Project:         | None                         |                      |          |                 | Barometric Pres.: | 29.93           |
|                  | Ethan Schoonover             |                      | Power:   | -48Vdc          | Job Site:         | Offsite         |
| TEST SPECIFICATI | ONS                          |                      |          | Test Method     |                   |                 |
| FCC 15.111: 2006 |                              |                      |          | ANSI C63.4 2003 |                   |                 |
|                  |                              |                      |          |                 |                   |                 |
| COMMENTS         |                              |                      |          |                 |                   |                 |
| 800MHz Band      |                              |                      |          |                 |                   |                 |
| DEVIATIONS FROM  | TEST STANDARD                |                      |          |                 |                   |                 |
|                  |                              |                      |          |                 |                   |                 |
| Configuration #  | 1                            | Signature            | The IL   |                 |                   |                 |

 Modes of Operation and Test Conditions
 Value
 Limit
 Result

 RX1 port
 < -60 dBm</td>
 ≤ -57 dBm
 Pass


 RX2 port
 < -60 dBm</td>
 ≤ -57 dBm
 Pass

**SPURIOUS EMISSIONS AT ANTENNA TERMINALS** 

t 2006.03.01



Limit: ≤ -57 dBm



Result: Pass

RX2 port Value: < -60 dBm Limit: ≤ -57 dBm

🔆 Agilent 15:06:14 28 Jun 2007 R T Ref Ø dBm #Peak Log 10 dB/ 0ffst 10.6 dB #Atten 10 dB V1 S2 S3 FC AA بالمقرابي الموادية فيتاريه Start 0 Hz #Res BW 100 kHz Stop 5 GHz Sweep 518 ms (8192 pts) #VBW 300 kHz

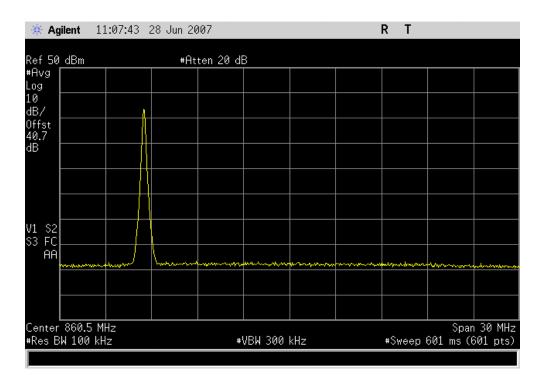
EMC

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| TEST EQUIPMENT    |                 |        |     |           |          |
|-------------------|-----------------|--------|-----|-----------|----------|
| Description       | Manufacturer    | Model  | ID  | Last Cal. | Interval |
| Spectrum Analyzer | Agilent         | E4446A | AAT | 12/7/2006 | 13       |
| Signal Generator  | Hewlett-Packard | 8648D  | TGC | 12/7/2006 | 13       |

#### MEASUREMENT UNCERTAINTY

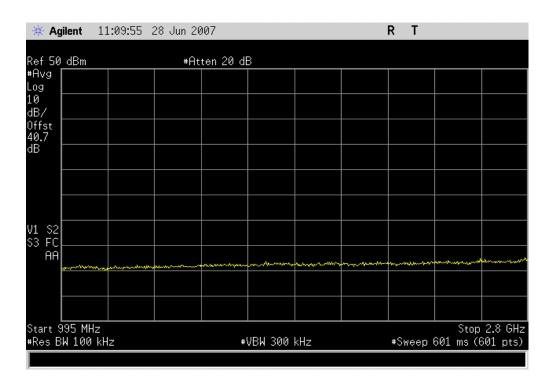
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


#### TEST DESCRIPTION

A spectrum analyzer was used to scan from 0 to 9 GHz. A 100kHz resolution bandwidth was used. No video filtering was employed. A 30dB external attenuator was used on the RF input of the spectrum analyzer.

| NORTHWEST<br>EMC  | SPURIOUS EMISSIONS A                     | AT ANT | ENNA TERI            | MINALS            | XMit 2006.03.01 |
|-------------------|------------------------------------------|--------|----------------------|-------------------|-----------------|
| EUT:              | MC-series, Mid-power, Outdoor Pole-mount |        |                      | Work Order:       | RAFN0075        |
| Serial Number:    | Various                                  |        |                      | Date:             | 06/27/07        |
| Customer:         | Radioframe Networks, Inc.                |        |                      | Temperature:      | 21°C            |
| Attendees:        | Dean Busch                               |        |                      | Humidity:         | 34%             |
| Project:          |                                          |        |                      | Barometric Pres.: | 29.99           |
|                   | Ethan Schoonover                         | Power: |                      | Job Site:         | Offsite         |
| TEST SPECIFICATI  | ONS                                      |        | Test Method          |                   |                 |
| FCC 901:2006      |                                          |        | ANSI/TIA/EIA-603-B:2 | 002               |                 |
|                   |                                          |        |                      |                   |                 |
| COMMENTS          |                                          |        |                      |                   |                 |
| 800MHz Band, High | Power Level                              |        |                      |                   |                 |
| DEVIATIONS FROM   | I TEST STANDARD                          |        |                      |                   |                 |
| Configuration #   | 1 Signature                              |        |                      |                   |                 |

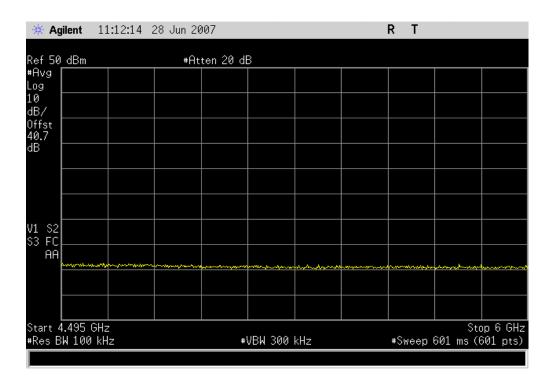
| Modes of Operation and Test Conditions     | Value     | Limit     | Result |
|--------------------------------------------|-----------|-----------|--------|
| Low Channel, In Band                       | < -30 dBm | ≤ -13 dBm | Pass   |
| Low Channel, 0-1GHz                        | < -30 dBm | ≤ -13 dBm | Pass   |
| Low Channel, 995MHz-2.8GHz                 | < -30 dBm | ≤ -13 dBm | Pass   |
| Low Channel, 2.795GHz-4.5GHz               | < -30 dBm | ≤ -13 dBm | Pass   |
| Low Channel, 4.495GHz-6GHz                 | < -30 dBm | ≤ -13 dBm | Pass   |
| Low Channel, 5.995GHz-7.5GHz               | < -30 dBm | ≤ -13 dBm | Pass   |
| Low Channel, 7.495GHz-9GHz                 | < -30 dBm | ≤ -13 dBm | Pass   |
| Mid Channel, In Band                       | < -30 dBm | ≤ -13 dBm | Pass   |
| Mid Channel, 0-1GHz                        | < -30 dBm | ≤ -13 dBm | Pass   |
| Mid Channel, 995MHz-2.8GHz                 | < -30 dBm | ≤ -13 dBm | Pass   |
| Mid Channel, 2.795GHz-4.5GHz               | < -30 dBm | ≤ -13 dBm | Pass   |
| Mid Channel, 4.495GHz-6GHz                 | < -30 dBm | ≤ -13 dBm | Pass   |
| Mid Channel, 5.995GHz-7.5GHz               | < -30 dBm | ≤ -13 dBm | Pass   |
| Mid Channel, 7.495GHz-9GHz                 | < -30 dBm | ≤ -13 dBm | Pass   |
| High Channel, In Band                      | < -30 dBm | ≤ -13 dBm | Pass   |
| High Channel, 0-1GHz                       | < -30 dBm | ≤ -13 dBm | Pass   |
| High Channel, 995MHz-2.8GHz                | < -30 dBm | ≤ -13 dBm | Pass   |
| High Channel, 2.795GHz-4.5GHz              | < -30 dBm | ≤ -13 dBm | Pass   |
| High Channel, 4.495GHz-6GHz                | < -30 dBm | ≤ -13 dBm | Pass   |
| High Channel, 5.995GHz-7.5GHz              | < -30 dBm | ≤ -13 dBm | Pass   |
| High Channel, 7.495GHz-9GHz                | < -30 dBm | ≤ -13 dBm | Pass   |
| 12 Channel Intermods, In Band              | < -30 dBm | ≤ -13 dBm | Pass   |
| 12 Channel Intermods, 0-1GHz               | < -30 dBm | ≤ -13 dBm | Pass   |
| 12 Channel Intermods, 995MHz-2.8GHz        | < -30 dBm | ≤ -13 dBm | Pass   |
| 12 Channel Intermods, 2.795GHz-4.5GHz      | < -30 dBm | ≤ -13 dBm | Pass   |
| 12 Channel Intermods, 4.495GHz-6GHz        | < -30 dBm | ≤ -13 dBm | Pass   |
| 12 Channel Intermods, 5.995GHz-7.5GHz      | < -30 dBm | ≤ -13 dBm | Pass   |
| 12 Channel Intermods, 7.495GHz-9GHz        | < -30 dBm | ≤ -13 dBm | Pass   |
| 12 Channel Intermods, In Band, Lower group |           |           |        |


|              | Low Channel, In Band |        |           |
|--------------|----------------------|--------|-----------|
| Result: Pass | Value: < -30 dBm     | Limit: | ≤ -13 dBm |



|              | Low Channel, 0-1GHz     |        |           |
|--------------|-------------------------|--------|-----------|
| Result: Pass | <b>Value:</b> < -30 dBm | Limit: | ≤ -13 dBm |

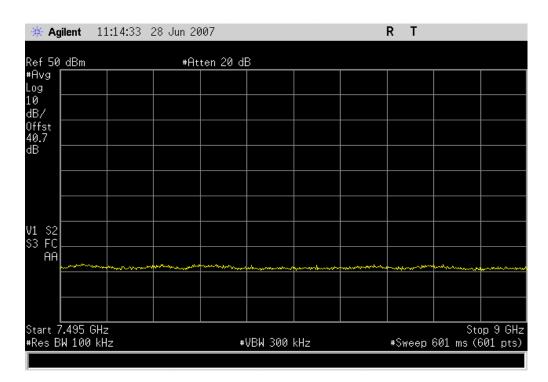
| ef 50 dBm   | #At  | ten 20 di | В      |             |   |                |     |         |
|-------------|------|-----------|--------|-------------|---|----------------|-----|---------|
| Jvg         |      |           |        |             |   |                |     |         |
| ja 🗖        |      |           |        |             |   |                |     |         |
| )<br>3/     |      |           |        |             |   |                |     |         |
| ffst<br>0.7 |      |           |        |             |   |                |     |         |
| 0.7<br>3    |      |           |        |             |   |                |     |         |
|             |      |           |        |             |   |                |     |         |
|             |      |           |        |             |   |                |     |         |
| L S2        |      |           |        |             |   |                |     |         |
| AA          | <br> | aportani  | www.ww | James March |   | and the second |     |         |
|             |      |           |        |             |   |                |     |         |
|             |      |           |        |             |   |                |     |         |
| art 0 Hz    |      |           | I      |             | I | 1              | Stu | op 1 Gł |


|            | Low Char  | nnel, 995MHz-2.8GHz |        |           |
|------------|-----------|---------------------|--------|-----------|
| Result: Pa | ss Value: | < -30 dBm           | Limit: | ≤ -13 dBm |



|              | Low Channel, 2.795GHz-4.5GHz |        |           |
|--------------|------------------------------|--------|-----------|
| Result: Pass | <b>Value:</b> < -30 dBm      | Limit: | ≤ -13 dBm |

| ef 50            | dBm                  |             | #At    | ten 20 di   | 3                    |                 | <br>       |                                    |        |
|------------------|----------------------|-------------|--------|-------------|----------------------|-----------------|------------|------------------------------------|--------|
| Avg [            |                      |             |        |             |                      |                 |            |                                    |        |
| og<br>Ø          |                      |             |        |             |                      |                 |            |                                    |        |
| ı₿∕              |                      |             |        |             |                      |                 |            |                                    |        |
| ffst<br>0.7<br>B |                      |             |        |             |                      |                 |            |                                    |        |
| В                |                      |             |        |             |                      |                 |            |                                    |        |
|                  |                      |             |        |             |                      |                 |            |                                    |        |
|                  |                      |             |        |             |                      |                 |            |                                    |        |
| 1 S2<br>3 FC     |                      |             |        |             |                      |                 |            |                                    |        |
| - AA             | www.aluballow.alor   | -           | ~~~~~~ | wanderstand | where any any series |                 | <br>       | and the state of the second second |        |
|                  |                      |             |        |             |                      |                 |            |                                    |        |
|                  |                      |             |        |             |                      |                 |            |                                    |        |
| tart 2<br>Res Bl | .795 GH:<br>W 100 kH | <br>Z<br>IZ |        | #           | VBW 300              | кН <sub>7</sub> | <br>#Ŝween | Stop<br>601 ms (0                  | 4.5 GH |

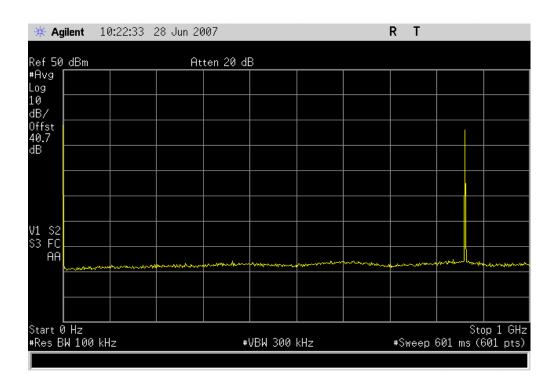

|           | Low Char    | nel, 4.495GHz-6GHz |        |           |
|-----------|-------------|--------------------|--------|-----------|
| Result: P | Pass Value: | < -30 dBm          | Limit: | ≤ -13 dBm |



|              | Low Channel, 5.995GHz-7.5GHz |        |           |
|--------------|------------------------------|--------|-----------|
| Result: Pass | <b>Value:</b> < -30 dBm      | Limit: | ≤ -13 dBm |

| 🔆 <b>Agilent</b> 11:13:16 28 Jun 20      | 007                                                                                                              | RT                                 |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                                          | ten 20 dB                                                                                                        |                                    |
| Avg<br>og                                |                                                                                                                  |                                    |
| 0<br>IB/                                 |                                                                                                                  |                                    |
| 0ffst<br>10.7<br>IB                      |                                                                                                                  |                                    |
|                                          |                                                                                                                  |                                    |
|                                          |                                                                                                                  |                                    |
|                                          |                                                                                                                  |                                    |
| /1 \$2<br>3 FC                           |                                                                                                                  |                                    |
| AA waa waa waa waa waa waa waa waa waa w | and the second |                                    |
|                                          |                                                                                                                  |                                    |
|                                          |                                                                                                                  |                                    |
| Gtart 5.995 GHz<br>Res BW 100 kHz        | ₩VBW 300 kHz                                                                                                     | Stop 7.5 (<br>#Sweep 601 ms (601 p |

|              | Low Channel, 7.495GHz-9GHz |        |           |
|--------------|----------------------------|--------|-----------|
| Result: Pass | <b>Value:</b> < -30 dBm    | Limit: | ≤ -13 dBm |

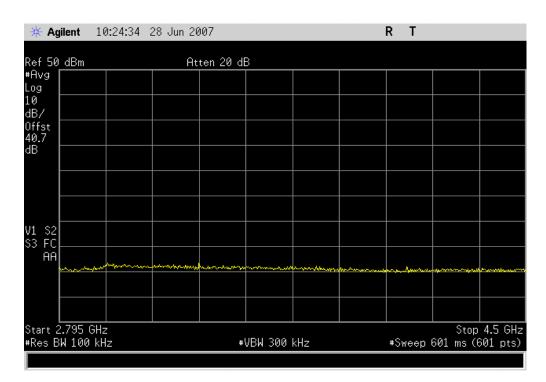



|              | Mid Channel, In Band    |        |           |
|--------------|-------------------------|--------|-----------|
| Result: Pass | <b>Value:</b> < -30 dBm | Limit: | ≤ -13 dBm |

| ef 50 dBm   |       | Ĥt | ten 20 di | В |      |                  |               |              |
|-------------|-------|----|-----------|---|------|------------------|---------------|--------------|
| lvg 🗌       |       |    |           |   |      |                  |               |              |
| yg 📃        |       |    |           |   |      |                  |               | ļ            |
| )<br>37     |       |    |           |   |      |                  |               |              |
| ifst<br>0.7 |       |    |           |   |      |                  |               |              |
| 3           |       |    |           |   |      |                  |               |              |
|             |       |    |           |   |      |                  |               |              |
|             |       |    |           |   |      |                  |               |              |
| L S2        |       |    |           |   |      |                  |               |              |
| AA          | man   |    |           |   | June | <br>and the star | Marine Marine |              |
|             |       |    |           |   |      |                  |               |              |
|             |       |    |           |   |      |                  |               |              |
| enter 860.5 | 5 MHz |    |           |   |      |                  | Spar          | 1<br>1 30 MF |

≤ -13 dBm

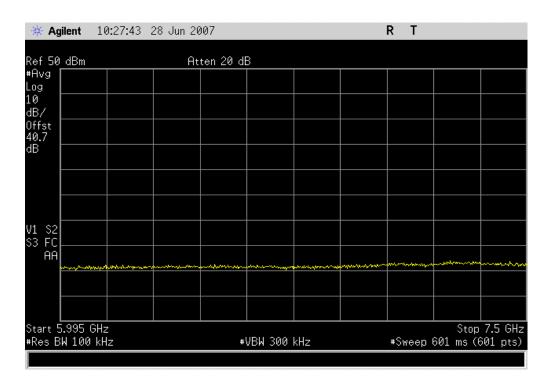
|              | Mid Channel, 0-1GHz |        |           |
|--------------|---------------------|--------|-----------|
| Result: Pass | Value: < -30 dBm    | Limit: | ≤ -13 dBm |




|              | Mid Channel, 995MHz-2.8GHz |        |
|--------------|----------------------------|--------|
| Result: Pass | <b>Value:</b> < -30 dBm    | Limit: |

| 🔆 Agilent                   | 10:21:20                                                                                                         | 28 Jun 20            | 107                     |         |     | RT         |                   |                     |
|-----------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|---------|-----|------------|-------------------|---------------------|
| Ref 50 dBm                  |                                                                                                                  | At                   | ten 20 di               | 3       |     |            |                   |                     |
| #Avg<br>Log                 |                                                                                                                  |                      |                         |         |     |            |                   |                     |
| 10<br>dB/                   |                                                                                                                  |                      |                         |         |     |            |                   |                     |
| Offst<br>40.7<br>dB         |                                                                                                                  |                      |                         |         |     |            |                   |                     |
| ав<br>                      |                                                                                                                  |                      |                         |         |     |            |                   |                     |
|                             |                                                                                                                  |                      |                         |         |     |            |                   |                     |
|                             |                                                                                                                  |                      |                         |         |     |            |                   |                     |
| V1 S2<br>S3 FC              |                                                                                                                  |                      |                         |         |     |            |                   |                     |
| AA                          | and the second | har was provided and | n, hyperoxideathay naby |         | man | <br>·      | A manager and     |                     |
|                             |                                                                                                                  |                      |                         |         |     |            |                   |                     |
|                             |                                                                                                                  |                      |                         |         |     |            |                   |                     |
| Start 995 M⊢<br>#Res BW 100 | lz<br>kHz                                                                                                        |                      | #                       | VBW 300 | kHz | <br>#Sweep | Stop<br>601 ms (0 | 2.8 GHz<br>301 pts) |
|                             |                                                                                                                  |                      |                         |         |     |            |                   |                     |

Res


|              | Mid Channel, 2.795GHz-4.5G | Hz     |           |  |
|--------------|----------------------------|--------|-----------|--|
| Result: Pass | <b>Value:</b> < -30 dBm    | Limit: | ≤ -13 dBm |  |



|            | Mid Channel, 4.495GHz-6GHz |        |           |
|------------|----------------------------|--------|-----------|
| sult: Pass | Value: < -30 dBm           | Limit: | ≤ -13 dBm |

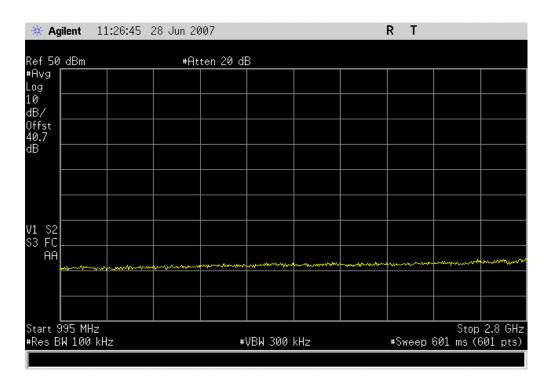
| ef 50 dBm                       | <b>1</b> | A+      | ten 20 dl            | R       |   |                                                       |                  |         |
|---------------------------------|----------|---------|----------------------|---------|---|-------------------------------------------------------|------------------|---------|
| Avg 🔽                           |          |         |                      |         |   |                                                       |                  |         |
| og                              |          |         |                      |         |   |                                                       |                  |         |
| 0<br>B/                         |          |         |                      |         |   |                                                       |                  |         |
| ffst<br>0.7<br>B                |          |         |                      |         |   |                                                       |                  |         |
| B                               |          |         |                      |         |   |                                                       |                  |         |
|                                 |          |         |                      |         |   |                                                       |                  |         |
|                                 |          |         |                      |         |   |                                                       |                  |         |
| 1 S2                            |          |         |                      |         |   |                                                       |                  |         |
| AA                              | ~~~~     | manymen | June from the second |         | - | <br>ad all a sub-sub-sub-sub-sub-sub-sub-sub-sub-sub- |                  |         |
|                                 |          |         |                      |         |   |                                                       |                  |         |
|                                 |          |         |                      |         |   |                                                       |                  |         |
| tart <b>4.</b> 495<br>Res BW 10 | GHz      |         |                      | VBW 300 |   | <br>                                                  | 5ti<br>601 ms (1 | op 6 GH |


|              | Mid Channel, 5.    | .995GHz-7.5GHz |           |
|--------------|--------------------|----------------|-----------|
| Result: Pass | <b>Value:</b> < -3 | 0 dBm Limit:   | ≤ -13 dBm |



|              | Mid Channel, 7.495GHz-9GHz |                         |  |
|--------------|----------------------------|-------------------------|--|
| Result: Pass | <b>Value:</b> < -30 dBm    | <b>Limit:</b> ≤ -13 dBm |  |

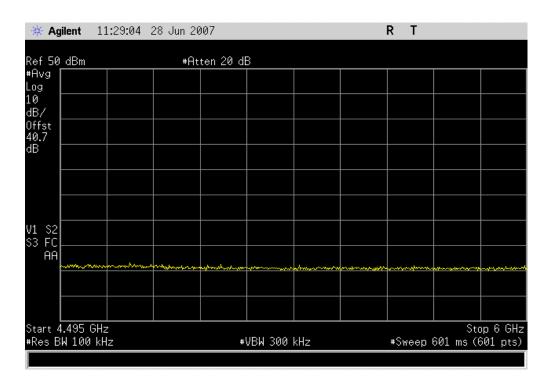
| 🔆 Agilent                  | 10:29:01    | 28 Jun 20 | 107                       |         |     | RT     |                  |                                          |
|----------------------------|-------------|-----------|---------------------------|---------|-----|--------|------------------|------------------------------------------|
| Ref 50 dBm                 |             | At        | ten 20 di                 | 3       |     |        |                  |                                          |
| Avg<br>.og                 |             |           |                           |         |     |        |                  |                                          |
| .0<br>IB/                  |             |           |                           |         |     |        |                  |                                          |
| Iffst<br>10.7<br>IB        |             |           |                           |         |     |        |                  |                                          |
| IB                         |             |           |                           |         |     |        |                  |                                          |
|                            |             |           |                           |         |     |        |                  |                                          |
|                            |             |           |                           |         |     |        |                  |                                          |
| 1 S2                       |             |           |                           |         |     |        |                  |                                          |
| AA .                       | man sharesh |           | and a second and a second |         |     | <br>   |                  | an a |
|                            |             |           |                           |         |     |        |                  |                                          |
|                            |             |           |                           |         |     |        |                  |                                          |
| tart 7.495 G<br>Res BW 100 |             |           | #                         | VBW 300 | kHz | #Sweep | Sto<br>601 ms (6 | op 9 GH<br>301 pts                       |


|              | High Channel, In Band |        |           |
|--------------|-----------------------|--------|-----------|
| Result: Pass | Value: < -30 dBm      | Limit: | ≤ -13 dBm |



|              | High Channel, 0-1GHz |        |           |
|--------------|----------------------|--------|-----------|
| Result: Pass | Value: < -30 dBm     | Limit: | ≤ -13 dBm |

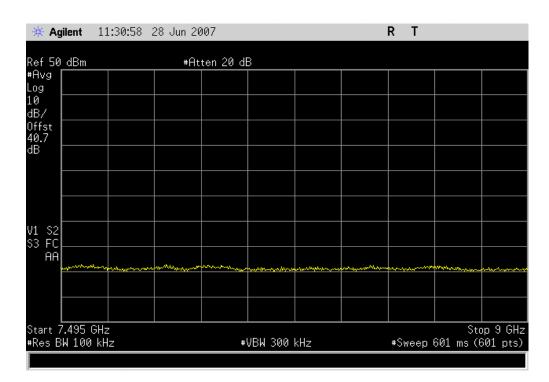
| ╈ Agilent               |       | 28 Jun 20                      |           |         |                           |   | RT                                                                                                               |                               |
|-------------------------|-------|--------------------------------|-----------|---------|---------------------------|---|------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Ref 50_dBm              |       | #At                            | ten 20 di | 3       |                           |   |                                                                                                                  |                               |
| ⊧Avg                    |       |                                |           |         |                           |   |                                                                                                                  |                               |
| .og                     |       |                                |           |         |                           |   |                                                                                                                  |                               |
| .0<br>1B/               |       |                                |           |         |                           |   |                                                                                                                  |                               |
| )ffst<br>10.7           |       |                                |           |         |                           |   |                                                                                                                  |                               |
| ∄B                      |       |                                |           |         |                           |   |                                                                                                                  |                               |
|                         |       |                                |           |         |                           |   |                                                                                                                  |                               |
|                         |       |                                |           |         |                           |   |                                                                                                                  |                               |
| /1 S2                   |       |                                |           |         |                           |   |                                                                                                                  |                               |
| AA                      |       | why faither and which have not |           |         | and the and the second of | m | and the second | <br>an and the second         |
|                         |       |                                |           |         |                           |   |                                                                                                                  |                               |
|                         |       |                                |           |         |                           |   |                                                                                                                  |                               |
| Start 0 Hz<br>Res BW 10 | 0 kHz |                                | #         | VBW 300 | kHz                       |   | #Sweep                                                                                                           | <br>-<br>op 1 GHz<br>601 pts) |


|              | High Channel, 995MHz-2.8GHz |        |           |  |
|--------------|-----------------------------|--------|-----------|--|
| Result: Pass | Value: < -30 dBm            | Limit: | ≤ -13 dBm |  |



|              | High Channel, 2.795GHz-4.5GHz |        |           |
|--------------|-------------------------------|--------|-----------|
| Result: Pass | <b>Value:</b> < -30 dBm       | Limit: | ≤ -13 dBm |

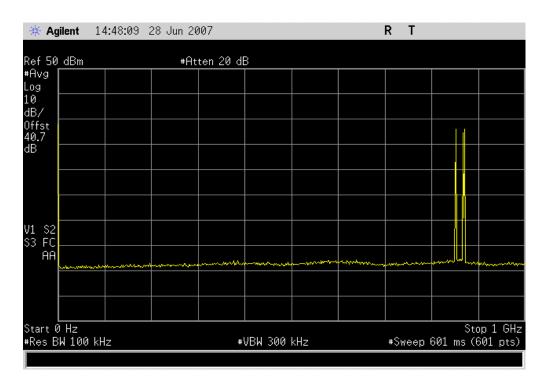
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                | _            |   |  |                   |        |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------|--------------|---|--|-------------------|--------|
| ef 50 dBm               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #Ht   | ten 20 d                                                                                                       | B            |   |  |                   |        |
| Avg                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                |              |   |  |                   |        |
| og  <br>0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                |              |   |  |                   |        |
| B/                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                |              |   |  |                   |        |
| ffst<br>й7              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                |              |   |  |                   |        |
| 0.7<br>B                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                |              |   |  |                   |        |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                |              |   |  |                   |        |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                |              |   |  |                   |        |
| 1 S2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                |              |   |  |                   |        |
| AA                      | when he was a straight of the | howan | an de la companya ana companya a |              | - |  | m                 |        |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                |              |   |  |                   |        |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                |              |   |  |                   |        |
| tart 2.795<br>Res BW 10 | 5 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                                                                                                | ∟<br>VBW 300 |   |  | Stop<br>601 ms (M | 4.5 GH |


|              | High Channel, 4.495GHz-6GHz |        |           |
|--------------|-----------------------------|--------|-----------|
| Result: Pass | Value: < -30 dBm            | Limit: | ≤ -13 dBm |



|         |      | High Chan | nel, 5.995GHz-7.5GHz |        |           |
|---------|------|-----------|----------------------|--------|-----------|
| Result: | Pass | Value:    | < -30 dBm            | Limit: | ≤ -13 dBm |

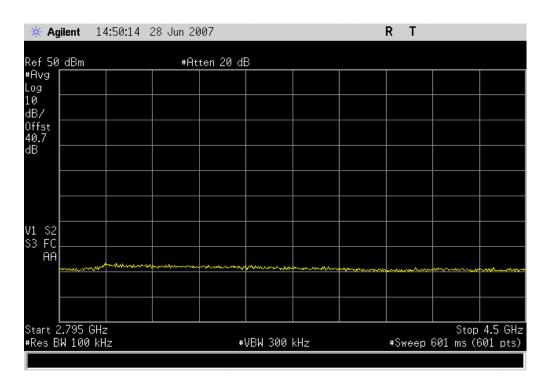
| ef 50 dBm        | #At                                         | ten 20 di             | В |                    |                                                                                                                  |      |                |
|------------------|---------------------------------------------|-----------------------|---|--------------------|------------------------------------------------------------------------------------------------------------------|------|----------------|
| lvg 🗌            |                                             |                       |   |                    |                                                                                                                  |      |                |
| g                |                                             |                       |   |                    |                                                                                                                  |      |                |
| )<br>37          |                                             |                       |   |                    |                                                                                                                  |      |                |
| ifst<br>).7<br>3 |                                             |                       |   |                    |                                                                                                                  |      |                |
|                  |                                             |                       |   |                    |                                                                                                                  |      |                |
|                  |                                             |                       |   |                    |                                                                                                                  |      |                |
|                  |                                             |                       |   |                    |                                                                                                                  |      |                |
| . S2             |                                             |                       |   |                    |                                                                                                                  |      |                |
| AA               | <br>and and a stranger of a stranger of the | and the second second | - | and and the second | and the second | <br> | and the second |
|                  |                                             |                       |   |                    |                                                                                                                  |      |                |
|                  |                                             |                       |   |                    |                                                                                                                  |      |                |
| art 5.995 Gl     |                                             |                       |   |                    |                                                                                                                  | Stop | 1<br>7.5 Gł    |


|              | High Channel, 7.495GHz-9GHz |        |           |
|--------------|-----------------------------|--------|-----------|
| Result: Pass | Value: < -30 dBm            | Limit: | ≤ -13 dBm |



|              | 12 Channel Intermods, In Band |        |           |  |
|--------------|-------------------------------|--------|-----------|--|
| Result: Pass | Value: < -30 dBm              | Limit: | ≤ -13 dBm |  |

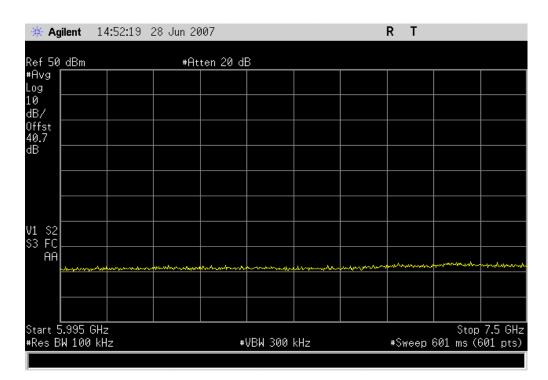
| 10<br>dB/<br>0ffst<br>40.7<br>dB<br>V1 S2                       |                 |                |      | Т    | R   |      |     |                  |      |       |      | 2007    | Jun 2 | '28                | 1:46:37 | 14   | ilent | 🧍 Ag   |
|-----------------------------------------------------------------|-----------------|----------------|------|------|-----|------|-----|------------------|------|-------|------|---------|-------|--------------------|---------|------|-------|--------|
| Log<br>10<br>dB/<br>Offst<br>40.7<br>dB<br>V1 S2<br>S3 FC<br>AA |                 |                |      |      |     |      |     |                  |      | 3     | 20 d | tter    | #At   |                    |         |      | dBm   |        |
| 10<br>dB/<br>0ffst<br>40.7<br>dB<br>V1 S2<br>S3 FC<br>AA        |                 |                |      |      |     |      |     |                  |      |       |      |         |       |                    |         |      |       |        |
| 0ffst<br>40.7<br>dB<br>V1 S2<br>S3 FC<br>AA                     |                 |                | 4    |      | Å   |      |     |                  |      |       |      |         |       | ,                  |         |      |       | 0      |
| V1 S2<br>S3 FC<br>AA                                            |                 |                |      |      |     |      |     |                  |      |       |      |         |       |                    |         |      |       | ffst Í |
| S3 FC                                                           |                 |                |      |      |     |      |     |                  |      |       |      |         |       |                    |         |      |       | 3      |
| S3 FC                                                           |                 |                | $\ $ |      |     |      |     |                  |      |       |      |         |       |                    |         |      |       |        |
| S3 FC                                                           |                 |                |      |      |     |      |     |                  |      |       |      |         |       | $\left\{ \right\}$ |         |      |       |        |
|                                                                 |                 |                |      |      |     |      |     |                  |      |       |      |         |       |                    |         |      |       |        |
|                                                                 | 11h             | h.,            | / \  | Luse |     | Anne | ~~~ | and the spectrum | **** |       |      | , marca |       | ľ                  | )       | ~~~~ | uma   |        |
|                                                                 |                 |                |      |      |     |      |     |                  |      |       |      |         |       |                    |         |      |       |        |
|                                                                 |                 |                |      |      |     |      |     |                  |      |       |      |         |       |                    |         |      |       |        |
| Center 860.5 MHz                                                | 0 MHz<br>1 pts) | Span<br>ms (60 | 601  | /eep | #Sv |      |     | Hz               | 00 k | VBW 3 | #    |         |       |                    |         |      |       |        |


|              | 12 Channel Intermods, 0-1GHz |        |           |
|--------------|------------------------------|--------|-----------|
| Result: Pass | <b>Value:</b> < -30 dBm      | Limit: | ≤ -13 dBm |



|              | 12 Channel Intermods, 995MHz-2.8GHz | <u>'</u> |           |
|--------------|-------------------------------------|----------|-----------|
| Result: Pass | <b>Value:</b> < -30 dBm             | Limit:   | ≤ -13 dBm |

|                               |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B            |                   |                        |     |                   |        |
|-------------------------------|--------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|------------------------|-----|-------------------|--------|
| ef 50 dBm                     | 1            | #Ht | ten 20 di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                   |                        |     |                   |        |
| Avg<br>og                     |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                        |     |                   |        |
| 0                             |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                        |     |                   |        |
| B/                            |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                        |     |                   |        |
| ffst<br>0.7<br>B              |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                        |     |                   |        |
| B                             |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                        |     |                   |        |
|                               |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                        |     |                   |        |
|                               |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                        |     |                   |        |
| 1 S2<br>3 FC                  |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                        |     |                   |        |
| AA                            | e marken and |     | and a start of the |              | - And pala marine | and some on the second | and | adamatada andara  | ·      |
|                               |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                        |     |                   |        |
|                               |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                        |     |                   |        |
| tart 995 MHz<br>Res BW 100 kH | ·            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | └<br>VBW 300 |                   |                        |     | Stop<br>601 ms (0 | 2.8 GH |


|              | 12 Channel Intermods, 2.795GHz-4.5 | 5GHz                    |
|--------------|------------------------------------|-------------------------|
| Result: Pass | <b>Value:</b> < -30 dBm            | <b>Limit:</b> ≤ -13 dBm |



|           | 12 ( | Channel In | termods, 4.495GHz-6GHz |        |           |
|-----------|------|------------|------------------------|--------|-----------|
| Result: P | Pass | Value:     | < -30 dBm              | Limit: | ≤ -13 dBm |

| əf 50 <u>dB</u> ı | n     |       | #At | ten 20 di | В                  |                           |             |                            |                |
|-------------------|-------|-------|-----|-----------|--------------------|---------------------------|-------------|----------------------------|----------------|
| lvg               |       |       |     |           |                    |                           |             |                            |                |
| )g                |       |       |     |           |                    |                           |             |                            |                |
| 37                |       |       |     |           |                    |                           |             |                            |                |
| fst<br>0.7<br>3   |       |       |     |           |                    |                           |             |                            |                |
| 3                 |       |       |     |           |                    |                           |             |                            |                |
|                   |       |       |     |           |                    |                           |             |                            |                |
|                   |       |       |     |           |                    |                           |             |                            |                |
| L S2<br>3 FC      |       |       |     |           |                    |                           |             |                            |                |
| ÂÂ                | www.w | manna |     |           | and an an an and a | <br>and the second second | orbotten au | and a star of the start of | and a constant |
|                   |       |       |     |           |                    |                           |             |                            |                |
|                   |       |       |     |           |                    |                           |             |                            |                |
| art <b>4.</b> 49  | 5 GHz |       |     |           |                    |                           |             | Str                        | 」<br>⊃p 6 GH   |

|              | 12 Channel Inte | ermods, 5.995GHz-7.5GHz |        |           |
|--------------|-----------------|-------------------------|--------|-----------|
| Result: Pass | Value:          | < -30 dBm               | Limit: | ≤ -13 dBm |



|              | 12 Channel Intermods, 7.495GHz-9GHz |        |           |
|--------------|-------------------------------------|--------|-----------|
| Result: Pass | Value: < -30 dBm                    | Limit: | ≤ -13 dBm |

| ef 50_dBm       |     | #Ĥt            | ten 20 d | В |   |                                                                                                                  |            |     |              |
|-----------------|-----|----------------|----------|---|---|------------------------------------------------------------------------------------------------------------------|------------|-----|--------------|
| lvg             |     |                |          |   |   |                                                                                                                  |            |     |              |
| g               |     |                |          |   |   |                                                                                                                  |            |     |              |
| ŝ/              |     |                |          |   |   |                                                                                                                  |            |     |              |
| fst<br>).7<br>} |     |                |          |   |   |                                                                                                                  |            |     |              |
|                 |     |                |          |   |   |                                                                                                                  |            |     |              |
|                 |     |                |          |   |   |                                                                                                                  |            |     |              |
|                 |     |                |          |   |   |                                                                                                                  |            |     |              |
| . S2            |     |                |          |   |   |                                                                                                                  |            |     |              |
| AA              |     | ور مارور مارور | hormon   |   | - | and the second | and marked |     |              |
|                 |     |                |          |   |   |                                                                                                                  |            |     |              |
|                 |     |                |          |   |   |                                                                                                                  |            |     |              |
| art 7.495 0     | iHz |                |          |   |   |                                                                                                                  |            | lSt | l<br>op 9 GH |

#### MODES OF OPERATION

Transmitting typical sector config: Single Sector, 3 channels at full power.

### POWER SETTINGS INVESTIGATED

48 VDC

| TEST EQUIPMENT                  |              |                      |     |            |          |
|---------------------------------|--------------|----------------------|-----|------------|----------|
| Description                     | Manufacturer | Model                | ID  | Last Cal.  | Interval |
| Antenna, Horn                   | EMCO         | 3160-08              | AHK | NCR        | 0        |
| Antenna, Dipole (ADAA included) | Roberts      | Roberts              | ADA | 12/28/2006 | 24       |
| Signal Generator                | Agilent      | E8257D               | TGX | 1/25/2007  | 13       |
| Pre-Amplifier                   | Miteq        | AMF-4D-010100-24-10P | APW | 5/10/2007  | 13       |
| Antenna, Horn                   | EMCO         | 3115                 | AHC | 8/24/2006  | 12       |
| Pre-Amplifier                   | Miteq        | AM-1616-1000         | AOL | 12/29/2006 | 13       |
| Antenna, Biconilog              | EMCO         | 3141                 | AXE | 12/28/2005 | 24       |
| Spectrum Analyzer               | Agilent      | E4446A               | AAT | 12/7/2006  | 13       |

#### MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

#### TEST DESCRIPTION

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the dipole antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

|         | RTHWEST          |                           |            | Spu            | riou       | <u> </u> | De   | di  | at   | od     | Em       | vice             | one             |                      |         |            |                |     | 2007.05.07<br>2006.12.20 |
|---------|------------------|---------------------------|------------|----------------|------------|----------|------|-----|------|--------|----------|------------------|-----------------|----------------------|---------|------------|----------------|-----|--------------------------|
| E       | MC               |                           |            | Spu            |            |          | X a  |     | at   | ea     |          | nss              | ons             |                      |         |            |                |     | 2006.12.20               |
|         |                  | T: MC-series              | , Mid-powe | r, Outdoor     | Pole-mo    | ount     |      |     |      |        |          |                  |                 | v                    |         |            | RAFN00         | 75  |                          |
| Ser     | ial Numbe        | er: None<br>er: Radiofram | o Notworks | s Inc          |            |          |      |     |      |        |          |                  |                 | То                   | mpera   |            | 07/02/07       |     |                          |
|         | Attendee         |                           |            | .,             |            |          |      |     |      |        |          |                  |                 |                      | Hum     | idity:     | 36%            |     |                          |
|         | Projec           | t: None                   |            |                |            |          |      |     |      |        |          |                  |                 | Barom                | etric F | Pres.:     | 30.13          |     |                          |
| TFOT    |                  | y: Greg Kiem              | el         |                |            |          |      |     |      | Powe   | er: 48 \ |                  |                 |                      | Job     | Site:      | EV01           |     |                          |
| FCC 90  |                  | TIONS                     |            |                |            |          |      |     |      |        |          | t Metho          | d<br>IA-603-B-2 | 0002                 |         |            |                |     |                          |
|         | PARAMETI         | 500                       |            |                |            |          |      |     |      |        | AIN      | SI/ TIA/E        | IA-003-D-2      | 2002                 |         |            |                |     |                          |
|         | a Height(s       |                           | 1 - 4      |                |            |          |      |     | To   | st Die | stance   | (m)              | 0               |                      |         |            |                |     |                          |
| COMM    |                  | s) (iii)                  | 1-4        |                |            |          |      |     | 10.  | 51 013 | stance   | (11)             | 0               |                      |         |            |                |     |                          |
|         | a ports te       | rminated.                 |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
| EUT OI  | PERATING         | MODES                     |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
| Transm  | nitting typi     | ical sector co            |            | e Sector, 3    | channel    | ls at    | full | pow | ver. |        |          |                  |                 |                      |         |            |                |     |                          |
|         |                  | OM TEST STA               | NDARD      |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         | iations.         |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
| Run #   |                  | -                         |            |                |            |          |      |     |      |        |          |                  |                 |                      | JU.     | K.         | P              |     |                          |
|         | uration #        |                           |            |                |            |          |      |     |      |        |          |                  |                 | AL                   | 7       |            | -1             |     |                          |
| Results | 5                | Pa                        | 55         |                |            |          |      |     |      |        |          |                  | Signature       | V                    | 5       |            |                |     |                          |
|         | 0.0              |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         | 0.0 T            |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         |                  |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         | -10.0            |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         | -10.0            |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         |                  |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         | -20.0            |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         | 20.0             |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         |                  |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         | -30.0 +          |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         |                  |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
| ٦       |                  |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
| dBm     | -40.0 +          |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
| р       |                  |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         |                  |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         | -50.0 +          |                           |            |                |            | ٠.       |      |     |      | ٠      |          |                  |                 |                      |         |            |                |     |                          |
|         |                  |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         |                  |                           |            |                |            |          | ٠    |     |      |        |          |                  | *               |                      |         |            |                |     |                          |
|         | -60.0 +          |                           |            |                |            | ٠.       |      |     |      |        |          |                  |                 |                      |         |            |                | -   |                          |
|         |                  |                           |            |                |            |          |      |     |      |        | · •      |                  |                 |                      |         |            |                |     |                          |
|         | 70.0             |                           |            |                |            |          |      |     |      |        | · ·      |                  |                 |                      |         |            |                |     |                          |
|         | -70.0            |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         |                  |                           |            |                |            |          |      |     |      | •      |          |                  |                 |                      |         |            |                |     |                          |
|         | -80.0            |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         | 10.00            | 20                        |            |                |            |          |      |     | 100  | 0.000  | n        |                  |                 |                      |         |            | -              | 000 | .000                     |
|         | 10.00            | 50                        |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            | 1              | 000 | .000                     |
|         |                  |                           |            |                |            |          |      |     | N    | IHz    |          |                  |                 |                      |         |            |                |     |                          |
|         |                  |                           |            |                |            |          |      |     |      |        |          |                  |                 |                      |         |            |                |     |                          |
|         |                  |                           |            |                |            |          |      |     |      |        |          | 1                |                 | 1                    |         |            |                | Co  | ompared to               |
|         | Freq             |                           |            | Azimuth        | Height     |          |      |     |      |        | Р        | olarity          | Detector        | EIRP                 |         | RP         | Spec. Lim      |     | Spec.                    |
|         | (MHz)            |                           |            | (degrees)      | (meters    | 5)       |      |     |      |        | ,        | Diles            | DV              | (Watts)              |         | 3m)        | (dBm)          |     | (dB)                     |
|         | 52.937<br>01.912 |                           |            | 276.0<br>241.0 | 1.0<br>1.0 |          |      |     |      |        |          | -Bilog<br>-Bilog | PK<br>PK        | 1.06E-08<br>7.89E-09 |         | 9.7<br>1.0 | -13.0<br>-13.0 |     | -36.7<br>-38.0           |
|         | 59.953           |                           |            | 308.0          | 1.0        |          |      |     |      |        |          | -віюд<br>-Bilog  | PK              | 6.27E-09             |         | 2.0        | -13.0          |     | -38.0<br>-39.0           |
|         | 40.007           |                           |            | 263.0          | 1.0        |          |      |     |      |        |          | -Bilog           | PK              | 3.07E-09             |         | 5.1        | -13.0          |     | -42.1                    |
| 7       | 9.985            |                           |            | 286.0          | 1.4        |          |      |     |      |        | V        | -Bilog           | PK              | 2.93E-09             | -5      | 5.3        | -13.0          |     | -42.3                    |
|         | 24.947           |                           |            | 272.0          | 1.0        |          |      |     |      |        |          | -Bilog           | PK              | 2.93E-09             |         | 5.3        | -13.0          |     | -42.3                    |
|         | 49.999           |                           |            | 68.0           | 1.0        |          |      |     |      |        |          | -Bilog           | PK              | 2.03E-09             |         | 6.9        | -13.0          |     | -43.9                    |
|         | 3.241            |                           |            | 99.0           | 1.0        |          |      |     |      |        |          | -Bilog           | PK              | 1.77E-09             |         | 7.5        | -13.0          |     | -44.5                    |
|         | 62.830<br>49.985 |                           |            | 185.0<br>94.0  | 1.0<br>1.0 |          |      |     |      |        |          | -Bilog           | PK<br>PK        | 1.73E-09             |         | 7.6        | -13.0          |     | -44.6                    |
|         | 49.985<br>53.340 |                           |            | 94.0<br>150.0  | 3.3        |          |      |     |      |        |          | -Bilog<br>-Bilog | PK              | 1.25E-09<br>6.87E-10 |         | 9.0<br>1.6 | -13.0<br>-13.0 |     | -46.0<br>-48.6           |
|         | 53.340<br>50.291 |                           |            | 153.0          | 1.0        |          |      |     |      |        |          | -Bilog<br>-Bilog | PK              | 5.72E-10             |         | 2.4        | -13.0          |     | -40.0                    |
|         | 24.973           |                           |            | 360.0          | 1.8        |          |      |     |      |        |          | -Bilog           | PK              | 5.33E-10             |         | 2.7        | -13.0          |     | -49.7                    |
|         | 9.955            |                           |            | 14.0           | 1.5        |          |      |     |      |        | H        | -Bilog           | PK              | 5.09E-10             | -6      | 2.9        | -13.0          |     | -49.9                    |
|         | 39.963           |                           |            | 121.0          | 1.0        |          |      |     |      |        | H        | -Bilog           | PK              | 2.74E-10             | -6      | 5.6        | -13.0          |     | -52.6                    |
| 1       | 01.628           |                           |            | 65.0           | 2.3        |          |      |     |      |        | H        | -Bilog           | PK              | 2.61E-11             | -7      | 5.8        | -13.0          |     | -62.8                    |

| NORTHWEST                       |         |        |      |           |       |      |        | S             | οι    | ıri  | 0           | us   | F    | la   | di   | at  | e   | d   | E    | m    | is           | sio  | or          | IS    |      |              |          |     |            |              |     |            |      | SA 2007.05.0<br>MI 2006.12.2 |
|---------------------------------|---------|--------|------|-----------|-------|------|--------|---------------|-------|------|-------------|------|------|------|------|-----|-----|-----|------|------|--------------|------|-------------|-------|------|--------------|----------|-----|------------|--------------|-----|------------|------|------------------------------|
|                                 |         | MC-s   |      | s, N      | /lid- | pow  | ver, ( | Outo          | loo   | r Po | ole-i       | nou  | int  |      |      |     |     |     |      |      |              |      |             |       |      |              |          | Woi |            |              |     |            | 0075 | 5                            |
| Serial Num                      |         |        |      |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      |              |          |     |            | Date         |     |            | 07   |                              |
| Custor<br>Attende               |         |        |      | me        | Net   | wor  | ks, I  | nc.           |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      |              | Т        |     |            | ture<br>dity |     |            |      |                              |
|                                 |         | None   |      |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      | Ba           | aror     |     |            | res.         |     |            |      |                              |
| Tested                          | by:     | Greg   |      | mel       |       |      |        |               |       |      |             |      |      |      |      |     | Pc  | we  | r: 4 | 18 V | DC           |      |             |       |      |              |          |     |            | Site         |     |            |      |                              |
| TEST SPECIFIC                   | CATI    | ONS    |      |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     | _    |      | Met          |      |             |       |      |              |          |     |            |              |     |            |      |                              |
| FCC 901:2006                    |         |        |      |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     | 4    | ANS  | I/TIA        | VEIA | <b>-6</b> 0 | і3-В· | -200 | 92           |          |     |            |              |     |            |      |                              |
| TEST PARAME                     |         |        |      |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      |              |          |     |            |              |     |            |      |                              |
| Antenna Heigh                   | it(s) ( | m)     |      | 1         | - 4   |      |        |               |       |      |             |      |      |      |      | Τe  | est | Dis | tan  | ce ( | m)           |      |             |       | 0    |              |          |     |            |              |     |            |      |                              |
| COMMENTS<br>Antenna ports       | term    | inateo | d.   |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      |              |          |     |            |              |     |            |      |                              |
| EUT OPERATIN<br>Transmitting ty |         |        |      | onf       | fig:  | Sing | ale S  | ect           | or, S | 3 ch | anı         | nels | at f | ullp | oow  | er. |     |     |      |      |              |      |             |       |      |              |          |     |            |              |     |            |      |                              |
| DEVIATIONS F<br>No deviations.  | ROM     |        |      | AN        |       |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      |              |          |     |            |              |     | 2          |      |                              |
| Run #<br>Configuration #        | #       |        |      | 2         |       |      | -      |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      | A            | ~        |     | J. k       | <u>/·</u>    | f   |            |      |                              |
| Results                         | #       |        | P    | ı<br>Pass | 5     |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              | S    | ign         | ature | e    |              | $\int c$ | t   |            |              |     |            |      |                              |
| 0.0 -                           |         |        |      |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      |              |          |     |            |              |     |            |      |                              |
| 0.0                             |         |        |      |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      |              |          |     |            |              |     |            |      |                              |
| -10.0 -                         |         |        |      |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      |              |          |     |            |              |     |            |      |                              |
| -20.0 -                         |         |        |      |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      |              |          |     |            |              |     |            |      | _                            |
| -30.0 -                         |         |        |      |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      |              |          |     |            |              |     |            |      | _                            |
| <b>ug</b> -40.0 -               |         |        |      |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      |              |          |     |            |              |     |            |      | _                            |
| -50.0 -                         |         | *•     |      |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      |              |          |     |            |              |     |            |      | _                            |
| -60.0 -                         |         | •      |      |           |       |      |        |               |       |      |             |      |      |      |      |     | •   |     |      |      |              |      |             |       |      |              |          |     |            |              |     |            |      | _                            |
| -70.0 -                         | •       | •      |      |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      |              |          |     |            |              |     |            |      |                              |
| -80.0 -                         |         |        |      |           |       |      |        |               |       |      |             |      |      |      |      |     |     |     |      |      |              |      |             |       |      |              |          |     |            |              |     |            |      |                              |
| 1000                            | 0.000   | ) 2    | 2000 | 0.00      | 00    | 3    | 000    | .000          | )     | 40   | 00.         | 000  | )    | 500  | 0.00 |     | ин  |     | 00.  | .000 | )            | 700  | 0.0         | 000   | ε    | 300          | 0.0      | 00  | 9          | 000          | .00 | 0          | 100  | 00.000                       |
| Freq<br>(MHz)                   |         |        |      |           |       |      | (      | Azim<br>degre | ees)  |      | Hei<br>(met | ers) |      |      |      |     |     |     |      |      | larity       |      |             | ector |      | EIF<br>(Wa   | itts)    |     | EIF<br>(dB | m)           | S   | dBr        |      | Compared t<br>Spec.<br>(dB)  |
| 5568.281<br>5568.189            |         |        |      |           |       |      |        | 265<br>65.    |       |      | 3.<br>1.    |      |      |      |      |     |     |     |      |      | Horn<br>Horn |      |             | K     |      | .44<br>.40   |          |     | -48<br>-48 |              |     | -13<br>-13 |      | -35.4<br>-35.5               |
| 1999.928                        |         |        |      |           |       |      |        | юр.<br>95.    |       |      | 1.          |      |      |      |      |     |     |     |      |      | Horn         |      |             | ĸ     |      | .40<br>8.86  |          |     | -48<br>-54 |              |     | -13        |      | -35.5<br>-41.1               |
| 1250.026                        |         |        |      |           |       |      |        | 122           | .0    |      | 1.          | 0    |      |      |      |     |     |     |      | V-ŀ  | Horn         |      | Ρ           | K     | З    | 8.78         | E-0      | 9   | -54        | .2           |     | -13        | .0   | -41.2                        |
| 1374.942                        |         |        |      |           |       |      |        | 268           |       |      | 1.          |      |      |      |      |     |     |     |      |      | Horn         |      |             | K     |      | 8.61         |          |     | -54        |              |     | -13        |      | -41.4                        |
| 1200.040                        |         |        |      |           |       |      |        | 107           |       |      | 1.          |      |      |      |      |     |     |     |      |      | Horn         |      |             | K     |      | 07           |          |     | -55        |              |     | -13        |      | -42.1                        |
| 1499.970<br>1375.119            |         |        |      |           |       |      |        | 89.<br>273    |       |      | 1.<br>1.    |      |      |      |      |     |     |     |      |      | Horn<br>Horn |      |             | K     |      | 8.07<br>8.00 |          |     | -55<br>-55 |              |     | -13<br>-13 |      | -42.1<br>-42.2               |
| 1999.929                        |         |        |      |           |       |      |        | 36.           |       |      | 1.          |      |      |      |      |     |     |     |      |      | Horn         |      |             | ĸ     |      | 2.17         |          |     | -56        |              |     | -13        |      | -43.6                        |
| 1199.655                        |         |        |      |           |       |      |        | 281           | .0    |      | 1.          | 0    |      |      |      |     |     |     |      | H-ł  | Horn         |      |             | K     | 1    | .85          | E-0      | 9   | -57        | <b>'</b> .3  |     | -13        | .0   | -44.3                        |
| 1499.928                        |         |        |      |           |       |      |        | 107           |       |      | 1.          |      |      |      |      |     |     |     |      |      | Horn         |      |             | K     |      | .81          |          |     | -57        |              |     | -13        |      | -44.4                        |
| 1450.267<br>1449.930            |         |        |      |           |       |      |        | 119<br>64.    |       |      | 1.<br>1.    |      |      |      |      |     |     |     |      |      | Horn<br>Horn |      |             | K     |      | .28<br>.19   |          |     | -58<br>-59 |              |     | -13<br>-13 |      | -45.9<br>-46.2               |
| 1250.108                        |         |        |      |           |       |      |        | 64.<br>8.(    |       |      | 1.<br>2.    |      |      |      |      |     |     |     |      |      | Horn         |      |             | ĸ     |      | .19<br>).27  |          |     | -5e<br>-60 |              |     | -13        |      | -46.2<br>-47.3               |
| 5567.866                        |         |        |      |           |       |      |        | 265           | .0    |      | 3.          | 3    |      |      |      |     |     |     |      | H-ł  | Horn         |      | A           | V     | 6    | 6.87         | E-1(     | 0   | -61        | .6           |     | -13        | .0   | -48.6                        |
| 5568.396                        |         |        |      |           |       |      |        | 65.           |       |      | 1.          |      |      |      |      |     |     |     |      |      | Horn         |      |             | V     |      | .87          |          |     | -61        |              |     | -13        |      | -48.6                        |
| 1199.968                        |         |        |      |           |       |      |        | 107           |       |      | 1.          |      |      |      |      |     |     |     |      |      | Horn         |      |             | V     |      | 8.44         |          |     | -64        |              |     | -13        |      | -51.6                        |
| 1374.882<br>1249.989            |         |        |      |           |       |      |        | 268<br>122    |       |      | 1.<br>1.    |      |      |      |      |     |     |     |      |      | Horn<br>Horn |      |             | V     |      | .00<br>.93   |          |     | -65<br>-65 |              |     | -13<br>-13 |      | -52.2<br>-52.3               |
| 1999.894                        |         |        |      |           |       |      |        | 95.           |       |      | 1.          |      |      |      |      |     |     |     |      |      | Horn         |      |             | V     |      | 2.03         |          |     | -66        |              |     | -13        |      | -53.9                        |
| 1499.996                        |         |        |      |           |       |      |        | 89.           |       |      | 1.          |      |      |      |      |     |     |     |      |      | Horn         |      |             | V     |      | .98          |          |     | -67        |              |     | -13        |      | -54.0                        |

|          |           |          |  |          |          |          |       |             | Compared to |
|----------|-----------|----------|--|----------|----------|----------|-------|-------------|-------------|
| Freq     | Azimuth   | Height   |  | Polarity | Detector | EIRP     | EIRP  | Spec. Limit |             |
| (MHz)    | (degrees) | (meters) |  |          |          | (Watts)  | (dBm) | (dBm)       | (dB)        |
| 1374.979 | 273.0     | 1.0      |  | H-Horn   | AV       | 1.57E-10 | -68.0 | -13.0       | -55.0       |
| 1200.063 | 281.0     | 1.0      |  | H-Horn   | AV       | 1.34E-10 | -68.7 | -13.0       | -55.7       |
| 1999.918 | 36.0      | 1.2      |  | H-Horn   | AV       | 1.14E-10 | -69.4 | -13.0       | -56.4       |
| 1500.006 | 107.0     | 1.0      |  | H-Horn   | AV       | 1.11E-10 | -69.5 | -13.0       | -56.5       |
| 1449.964 | 119.0     | 1.0      |  | H-Horn   | AV       | 6.41E-11 | -71.9 | -13.0       | -58.9       |
| 1449.937 | 64.0      | 1.7      |  | V-Horn   | AV       | 5.99E-11 | -72.2 | -13.0       | -59.2       |
| 1250.033 | 8.0       | 2.0      |  | H-Horn   | AV       | 4.54E-11 | -73.4 | -13.0       | -60.4       |

NORTHWEST

# Spurious Radiated Emissions





#### Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:

Single channels within the center of the allowable 800MHz band

### Operating Modes Investigated:

Typical

**Data Rates Investigated:** 

96 kBps at 64-QAM

Output Power Setting(s) Investigated:

Maximum ~ 14 dBm

Power Input Settings Investigated: -48Vdc

| Software\Firmware Applied During Test                                                               |          |         |     |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|----------|---------|-----|--|--|--|--|
| Exercise software                                                                                   | Vx Works | Version | N/A |  |  |  |  |
| Description                                                                                         |          |         |     |  |  |  |  |
| The system was tested using standard operating production software to exercise the functions of the |          |         |     |  |  |  |  |
| device during the testing.                                                                          |          |         |     |  |  |  |  |



| EUT and Peripherals |
|---------------------|
|---------------------|

|                                        |                           | Model/Part  |               |
|----------------------------------------|---------------------------|-------------|---------------|
| Description                            | Manufacturer              | Number      | Serial Number |
| EUT- Multi-Channel RadioBlade (MCRB    | Radioframe Networks, Inc. | 176-0860-00 | 14106110148   |
| EUT- Multi-Channel RadioBlade (MCRB    | Radioframe Networks, Inc. | 176-0860-00 | 14106110160   |
| EUT- Multi-Channel RadioBlade (MCRB    | Radioframe Networks, Inc. | 176-0860-00 | 14106110151   |
| EUT- Multi-Channel RadioBlade (MCRB    | Radioframe Networks, Inc. | 176-0860-00 | 14106110146   |
| EUT- Multi-Channel RadioBlade (MCRB    | Radioframe Networks, Inc. | 176-0860-00 | 14106110173   |
| EUT- Multi-Channel RadioBlade (MCRB    | Radioframe Networks, Inc. | 176-0860-00 | 14106110174   |
| MC-15 SERIES DUAL BAND SYSTEM<br>(3 SE | Radioframe Networks, Inc. | 176-7970-xx | 14106050325   |
| FRU, DUAL BAND RF SHELF                | Radioframe Networks, Inc. | 176-0970-xx | 14105510109   |
| FRU, DUAL BAND RF SHELF                | Radioframe Networks, Inc. | 176-0970-xx | 14105510110   |
| FRU, DUAL BAND RF SHELF                | Radioframe Networks, Inc. | 176-0970-xx | 14105510113   |
| RadioBlade Shelf (RBS)                 | Radioframe Networks, Inc. | 176-0535-xx | 14106030127   |
| MC-15 BTS Interface Chassis (BIC)      | Radioframe Networks, Inc. | 176-0900-xx | 14106050474   |
| MC Common RadioFrame Interface Card    | Radioframe Networks, Inc. | 176-7540-xx | 041053919XV   |
| MC Common RadioFrame Interface Card    | Radioframe Networks, Inc. | 176-7540-xx | 041053919W3   |
| Base Processing Card (BPC)             | Radioframe Networks, Inc. | 176-7570-xx | 04105411HGM   |
| Base Processing Card (BPC)             | Radioframe Networks, Inc. | 176-7570-xx | 04105401GP1   |
| Base Processing Card (BPC)             | Radioframe Networks, Inc. | 176-7570-xx | 04105421JKZ   |
| MC-15 Airlink Interface Chassis (Al    | Radioframe Networks, Inc. | 176-0800-xx | 14106050522   |
| BPC W/ LC SPAM                         | Radioframe Networks, Inc. | 176-7565-xx | 04105411HC0   |
| SPAM                                   | Radioframe Networks, Inc. | 176-7510-xx | Unknown       |
| SPAM                                   | Radioframe Networks, Inc. | 176-7510-xx | Unknown       |
| BPC W/ LC SPAM                         | Radioframe Networks, Inc. | 176-7565-xx | 04105411HJX   |
| SPAM                                   | Radioframe Networks, Inc. | 176-7510-xx | Unknown       |
| SPAM                                   | Radioframe Networks, Inc. | 176-7510-xx | Unknown       |
| BPC W/ LC SPAM                         | Radioframe Networks, Inc. | 176-7565-xx | 04105411HLH   |
| SPAM                                   | Radioframe Networks, Inc. | 176-7510-xx | Unknown       |
| SPAM                                   | Radioframe Networks, Inc. | 176-7510-xx | Unknown       |
| Ethernet Rear Transition Module (ER    | Radioframe Networks, Inc. | 176-7562-xx | 14105320204   |
| Ethernet Rear Transition Module (ER    | Radioframe Networks, Inc. | 176-7562-xx | 14105320203   |
| Coaxial RMII Transceiver Card (CRTC    | Radioframe Networks, Inc. | 176-0820-xx | 14105480250   |

| Remote Equipment Outside of Test Setup Boundary |                               |                   |               |  |  |  |
|-------------------------------------------------|-------------------------------|-------------------|---------------|--|--|--|
| Description                                     | Manufacturer                  | Model/Part Number | Serial Number |  |  |  |
| Site Simulator                                  | Radioframe Networks, Inc.     | N/a               | N/a           |  |  |  |
| Site Controller                                 | Motorola, Inc.                | CCN1008N          | CAF030LTC4    |  |  |  |
| GPS Antenna                                     | Hewlett-Packard               | 8532A             | 901           |  |  |  |
| DC Power Supply                                 | Electronic Measurements, Inc. | EMS 60-33         | 20K11738      |  |  |  |

Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary

| Cables     |        |            |         |                               |                 |
|------------|--------|------------|---------|-------------------------------|-----------------|
| Cable Type | Shield | Length (m) | Ferrite | Connection 1                  | Connection 2    |
| DC Power   | No     | 8.0        | No      | MC-15 SERIES DUAL BAND SYSTEM | DC Supply       |
| BNC        | Yes    | 30.0       | No      | ERTM                          | Site Simulator  |
| BNC        | Yes    | 30.0       | No      | Site Controller               | Site Simulator  |
| BNC        | Yes    | 3.0        | No      | GPS Antenna                   | Site Controller |
| Ethernet   | No     | 3.0        | No      | Site Controller               | ERTM            |

| Measurement Equipment                  |                              |                |            |            |          |
|----------------------------------------|------------------------------|----------------|------------|------------|----------|
| Description                            | Manufacturer                 | Model          | Identifier | Last Cal   | Interval |
| Spectrum Analyzer                      | Hewlett-Packard              | 8593E          | AAN        | 01/25/2006 | 13 mo    |
| Multimeter                             | Tektronix                    | DMM912         | MMH        | 12/08/2005 | 13 mo    |
| DC Power Supply                        | Sorensen                     | DCR60-45B      | TPB        | NCR        | NA       |
| Chamber, Temp./Humidity<br>Chamber     | Cincinnati Sub Zero<br>(CSZ) | ZH-32-2-2-H/AC | TBA        | 08/24/2005 | 12 mo    |
| Chamber Temp. &<br>Humidity Controller | ESZ / Eurotherm              | Dimension II   | TBC        | 08/24/2005 | 12 mo    |

### **Test Description**

**<u>Requirement:</u>** Per 47 CFR 15.255, the frequency stability shall be measured with variation of ambient temperature and primary supply voltage. A spectrum analyzer or frequency counter can be used to measure the frequency stability. If using a spectrum analyzer, it must have a precision frequency reference that exceeds the stability requirement of the transmitter. A temperature / humidity chamber is required.

#### **Configuration:**

#### Variation of Supply Voltage

The primary supply voltage was varied from 85% to 115% of nominal. The EUT can only be operated from the public AC mains, so an DC lab supply was used to vary the supply voltage from 115% to 85% -48V DC.

#### Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-20° to +50° C) and at 10°C intervals.

Measurements were made at the single transmit frequency. The antenna is integral to the EUT, so a radiated measurement was made using a spectrum analyzer and a near field probe. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

| Completed by: |        |
|---------------|--------|
| Rocky le      | Peling |

| NORTHWEST             |                                      |                               |                  |               |              |                      |  |  |
|-----------------------|--------------------------------------|-------------------------------|------------------|---------------|--------------|----------------------|--|--|
| EMC                   |                                      | FREQUEN                       | CY STABIL        | ITY           |              | Rev BETA<br>01/30/01 |  |  |
|                       | MCRB                                 |                               |                  |               | Work Order:  | RAFN0060             |  |  |
| Serial Number:        | Various                              |                               |                  |               |              |                      |  |  |
| Customer:             | Radioframe Networks, Inc.            |                               |                  |               | Temperature: | 21°C                 |  |  |
| Attendees:            | Dean Busch                           |                               | Tested by:       | Rod Pelqouin  | Humidity:    | 32%                  |  |  |
| Customer Ref. No.:    | None                                 |                               | Power:           | -48 Vdc       | Job Site:    | Off-site             |  |  |
| TEST SPECIFICATION    | IS                                   |                               |                  |               |              |                      |  |  |
| Specification:        | 47 CFR 2.1055, 90.213                | Year: 2005                    | Method:          | TIA/EIA - 603 | Year:        | 2002                 |  |  |
| SAMPLE CALCULATIO     | ONS                                  |                               |                  |               |              |                      |  |  |
|                       |                                      |                               |                  |               |              |                      |  |  |
|                       |                                      |                               |                  |               |              |                      |  |  |
| COMMENTS              |                                      |                               |                  |               |              |                      |  |  |
|                       |                                      |                               |                  |               |              |                      |  |  |
| EUT OPERATING MOD     |                                      |                               |                  |               |              |                      |  |  |
| Transmitting mid band |                                      |                               |                  |               |              |                      |  |  |
| DEVIATIONS FROM T     | EST STANDARD                         |                               |                  |               |              |                      |  |  |
| None                  |                                      |                               |                  |               |              |                      |  |  |
| REQUIREMENTS          |                                      |                               |                  |               |              |                      |  |  |
|                       | tability of 1 part per million (ppm) | for variations of temperature |                  |               |              |                      |  |  |
| RESULTS               |                                      |                               | MINIMUM FREQUENC | Y STABILITY   |              |                      |  |  |
| Pass                  |                                      |                               | 0.3 ppm          |               |              |                      |  |  |
| SIGNATURE             |                                      |                               |                  |               |              |                      |  |  |
| Rochy te Pieling      |                                      |                               |                  |               |              |                      |  |  |
| DESCRIPTION OF TES    | DESCRIPTION OF TEST                  |                               |                  |               |              |                      |  |  |
|                       | Frequency Stability                  |                               |                  |               |              |                      |  |  |

### Frequency Stability with Variation of Ambient Temperature (Primary Supply = 48 Vdc)

| Temp | Assigned Frequency | Measured Frequency | Tolerance | Specification |
|------|--------------------|--------------------|-----------|---------------|
| (°C) | (MHz)              | (MHz)              | (ppm)     | (ppm)         |
| 50   | 860.55000          | 860.550037         | 0.04      | 1             |
| 40   | 860.55000          | 860.550062         | 0.07      | 1             |
| 30   | 860.55000          | 860.550037         | 0.04      | 1             |
| 20   | 860.55000          | 860.550037         | 0.04      | 1             |
| 10   | 860.55000          | 860.550250         | 0.29      | 1             |
| 0    | 860.55000          | 860.550037         | 0.04      | 1             |
| -10  | 860.55000          | 860.550049         | 0.06      | 1             |
| -20  | 860.55000          | 860.550049         | 0.06      | 1             |
| -30  | 860.55000          | 860.550049         | 0.06      | 1             |

#### Frequency Stability with Variation of Primary Supply Voltage (Ambient Temperature = 20°C)

| Voltage     | Assigned Frequency | Measured Frequency | Tolerance | Specification |
|-------------|--------------------|--------------------|-----------|---------------|
| (Vdc)       | (MHz)              | (MHz)              | (ppm)     | (ppm)         |
| 55.2 (115%) | 860.55000          | 860.550062         | 0.07      | 1             |
| 52.8 (110%) | 860.55000          | 860.550037         | 0.04      | 1             |
| 50.4 (105%) | 860.55000          | 860.550050         | 0.06      | 1             |
| 48 (100%)   | 860.55000          | 860.550037         | 0.04      | 1             |
| 45.6 (95%)  | 860.55000          | 860.550050         | 0.06      | 1             |
| 43.2 (90%)  | 860.55000          | 860.550000         | 0.00      | 1             |
| 40.8 (85%)  | 860.55000          | 860.55000          | 0.00      | 1             |